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Abstract: Infant electrocardiograms (ECG) and heart rates (HR) are very useful biosignals for 16 
psychological research and clinical work, but can be hard to analyze properly, particularly long 17 
form (≥5 minutes) recordings taken in naturalistic environments. Infant HRs are typically much 18 
faster than adult HRs, and so some of the underlying frequency assumptions made about adult 19 
ECGs may not hold for infants. However, the bulk of publicly available ECG approaches focus on 20 
adult data. Here, existing open-source ECG approaches are tested on infant datasets. The best 21 
performing open-source method is then modified to maximize its performance on infant data (e.g., 22 
including a 15Hz high pass filter, adding local peak correction). The HR signal is then subsequently 23 
analyzed, developing an approach for cleaning data with separate sets of parameters for the analysis 24 
of cleaner and noisier HR. A Signal Quality Index (SQI) for HR is also developed, providing insight 25 
into where a signal is recoverable and where it is not, allowing for more confidence in analysis 26 
performed on naturalistic recordings. The tools developed and reported in this paper provide a base 27 
for future analysis of infant ECG and related biophysical characteristics. Of particular importance, 28 
the proposed solutions outlined here can be efficiently applied to real-world large datasets. 29 

Keywords: ECG, Infant ECG; R-Peaks, Heart Rate, longform, naturalistic, open-source 30 
 31 

1. Introduction 32 
Although heart rate (HR) has been used for studying infant cognitive and emotional 33 

development for several decades, there currently are few evaluations of complete open-34 
access pipelines, especially focussed on infant data recorded in naturalistic environments 35 
while infants are free to move. Measures of the cardiovascular system provide a good 36 
window into the activity of the autonomic nervous system (ANS), reflecting innervations 37 
from both the sympathetic and parasympathetic branches [1]. Variations in heart period 38 
and heart rate variability have been linked to important cognitive functions, such as 39 
attention, memory, and information processing, as well as changes in arousal and 40 
regulatory abilities [2]–[5]. ANS activity measurement has been fruitful in understanding 41 
both typical and atypical development, with atypical ANS shown in manifestations of 42 
autism spectrum disorders [6]–[8], attention deficit and hyperactivity disorders [9], 43 
conduct disorders [10], as well as the emergence of other neuropsychiatric conditions  [11]. 44 
Cardiovascular measures are particularly useful for the study of cognitive and emotional 45 
development beginning with the first days of life since both the cardiovascular and 46 
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autonomic systems are well developed at birth [12], and electrocardiography (ECG) 47 
recordings can be obtained in non-invasive fashion. In the context of infants’ limited 48 
behavioural repertoire, reduced motor development, and lack of verbal communication 49 
abilities, non-invasive methods that can give insights into cognitive and emotion 50 
functions, are essential for understanding how these develop within the critical first 1000 51 
days of life. With advances in wearable sensing technology, ECG can be more easily 52 
obtained outside the laboratory as well, allowing dense recordings over hours and days 53 
[13], [14]. The main motivation of this paper is to develop an innovative novel framework 54 
for studying the development in the natural environment, allowing researchers to 55 
understand the complexity of factors that can contribute to typical and atypical outcomes 56 
[15]. 57 

Children, and in particular infants, have a much higher HR than adults [16], and so 58 
algorithms tailored to process adult heart signals might not be the optimal choice for 59 
processing the signals recorded from the infant heart [17], [18] . In addition to the higher 60 
heart rate, there are many other factors (e.g., differing ECG complex shapes that occur) 61 
that should be considered when using ECGs from infants and children [19]. Free 62 
movement during typical activities and lengthy recordings can produce more motion-63 
induced noise, such as baseline wander and motion artefacts [20], [21], which can be 64 
particularly problematic when cardiac activity is recorded from infants in naturalistic 65 
settings (e.g., their everyday home environment). This is in addition to other forms of ECG 66 
noise (such as power line interference and signal processing artefacts [22], [23] that must 67 
be accounted for in ECG processing [24]. Recent early-development research has focussed 68 
on foetal heart rate and ECG [25]–[27], rather than the specific issues surrounding infants. 69 
Building on and extending our previous work [13], the motivation of the current study is 70 
to propose a complete open-source processing pipeline for long infant ECG recordings (≥5 71 
minutes) and validate it under a range of conditions (including naturalistic conditions) 72 
against open-source state-of-the-art approaches. Compared to our previous work, we 73 
increase dataset sizes, include ECG data recordings from a range of devices recorded at a 74 
range of sampling rates, and present a deeper validation of the different steps of the 75 
pipeline. 76 

During typical functioning, the depolarization of the heart ventricles produces a 77 
short and characteristic spike of electric signal, often referred to as the QRS complex, with 78 
the peak of the QRS complex referred to as the R-peak (Figure 1). When detected, the time 79 
between consecutive R peaks (ΔR-R) can be used to calculate the instantaneous HR in beats 80 
per minute (see Equation 1). This gives a precise beat-by-beat HR measurement derived 81 
from the ECG. 82 

HR = 60/(ΔR-R)        (1) 83 

There are many pre-established open-source methods designed to preprocess ECG 84 
data and then extract the R-peaks [28]–[36]. While some comparative analyses have been 85 
previously carried out [23], [28] no analysis exists evaluating the effectiveness of these 86 
methodologies on infants and young children ECGs. Many of these methods also 87 
investigate other ECG complexes such as T-waves and P-waves, as well as the QRS 88 
complex as a whole (see Figure 1). In the present paper, only the R-peak detection is 89 
analysed. 90 



Signals 2023, 4, FOR PEER REVIEW 3 of 31 
 

 

 91 
Figure 1. A visualisation of the different complexes with an ECG. ΔR-R represents the time between 92 
R peaks, as depicted in Equation 1. 93 

For the ECG preprocessing step, usually a decision must be made as to whether the 94 
signal is of sufficient quality for further processing and analysis. Noise can be reduced by 95 
a frequency-filtering approaches, with low pass filters (LPF) for removing aspects such as 96 
white noise, high pass filtering (HPF) used for aspects such as baseline drift, bandpass 97 
filtering (BPF) to remove low-frequency and high-frequency noise, and notch filtering for 98 
mains interference. Alternatively, other approaches such as wavelets and Empirical Mode 99 
Decomposition have also been used [37]–[39].    100 

Typical ECG pipelines will only encompass the preprocessing of the ECG signal and 101 
then the R-peak detection. Given the inherent noise level in infant and young children 102 
ECG, and particularly ECG recordings in the natural environment, this paper aims to 103 
encapsulate the ECG to HR process as a complete open-access pipeline, also accounting 104 
for any HR cleaning and HR signal quality measurements (Figure 2). First pre-existing 105 
open-access ECG pipelines from literature were evaluated. The best performing method 106 
was then chosen as the basis to develop our new open-source pipeline for the infant ECG 107 
and subsequent infant HR signal. A range of additional preprocessing options were 108 
evaluated, along with some ECG post-processing steps.  109 

 110 
Figure 2. The proposed new pipeline for processing infant ECG into a usable heart rate. The ECG 111 
pipeline (top row, blue boxes) takes raw ECG and applies preprocessing. The preprocessed ECG is 112 
then passed into the peak detection step, and then the novel steps of local peak correction and 113 
square wave correction (where required by the device appropriate). The HR pipeline (bottom row, 114 
red boxes) extracts a raw heart rate from the detected ECG peaks, and corrects for any obvious 115 
mislabelling, while carrying out an SQI calculation to determine quality of the signal. Adapted 116 
from Geangu et al. [13] to represent an infant-specific pipeline. 117 

In brief, the key innovations in the proposed pipeline are as follows. The ECG 118 
preprocessing is improved by specifically tailoring the frequency filtering to infant ECGs. 119 
A local peak correction is added to allow for heavy filtering without affecting the 120 
underlying heart rate. A mathematically-outlined approach is described for cleaning the 121 
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HR signal in instances of minor mislabelling. A new HR signal quality index (SQI) is 122 
developed to help automatically reject areas of unrecoverable signal which will help to 123 
account for the high levels of noise in infant ECG. Finally, a focus on computational 124 
efficiency was followed throughout to allow for the application to large amounts of data. 125 

2. Materials and Results 126 
In this section, existing ECG pipelines will be applied to datasets containing infants 127 

and toddlers. Then, we propose an adapted ECG pipeline (including two novel 128 
preprocessing approaches). Finally, we propose a HR pipeline designed specifically to 129 
deal with longform and noisy recordings. 130 

2.1. Datasets 131 
Three infant ECG datasets (Table 1) were used to develop the pipeline and test the 132 

existing approaches. Datasets A, B, and C were all captured using different devices with 133 
different sampling rates in different environments. Dataset A and B are characterised by 134 
relatively low levels of noise and will be used to evaluate the ECG pipeline and initial HR 135 
processing. Some of the recordings in Dataset A have gaps in recording due to Bluetooth 136 
dropout from the BiosignalPlux device (a subset of the recordings in Dataset A were the 137 
object of analyses in our previous work [13]). Dataset C contains the noisiest ECG 138 
(including areas of non-signal) and will be used for HR quality analysis. Further details 139 
on these datasets can be found in the Appendix B. The distribution of recording time and 140 
ages for each dataset is illustrated in Figure 3. 141 

Table 1. The infant dataset information for the three datasets used in this paper. Age column 142 
shows the range and mean ± standard deviation. A breakdown of durations by age cohort is given 143 
along with the overall total. 144 

 145 
Dataset Device Sampling 

Rate (Hz) 
Environment Age 

(months) 
N Total 

Duration 
Mean 

Duration 

A Biosignal 
Plux 500 Free play in infant play 

area of research lab 

2.9-7.9 
Mage=5.8±1.2 

25 11 hrs, 
41 min 

28 min, 
1 sec 

8-10.9 
Mage=9.3±0.6 

15 8 hrs, 
35 min 

34 min, 
20 sec 

11-19.9 
Mage=13.4±2.3 

23 10 hrs, 
41 min 

27 min, 
52 sec 

20-42.3 
Mage=30.8±6.2 

34 21 hrs, 
14 min 

37 min, 
45 sec 

2.9-42.1 
Mage=16.9±11.2 

97 52 hrs, 
20 min 

32 min, 
22 sec 

B Geodesic EEG 
System 1000 Experimental lab condition 

(sitting on lap) 

5.6-8.9 
Mage=7.1±1.1 

15 2 hr, 
13 min 

8 min, 
52 sec 

9-13.0 
Mage=10.7±1.3 

10 1 hr, 
22 min 

8 min, 
12 sec 

5.6-13.0 
Mage=8.5±2.1 

25 3 hr, 
34 min 

8 min, 
36 sec 

C EgoActive 
sensor 250 Home environment 

5.3-7.9 
Mage=5.8 ± 0.3 

7 10 hrs, 
27 min 

89 min, 
37 sec 

8-10.4 
Mage=9.5 ± 0.7 

5 7 hrs, 
34 min 

90 min, 
51 sec 

5.3-10.4 
Mage=7.3 ± 1.9 

12 18 hrs, 
2 min 

90 min, 
8 sec 
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Figure 3. Age of participant vs length of recording. (a) Dataset A: the recordings have been roughly 147 
grouped into cohorts of 2.9-7.9 months (N =25, Mage=5.8 m.o.), 8-10.9 months (N=15, Mage=9.3 m.o.), 148 
11-19.9 months (N=23, Mage=13.4 m.o.), and 20-42.3 months (N=34, Mage=30.8 m.o.). (b) Dataset B: The 149 
recordings are grouped into cohorts of 5.6-8.9 months (N=15, Mage=7.1 m.o.), 9-13.0 months (N=10, 150 
Mage=10.7 m.o.). (c) Dataset C: The recordings are grouped into cohorts of 5.3-7.9 months (N=7, 151 
Mage=5.8 m.o.) and 8-10.4 months (N=5, Mage=9.5 m.o.). All y-axes and x-axes have different scales. A 152 
consistent colour-scale for age has been used in all subplots.  153 

A consistent issue across datasets was the range of ECG morphologies detected, such 154 
as double R-peaks and distorted T-waves. As infants are much smaller and less compliant 155 
than adults, ECG devices were often placed at a range of angles, and occasionally upside-156 
down, therefore ECGs had to be evaluated individually to determine if the signal was 157 
inverted. The devices used often had very narrow electrodes, which made a traditional 158 
ECG notation (e.g., 12 lead analysis) difficult to apply. 159 

All datasets were recorded from subjects recruited from urban areas in the North-160 
East of England. Families received remuneration commensurate with the specific study 161 
they were involved in and an age-appropriate book as a token of participation. The 162 
research procedures were approved by the Ethic Committee of the Department of 163 
Psychology at University of York. Participants’ caregivers signed an informed consent 164 
prior to the beginning of the research procedure.  165 

2.2. The ECG Pipeline 166 
The main focus of the ECG pipelines analysed here is to accurately extract a set of R-167 

peak locations from an ECG signal, identifying the peak within QRS complexes (known 168 
as peak detection). Some pipelines may also search for other ECG complexes, which will 169 
not be analysed here. A pipeline typically starts with preprocessing, a mathematical 170 
manipulation of the ECG signal to allow the QRS complex to be more easily identifiable.  171 

Once the signal has gone through preprocessing, the resulting preprocessed ECG will 172 
contain R-peak locations that differ slightly from the raw ECG, due to the mathematical 173 
operations that occur during preprocessing. In order to readjust the peaks back to the 174 
original location on the raw ECG (i.e., the R-peak location on the raw ECG, rather than the 175 
R-peak location on the preprocessed ECG), we are introducing a “local peak correction” 176 
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operation. Additionally, we introduce a square-wave specific filter for those devices 177 
where it is appropriate. 178 

2.2.1. Existing ECG Approaches 179 
Firstly, 12 open-source pre-existing ECG methods (Table 2) were applied to Datasets 180 

A and B. These approaches represent the available open-source methods for R-peak 181 
extraction. Based on an investigation of open-source approaches, three separate Python 182 
packages that contain all or a subset of these methods were initially considered - HeartPy, 183 
Neurokit2, and py-ecg-detectors. However, all ECG methods in py-ecg-detectors were 184 
found to contain matching implementations in Neurokit2, without the flexibility to 185 
implement preprocessing and peak-detection of a method separately. This reduced the 186 
selection of ECG methods to those found in the HeartPy and Neurokit2 packages - the 187 
default HeartPy method, and 11 other approaches from the Neurokit2 package (including 188 
the default Neurokit2 approach). The open-source nature of the Neurokit2 means that 189 
some methods may match more closely than others to the authors’ original intentions.  190 
Almost all methods within the Neurokit2 package were tested, but some were excluded. 191 
A sum-slope approach [40] was initially tested but then excluded due to very poor 192 
performance (to the point that including it in the analysis made it hard to visualise the 193 
other results). An approach by Koka and Muma [41] relied on visibility graphs, but was 194 
much slower than other methods, requiring an additional package to work. Two methods 195 
did not successfully run when tested within the Neurokit2 framework: an approach by 196 
Gamboa [34], and a Probabilistic Methods-Agreement via Convolution (ProMAC) 197 
approach which combined the results of other peak detection methods. The ProMAC 198 
method, which relies on other approaches, likely failed because the Gamboa method also 199 
failed. Aside from these exclusions, which were done for reasons of performance, our 200 
analysis captures all open-source approaches to R-peak labelling in ECG within common 201 
Python packages. It is acknowledged that proprietary measures for measuring infant ECG 202 
may well exist as part of commercial innovation and research. 203 

Table 2. A guide to the pre-existing ECG pipelines tested in this paper. 204 

ECG Method Method Description 

HeartPy [36], 
[42], [43] 

Designed for noisy data. Preprocessing uses baseline wander removal, a 0.05Hz notch 
filter, and a 0.003-20Hz bandpass filter. Peak detection uses an adaptive threshold, then 

outlier detection and rejection. HeartPy user-customization was used to raise max 
allowed HR to 220bpm. 

Neurokit2 [44] 
Preprocessing uses only a 0.5Hz HPF and a 50Hz notch filter. Gradients are used to 

detect QRS complexes, then an R-peak is detected within each QRS. 

Pan-Tompkins 
[45] 

Preprocessing uses a 5-15Hz BPF before taking a derivative, squaring, and integrating 
with a moving window to isolate the R-Peak, which is detected via a series of 

thresholds. 

Hamilton [33] 
Adaptation of Pan-Tompkins which uses an 8-16Hz BPF, rectification instead of 

squaring, and also a smaller integration window. 

Christov [29] 
Uses two self-adjusting algorithms to detect the current beat and the interval between 
beats, self-adjusting for different sampling frequencies. It is particularly designed for 

multi-lead analysis 
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Engelse & 
Zeelenberg [46], 

[47] (EngZee) 

Uses a 48-52Hz notch filter, differentiates the signal, passes it through an adaptive LPF, 
and then uses Christov-inspired adaptive threshold analysis to detect the peak. 

Kalidas [35] 
Resamples the signal to 80Hz, uses Daubechies 3 wavelets for stationary wavelet 
transforms. The signal is squared and a moving window average enhances the R-

peaks, which are detected using threshold-based peak detection. 

Nabian [32] 
R-peak detection derived from Pan-Tompkins. A sliding window is used to detect a 

liberal initial R-peak list before culling the list down. 

Martinez [37], 
[48] 

Aims to identify multiple ECG complexes. Uses a quadratic spline wavelet transform 
to identify the QRS peak. 

Elgendi [28] 
Uses 8-20Hz BPF along with moving window integration and thresholding to detect 

the R-peaks. 

Zong [31] 
Uses a 16Hz LPF, a non-linear scaling factor to enhance the QRS complex and reduce 

low-frequency noise, and then adaptive thresholds to determine the onset and duration 
of the QRS complex.  

Rodrigues [30] 
Uses a double derivative, square, and moving window integration in preprocessing to 

enhance the QRS complex. A finite state machine enhances the R-peak position [49], 
with adaptive exponential decaying threshold for R-peak detection [50]. 

The specificity, sensitivity and Positive Predictive Value (PPV) of the methods were 205 
then compared against a ground truth set of labels (Figures 4 and 5). Specificity 206 
penalises incorrect peak selection, and PPV identifies the ratio of correctly identified 207 
peaks out of all peaks identified for a given method. Given the sparsity of peaks within a 208 
signal, both measures tend to be preferable due to their inclusion of False Positives 209 
within the denominator. The sensitivity is also important but can be falsely inflated by a 210 
method identifying many false peaks, and so must be considered in the context of the 211 
other two metrics. These methods all require precise detection of peak location. 212 

Specificity = (True Negatives) / (True Negatives + False Positives)   (2) 213 

Sensitivity = (True Positives) / (True Positives + False Negatives)   (3) 214 

Positive Predictive Value = (True Positives) / (True Positives + False Positives)  (4) 215 

The distributions of results are shown in violin plots, with black dots representing 216 
each individual result. The median and interquartile ranges (IQR) are also shown as 217 
dotted lines. Collectively, this visualisation allows for evaluation of both the summative 218 
statistics and the general metric distribution. In cases where results of some methods fell 219 
far beyond the range of the best performing methods, visualisations have been truncated 220 
to preserve a clearer comparison between the core performances. For each method their 221 
conventional preprocessing has been applied, although local peak correction was used 222 
after labelling to allow fair comparison between the different methods. The datasets 223 
used are Datasets A & B, which are both clean enough to have a reliable ground truth. A 224 
visualisation of the algorithmically-labelled peaks by different methods in sample infant 225 
ECG without local peak correction is shown in Figure 6, with the labels shown on both 226 
the preprocessed ECG.  227 
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The range of successes that different current methods have for dealing with infant 228 
ECG are shown for Dataset A (Figure 4) and Dataset B (Figure 5). The Figure 6 229 
visualisation shows the effect of different preprocessing methods on the raw heart rate, 230 
and that some approaches label other complexes in the ECG instead of the QRS. 231 

The inbuilt methods for both the Neurokit2 package [44] and HeartPy package [36] 232 
outperformed the implementation of all other pre-existing methods, with the Neurokit2 233 
method performing best between the two. This is true both when considering their 234 
respective full distribution, median and interquartile ranges (IQR). Out of the remaining 235 
methods, Martínez et al.’s wavelet-based method [48] and Rodrigues et al.’s approach 236 
[30] were 3rd and 4th best. Martinez had good specificity and fairly good PPV but worse 237 
sensitivity, indicating the peaks that were detected were accurate, but many peaks were 238 
missing. Rodrigues was able to adapt better than most methods to the fast heart rate and 239 
noisy signals, but still had some worst-case subjects that it was unable to adapt to, 240 
especially in Dataset B.  241 

Nabian et al.’s method [32] performed 5th-best overall, narrowly outperforming the 242 
sensitivity of the Martinez method for Dataset A but had more results with poorer for 243 
specificity and PPV. Zong’s approach [31] did next best for Dataset A but fell apart 244 
completely on Dataset B. Engelse and Zeelenberg’s method [46], [47] had a low false 245 
peaks detection rate, but also did not detect enough of the true peaks for accurate HR 246 
calculation. Christov’s method [29] seemed to work well with some of the signals but 247 
would need altering of its internal threshold factors to properly adapt to children’s ECG.  248 

All other approaches tested [28], [33], [35], [45] did not perform well with the 249 
datasets and had lower median specificity/sensitivity/PPV values than the other 250 
methods. They would likely need some fundamental changes to be suited to the ECG of 251 
a young child, as many of these methods contained time constraints which work very 252 
well for adults but were too rigid for the faster heart rate of a child, falsely rejecting too 253 
many R-peaks or identifying other complexes in the ECG over the QRS complex.  254 

 255 
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Figure 4. Violin plots showing the specificity, sensitivity and positive predictive values for the pre-256 
existing ECG approaches applied to Dataset A, with local peak correction applied to allow for 257 
cross-method comparison. The thin dark-grey lines represent interquartile values, the thick light-258 
grey line represents the median. Each dot represents a single result in the dataset, with the 259 
“violin” helping visualise the distribution. HeartPy, Neurokit2, Rodrigues and Martinez are 260 
shown in more detail in Figure 8. 261 

 262 

Figure 5. Violin plots showing the specificity, sensitivity, and positive predictive values for the 263 
pre-existing ECG approaches applied to Dataset B, with local peak correction applied to allow for 264 
cross-method comparison. HeartPy, Neurokit2, Rodrigues and Martinez are shown in more detail 265 
in Figure 9 266 

 267 

Figure 6. A visualization of the peak detection for the pre-existing methods on a 12-month-old 268 
from Dataset A. The raw ECG and ground truth are shown left. All other approaches show the 269 
preprocessed ECG and original detected R-peak location for that method.  270 
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2.2.2. Proposed ECG Preprocessing 271 
We developed two separate preprocessing approaches by adapting the best 272 

performing pre-existing approach (Neurokit2). These two approaches were a frequency-273 
preprocessing approach and an Empirical Mode Decomposition (EMD) approach, which 274 
are both then tested and compared against the existing approaches. The frequency-based 275 
approach applies filters that attenuate the energy of a signal occurring at a given 276 
frequency. Low pass filters remove high-frequency detail, only allowing smooth changes 277 
in the signal to pass through. High pass filters (HPF) do the opposite, removing smooth 278 
signal trends to leave more rapidly altering complexes in the signal. Bandpass filters 279 
(BPF) remove some of the high frequency and low frequency information, whereas 280 
notch filters only remove signal energy at a given frequency. One problem with 281 
frequency filters is that they do not discriminate between two separate signal sources 282 
that share a frequency band. EMD is an adaptive technique that decomposes the signal 283 
into Intrinsic Mode Functions (IMFs) - characteristic signals that can have overlapping 284 
frequency information [51]. If noise or non-QRS complexes can be completely captured 285 
in an IMF, they can be removed without affecting the QRS. This same logic can also be 286 
applied to wavelet filtering [37], [52], [53]. 287 

A recent study [54] found that a 0.05-150Hz BPF preprocessing approach 288 
outperformed a 1-17Hz BPF approach on a study investigating peak detection in 289 
children - but the study only tested those two specific filters. As such, it was considered 290 
worth evaluating a range of 5th-order Butterworth BPFs and HPFs applied before R-291 
peak detection.  292 

We chose the Neurokit2 algorithm for peak detection due to its high performance 293 
across all categories (see Figures 4 and 5) as well as the simplicity of the initial baseline 294 
Neurokit2 preprocessing (a 0.5Hz HPF with a 50Hz band stop filter). A variety of 295 
different frequency filters were applied in addition to the standard Neurokit2 296 
preprocessing to determine the best frequency-preprocessing approach. Dataset A and 297 
Dataset B were both used to test the frequency ranges (Figure 7). An upper frequency 298 
bound of 20, 30, 50, 100, and “None” was used (with the “None” option indicating no 299 
upper bound, i.e., an HPF). A range of lower bounds were also tested, with 0.5, 2, 5, 8, 300 
10, 15, and 20Hz lower bounds shown in Figure 7. All filters were 5th-order Butterworth 301 
filters. In general, the high pass filters had better median specificity/sensitivity/PPV than 302 
the bandpass filters, as well as overall improved distributions. However, the 303 
improvement in results is marginal when compared to the 50Hz/100Hz upper bounds. 304 
For Dataset A, the 15Hz HPF approach was marginally better than similar filter 305 
approaches when considering median and IQR, although an upper bound of 50Hz and 306 
any lower bound between 8-20Hz produce fairly similar results. For Dataset B, the lower 307 
IQR had perfect specificity, sensitivity, and PPV for 5-15Hz HPF, with the only 308 
distinguishing factor being how well the worst-case results were processed. However, 309 
the 20Hz HPF results were a lot worse for Dataset B. 310 
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 311 

Figure 7. The Specificity, Sensitivity, and PPV (columns 1, 2, and 3) results shown as violin plots 312 
for a selection of frequency-preprocessing methods applied to (a) Dataset A, and (b) Dataset B. In 313 
all subplots, the median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey 314 
bars. Each black dot represents one result. The lower frequency bounds are shown on the y-axis, 315 
the upper frequency bounds on the x-axis (with the right-most column of each subplot indicating 316 
no upper bound, i.e., an HPF). Results are all shown at a consistent scale, violin plots which go to 317 
the edge of the graph may have results outside the visualized range.  318 

During the assessment of the ECG preprocessing options, elevated T-waves were 319 
observed in some of the subjects in the recordings. T-waves typically overlap in 320 
frequency with QRS waves [55], which can cause some problems in R-peak detection. 321 
An approach using EMD could remove the T-waves while preserving the QRS complex. 322 
Here, we remove any signals with >50% of the signal power between 0.5-8Hz, given that 323 
T-wave content is reported to lie in the 0-10Hz range [55], and the QRS is reported to lie 324 
in the 8-20Hz range [28]. The EMD approach is also used with standard Neurokit2 325 
preprocessing and peak detection.  326 

A comparison between the proposed 15Hz HPF filter and the EMD approach with 327 
the best-performing pre-existing approaches is shown in Figure 8 (Dataset A) and Figure 328 
9 (Dataset B). The HeartPy, Neurokit2, Martinez and Rodrigues results display the same 329 
characteristics as in Figures 4 and 5. The 15Hz HPF approach improves on the EMD and 330 
all pre-existing methods in terms of worst-case labelling and median, IQR statistics for 331 
Dataset A. Specifically, the 15Hz HPF median specificity, sensitivity, and PPV (0.999989, 332 
0.9958, 0.9975) outperformed the median results of all other methods, the closest pre-333 
existing method being Neurokit2 (0.999975, 0.9863, 0.9938). If we interpret these median 334 
results on the average signal length (30.5 minutes, 4180 peaks), it means: 13 fewer peaks 335 
labelled incorrectly (10 vs 23), 39 fewer peaks missed (18 vs 57) and only 0.25% of peaks 336 
that were identified were labelled incorrectly (vs 0.72% for Neurokit2). While the EMD 337 
approach does improve on the other pre-existing approaches, for Dataset A, for Dataset 338 
B, the EMD approach performs much worse overall, with a few worst-case labels 339 
performing very poorly. 340 
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 341 

Figure 8. Violin plots for the best approaches for Dataset A. The median is shown as a thick, light 342 
grey bar, and the IQR is shown as thin dark grey bars. Each black dot represents one result. The 343 
HeartPy, Neurokit2, Martinez and Rodrigues results are the same as in Figure 4, but with a greater 344 
y-axis zoom. The EMD and 15Hz HPF approaches are new ones evaluated by this paper.  345 

 346 
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Figure 9. Violin plots for the best approaches for Dataset B. The median is shown as a thick, light 347 
grey bar, and the IQR is shown as thin dark grey bars. Each black dot represents one result. The 348 
HeartPy, Neurokit2, Martinez and Rodrigues results are the same as in Figure 5, but with a greater 349 
y-axis zoom. 350 

Average heart rate varies as a function of age [16], so a sub-analysis visualizing 351 
the performance of the methods at different age boundaries on Dataset A was also carried 352 
out (Figure 10). Age-divisions were chosen as a balance between keeping a large enough 353 
cohort size for valid analysis, and to recognise natural groupings that arose within the 354 
datasets (see Figure 3). Dataset B age-based analysis contained far fewer participants, 355 
especially when split into cohorts, and is included in Appendix C for completeness. The 356 
results for 15Hz HPF on Dataset A were worst in the 8-10 month range, but still 357 
outperformed all other methods at all age ranges (Figure 10).  358 

 359 

Figure 10. An age-based breakdown of Figure 8. A different age bracket is shown in each 360 
quadrant. The median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey 361 
bars. Each black dot represents one result.  362 

2.2.3. ECG Peak Detection 363 
R-peak detection is the process by which an algorithm finds the R-peak within the 364 

QRS complex, for all QRS complexes in an ECG signal. By testing all the pre-existing 365 
methods, it was clear that Neurokit2 was one of the best suited to these datasets (Figures 366 
4 and 5) and works well with the proposed preprocessing approaches of 15Hz HPF or 367 
EMD filtering (Figures 7 and 8). The Neurokit2 peak detection is used in the proposed 368 
ECG pipeline without alteration in this specific step. 369 

2.2.4. Local Peak Correction 370 
Stronger frequency filtering applied during the preprocessing step has a stronger 371 

impact on peak location, shifting R peaks (and other peaks) in the ECG (see Figure 6). To 372 
counteract the shifting-peaks effects, we implemented a novel local correction relative to 373 
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the unfiltered signal. This correction iteratively searches for the largest peak ± 0.01s 374 
either side of the peak location on the processed ECG to check for a larger local peak 375 
within the raw unprocessed ECG, until no larger peak is found within the search limit. 376 
To distinguish this technique from “peak detection”, it will be referred to as “peak 377 
correction”. This peak correction only has a small impact on peak location but preserves 378 
variation between peaks and allows for more accurate comparison of 379 
specificity/sensitivity/positive predictive value measures. In instances where multiple 380 
indices could be labelled for a given peak, the closest peak to the preprocessed ECG was 381 
used (see Appendix D). 382 

It was also observed that the first and last beat of an ECG were liable to be missed 383 
under certain methods. This was addressed by a one-second artificial extension of the 384 
signal at the start and the end. The first/last values of the preprocessed ECG were as 385 
used as the constant value for the extensions at each end. While this will only have a 386 
small impact for long recordings, it could be very impactful for shorter recordings. 387 

2.2.5. Square Wave Peak Correction 388 
While filter-based preprocessing will deal with many sources of noise, any periodic 389 

non-ECG signal is likely to be preserved with the frequency-processing and EMD 390 
methods. Square waves were occasionally observed when recording was started prior to 391 
attaching the device to a subject. The nature of square waves is very likely dependent on 392 
the device, and square wave removal is highly recommended in these recordings. For 393 
the EgoActive device responsible for Dataset C, a median filter with a 101-sample width 394 
was used to exclude blocks of signal that were within 0.5% of a local 395 
maximum/minimum. The precise filter width and max/min margin will depend on the 396 
gain and sampling rate of the device used. This correction was applied post peak 397 
detection, to remove any peaks deemed to occur during these periods. Square wave 398 
correction was not required for Datasets A and B. 399 

2.3. The HR pipeline 400 

2.3.1. Calculate Raw Heart Rate 401 
Once a set of R-peaks is detected, the heart rate can be calculated as described by 402 

Equation 1. This is an instantaneous heart rate calculation reflecting beat-to-beat 403 
changes. For some research questions, an average heart rate (collected over a few beats) 404 
will be preferred and will likely reduce the impact of noise in the calculation. Here, only 405 
instantaneous heart rate is considered. Even with good R-peak detection methods, a 406 
peak can be missed, or a non-R-peak can be incorrectly labelled. This will lead to an 407 
erroneous heart rate measurement, which can be detected through filtering. 408 

2.3.2. Correction for Missing and Additional Beats 409 
A missing R-peak will cause two true measurements to be replaced by a single false 410 

measurement of approximately half value (Figure 11a), while an additional peak will 411 
cause one true measurement to be replaced by two roughly double false measurements 412 
(Figure 11b), although the proximity of the additional peak to existing peaks will alter 413 
the amplification ratio of the subsequent heart rate. 414 
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 415 
Figure 11. A demonstration of potential inaccuracies arising in R-peak labelling algorithms. Each 416 
QRS complex should contain one R-peak label. The left column shows an ECG signal (purple) and 417 
peak labels. The black “x”s show the underlying true peak labels. The blue “+”s and red “o”s show 418 
incorrect labelling. The right column shows the corresponding instantaneous heart rate, calculated 419 
through Equation 1. (a) A single lower heart rate measurement due to missing a beat; (b) Two 420 
raised heart rate measurements due to an additional beat; (c) Two incorrect heart rate 421 
measurements, one higher and one lower, with the order depending on the direction the beat is 422 
shifted. (c) is adapted from Geangu et al. [13]. 423 

To detect beats which vary above/below a local median by more than a given 424 
proportional threshold, we used a median filter. The effects of the specific filter width 425 
and threshold are illustrated in Figure 12. The identified incorrect measurements are 426 
removed, and then estimated by local linear interpolation. If precise beat-to-beat 427 
comparisons are not required, a more liberal threshold over a wider beat-window can 428 
robustly account for noise. The first evaluation (Figure 12a) examines a clean ECG 429 
against a ground truth, and only deals with missing beats. The second evaluation 430 
(Figure 12b) compares the residual heart rate from a filter applied to the output of the 431 
ECG pipeline against a ground truth and represents the approach that should be taken 432 
with a less clean initial ECG. 433 

Two metrics are used to ascertain the ideal filter width and proportional threshold 434 
for HR processing. The first metric is used to evaluate the median approach applied to a 435 
clean set of R-peak labels that only contains a few errors. The second metric is used to 436 
evaluate the median approach applied to a realistically processed ECG. 437 
Dataset A (N=97) was captured using a BiosignalPlux device that recorded the ECG 438 
through Bluetooth. Across the 97 recordings, occasional disconnections would occur, 439 
leading to gaps in signal (23 in total). Additionally, the noise arising from infant motion 440 
would also lead to small periods where no QRS complex could be identified (323). These 441 
gaps in the ground truth R-peak list result in drops in the derived HR signal. The 442 
optimal median filter approach will identify these gaps, without removing any real 443 
signal. The expected number of gaps to interpolate over is recorded for each participant. 444 
The absolute difference between interpolations made by the filter and the expected 445 
number of interpolations is used to evaluate the optimal parameters for a clean 446 
environment. Figure 12a shows the variation in these results with different parameter 447 
choices. 448 

Next, the output from the proposed ECG pipeline (15Hz HPF preprocessing, 449 
Neurokit2 peak detection) is used to represent a realistically preprocessed signal. The 450 
residual heart rate between the median-filtered ECG and a ground truth (with gaps 451 
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interpolated over) is used to demonstrate the optimal parameters from a noisier baseline 452 
(Figure 12b). 453 

For the clean ECG test (Figure 12a), a high activation threshold (e.g., 1.7 or 1.8) 454 
combined with a narrow filter width (e.g., 7-21) produced a very low number of 455 
incorrect adjustments (<3% compared to total number of adjustments, or <0.0015% 456 
compared to every potential adjustment e.g., every single heart rate beat). Almost all 457 
these incorrect adjustments were due to arrhythmias in the heart rate, causing a longer 458 
than expected gap between detected beats. A very conservative threshold combined 459 
with very few beats needed to accurately determine the incorrect label makes sense 460 
given the cleanness of the ground truth. For the test with the processed ECG (Figure 461 
12b), a much more liberal activation threshold (e.g., 1.2 or 1.3) with a much wider filter 462 
width (15-31) provided the optimal parameters for reducing the heart rate residual with 463 
this dataset. This accounts for the higher level of uncertainty in underlying truth in the 464 
processed heart rate. 465 

 466 

Figure 12. The result of parameter variation for selecting different Filter Widths (FW) and 467 
Activation Thresholds (AT) with a local moving-median filter. (a) The total number of errors in 468 
interpolation for the moving-median applied to a clean dataset, with 346 the expected number of 469 
interpolations across the dataset. One 12-month infant with a mildly arrhythmic heart rate 470 
accounts for 4 of the incorrect interpolations in the optimal parameter choices. (b) The heart rate 471 
residual shows the difference between the interpolated heart rate and the true heart rate for the 472 
moving-median applied to a realistically processed dataset. A trade-off is then made between how 473 
strict the threshold is in removing incorrect peak labels compared to preserving the original signal. 474 
(b) is adapted from Geangu et al. [13], with additional data and labels added. 475 

2.3.3. Correction for Shifted Beats 476 
Wrongly located R-peaks can remain undetected by the median filter approach 477 

described above. A useful observation is that an early-labelled beat will lead to a much 478 
greater heart rate rise followed by a much steeper heart rate drop than would typically 479 
appear within a natural signal (Figure 11c). A late-labelled beat will do the opposite. The 480 
proposed algorithm searches for the presence of three consecutive sign changes 481 
concurrently with a large variation in the heart rate difference (>15bpm for the first and 482 
third heart rate gaps, >25bpm for the middle gap), thus identifying the mislabelled beats 483 
within a signal, provided the neighbouring beats are correct. Areas with large amounts 484 
of mislabelled beats are likely to be caught by the algorithm for missing/additional beats 485 
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and are likely one reason for the more conservative thresholds present in the processed 486 
HR tests. 487 

2.3.4. Signal Quality Index Calculation 488 
In addition to developing methods to correct R-peak labels for longform infant 489 

ECG, it is important to identify time periods that have many (consecutive) incorrect 490 
labels due to noisy measurements. Local linear interpolation will be unable to accurately 491 
reflect the underlying HR for these periods, and so they may need to be excluded from 492 
further data analyses. Thus, we developed an algorithm optimized for longform infant 493 
ECG to help identify regions in which a data recovery approach is inadvisable.  494 

Pre-existing methods for HR quality assessment were not found to be suitable for 495 
long heart rates, and all of them were tuned on adult datasets. Kramer et al. [56] use 496 
non-stationary signal, viable heart-rate range, and high signal-to-noise ratio (SNR), but 497 
require the signal to be rejected/accepted in full. Rodrigues et al. [20] extracted shapes 498 
and behaviours of the signal to group ECG samples by an agglomerative clustering 499 
approach, an approach that becomes computationally inefficient for longer recordings. It 500 
is also worth noting that many SQI methods implicitly try to reject areas of high noise 501 
directly in the ECG [57]. The HeartPy method [36] explicitly rejects peaks which create a 502 
beat interval >30% above or below of the mean interval time of the whole signal. Li et al. 503 
[58] use local kurtosis based on expected kurtosis value for ECG and common ECG noise 504 
sources. Bizzego et al. [59] rejected peaks if the R-peak maxima was not followed by an 505 
S-trough minima at least 70% of the local (1 second wide) range of the signal. 506 
Additionally, Zhao & Zhang [60] proposed a noise detection algorithm based on 507 
agreement from different ECG algorithms. However, given the results in this paper 508 
showing the poor performance of most algorithms on infant ECG (see Figures 4 & 5), 509 
this approach was not explored here. 510 

The beat correction algorithm for missed/additional beats was used as a baseline 511 
measure of signal quality, with additional steps added to fine-tune the quality algorithm 512 
further. Figure 2 highlights that correctly labelled R-peaks will typically fall inside the 513 
expected bounds, whereas incorrectly labelled R-peaks are likely going to either cause a 514 
steep decrease or increase in heart rate (for missing or additional labels, respectively). By 515 
calculating the proportion of “wrong” labels within a given filter width, a rolling 516 
measure of heart rate signal quality is calculated. If a small number of incorrect labels 517 
are present, a close approximation to the original heart rate can be recovered. If many 518 
measurements are incorrect, then the heart rate cannot be reliably approximated. A filter 519 
width of 31 and an adaptive threshold of 1.3 was used (Figure 12b). 520 

A moving-median approach was used to create the base of a binary Signal Quality 521 
Index (SQI) vector [13]. At each time point (i.e., heartbeat measurement), the percentage 522 
of local beats within the filter width that deviated by a multiplicative factor of 1.3 above 523 
or below the local median was calculated (i.e., the local median indicates the existence of 524 
poor signal within the sliding window, and for a median HR of 100bpm the proportion 525 
of beats outside 77-130bpm was calculated). If the percentage of poor beats was ≤25%, 526 
then SQI=1 (high signal quality) at that time point. Otherwise, SQI=0 (low signal 527 
quality). The sliding window was then moved to the next time point. This multiplicative 528 
factor is similar to the value reported by Bizzego et al. [59], which used outlier detection 529 
from the median of the five most recent “correctly-labelled” HR values. 530 

To make the SQI more accurate, additional manipulations were used to account for 531 
the specific location of the high-deviation beats. First, the regions of good SQI were then 532 
extended (i.e., set to SQI=1) according to whether the beats just beyond the boundary of 533 
the good SQI region were within the local median range. Second, continuous regions 534 
>3.5s long of high-deviation beats (>1.3 beats from local median) were set to SQI=0, as 535 
were any gaps in heart rate longer than 2.5s. Lastly, any remaining good regions <5s 536 
long were set to SQI=0, to leave regions of a reasonable size. These parameters could be 537 
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tailored depending on the length of the useful heart rate region for a given research 538 
question, and how precise a heart rate is required to be.  539 

The Boolean SQI vector can then be applied to the heart rate to either set areas of 540 
bad signal to 0bpm, or to cut those regions from the signal. 541 

2.3.5. SQI-filtered Heart Rate 542 
The SQI-step of the pipeline was evaluated using the specificity and sensitivity 543 

metrics (Equations 2 and 3) applied to Dataset C, a very longform dataset (length ≥ 50 544 
minutes) captured outside of a lab environment, taken at 250Hz. These factors combined 545 
to give high levels of noise in the dataset, while still being clean enough to have areas of 546 
signal that should be preserved. A set of filtering parameters that minimised the residual 547 
error in the processed HR (AT: 1.3, FW: 31) were used as the base for the SQI algorithm 548 
(Figure 12B). An example visualisation of the SQI algorithm applied to a noisy HR is 549 
shown in Figure 13, with the results of the analysis shown in Figure 14. 550 

As seen in Figure 13, the SQI algorithm is not designed to label HR as poor when 551 
only individual beats are missing. However, when multiple peaks are missing and the 552 
underlying median filter is more unreliable, the HR is designed to be labelled as not 553 
usable. Figure 14 shows the general success rate of the SQI algorithm when applied to 554 
noisy datasets. Overall, the SQI has a high true positive rate, meaning almost no clean 555 
signal is excluded from the recording. The SQI does have a higher false positive rate for 556 
some of the recordings, meaning some noisy signal may make it into the final analysis, 557 
which may require these recordings to be excluded. However, this does represent a 558 
significant improvement over the baseline of including all HR signal and is also shown 559 
to work very well for the cleaner signals (top left of Figure 14).  560 

 561 

Figure 13. A demonstration of SQI on dataset C. Top: The derived HR signal. Brown and green 562 
lines represent the raw HR. Brown HR is HR that falls within a local median, while green HR falls 563 
outside the local median. The red HR line represents the HR following local linear interpolation to 564 
remove outlier HR points. The purple line represents the SQI vector indicating whether a time 565 
point has good (=1) or poor (=0) signal quality. This vector indicates a noisy period when the HR 566 
data can be considered unreliable and thus excluded from further analyses. Bottom: The 567 
corresponding ECG signal (light purple), with the detected R-peaks shown as green dots. 568 
Individual missing peaks can be approximated by interpolation, but a noisier period (SQI=0) 569 
becomes harder to recover and so is considered unreliable.  570 
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 571 

Figure 14. A demonstration of the SQI algorithm on a noisy dataset. Each dot represents one 572 
recording. The algorithm has a very good true positive rate (sensitivity), but a slightly worse false 573 
positive rate (1-specificity), implying it will often identify good areas, but may not reject areas of 574 
bad HR as often as it should. 575 

2.3.6. Cleaned and Filtered Heart Rate 576 
The end result is a heart rate signal that has been corrected in areas of small 577 

mislabelling, and is discounted in areas of large noise where the signal is unrecoverable. 578 

3. Discussion 579 
Until now, there has been limited research on ECG R-peak detection methods 580 

which are adequate for infants. In this paper, existing open-source ECG methods were 581 
tested on infant datasets acquired in a range of conditions (including naturalistic 582 
conditions), and the best performing method was adapted into a high-performing novel 583 
pipeline that contains all necessary steps from raw ECG preprocessing to HR calculation.  584 

The strengths of our proposed approach include: (1) improving preprocessing and 585 
local peak correction steps; (2) explicitly outlining a guide for when to interpolate 586 
missing/additional beats; and (3) introducing an SQI vector designed to detect unreliable 587 
areas of HR measurements that can be adapted around for further data analysis steps. 588 
These strengths make our ECG pipeline particularly relevant for real-world large 589 
datasets collected in the natural environment, where manual rejection of unreliable areas 590 
of HR measurements would not be feasible. The first strength also improves infant ECG 591 
analysis specifically, an area in which we have demonstrated the current existing open-592 
source approaches to fall short. Additionally, we ensure the entire process is 593 
computationally efficient and does not depend on any commercial software in order to 594 
maximise ease-of-use. 595 

Both the HeartPy and Neurokit2 packages are highly useful open-source scientific 596 
tools that collectively provide a wide range of options for ECG analysis. They both 597 
provide a wide range of functionality beyond R-peak detection in ECG, although that is 598 
all that is focussed on here. It is worth acknowledging that there are many methods that 599 
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exist outside of the open-source domain which are not evaluated here. While many of 600 
the methods in Neurokit2 were open-source originally some were written in different 601 
languages and have had to be adapted into Python, with both the translation issues and 602 
the inherent nature of open-source collaborative approaches meaning that some 603 
imperfections in implementation can arise. The analysis in this paper focuses on the 604 
available open-source implementation of these methods, rather than necessarily the 605 
methods themselves. 606 

The HeartPy, and Neurokit2 default show the best results with Dataset A and 607 
Dataset B overall, with both performing particularly well on Dataset B. The Rodrigues 608 
method performed well on Dataset A, and Martinez shows good specificity and a 609 
reasonably good PPV IQR on Dataset A and a good overall performance on Dataset B. 610 
All four approaches were quick to run and had ECGs that they labelled to a very high 611 
standard, although all of them also had ECGs that were not labelled as accurately as our 612 
proposed pipeline later managed. 613 

The inbuilt Neurokit2 method was chosen as a candidate for further fine tuning 614 
due to the high performance and simple initial preprocessing. Many existing methods 615 
contain several hard-coded parameters that have been developed to work with adult 616 
ECGs. Neurokit2’s inbuilt method only used a notch filter tuned at mains frequency and 617 
a conservative high pass filter of 0.5Hz. The Neurokit2 preprocessing was applied before 618 
all frequency-processing testing, but the specific notch filter could be altered depending 619 
on the ECG device and the 0.5Hz HPF could also be removed given that a stronger HPF 620 
is likely to be optimal for infant ECG. 621 

In developing a new pipeline, it was found that a 15Hz HPF provided an 622 
approximate best filter for infant ECG preprocessing (Figure 7), which is very different 623 
to the 8-20Hz BPF commonly suggested for preprocessing in adults [28]. This held for 624 
two different devices with different amounts of subject motion and different sampling 625 
rates (Figures 8 and 9). It also improved on other methods at a range of age ranges 626 
(Figure 10). While the specific bands were slightly different for the two datasets (e.g., a 627 
20Hz HPF worked well for Dataset A but not Dataset B), the 15Hz HPF fell within a 628 
good range both times. This gives us confidence that it is a more robust methodology for 629 
infants. It would be interesting for a future study to test the age range at which the 630 
optimal HPF begins to drop for older children. The precise frequency bounds used could 631 
vary slightly depending on the specific device used and sample population. These 632 
results indicate that any upper bound of 50Hz or higher and any lower bound of 8-15Hz 633 
appear to have very similar levels of performance across both tested datasets. 634 

The proposed EMD preprocessing approach improved the default Neurokit2 635 
method slightly in Dataset A but did not out-perform the optimal frequency-processing 636 
filter. In Dataset B there were a few worst-case scenarios that caused the EMD approach 637 
to have low specificity and PPV. Additionally, there is a dramatically increased run-time 638 
when applying EMD processing. As such, it is not recommended to use this approach.  639 

One section of major contribution that the new pipeline brings is the novel local 640 
peak correction. The 0.01s threshold was determined heuristically to balance 641 
overcoming high frequency noise while minimising false peak detection. This allows for 642 
much heavier filtering without compromising on the R-peak label locations, as well as 643 
comparative analysis between R-peak detection for the different methods. The start/end 644 
peak detection had a very minimal reactive effect, and the start/end of ECGs are often 645 
discarded. However, in pure detection terms, it was found to improve all the open-646 
source algorithms evaluated here at very little computational cost, and so is 647 
recommended for future inclusion. The square wave filtering was very device-specific, 648 
as two thirds of the devices detected did not tend to exhibit square wave noise, and so 649 
square wave filtering would only succeed in subtracting noise from the signal. However, 650 
for the device that did exhibit square wave noise, it greatly improved detection. 651 

Where either precise beat detection is required or a heart is suspected to contain 652 
arrhythmias, the heart rate filtering proposed here may not be appropriate. However, it 653 
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was found to do a good job at preserving the overall shape of the heart rate, and 654 
subsequently serve as a good way to detect noisy periods when also combined with the 655 
SQI. It was found that a much more conservative activation threshold (1.7/1.8) and 656 
thinner width of median filter (7-15) were optimal for cleaner ECGs, but that more 657 
liberal thresholds (1.2/1.3) and wider filters (15-31) would produce lower residual heart 658 
rates when applied to the detected heart rate (Figure 12). While it is recommended to 659 
view some raw ECG along with the processed heart rate to ascertain the underlying 660 
level of noise, a choice of 1.7/11 or 1.3/31 activation threshold/filter width for cleaner and 661 
noisier signals respectively can serve as a fair initial parameter choice (with the former 662 
being recommended for short lab-based ECGs with no motion, and the latter being 663 
recommended for any other forms of ECG). 664 

Neither Dataset A nor B were sufficiently noisy to test the SQI analysis properly. As 665 
such, Dataset C was the only one used for this purpose. The sensor used for Dataset C 666 
was the EgoActive sensor, a lightweight wearable device designed for much longer 667 
recordings in the natural environment, while being as unobtrusive as possible to the 668 
child to ensure comfort and allow free moving. The lower ECG sampling rate was 669 
chosen to maximise the duration of a continuous recording [13]. The SQI approach to 670 
determine noisy periods of HR serves as a good first step towards a robust noise-671 
detection algorithm. The SQI-mediated HR allows for the analysis of long recordings, 672 
which can contain large amounts of noise. While the SQI method serves as a good 673 
automatic way to identify unreliable heart rate calculations, the specific parameters used 674 
will depend on the research question. For example, more noise-averse analysis such as 675 
standard-deviation based HRV require stricter noise thresholds. Analysis concerned 676 
with general HR rises/falls or average HRs can use a looser threshold to capture more 677 
data. The SQI calculation did work very well on recordings with easily discernible noise, 678 
being particularly good at separating non-HR periods from HR periods but struggling a 679 
bit more with noisy HR vs clean HR. Understanding and automatically detecting which 680 
types of noise cause poorer performance could make it more robust in future. The 681 
specific parameters used in the SQI are dependent on how much noise is tolerable for a 682 
given research problem, meaning it will likely have to be double-checked if parameters 683 
are altered.  684 

The proposed pipeline was very computationally efficient. The ECG pipeline was 685 
applied to all of Dataset A (N=97, sampling rate=500Hz, Mrecording=32 minutes, 94,089,683 686 
data points) and took 111.33s in total (1.15s per ECG). The total preprocessing and peak 687 
labelling time was 20.75s (0.21s per ECG) and the local peak correction took 90.59s (0.93s 688 
per ECG). The HR pipeline is also computationally efficient, as a combination of median 689 
filters and difference functions provide the backbone for both the SQI and the beat-690 
cleaning algorithms. By applying the SQI to the heart rate, the size of the vectors 691 
processed are greatly reduced compared to an ECG (1-3Hz sample density for HR 692 
compared to 250-1000Hz for ECG). An N=63 set of noisy HR signals collectively 693 
covering 92 hours (comprising 559,612 beats in total) took only 6.68s total processing 694 
time. This includes both the time to filter the heart rate with a moving-median filter, and 695 
to create the SQI vector. All calculations were done consecutively using an 11th Gen 696 
Intel(R) Core (TM) i5-1145G7 @ 2.60GHz, and do not include the loading times required 697 
to import the data into Python initially.  698 

3.1 Limitations 699 
The research carried out here tested the performance of existing open-source 700 

approaches on an infant ECG dataset. There will be other approaches not included in 701 
these open-source packages that could show improved performance on infant datasets, 702 
and the nature of open-source software means that these approaches are susceptible to 703 
change. This research was carried out on version 0.2.3 of Neurokit2 and version 1.2.6 of 704 
HeartPy. Version 1.1.1 of PyEMD was used for the EMD analysis. 705 
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An additional limitation of the Neurokit2 peak detection method was that heart rates 706 
faster than 200bpm were often mislabelled (with only alternate peaks being detected). It 707 
is rare, but not impossible, for an infant heart rate to exceed 200bpm, and so care must 708 
be taken if this occurs. 709 

As usual with filtering methodology, our HR pipeline is also dependent on filter 710 
selection. We have accounted for this by verifying the effect of different parameters on 711 
clean and noisy HR signals and generated a set of optimal parameters for both scenarios. 712 
Additionally, the pipeline was developed on a typically developing population without 713 
known cardiac issues. An ECG containing a lot of arrhythmias or other HR irregularities 714 
may not be suitable for an automated cleaning approach carried out in this manner. 715 
Similarly, the SQI portion of the heart rate pipeline is also dependent on tuning 716 
parameters. 717 

Finally, while we have endeavoured to label a ground truth, there is some 718 
fundamental uncertainty regarding R-peak location in noisy ECGs. Noise is exacerbated 719 
in free-moving individuals and such movement is often heightened in infants. While we 720 
have done our best to adjust for this uncertainty (see Appendices B and D), it must be 721 
considered alongside the results. 722 

3.2 Future Research 723 
Since adaptations are shown to improve the Neurokit2 pipeline, it is very possible 724 

that other methods could also be adapted to process infant ECG. Additionally, the 725 
Neurokit2 package is being continually updated and the interaction of newer methods 726 
[61] with infant ECG should be considered. Some exploratory analysis on the HeartPy 727 
and Pan-Tompkins methods was carried out and was not initially encouraging (though 728 
was not in depth enough to draw concrete conclusions). Additionally, while the 729 
computational inefficiency of the EMD approach was a concern for longform ECGs, 730 
many studies focus on shorter infant ECG signals where processing time will be less of a 731 
factor. Given the strong performance of the approach on Dataset A, it is very possible 732 
that small alterations to the EMD methodology (such as the criteria for IMF rejection) 733 
could prove to be a positive avenue for future research. 734 

The datasets captured here lay the groundworks for a future infant-specific 735 
approach for the R peaks, especially for machine-learning approaches. Additionally, 736 
there could also be great future use in infant-specific analysis of the remaining ECG 737 
morphology. 738 

Infants have fast heart rates, and their movements and activities can add 739 
substantial noise to ECG. Our method was developed particularly to address these 740 
issues for infant ECG recordings. However, our pipeline can be adapted for other 741 
applications in which researchers may need to deal with noisy data. For example, the 742 
pipeline has been adapted by using a different high pass filter in preprocessing (e.g., 743 
0.5Hz vs 15Hz) to allow the whole pipeline to work with adults [13]. It could be 744 
informative to acquire ECG recordings from a range of ages (e.g., 3–18 year-olds) to 745 
further test our pipeline to account for different heart rate speeds [16] and investigate 746 
developmental trajectory through ECG recordings. Finally, further testing is needed to 747 
investigate the performance of the HR SQI and peak correction algorithms on atypical 748 
heart rates (e.g., arrhythmias).  749 

Finally, sensor orientation and position, particularly for small wearable sensors, can 750 
have a big impact on different infant ECG complexes. A general analysis creating a 751 
consistent set of guidelines for wearable infant ECG could prove of great use to the 752 
scientific community, as could further validation of different aspects of this pipeline on 753 
data collected at specific sensor orientations and positions. 754 

4. Conclusions 755 
In this work, we evaluated existing open-source ECG pipelines on longform infant 756 

datasets, before improving on the state-of-the art approach to develop our own pipeline. 757 
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We also develop a HR pipeline to clean up the signal and identify areas which are too 758 
noisy to process. Collectively, these form a full, computationally efficient pipeline to 759 
turn raw infant ECG signals into cleaned and processed HR signals. This process is 760 
designed to even work on naturalistic recordings, although it also outperforms existing 761 
methods in short lab-based recordings of infants as well. The use of the algorithms 762 
developed here on three separate datasets provide evidence for their robustness across a 763 
range of ECG devices. Importantly, these algorithms will increase confidence in future 764 
infant ECG research, particularly for longform ECG datasets collected outside the lab 765 
where infants can exhibit natural behaviours.  766 
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Appendix A 788 
The following additional resources will be made available to researchers upon request: 789 
1. Datasets A, B, and C, with each file including  790 

a. Raw ECG 791 
b. ECG timeseries corresponding to a. 792 
c. Labelled true R-Peaks indices (datasets A and B only) 793 
d. Detected R-Peaks indices from our 15Hz HPF pipeline, post correction 794 
e. Raw HR generated from d. 795 
f. HR timeseries corresponding to e. 796 
g. Moving-median-filtered HR example 797 
h. HR SQI (Dataset C only) 798 
i. Labelled SQI truth (Dataset C only) 799 

2. Python source code for applying the entire ECG and HR pipeline to raw ECG signal 800 

Appendix B- Further Dataset Information 801 
Dataset A served as the main dataset to develop the ECG-processing and early HR-802 

processing section of the pipeline (everything except HR signal quality). It comprised 97 803 
separate ECG signals of children aged 3-42 months (total recording time: 52 hours 20 804 
minutes, Mduration: 32 minutes, min: 11 minutes, max: 52 minutes, distribution of age and 805 
recording duration shown in Figure 3A). ECGs in Dataset A were collected using a 806 
BiosensorPlux device (PLUX Biosignals, Lisbon, Portugal) with a sampling rate of 500Hz. 807 
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ECGs were trimmed at the start and end prior to any analysis to exclude any non-808 
recording period (e.g., the trimmed periods are not included in the recording times 809 
above). There are 23 recording gaps in total in the dataset due to Bluetooth dropout from 810 
the BiosignalsPlux device. These recordings occurred while infants engaged in free-play 811 
in a semi naturalistic setting in a lab (i.e., play room).   812 

In Dataset A R-peaks were hand-labelled, and any R-peaks where the ground truth 813 
was difficult to ascertain due to signal morphology or noise levels were counted for all 814 
ECGs. ECGs with a more than 1 uncertain peak in 400 were excluded from the analysis, 815 
leaving 97 ECGs.  Note that due to the exclusion criteria allowing for some level of peak-816 
labelling uncertainty, this will follow through into some uncertainty in the subsequent 817 
metrics calculated. The worst case and average uncertainties for each subject in Dataset A 818 
were as follows. Specificity: worst case=-1.12x10-5, mean=-3.03x10-6. Sensitivity: worst 819 
case=-2.44x10-3, mean=-7.02x10-4. PPV: worst case=-2.43x10-3, mean=-7.01x10-4. These 820 
values are sufficiently small (even assuming the worst-case error for each individual 821 
subject in the dataset) that they do not affect any final conclusions drawn. 822 

Dataset B serves as a validation set by using a different sampling rate and sensor. 823 
Dataset B comprises 25 ECG signals from 19 infants aged 5-13 months (the ECGs from the 824 
6 infants who supplied two recordings were taken at least 2 months apart). The total 825 
recording time was 3 hours 34 minutes (Mduration: 8min 36s, min: 4min 50s, max: 17min 31s), 826 
distribution of age and recording duration shown in Figure 3B). This dataset has higher 827 
signal quality than Dataset A (higher sampling frequency, less noise, shorter duration), 828 
but is a smaller dataset. The ECGs were collected across 19 subjects, with 6 subjects 829 
providing double recordings taken at least 2 months apart. ECGs were collected using a 830 
Physio16 box for the Geodesic EEG System (GES) 400 device with a sampling rate of 831 
1000Hz. ECGs were trimmed at the start and end to exclude any non-recording period. 832 
These recordings occurred in a lab, and the infant remained mostly stationary throughout. 833 
There are a maximum of 2 uncertain peak labels in a subject (and only 4 uncertain labels 834 
across all subjects), which has a vanishingly minimal effect on subsequent calculations.  835 

Dataset C served as a test set for the HR signal quality. 12 ECGs with a longer 836 
recording time and lower sampling rate (250Hz) were gathered using the EgoActive body 837 
sensor [13], and were deliberately selected for a high noise level from a larger selection of 838 
recordings. Children in these recordings were between 5-11 months (see Figure 3C). These 839 
12 naturalistic recordings were taken from a larger dataset recorded in the subject’s home, 840 
with the device often containing periods of high movement and also being left on post-841 
recording. Quality labelling was done on a beat–by-beat basis on the calculated HR signal. 842 
Any areas of “good” signal shorter than 5s was marked as bad, to ensure a minimum 843 
length of heart rate. Mduration=90 minutes long for the total signal lengths (min: 55 mins, 844 
max: 120 minutes), or Mduration=79 minutes when accounting for non-signal at the start and 845 
end of the recording (min: 50 mins, max: 112 mins). The latter value is the one shown in 846 
Table 1. ECGs were lightly trimmed to avoid processing >2 hours of signal but aimed to 847 
include both HR and non-HR portions of signal where possible. 848 

An example segment of ECG for each dataset along with a normalized frequency 849 
spectra is shown in Figure A1. In each case there is no notable peak beyond 80Hz. Dataset 850 
A stops at 250Hz, Dataset B at 500Hz, Dataset C at 125Hz. Each Dataset contains a range 851 
of ECG morphologies, although there is a more abundant level of noise in Dataset C 852 
throughout. Dataset B has an inbuilt notch filter at 60Hz, which is visible for all subjects. 853 
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 854 
Figure A1. A visualisation of the different Datasets. The first column shows a typical ECG 855 
segment. The second column shows the normalised Fourier transform of the entire ECG. 856 
Each row corresponds to a different dataset. All subjects shown here are approximately 6 857 
months old. There are no notable peaks beyond 80Hz. The y-axis spectra for Dataset C has 858 
been truncated in order to not be dominated by the 0Hz frequency.  859 

Appendix C - Age-based analysis for Dataset B 860 
The smaller dataset size of Dataset B (N=25) compared to Dataset A (N=97) made any 861 

sub-analysis less reliable, as fewer outlier results are needed to sway the median and IQRs. 862 
While acknowledging the reduced statistical power, it is worth noting that the 15Hz HPF 863 
approach proposed by our pipeline did still outperform all other methods after the age-864 
breakdown was applied, with the IQR and medians still indicating perfect 865 
specificity/sensitivity/PPV in all cases except the lower IQR value for sensitivity in the 5-866 
8 months cohort (Figure A2). The HeartPy and Neurokit2 default methods both had very 867 
good median specificity/PPV and reasonably good median sensitivity. There were enough 868 
results in the cohorts to start to distinguish the general trends of the methods, and no 869 
results were recorded to counteract the main age-related conclusions drawn in Figure 9 870 
(while accounting for the different overall performances of the different methods between 871 
Datasets A and B). 872 

 873 
Figure A2. An age-based breakdown of Figure 9. A different age bracket is shown in each quadrant. 874 
The median is shown as a thick, light grey bar, and the IQR is shown as thin dark grey bars. Each 875 
black dot represents one result. 876 

Appendix D - Results without Local Peak Correction 877 
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In many of the results in the main text, local peak correction was used to realign the 878 
R peak labelled on a preprocessed ECG with the R peak on the original unprocessed ECG. 879 
Prior to developing this methodology, either each method would have to be labelled by 880 
hand, or allowing peaks within a margin of error (e.g. 0.01s either side of the true label) 881 
would have to be used. Naive uses of specificity/sensitivity/PPV analysis without local 882 
corrections of error margins is shown in Figures A3 and A4 for Datasets A and B 883 
respectively. The improvement shown by using local correction is shown in Figures A5 884 
and A6 (relative to the metrics calculated through the same approach without any local 885 
correction applied). The Local Peak Correction improved the Sensitivity and PPV for all 886 
methods, showing an improvement in the ratio of True Positives to both False Negatives 887 
and False Positives. The EngZee method performed the best without this correction, likely 888 
due to the very minimal preprocessing required by the approach. Interestingly, the 889 
specificity did drop slightly for Pan-Tompkins, Hamilton, Christov and Rodrigues, and 890 
more dramatically for Kalidas and Elgendi. This could be due to the reduced number of 891 
True Negatives and/or an increase in the number of False Positives (see Equation 2).  892 

 893 
Figure A3. Violin plots showing the specificity, sensitivity, and positive predictive values for the 894 
pre-existing ECG approaches applied to Dataset A, with no local peak correction.  895 
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 896 
Figure A4. Violin plots showing the specificity, sensitivity, and positive predictive values for the 897 
pre-existing ECG approaches applied to Dataset B, with no local peak correction.  898 

 899 
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Figure A5. Violin plots showing the impact of using local peak correction through change in 900 
specificity, sensitivity, and positive predictive values for the pre-existing ECG approaches applied 901 
to Dataset A, relative to the same approach without local peak correction. A negative improvement 902 
indicates that a metric got worse when local peak correction was applied. 903 
 904 

 905 
Figure A6. Violin plots showing the impact of using local peak correction through change in 906 
specificity, sensitivity, and positive predictive values for the pre-existing ECG approaches applied 907 
to Dataset B, relative to the same approach without local peak correction. A negative improvement 908 
indicates that a metric got worse when local peak correction was applied 909 

Appendix D - Labelling uncertainty 910 
ECG is an analogue signal recorded with digital devices. Analogue voltages that are 911 

very close in value can end being digitised to identical values due to discretization, 912 
resolution, and gain issues. If this issue occurs during a QRS complex it means that there 913 
are multiple timestamps that could define an R-peak within a given QRS complex (see 914 
Figure A7), as the digital device will be unable to discern the difference between these 915 
values. Any method which finds one of these peaks should be considered to have found 916 
a “true” peak, but could be marked as incorrect if the “truth” label is on one of the other 917 
identical values in that QRS complex. Since the preprocessed ECG is typically smooth, 918 
local peak correction will naturally fall on the closest valid peak to the peak labelled on 919 
the preprocessed ECG. The R-peak on the raw ECG closest to the peak on the preprocessed 920 
ECG is used in all cases to ensure that if any of these peaks are arrived at by local peak 921 
correction they will be marked as “true” for a given method. 922 
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 923 
Figure A7. A demonstration of why local adjustment is needed where peaks need to be aligned 924 
perfectly. Zoom A, B, C, and D all show the same central peak. Zoom D shows that 3 specific indexes 925 
could all be labelled as the truth on the original ECG, due to the sensitivity of the sensor recording 926 
3 values as “-16”. All three indexes (at 211.776s, 211.780s, 211.782s) are very close in value and could 927 
serve as a “true” label.  928 
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