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ABSTRACT 

Background and objective: Human-administered clinical scales, such as the Functional Ability Scale of the Wolf Motor 
Function Test (WMFT-FAS), are widely utilized to evaluate upper-limb motor function in stroke survivors. However, 
these scales are generally subjective and labor-intensive. To end this, we proposed a novel scoring approach for the 
motor function assessment. 
Methods: The proposed novel scoring approach mainly contained one Microsoft Kinect v2, one customized motion 
tracking system, and one customized intelligent scoring system. Specifically, the Kinect v2 was used to capture stroke 
survivors’ functional movements, the motion tracking system was developed for recording the gathered movement 
data, and the intelligent scoring system (kernel: feed-forward neural network, FFNN) was developed to evaluate 
movement quality and provide corresponding WMFT-FAS scores. Several methods have been applied to enhance the 
approach's usability, such as singular spectrum analysis and multi-ReliefF method. 
Results: Sixteen stroke survivors and ten healthy subjects were recruited for validation. Inspiring results of the 
proposed approach were achieved when compared with the clinical scores provided by a physiotherapist: 0.924 ± 0.027 
for accuracy, 0.875 ± 0.063 for F1-score, 0.915 ± 0.051 for sensitivity, 0.969 ± 0.013 for specificity, 0.952 ± 0.038 for AUC, 
0.098 ± 0.037 for mean absolute error, and 0.214 ± 0.078 for root mean squared error. 
Conclusions: The results indicate that the proposed novel scoring approach can provide objective and accurate 
assessment scores, which can help physiotherapists make individualized treatment decisions. 
Keywords—Stroke, Kinect v2, Intelligent scoring system, WMFT-FAS, Motor function assessment. 

 
1.  Introduction 

Motor function assessment is essential for stroke rehabilitation 
as it can assist in developing clinical interventions to maximize 
patients’ independence and motor function [1]. Clinical scales 
like WMFT-FAS and Fugl-Meyer Assessment (FMA) have 
been developed to evaluate motor function in hospital settings. 
Their inter- and intra-rater reliability has been extensively 
validated [2]–[4]. However, being a manual procedure, it 
inherently has certain limitations. Firstly, visual inspection 
involves some subjectivity, potentially resulting in varying 
clinical scores for the same patient across different 
physiotherapists [5]. Secondly, conducting motor functional 
assessments through clinical scales is labor-intensive. For 
example, administering the entire WMFT-FAS scale for a 
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patient takes approximately 30 minutes, escalating medical 
costs, even for healthcare providers. To solve these limitations, 
experts have proposed biomarker-based approaches for 
assessing motor function in stroke survivors. 

Biomarkers, encompassing diverse biological data like EMG, 
EEG, and fMRI, serve as key analytical sources for effective 
rehabilitation assessment [6]. EMG, measuring muscle 
electrical signals, can elucidate muscle contraction intensity 
and frequency in stroke survivors [7]. This information aids 
doctors in comprehending muscle damage extent post-stroke 
and tailoring rehabilitation tasks across different stages of 
recovery [8]. EEG, focusing on brain electrical activity, allows 
researchers to utilize functional connectivity measures to assess 
motor function in stroke survivors [9]. Automation of patient 
motor function evaluation, combined with neural network 
algorithms [10] such as Convolutional Neural Networks (CNNs) 
and Residual Neural Networks (RNNs) [11], is also feasible 
using EEG data. In the realm of rehabilitation, researchers have 
employed the Electroencephalographic Phase Synchrony Index 
as a biomarker to assess the recovery status of post-stroke 
survivors [12]. Some have used specific motor imagery EEG 
models (e.g., elbow extension and flexion) to classify EEG 
related to various motor imagery activities (e.g., opening a 
drawer) for rehabilitation applications [13]. Compared to EEG, 
fMRI offers a clear view of the damaged brain region after 
stroke and alterations in its connections with other brain regions 
[14]. This deeper insight contributes to a better understanding 
of the rehabilitation mechanism in stroke survivors. While 
biological data markers offer an intelligent approach to stroke 
rehabilitation assessment, the necessity for patients to wear 
specialized devices poses challenges in promoting these 
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Fig. 1. The workflow of the proposed novel scoring approach based on the WMFT-FAS scale: 

(a) the training process; and (b) the implementation process. 
 

approaches in community and primary healthcare settings. 
Hence, there is a growing focus on markerless-based intelligent 
rehabilitation assessment methods. 

Methods based on image processing, such as Kinect [15], 
smartphones [16], and OpenPose [17], offer the advantages of 
low cost, portability, and minimal devices for patients to wear 
(if necessary). These methods hold promise for practical 
applications. Researchers have employed Kinect-V1 and data 
gloves to collect patient motion data, achieving an accuracy of 
around 82% using the Support Vector Machine (SVM) 
algorithm [18]. Expanding on this, some researchers have 
introduced rule-based binary logic classification algorithms to 
overcome the challenge of small sample sizes. They combined 
Kinect-V2 and force-sensitive sensors for motion data 
collection, ultimately achieving an accuracy of approximately 
90% [19]. Another study proposed an automated method 
involving performing the FMA scale’s movements with a 
handheld smartphone, extracting features from smartphone 
motion data. A decision tree algorithm was used to score 20/33 
items from the FMA scale, resulting in an average accuracy of 
around 85% [16]. Other researchers proposed a method for 
real-time recognition of rehabilitation actions of stroke 
survivors based on the OpenPose and the full convolutional 
network (FCN). A one-dimensional full convolutional network 
was utilized to extract spatiotemporal features and classify 
actions, achieving an accuracy of 85.6% [20]. However, the 
existing markerless-based intelligent assessment systems have 
the potential for improvement: 1) the existing systems with 
advanced new hardware require a relatively large amount of 
computational resources (e.g., the new Azure Kinect needs a 
graphics card of RTX 3070 and above), which might not be 
readily available in communities; 2) physiotherapists may 
struggle to comprehend and explain the scores provided by the 
existing systems without detailed motor function results (e.g., 
movement trajectory, shoulder range); 3) To the best of the 
authors' knowledge, the WMFT-FAS has not been fully 
digitized by existing studies [21]–[26]. 

Therefore, this study aims to devise an innovative and 
cost-effective scoring approach for the intelligent and objective 
assessment of motor function in stroke survivors. Specifically, 
to enable practical applications in clinical settings, we designed 
a customized motion tracking system utilizing an inexpensive 
yet reliable depth-sensing device, Kinect v2, to capture motion 
data. Subsequently, we developed an intelligent scoring system 

employing classification-based scoring principles 
(feed-forward neural networks, FFNN) to construct estimation 
models for each motion task. Through the integration of these 
two systems, we were able to objectively evaluate motor 
function in stroke survivors and provide comprehensive 
WMFT-FAS scores. 

The main contributions of this work were: 
1) We first proposed a novel scoring approach (one 

Microsoft Kinect v2, one customized motion tracking system, 
and one customized intelligent scoring system) for stroke 
survivors’ motor function assessment based on the full 
WMFT-FAS scale. 

2) Experimental results (16 stroke survivors and 10 healthy 
subjects were recruited) showed that the proposed approach can 
perform the whole WMFT-FAS with an accuracy of 0.924 ± 
0.027, and the developed multi-ReliefF method can 
dynamically select suitable features and increase the accuracy 
by around 2.9%. 

2. METHODS 

2.1 Workflow 

Fig. 1(a) presents the workflow of the training process, 
consisting of the following steps: 1) get incremental data from 
the implementation process and build raw datasets by 
combining historical data (every 50 newly acquired patient data 
is treated as a new set of incremental data.); 2) preprocess raw 
datasets by the procedures of data classification, segmentation, 
and filtration; 3) extract 32 features from the preprocessed 
datasets based on different kinematics (e.g., endpoint, angular); 
4) rank and select features by the multi-ReliefF method 
according to their sensitivity for distinguishing scores (e.g., 
scores 0 to 5) within each motor task; 5) use the K-fold 
cross-validation method to train the FFNN (feed-forward 
neural network) algorithm, employing the appropriate types of 
features selected in step 4. This involves randomly dividing the 
original dataset into K-equal (almost) subsets by subjects. In 
each round, one subset is designated as the testing set, while the 
remaining K-1 subsets are merged to form the training set. This 
process is repeated for a total of K rounds of training. 6) finally, 
update the estimation model in the implementation process if 
the retrained model achieves better accuracy. 

Fig. 1(b) presents the workflow of the implementation 
process. Firstly, stroke survivors begin by performing
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Fig. 2. Application development: (a) the hardware; (b) the motion tracking system; and (c) the intelligent scoring system. 

upper-limb functional movements related to the WMFT-FAS. 
Their movement data are measured via the customized motion 
tracking system based on a Kinect v2 (Microsoft, Redmond, 
WA, USA). Next, new data are processed via the customized 
intelligent scoring system to get the estimated WMFT-FAS 
scores, including data preprocessing, feature extraction, and 
estimation. Specifically, the data preprocessing contains the 
same procedures conducted in the training process. The feature 
extraction extracts features from the preprocessed data based 
on the fixed types of features selected by the multi-ReliefF 
method executed in the training process. The score estimation 
employs the trained FFNN algorithm to estimate clinical scores 
that correspond to the movement quality of tasks. Finally, 
according to the estimated scores (total/each score) and 
movement videos, physiotherapists assess the functional 
recovery of stroke survivors and adjust rehabilitation programs. 

The main differences between the two workflows are that the 
training process is responsible for determining and updating the 
parameters (e.g., the suitable types of features) and estimation 
models, which will be performed on a fixed schedule. The 
implementation process is only responsible for gathering new 
patient data and sending estimated scores movement videos to 
physiotherapists. The following sections will mainly introduce 
the training process workflow when gathering a raw dataset. 

2.2 WMFT-FAS Motor Tasks for Stroke Survivors 

The WMFT-FAS is a 6-point (0-5) ordinal rating scale for 
assessing the movement functional ability of stroke survivors 
rather than their completion time [4]. The WMFT-FAS 
contains 15 motor tasks (TABLE I) that progress from simple 
(e.g., forearm to table) to complex (e.g., flip cards). For each 
task, the score-0 implies no use of the affected side, while the 
score-5 implies the full ability to perform the task [27]. 

TABLE I 
THE SET OF MOTOR TASKS FROM THE WMFT-FAS 

Task Description Task Description
T1 Forearm to table (side) T9 Lift pencil (front)
T2 Forearm to box (side) T10 Lift paper clip (front)
T3 Extend elbow (side) T11 Stack checkers (front)
T4 Extend elbow with 

weight (side) 
T12 Flip cards (front) 

T5 Hand to table (front) T13 Turn key in lock (front)
T6 Hand to box (front) T14 Fold towel (front)
T7 Reach and retrieve 

with weight (front) 
T15 Lift basket with weight 

(front) 
T8 Lift can (front)   

We used the WMFT-FAS as the targeted scale because it has 
the following characteristics: 1) the scale mainly focuses on 
gross movements rather than fine movements (e.g., finger mass 
flexion/extension tasks in the FMA), which can be measured 

via the Kinect v2 (for the tasks of “flip cards” and “fold towel 
tasks”, patients typically perform these tasks with 
compensatory strategies by using trunk and forearm); and 2) the 
scoring criteria include speed, movement smoothness, joint 
coordination, and the presence of pathological synergies and 
compensatory strategies, which can be characterized as features 
extracted from movement data. By comparison, motion-sensing 
technology cannot measure the strength criterion of grasp tasks 
in the FMA. 

2.3 Application Development 

The hardware of this study was the Kinect v2 (Fig. 2(a)) 
developed by Microsoft as a motion-sensing input for the game 
console. Subsequently, it was redesigned for various 
applications, such as healthcare and robotics. The Kinect v2 can 
measure the 3D coordinate data of 25 anatomical landmarks 
(Fig. 2(b)) for each body with a frame rate of 30 fps (frames per 
second) [28]. These landmarks can be gathered under standard 
lighting and fitted clothing conditions (a similar requirement 
for performing the WMFT-FAS assessment) without any actual 
markers, making the Kinect v2 suitable for clinical settings. 
Accordingly, a customized motion tracking system (Fig. 2(b)) 
was developed to save the gathered video, coordinate data, and 
time frames. A customized intelligent scoring system (Fig. 2(c)) 
was also developed to estimate motor tasks’ scores and the total 
WMFT-FAS score. The motion tracking system was 
programmed based on the Kinect SDK 2.0 and Microsoft 
Visual Studio 2016 (Microsoft, Redmond, WA, USA). The 
intelligent scoring system was reprogrammed based on the 
2021b Matlab’s App Designer (MathWorks, Natick, MA, 
USA). 

2.4 Data Processing and Feature Extraction 

A total of 10 joints’ movement data were used to evaluate the 
functional performance of the affected upper limbs, including 
shoulder/mid of spine, left/right of shoulder, elbow, wrist, and 
hand. The raw datasets were firstly classified according to each 
motor task and segmented into individual repetitions. They 
were then filtered via a singular spectrum analysis (SSA) 
algorithm to reduce the effects of noise [29]. The SSA 
algorithm performs better for smoothing raw movement data 
than other commonly used filtering methods, such as 
Butterworth filters and discrete wavelet transform [30]. Fig. 3 
presents the results of the SSA algorithm (applied to a healthy 
subject performed Task-1 with three repetitions). As expected, 
the speed is approximately zero during the waiting for and after 
the reaching motion (the retrieving movement was not used for 
assessment according to the guideline of the WMFT-FAS), and 
the outline of the speed is well bell-shaped. 
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Four critical steps of the SSA are described as follows [31]. 
Step 1 (Embedding): the primary aim of the 1st step is to 

transform the observed one-dimensional time series YT = 
(y1,…yT) to the corresponding trajectory matrix X: 
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Where L (1<L<T) is the window length and K=T-L+1. 
Step 2 (Singular Value Decomposition (SVD)): the primary 

aim of the 2nd step is to perform the SVD of the trajectory 
matrix X. Set S = XXT, and the eigenvalues (

1 0Lλ λ≥ ≥ ≥ ) 
and the corresponding eigenvectors (U1,…, UL) of the matrix S 
will be processed by the SVD. 

Step 3 (Eigentriple grouping): the primary aim of the 3rd step 
is to partition the set of indices {1,…,d} into the m disjoint 
subsets (I1,…,Im). The grouped SVD expansion of the matrix X 
can then be written as 

1
X

mI IX X= + +                                                             (2) 

Step 4 (Diagonal averaging): the primary aim of the 4th step 
is to get the decomposition results, which are the main results of 
the SSA algorithm. Specifically, each matrix XIj of the grouped 
decomposition will be hankelized to obtain the Hankel matrix. 

The Hankel matrix will then be transformed into a new series 
of length N processed by diagonal averaging. Finally, the initial 
series y1,…,yT can be decomposed into a sum of m reconstructed 
subseries: 
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The key parameters were set as the same as our pilot study 
(e.g., 5 for the window of length L) [5]. 

 
Fig. 3. The performance of the SSA algorithm. 

For feature extraction, two principles are commonly used by 
existing automated systems: 1) extract specific features based 
on the characteristics of each motor task and the extracted 
features will not be easily updated further [16], [19]; 2) extract 
all features and then dynamically select suitable features based 
on the current training dataset, and the extracted features will be 
updated during the system maintenance [25]. This study chose 
the second principle for continuously improving the proposed 
approach via gathering movement data of stroke survivors in 
practical applications, even though the fixed number of 
participants in this preliminary study might not highlight the 
suitability of the second principle. 

TABLE II 
THE DETAILED INFORMATION ON THE EXTRACTED FEATURES 

Position Type Name (number) Brief Description Ref
Endpoint Speed Vmax (1) Max velocity N/A 

Vmean (2) Mean velocity N/A 
Movtime (3) Movement time [32] 

[33] 
Control 
strategy 

Peaktime (6) Time to velocity 
peak 

N/A 

 Lengthept (7) Path length of the 
endpoint 

N/A 

Efficiency ICept (8) Index of curvature [34] 
Movement 
coordination 

IJCIept (9) Inter-joint 
coordination index

[32] 
[28] 

Smoothness SALept (10) Spectral 
arc-length 

[35] 

Vratio (11) Ratio of max to 
mean velocity 

N/A 

Peakno (12) Number of 
velocity peaks 

N/A 

Arrestratio (13) Mean arrest period 
ratio 

[36] 

Jerkept (14) Normalized mean 
absolute jerk 

[37] 
[38] 

Shoulder 
angle 
(Flexion, 
Adduction, 
Internal) 

Rotational 
speed 

AngVmaxF (18), 
AngVmaxA (19), 
AngVmaxI (20) 

Max angular 
velocity of 
shoulder 

[39] 

AngVmeanF (21), 
AngVmeanA (22), 
AngVmeanI (23) 

Mean angular 
velocity of 
shoulder 

[39] 

Smoothness AngVratioF (24), 
AngVratioA (25), 
AngVratioI (26) 

Ratio of max to 
mean angular 
velocity 

N/A 

AngDratioF (15), 
AngDratioA (16), 
AngDratioI (17) 

Ratio of angle 
difference 

[40] 

JerkF (27),  
JerkA (28),  
JerkI (29) 

Normalized mean 
absolute jerk 

[37] 
[38] 

SALF (30), 
SALA (31), 
SALI (32) 

Spectral 
arc-length 

[35] 

Others  Trunkmean (4) Mean trunk 
displacement 

[41] 

 Trunkmax (5) Max trunk 
displacement 

[41] 

A total of 32 features were therefore extracted and divided 
into three main aspects (TABLE II): 1) endpoint (12 features, 
e.g., max/mean velocity, index of curvature); 2) shoulder angle 
(18 features, e.g., max/mean angular velocity, normalized mean 
absolute jerk); and 3) others (2 features, max/mean trunk 
displacement). A detailed explanation of the features is 
provided as the supplementary material. The details of these 
extracted features can be found in our previous studies [5][40]. 
Their validity and reliability have been evaluated through 
clinical trials, which have the discriminatory ability to 
distinguish functional motor performance in specific aspects 
(e.g., smoothness and control strategy) [1]. It is crucial to 
emphasize that the term "Smoothness" presented in TABLE II 
serves as an evaluation index for assessing the functional motor 
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ability of patients. This evaluation metric is distinct from the 
concept of "smoothness" associated with the data smoothing 
process employing the SSA algorithm. 

2.5 Feature Selection 

Feature selection was conducted by the customized 
multi-ReliefF method in the training process only, which 
includes iterative ranking and filtration steps. The flowchart of 
the multi-ReliefF method is shown in Fig. A1. Firstly, a feature 
ranking algorithm named ReliefF was used to calculate the 
importance weights of raw features. The raw features were then 
ranked in descending order according to the values of their 
importance weights (Fig. A1, the blue bar chart). Secondly, the 
feature filtration process was conducted to select appropriate 
features. The features with negative importance weights were 
deleted, and the remaining features were sent to the ReliefF 
algorithm for the next processing cycle. The feature selection 
was completed until all features had positive importance 
weights; that is, no features with negative importance weights 
were found by the ReliefF algorithm in the first step. It should 
be noted that in order to achieve the automation of clinical 
scoring in practical applications, we did not use the 
Davies-Bouldin index (DBI) [42] to select top-ranked features 
since the optimal cutoff point has to be revised according to 
different training datasets [25]. 

The ReliefF algorithm, used in the ranking step, is extended 
based on the original Relief algorithm (a supervised feature 
selection method). It is not limited to two-class problems and 
can process noisy, incomplete, and skewed data [43]. The 
pseudo-code of the ReliefF algorithm is listed as follows 
[43]–[45]. 
ReliefF algorithm 
Input: All features and classes (scores) of trials in the training 
dataset. 
Output: A relevance index vector W, which contains the 
calculated importance weights of each feature A. 
1. set all importance weights W[A]: =0.0; 
2. for i: =1 to m do begin 
3.       randomly select an instance Ri; 
4.       find k nearest hits Hj; 
5.       for each class C≠class (Ri) do 
6.             from class C find k nearest misses Mj(C); 
7.       for A: =1 to #all_features do 

8.          1

1
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9.       end; 
10. end; 

The ReliefF algorithm will randomly select an instance Ri 

(line 3) and find k nearest neighbors of the same class, named 
nearest hits Hj (line 4). It will then search k nearest neighbors 
for each of the other classes, named nearest misses Mj(C) (lines 
5 and 6). Finally, it will update the relevance estimation W[A] 

for all features A based on their values for Ri, hits Hj, and misses 
Mj(C) (lines 7 and 8). Here, the function diff(A, I1, I2) calculates 
the difference between the values of feature A for two trials I1, 
and I2, and averages the contribution of all the hits and all the 
misses. The P(C) is the prior probability of class C, which is 
used for weighting the contribution for each class of the misses. 
The P(C)’s value is estimated from the training set. The factor 
1-P(class(Ri)) represents the sum of probabilities for the 
misses’ classes. The user-defined parameters m and k control 
the repetition times and the locality of the relevance estimates, 
respectively. In this study, the value of m was set as the default 
value (the number of trials), and the value of k was set to 10 
according to previous studies [25][44]. 

2.6 Model Development 

The estimation model is the critical component of the 
intelligent scoring system, which should be designed to provide 
accurate estimation results and be easily maintained. The 
feed-forward neural network (FFNN) algorithm was selected as 
the estimation model's kernel, a simple but robust artificial 
neural network. In Fig. 4, the FFNN algorithm’s inputs were 
the filtered features, and its outputs were the occurrence 
possibility (OP) of the WMFT-FAS motor task’s each score 
(score 0 to score 5). The structure of the FFNN algorithm 
consists of three layers: the input layer, the hidden layer, and 
the output layer. Specifically, the input layer contained 
dynamic numbers of neurons associated with the filtered 
features (32 features for the maximum). The hidden layer 
contained 20 neurons recommended by previous studies [46], 
[47]. The output layer contained 6 neurons associated with the 
scores of each WMFT-FAS motor task. The input data travel in 
the forward direction, from the input layer, through the hidden 
layer, to the output layer. To enhance the performance of the 
FFNN algorithm, the backpropagation algorithm was also used 
to calculate the error contribution of neurons. The detailed 
workflow of the FFNN algorithm can be found in [48]. 

 
Fig. 4. The structure of the proposed estimation model. 

The structure of the proposed estimation model is shown in 
Fig. 4. The approach employed the "Winner Takes All" 
criterion [49]–[51] for decision-making. In essence, this means 
selecting the highest OP (Occurrence Possibility), representing 
the FFNN algorithm's outputs for scores ranging from 0 to 5, as 
the output score for the motor task. For example, for task-1, the 
occurrence possibilities of scores 0 to 5 were 0%, 6%, 6%, 11%, 
67%, and 10%, respectively. The final output score was four 
since score 4 had the highest occurrence possibility (67%). 

A K-fold cross-validation method [52] was applied to train 
(retrain) and evaluate the proposed FFNN algorithm, one of the 
most frequently used evaluation methods in machine learning 
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[53]. The cross-validation procedure was applied on a 
subject-by-subject basis according to the structure of the 
prepared datasets, namely the K=26. Furthermore, during the 
training process (Fig. 1), the accuracy of the trained model 
would be calculated based on the raw dataset via the 
cross-validation method. The current model (the old model in 
the implementation process) would be replaced if the trained 
model (the new model) achieved higher accuracy. 

3 EXPERIMENTS AND RESULTS 
Experimental validation was conducted in collaboration with 

the Rehabilitation Hospital of Fujian Province in China. Fujian 
University of Traditional Chinese Medicine Human 
Participants Ethics Committee approved all the experimental 
procedures and clinical data access with the reference 
2018KY-019-02. 

3.1 Participants 

A total of 16 stroke survivors (4 females, 12 males, age: 54.2 
± 18.1 years old, 5.0 ± 6.1 months post stroke), all without mild 
cognitive impairment (Montreal Cognitive Assessment (MoCA) 
≥ 23 [54][55]), participated in the study. Additionally, 10 
healthy subjects (5 females, 5 males, age: 21.2 ± 1.2 years old), 
without upper-limb diseases or known nervous system 
disorders, were recruited for experimental validation. The 
exclusion criteria were: 1) participants with severe impairments; 
2) participants with all kinds of infectious diseases; 3) 
participants with medical-tape allergy; and 4) other personal 
reasons. TABLE III presents the characteristics of the recruited 
stroke survivors. TABLE A1 offers the detailed WMFT-FAS 
scores of all stroke survivors.  

TABLE III 
THE CHARACTERISTICS OF STROKE SURVIVORS 

ID Age/ 
Sex Mb Sc Stroke Location & 

Etiology MoCAd WMFT
-FAS

P1 48/M 12 L Frontal lobe, hemorrhage 30 48
P2a 56/F 1 L Thalamus and basal 

ganglia, hemorrhage 25 23 

P3 51/M 24 R Unclear 30 60
P4 75/M 1 L Basal ganglia, infarction 26 35
P5 44/M 5 L Subarachnoid space, 

hemorrhage 
27 43 

P6 63/M 1 R Unclear 29 67
P7 79/M 2 L Basal ganglia, hemorrhage 28 57
P8 61/M 1 R Frontal lobe and centrum 

ovale, infarction 
27 52 

P9 63/M 1 R Basal ganglia, hemorrhage 28 38
P10 54/M 12 R Basal ganglia, hemorrhage 26 46
P11 50/M 5 L Subarachnoid space, 

hemorrhage 26 57 

P12 41/M 2 R Basal ganglia, infarction 30 60
P13 22/F 4 L Subarachnoid space, 

hemorrhage 
30 40 

P14 12/F 1 L Parietal lobe, infarction 28 60
P15 79/F 6 R Pons, hemorrhage 29 42
P16 69/M 1 L Frontal lobe, hemorrhage 30 58
aP2 only completed Tasks 1, 5-7, 9-12; bM = Monthes post stroke; cS = 
Stroke hemisphere; dMoCA = Montreal Cognitive Assessment, 
measured before the validation. 

The healthy subjects were recruited to provide full-mark 
trials because stroke survivors with nearly full marks were hard 
to find in the rehabilitation hospital due to their financial and 
personal issues. Similar recruitment protocols have been 
reported by studies [56][57], although age-matched healthy 

subjects could provide more comparable full-mark trials. It 
should be noted that this study is not clinical research; therefore, 
the sample size of the recruited stroke survivors was not 
calculated by the G*Power software (University of Kent, 
Canterbury, UK). 

3.2 Testing Protocol 

Before clinical trials, verbal and video instructions were 
given to all participants, and the signed participant consent 
form and participant information sheet were collected if they 
agreed with the procedures. All participants' upper-limb 
functional motor performance was evaluated by an experienced 
physiotherapist using the WMFT-FAS. Participants were 
verbally encouraged to follow an instructional video repeated 
three times for each motor task during the assessment. 
Meanwhile, in front of participants (Fig. 2(a)), the Kinect v2 
was placed on a tripod to record movement data. To enhance 
the accuracy of raw data, the distance and direction of the 
Kinect v2 were also adjusted for tasks according to the report 
[58] and our experience (TABLE IV).  

TABLE IV 
DETAIL PARAMETERS OF TASK ADJUSTMENTS 

Task Distance 
(cm)

Direction 
(aS/bT, degree) Task Distance 

(cm) 
Direction 
(S/T, degree)

T1 150 15/5 T9 142 20/5
T2 150 15/5 T10 142 20/5
T3 150 15/5 T11 142 20/5
T4 150 15/5 T12 142 20/5
T5 145 18/0 T13 140 20/15
T6 145 18/0 T14 140 20/5
T7 145 18/0 T15 150 20/5
T8 142 20/5    
aS=Sagittal plane angle; bT = Transversal plane angle. The absolute 
values of parameters were taken. 

These two parameters were fixed for different participants 
with the same task. Furthermore, a big glass platform was set 
for tracking participants’ legs in several motor tasks (inaccurate 
leg tracking results might affect the tracking accuracy of upper 
limbs, Fig. 2(b). The video recordings of the assessment were 
also saved for later analysis. According to the previous work 
[25] and the limited number of recruited participants, we 
assumed that the repetitions of each participant were 
independent, and each repetition was considered a trial. 
Therefore, for each of the 15 tasks, the raw dataset 
encompassed 78 trials, each comprising up to 32 features, along 
with 1 clinical score, resulting in a maximum total of 66,924 
data points. However, patient-2 did not complete Tasks 2-4, 8, 
13-15, and the datasets of these tasks contained 75 trials. 

3.3 Performance Evaluation 

The performance of the proposed novel WMFT-FAS scoring 
approach was evaluated in three aspects: the whole approach, 
the multi-ReliefF method, and the FFNN kernel. For the first 
one, the estimated scores were compared with the actual 
WMFT-FAS scores provided by the experienced 
physiotherapist. For the second one, the proposed multi-ReliefF 
method was compared with the suggested ReliefF-DBI method 
[25] and the original features (without selection). For the third 
one, 10 commonly used machine learning algorithms were used 
to build respective estimation models with the same datasets for 
comparison. TABLE V shows the selected machine learning 
algorithms and their specifications. Specifically, among the 
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five mentioned neural networks—FFNN, NN, MNN, CFNN, 
and RNN—FFNN and CFNN are built based on specifications 
1, 2, and 3. On the other hand, NN and MNN are developed 
relying on specifications 1, 2, 4, and 5, while RNN is 
constructed using specifications 1, 2, 4, and 6. 

TABLE V 
DETAILED INFORMATION ON THE SELECTED CLASSIFICATION ALGORITHMS 

Model Kernel Specification 
aFFNN 
(current) 

Script: Feedforwardnet 
(one-layer) 

1.HiddenSize=20 
2.Maxepochs=5000 
3.TrainFcn=Levenberg-Marquardt
4.TrainFcn=Scaled Conjugate 
Gradient 
5.PerformFcn=Cross-Entropy 
Loss 
6.LayerDelays=1:2 for RNN 

bNN Script: Patternnet 
(one-layer) 

cMNN Script: Patternnet 
(three-layer) 

dCFNN Script: Cascadeforwardnet 
(one-layer) 

eRNN Script: Layrecent 
(one-layer) 

fDT Coarse Tree 1.Maximum number of splits=4
  2.Split criterion: Gini’s diversity 

index 
gDA Linear Discriminant 1.Covariance structure: Full
hNB Kernel Naive Bayes 1.Kernel type: Gaussian
iSVM Quadratic SVM 1.Kernel scale=Automatic
  2.Box constraint level=1
  3.Multiclass method: One-vs.-One
jKNN Fine KNN 1.Number of neighbours=1
  2.Distance metric: Euclidean
  3.Distance weight: Equal
kEM Subspace with Discriminant 

learner 
1.Number of learner=30

 2.Subspace dimension=16
aFFNN = Feed-Forward Neural Network, bNN = Neural Network created 
using patternnet, cMNN = Neural Network with Multiple Layers, dCFNN = 
Cascade-Forward Neural Network, eRNN = Recurrent Neural Network, 
fDT = Decision Tree, gDA = Discriminant Analysis, hNB = Naive Bayes, 
iSVM = Support Vector Machine, jKNN = K-Nearest Neighbour, kEM = 
Ensemble Method. 

Seven metrics [59] were used to evaluate performance and 
make comparisons: accuracy, mean absolute error (MAE), root 
mean squared error (RMSE), sensitivity (namely recall), 
specificity, F1-score, and AUC (area under a curve). For this 
study (multi-class estimation/classification issues), accuracy, 
F1-score, sensitivity, specificity, and AUC are often used as 
important evaluation metrics, so we ranked these metrics first 
[60]. MAE and RMSE are used to measure average errors, 
which are commonly used in control strategies. However, they 
are still important metrics to evaluate the model performance. 
So, we put these two values last. The details of MAE and 
RMSE can be found in [25], and the details of other metrics can 
be found in our previous research [5][40]. The significant 
difference was analyzed via SPSS version 20 (IBM 
Corporation, NY, USA). The level of statistical significance 
was set to p ≤ 0.05. 

3.4 Results 

Fig. 5 and TABLE A2 show the performance of the whole 
approach: the mean values for accuracy, F1-score, sensitivity, 
specificity, AUC, MAE, and RMSE are 0.924, 0.875, 0.915, 
0.969, 0.952, 0.098, and 0.214, respectively. The values of 
standard deviation are from 0.013 to 0.078. Specifically, for 
accuracy and F1-score, Task-14 receives the highest value 
while Task-10 receives the lowest value (0.966 versus 0.879, 
0.967 versus 0.741, respectively); for sensitivity, Task-3 
receives the highest value while Task-12 receives the lowest 
value (0.980 versus 0.803); for specificity, Task-3 and 
Task-14 receive the highest value while Task-7 receives the 

lowest value (0.984 versus 0.947); for AUC, Task-14 still 
receives the highest value while Task-12 still receives the 
lowest value (1.000 versus 0.871); for MAE, Task-14 receives 
the lowest error value while Task-13 receives the highest error 
value (0.040 versus 0.157); for RMSE, the same trend is found 
(0.063 for Task-14 versus 0.330 for Task-13). 

  
Fig. 5. Performance of the proposed approach (the red vertical line 

represents the mean: (a) the values of Accuracy, F1-score, Sensitivity, 
Specificity, and AUC; (b) the values of MAE and RMSE. 

 
Fig. 6. Accuracy comparison between the Original, ReliefF-DBI, and 

Multi-ReliefF methods (the red vertical line represents the mean): (a) the 
accuracy performance; (b) the difference values. MR = Multi-ReliefF, 

RD = ReliefF-DBI, and O = Original. 

Fig. 6 and TABLE A3 show the performance of the 
multi-ReliefF method: compared with the original features, 
around 75% of motor tasks’ accuracy is improved through the 
proposed multi-ReliefF method, and only 4 motor tasks’ 
accuracy is slightly decreased (1.5%~3.7% reduction). 
Compared with the ReliefF-DBI method, only 3 motor tasks’ 
accuracy is slightly decreased (1.5%~3.7% reduction). In terms 
of the mean improvement of accuracy, the proposed 
multi-ReliefF method presents 2.9% (0.027 ± 0.040) and 8.1% 
(0.069 ± 0.064) increments compared with the original features 
and ReliefF-DBI method, respectively. 
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Meanwhile, we focused on analyzing the accuracy results 
(TABLE A3, the first three columns, tasks 1-15) obtained using 
the original method, ReliefF-DBI method, and Multi-ReliefF 
method. The Kolmogorov-Smirnov test was utilized to verify 
that the accuracy results from these three methods adhere to a 
normal distribution. Subsequently, we conducted an 
independent sample t-test to discern any statistically significant 
differences in the accuracy results across the various methods. 
Detailed results of the independent sample t-test are presented 
in TABLE VI. 

TABLE VI 
INDEPENDENT SAMPLE T-TEST RESULTS OF  

MULTI-RELIEFF VS. ORIGINAL AND MULTI-RELIEFF VS. RELIEFF-DBI 
 ddf p-value Cohen's d 95%CIs 

(Lower) 
95%CIs 
(Upper)

aMR vs. bO  28 0.030 0.781 -0.051 -0.003 

MR vs. cRD  19.343 0.001 1.195 -0.105 -0.334 
aMR = Multi-ReliefF, bO = Original, cRD = ReliefF-DBI,  ddf = degrees of 
freedom. 

Specifically, we observed statistically significant differences 
among the original, Relief-DBI, and multi-ReliefF methods. 
The p-value for the difference between the multi-ReliefF and 
original methods is 0.03, indicating a statistically significant 
difference in accuracy between these two methods, as it is less 
than 0.05. Additionally, the p-value for the difference between 
the multi-ReliefF and Relief-DBI methods is 0.001, signifying 
a highly significant accuracy difference between these two 
methods, given that it is much smaller than 0.05. 

Regarding effect size, we utilized Cohen's d as a metric to 
quantify the effect size. Cohen's d is employed to characterize 
the magnitude of the mean difference between the two groups, 
where d=0.2 signifies a small effect size, d=0.5 indicates a 
moderate effect size, and d=0.8 denotes a large effect size. As 
indicated in TABLE VI, Cohen's d value for the difference 
between the multi-ReliefF and original methods is 0.781 
(0.5<d<0.8), signifying a substantial difference between these 
two methods. Similarly, Cohen's d value for the difference 
between the multi-ReliefF and Relief-DBI methods is 1.195 
(d>0.8), indicating a more pronounced difference between 
these two methods. 

The confidence interval offers a possible range for parameter 
estimation. When the 95% confidence interval excludes 0, the 
parameter is typically considered statistically significant. As 
depicted in Table VI, the 95% confidence interval for the 
difference between the multi-ReliefF and original methods 
ranges from -0.003 to -0.051, with all values below 0. This 
implies that the multi-ReliefF method exhibits a statistically 
significant improvement in accuracy compared to the original 
method. Similarly, for the difference between the multi-ReliefF 
and Relief-DBI methods, the 95% confidence interval spans 
from -0.105 to -0.334, with both lower and upper limits 
significantly below 0. This strongly suggests that the 
multi-ReliefF method yields a substantially superior 
improvement in accuracy compared to the Relief-DBI method. 

All of these statistical findings consistently demonstrate a 
significant enhancement in accuracy achieved by the proposed 
multi-ReliefF method in comparison to both the original 
method and the Relief-DBI method. 

TABLE VII shows each task's best and deleted (worst) 
features. Specifically, features 12 (number of velocity peaks), 7 
(path length of the endpoint), and 10 (spectral arc-length) 
exerted the most positive influences on estimation performance 
among all motor tasks, while features 9 (inter-joint 
coordination index), 13 (mean arrest period ratio), and 23 
(mean internal angular velocity of the shoulder) presented 
opposite results. Meanwhile, the best and worst features were 
similar for task-5, task-7, and task-13: Peakno, Lengthept for the 
best, and SALI, Arrestratio for the worst. One interesting finding 
is that for task-12 (flip cards), movement time was the best 
feature, and trunkmean/trunkmax were the worst features, along 
with a situation that the FFNN algorithm dropped out of the top 
three best algorithms (TABLE A4). 

TABLE VII 
THE BEST AND DELETED FEATURES 

Task Best Deleted Task Best Deleted
T1 16,14,7 11 T9 12,7,21 9,13,17
T2 12,16,7 9,4,13 T10 12,7,25 23,9,11
T3 12,7,14 9,13,17-23,

25,26,30
T11 12,7,3 11,21-23,8,4 

T4 7,12,5 9,15,17,22 T12 3,10,24 4,31,5,8
T5 12,7,14 32,23,13 T13 12,7,5 32,15,13,9-11,17
T6 12,10,28 4,13,17 T14 3,13,6 8,9,15,20,22, 

23,31
T7 12,7,10 13,32 T15 31,1,2 18-21,23,24, 

30,32
T8 15,10,9 4,5,13,21,2

3,30-32
   

Fig. 7 and TABLE A4 show the top three algorithms for 
each motor task with respect to accuracy. The FFNN algorithm 
receives promising comprehensive performance: 5 times for the 
best algorithm (T1, T3, T4, T8, and T14), 6 times for the 
second-best algorithm (T2, T6, T7, T11, T13, and T15), and 3 
times for the third-best algorithm (T5, T9, and T10). For T12, 
the FFNN algorithm ranks as the fourth-best algorithm. For 
other evaluation metrics, the FFNN algorithm also presents the 
best comprehensive performance. The detailed results of 
different algorithms for each task can be found in TABLE A5- 
TABLE A19. 

  
Fig. 7. Accuracy performance of FFNN algorithm in 15 tasks. 

4 DISCUSSION 
The main findings of this study were: 1) the proposed novel 

scoring approach can automate the entire WMFT-FAS with a 
mean accuracy of 0.924 and mean RMSE of 0.214/5; 2) the 
proposed multi-ReliefF method enhanced the final accuracy: 
the increment of 0.027 ± 0.041 (2.9% increment) with the 
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p-value of 0.030 was achieved when compared with the 
original features, and the increment of 0.069 ± 0.066 (8.1% 
increment) with the p-value of 0.001 was achieved when 
compared with the ReliefF-DBI method. 

According to the research [18][19], a Kinect-based system 
might be an effective and accurate way to assess clinical scales 
automatically, and it is indeed a widely used device for scoring 
FMA [61], BBT [62], and RPS [63] scales. In this study, the 
movement data were collected via one Kinect v2, which might 
be the first time Kinect was used for the WMFT-FAS scoring 
[64]. In our previous work [28], Kinect v2 measured angular 
waveforms for elbow and shoulder flexion/extension with the 
inter-device coefficient of multiple correlation (CMC) > 0.87. 
It also showed relatively high test-retest reliability for most 
angular waveforms of upper limbs with CMC=0.75-0.99 (the 
Vicon system was used as the gold standard, and the perfect 
value was 1.00). Some articles reported that the tracking 
accuracy of Kinect v2 was not good enough for clinical 
applications, such as research [65]. The main reasons for 
making such conclusions were: 1) using relatively low-end 
computers to track movements (the measured fps is too low to 
represent the actual movement); 2) using the constant distance 
and direction of Kinect v2 to gather movement data (these two 
critical parameters should be modified according to different 
types of motor tasks, TABLE IV); and 3) using raw movement 
data to extract features (advanced algorithms are suggested to 
enhance the accuracy and robustness of preprocessing). 
Although the Kinect v2 is currently out of the market, the 
proposed approach can still be used for new practical 
applications in clinical scenarios. Specifically, the tracking 
skeleton of the proposed motion tracking system (Fig. 2(b)) can 
be revised to adapt the new anatomical landmarks provided by 
new devices (e.g., Azure Kinect, a new Kinect device released 
by Microsoft in 2019). As an affordable and portable 
assessment tool that can be used in hospital and community 
settings, this study used the Kinect v2 rather than other new 
devices to collect clinical data due to its low cost and friendly 
hardware requirement. Furthermore, according to the report 
[66], the Kinect v2 achieved better tracking results than the 
Azure Kinect in the mid and upper body regions, especially in 
the upper extremities. In fact, the most significant disadvantage 
of the Kinect v2 is that it does not have the ability to track fine 
movements (the same issue as the Azure Kinect), such as finger 
flexion/extension. Therefore, for this study, we have to use 
gross movement’ features to evaluate specific motor tasks 
containing fine movements. This is why task-10 (lift paper clip) 
and task-12 (flip cards) received the worst assessment results. 
One interesting finding was that task-14 (fold towel) received 
the highest results in 6/7 evaluation metrics. The possible 
reason might be that task-14 requires a larger range of motion 
than task-10 and task-12, even though all of them contain fine 
movements. Therefore, patients have to use their whole upper 
bodies (e.g., shoulder, elbow, trunk) to finish task-14 due to 
synergistic patterns and muscle contractures. 

To the best of the authors’ knowledge, this is the first 
automated approach for scoring the entire WMFT-FAS. 
Compared with similar WMFT-FAS scoring systems that 
might be expensive or inconvenient/impossible for practical 
applications [21]–[26], the proposed approach is cheap, 
accurate, portable, and easy to operate. The experimental 

performance of these similar systems was promising (0.667 for 
the worst) but still far from clinical applications due to their 
hardware (e.g., a set of IMUs, which often requires precise 
sensor placement and therefore causes clothing restrictions) 
and specific assumptions (e.g., all of the recruited patients had 
relatively high-level motor capacity). The proposed approach 
does not contain such limitations and other time-consuming 
procedures: it requires only around eight minutes to set up an 
experiment (e.g., lighting, platform, Kinect’s angle of view for 
each task, please see Fig. 2), and participants are required to 
perform tasks in front of the Kinect, making it potentially more 
accessible to be used in clinical settings. However, the primary 
users of the proposed approach are stroke survivors with 
moderate impairments (scores 2-4 of the WMFT-FAS). It is 
why this study did not recruit participants with severe 
impairments. That is, the proposed motion tracking system 
(Fig. 2(b)) cannot deal with stroke survivors in their early 
stages (e.g., scores 0-1 of the WMFT-FAS, score 0 of the FMA) 
since they can hardly move their bodies to perform the motor 
functional assessment. This situation has been confirmed by the 
report [64] that the usability of automated assessment systems 
will have a niche bounded by the level of patients’ affection. 
Surface electromyography (sEMG) could be combined with the 
proposed approach in the future to cover stroke survivors in all 
stages since it can monitor muscle activity in their early stages 
[67]. 

The performance of our approach can be seen in TABLE A2: 
the mean accuracy is 0.924 (ranging from 0.879 to 0.966) with 
a low standard deviation (0.026). Similar values can be found 
in other evaluation metrics in TABLE A2. These results 
suggested that the proposed approach might have the potential 
to be used in clinical applications with further improvements. 
In addition, several methods have been applied to enhance the 
performance of the proposed approach. Firstly, the distance and 
direction of Kinect v2 were adjusted according to motor tasks’ 
characteristics (approximately 20 seconds for each adjustment, 
TABLE IV). For example, for task-6 (hand to box-front, gross 
movements), the Kinect was set far from participants to track 
their whole bodies, and the parameters of distance and direction 
were set as 145 cm and 18/0 degrees, respectively. For task-14 
(fold towel-front, contains fine movements), the Kinect was 
placed close to participants to track their whole upper bodies 
and a part of their lower bodies. The parameters of distance and 
direction were set as 140 cm and 20/5 degrees, respectively. 
Secondly, powerful preprocessing algorithms were applied to 
reduce the effects of noise on raw movement data suggested by 
the research [65]. For example, SSA (singular spectrum 
analysis) was used instead of Butterworth filters. Lastly, two 
customized algorithms were developed to enhance the overall 
performance. 

The first customized algorithm is the multi-ReliefF method. 
It can be concluded from TABLE A3 that the proposed method 
can enhance accuracy with respect to the original features and 
the ReliefF-DBI method (p-value = 0.030, and 0.001, 
respectively). Specifically, around 2.9% increment has been 
achieved compared with the original features, and 
approximately 8.1% increment has been achieved compared 
with the suggested ReliefF-DBI method [25]. The possible 
reason for the ReliefF-DBI method’s low performance in our 
study could be that the rule of the fixed feature selection (e.g., 
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select the fixed top-N-ranked features) cannot deal with a large 
number of features (a total of 32 features for each trial). 
Furthermore, the features selected and deleted (please see 
TABLE VII) for task-12 (flip cards) might partly explain the 
low rank of the FFNN algorithm. The possible reason might be 
the deletion of trunk features (Trunkmean, Trunkmax) since gross 
movements have been used to assess tasks with fine motor 
skills. The trunk features are essential for detecting synergistic 
patterns of stroke survivors and can also be used to assess the 
movement quality of flip cards (stroke survivors have to 
complete task-12 with a posture of the anteverted pelvis with an 
extended and rotated trunk). It should be noted that the 
influence of features is dependent on datasets. It means that for 
new training datasets built in later practical applications, the 
effect of each feature would be dynamically changed. However, 
as a novel scoring approach, the feature selection has to be 
conducted by the proposed approach itself, and this is why we 
did not use the suggested ReliefF-DBI in this study. 

The other customized algorithm is the FFNN kernel, and its 
overall performance has been listed in TABLE A4. Compared 
with other machine learning algorithms, the FFNN kernel 
proposed promising performance in accuracy (around 2.9% 
increment). Although the FFNN algorithm did not rank first for 
all motor tasks, the most important for practical applications is 
that the utilized scoring algorithm should be able to handle 
various types of gathered movement data. The FFNN algorithm 
was therefore selected based on its three advantages. Firstly, the 
FFNN algorithm has a simple artificial neural network structure 
that can be easily built and maintained during practical 
applications. Secondly, as mentioned above (TABLE A2), the 
FFNN algorithm achieves balanced performance for all seven 
evaluation metrics, making it possible to evaluate new trials of 
stroke survivors in practical applications. Lastly, the FFNN 
algorithm is more suitable for processing discrete datasets of 
possible values to transfer to related classes than non-artificial 
neural network algorithms. The possible reason might be that 
we used larger numbers of features (at least 20 features) to 
create datasets for training and validation, which is beyond 
their abilities [68] (we used original versions of the selected 
algorithms for performance comparison). For example, the 
decision tree will create an over-complex tree due to various 
features, which might be unstable and easily overfit. 

In terms of clinical applications, this study simplifies the 
process for patients by requiring them to complete a series of 
upper limb functional movements based on prompts. The 
system then automatically processes the data, extracts features, 
and generates clinical scores. Physiotherapists can use these 
scores, combined with their expertise, to develop customized 
treatment plans. The proposed method offers several 
advantages in clinical application. Firstly, in comparison to 
biomarker technologies like EMG and EEG, this method is 
cost-effective, easy to operate, and highly suitable for 
widespread adoption in clinical practice, particularly in 
community settings. Secondly, it alleviates the need for 
participants to wear any devices, thereby overcoming the 
limitations associated with wearable technologies. Thirdly, the 
proposed method continuously enhances scoring accuracy by 
utilizing an AI model retrained with additional movement data 
from patients, thereby ensuring ongoing improvement and 
precision in the scoring approach. 

Regarding model selection, for the ordinal scoring system 
(0-5 points) of this study, the regression model may 
theoretically be a more intuitive choice, as it can naturally 
handle ordinal data and is more conducive to processing the 
ordinality between scores. However, existing research has 
employed classification methods in the automated motor 
function assessment system for stroke survivors [18][19]. A 
classification model was therefore utilized in this study. Based 
on Figs. 5 and 6, the actual performance of the proposed model 
demonstrates its robustness in scoring WMFT-FAS motor tasks, 
providing valuable insights for the motor function assessment 
of stroke survivors. 

Three major limitations should be highlighted: 1) in line with 
many studies [14][36], the quantity and quality of the recruited 
participants might affect the performance of the proposed 
approach, such as the study did not include age-matched 
healthy and stroke participants; 2) the gold standard of this 
study is linked to the personal feelings of physiotherapists, 
which is an unavoidable aspect of existing intelligent scoring 
systems; and 3) a classification model was adopted in the 
ordinal scoring system, but a regression model might 
theoretically be a more suitable choice, especially for model 
training. Future work will focus on overcoming these 
limitations: 1) continual efforts will be made to recruit more 
stroke survivors and healthy subjects with similar ethnicity, 
gender, and mean age to improve the study's robustness; 2) two 
or more experienced physiotherapists will be invited to score 
simultaneously, and averaged scores will be used as the gold 
standard to enhance objectivity; 3) consider using regression 
models and further explore and compare the applicability of 
regression models and classification models for the ordinal 
scoring system; and 4) new devices, such as the Ultraleap 
Stereo IR170, will be employed to improve scoring precision 
by leveraging their new features, particularly hand movements. 

The main improvements of the current study when compared 
with our previous work [5] can be concluded as follows: 1) the 
current study automated the entire WMFT-FAS scale (15 tasks) 
rather than four tasks in our previous work; and 2) the current 
study can dynamically select suitable features to enhance the 
classification/estimation performance by using the customized 
multi-ReliefF method (Table A3, the accuracy increased by 
around 2.9%). 

5 CONCLUSION 
This paper first proposed a novel scoring approach for the 

motor function assessment of stroke survivors based on the 
WMFT-FAS. The approach mainly contained one Microsoft 
Kinect v2, one customized motion tracking system, and one 
customized intelligent scoring system. Sixteen stroke survivors 
and ten healthy subjects were recruited for data collection and 
validation. Promising experimental results were achieved, 
indicating the developed approach has the potential for clinical 
applications as an affordable and portable assessment tool to 
help physiotherapists make treatment decisions, releasing the 
burden of healthcare resources. The proposed novel scoring 
approach can also monitor the progress and outcomes of stroke 
survivors’ rehabilitation interventions in community-based 
settings. 
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APPENDIX 
TABLE A1 THE WMFT-FAS SCORES OF ALL STROKE SURVIVORS 

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
T1 4 3 4 3 3 5 4 4 3 3 4 4 3 4 3 4 
T2 4 0 4 3 3 5 4 3 2 3 4 4 3 4 3 4 
T3 4 0 4 3 3 5 4 3 3 3 4 4 3 4 3 4 
T4 4 0 4 3 3 4 4 3 3 4 4 4 3 4 3 4 
T5 4 4 4 3 3 5 4 4 3 3 4 4 3 4 3 4 
T6 3 4 4 2 3 4 4 4 3 3 4 4 3 4 3 4 
T7 3 3 4 2 3 4 4 4 3 3 4 4 3 4 3 4 
T8 2 0 4 2 3 4 3 3 3 3 4 4 2 4 2 4 
T9 3 3 4 2 3 4 4 3 3 3 4 4 3 4 3 4 
T10 3 2 4 2 3 5 4 4 2 3 4 4 3 4 3 4 
T11 3 2 4 2 3 5 4 4 3 3 4 4 1 4 3 4 
T12 2 2 4 2 3 5 3 3 2 2 3 4 2 4 2 4 
T13 3 0 4 2 2 4 4 3 2 4 3 4 3 4 3 2 
T14 3 0 4 1 2 4 3 3 1 3 4 4 2 4 2 4 
T15 3 0 4 3 3 4 4 4 2 3 3 4 3 4 3 4 
Total 48 23 60 35 43 67 57 52 38 46 57 60 40 60 42 58 

 
TABLE A2 

PERFORMANCE OF THE PROPOSED APPROACH 
Task aAcc bF1 cSen dSpe eAUC fMAE gRMSE
T1 0.924 0.872 0.862 0.961 0.934 0.079 0.124
T2 0.941 0.866 0.923 0.978 0.957 0.072 0.208
T3 0.959 0.951 0.980 0.984 0.957 0.057 0.122
T4 0.928 0.906 0.934 0.962 0.951 0.121 0.280
T5 0.945 0.916 0.923 0.969 0.992 0.066 0.182
T6 0.926 0.864 0.875 0.978 0.931 0.075 0.191
T7 0.894 0.852 0.893 0.947 0.927 0.133 0.288
T8 0.940 0.883 0.956 0.983 0.985 0.090 0.209
T9 0.940 0.934 0.940 0.975 0.976 0.079 0.167
T10 0.879 0.741 0.841 0.954 0.957 0.138 0.278
T11 0.935 0.876 0.952 0.979 0.974 0.083 0.180
T12 0.883 0.751 0.803 0.955 0.871 0.150 0.312
T13 0.913 0.884 0.969 0.976 0.983 0.157 0.330
T14 0.966 0.967 0.967 0.984 1.000 0.040 0.063
T15 0.892 0.855 0.906 0.954 0.880 0.131 0.272

Mean 0.924 0.875 0.915 0.969 0.952 0.098 0.214
hSD 0.027 0.063 0.051 0.013 0.038 0.037 0.078
aAcc = accuracy; bF1 = F1-score; cSen = Sensitivity; dSpe = Specificity; 
eAUC = AUC; fMAE = mean absolute error; gRMSE = root mean squared 
error; hSD = standard deviation. 

 

TABLE A3 
ACCURACY COMPARISON BETWEEN THE ORIGINAL,  

RELIEFF-DBI, AND MULTI-RELIEFF METHODS 
Task aO bRD cMR Ovs.MR RDvs.MR
T1 0.864 0.909 0.924 0.060 0.015
T2 0.929 0.824 0.941 0.012 0.117
T3 0.905 0.784 0.959 0.054 0.175
T4 0.870 0.797 0.928 0.058 0.131
T5 0.959 0.959 0.945 -0.014 -0.014
T6 0.901 0.815 0.926 0.025 0.111
T7 0.909 0.773 0.894 -0.015 0.121
T8 0.866 0.806 0.940 0.074 0.134
T9 0.925 0.836 0.940 0.015 0.104

T10 0.864 0.879 0.879 0.015 0.000
T11 0.823 0.952 0.935 0.112 -0.017
T12 0.917 0.917 0.883 -0.034 -0.034
T13 0.942 0.884 0.913 -0.029 0.029
T14 0.914 0.879 0.966 0.052 0.087
T15 0.877 0.815 0.892 0.015 0.077

Mean 0.898 0.855 0.924 0.027 0.069
dSD 0.036 0.060 0.027 0.041 0.066

aO = Original; bRD = ReliefF-DBI; cMR = Multi-ReliefF;  
dSD = standard deviation; 

 
 
 

TABLE A4 
TOP THREE ACCURACY PERFORMANCE OF  

DIFFERENT ALGORITHMS FOR EACH MOTOR TASK 
Task Top1 Top2 Top3
T1 FFNN MNN CFNN
T2 NN FFNN MNN, RNN
T3 FFNN RNN CFNN
T4 FFNN, RNN NN, MNN, KNN CFNN
T5 MNN CFNN FFNN, RNN
T6 RNN FFNN, CFNN NN
T7 MNN, CFNN, RNN FFNN NN
T8 FFNN MNN CFNN
T9 NN RNN FFNN

T10 RNN MNN FFNN, NN
T11 NN FFNN RNN
T12 RNN MNN CFNN
T13 CFNN FFNN MNN
T14 FFNN NN, MNN, RNN CFNN
T15 NN, CFNN FFNN RNN

 
TABLE A5 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-1 

Name aAcc bF1 cSpe dSen eAUC
FFNN 0.924 0.872 0.961 0.862 0.934
NN 0.864 0.810 0.937 0.855 0.941
MNN 0.909 0.870 0.954 0.883 0.935
CFNN 0.894 0.879 0.938 0.899 0.959
RNN 0.879 0.850 0.932 0.870 0.949
DT 0.636 0.528 0.795 0.535 0.717
DA 0.727 0.660 0.818 0.656 0.780
NB 0.636 0.498 0.789 0.507 0.710
SVM 0.788 0.664 0.858 0.643 0.860
KNN 0.818 0.722 0.864 0.688 0.777
EM 0.742 0.637 0.818 0.635 0.860
aAcc = accuracy; bF1 = F1-score; cSpe = Specificity;  
dSen = Sensitivity; eAUC = AUC. 
 

TABLE A6 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-2 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.941 0.866 0.978 0.923 0.957
NN 0.976 0.970 0.988 0.983 0.968
MNN 0.918 0.822 0.961 0.829 0.981
CFNN 0.871 0.701 0.939 0.693 0.933
RNN 0.918 0.894 0.963 0.912 0.925
DT 0.753 0.544 0.888 0.527 0.645
DA 0.706 #N/A 0.854 0.418 0.585
NB 0.718 0.561 0.898 0.545 0.720
SVM 0.824 0.618 0.925 0.620 0.885
KNN 0.729 0.558 0.843 0.597 0.720
EM 0.788 0.585 0.877 0.569 0.855
*Same abbreviation as Table A2, #N/A = Not Applicable. 
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TABLE A7 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-3 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.959 0.951 0.984 0.980 0.957
NN 0.865 0.804 0.928 0.851 0.951
MNN 0.851 0.799 0.914 0.829 0.910
CFNN 0.892 0.869 0.928 0.868 0.969
RNN 0.905 0.869 0.954 0.887 0.944
DT 0.689 0.609 0.803 0.606 0.727
DA 0.824 0.740 0.874 0.715 0.807
NB 0.703 0.644 0.824 0.679 0.840
SVM 0.784 0.673 0.849 0.642 0.913
KNN 0.716 0.524 0.754 0.491 0.877
EM 0.811 0.715 0.861 0.682 0.877
*Same abbreviation as Table A2. 

TABLE A8 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-4 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.928 0.906 0.962 0.934 0.951
NN 0.899 0.873 0.950 0.903 0.953
MNN 0.899 0.876 0.938 0.872 0.976
CFNN 0.870 0.833 0.925 0.842 0.960
RNN 0.928 0.922 0.955 0.936 0.980
DT 0.652 0.516 0.745 0.490 0.647
DA 0.696 0.615 0.811 0.605 0.797
NB 0.696 0.617 0.827 0.643 0.867
SVM 0.812 0.751 0.867 0.730 0.877
KNN 0.899 0.832 0.944 0.817 0.863
EM 0.826 0.780 0.880 0.777 0.890
*Same abbreviation as Table A2. 

TABLE A9 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-5 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.945 0.916 0.969 0.923 0.992
NN 0.918 0.909 0.956 0.941 0.989
MNN 0.986 0.968 0.995 0.980 1.000
CFNN 0.959 0.929 0.984 0.945 0.981
RNN 0.945 0.912 0.970 0.948 0.996
DT 0.740 0.640 0.811 0.647 0.767
DA 0.753 0.620 0.849 0.612 0.827
NB 0.753 0.718 0.831 0.710 0.893
SVM 0.836 0.756 0.858 0.702 0.923
KNN 0.877 0.786 0.891 0.729 0.810
EM 0.863 0.799 0.877 0.750 0.950
*Same abbreviation as Table A2. 

TABLE A10 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-6 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.926 0.864 0.978 0.875 0.931
NN 0.889 0.853 0.955 0.882 0.959
MNN 0.864 #N/A 0.938 N/A 0.923
CFNN 0.926 N/A 0.972 N/A 0.733
RNN 0.951 N/A 0.985 N/A 0.981
DT 0.765 N/A 0.896 0.549 0.825
DA N/A N/A N/A N/A N/A
NB 0.679 N/A 0.878 0.376 0.533
SVM 0.877 N/A 0.936 0.576 0.695
KNN 0.864 N/A 0.927 0.540 0.733
EM 0.815 N/A 0.900 0.544 0.678
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A11 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-7 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.894 0.852 0.947 0.893 0.927
NN 0.864 0.812 0.924 0.839 0.974
MNN 0.924 0.879 0.970 0.909 0.964
CFNN 0.924 0.906 0.944 0.877 0.982
RNN 0.924 0.871 0.961 0.893 0.959
DT 0.682 0.573 0.812 0.589 0.747
DA 0.773 0.681 0.873 0.684 0.803
NB 0.682 0.598 0.812 0.621 0.747
SVM 0.773 0.693 0.840 0.667 0.877
KNN 0.758 0.665 0.817 0.630 0.727
EM 0.773 0.678 0.807 0.635 0.860
*Same abbreviation as Table A2. 

TABLE A12 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-8 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.940 0.883 0.983 0.956 0.985
NN 0.821 0.671 0.951 0.853 0.921
MNN 0.896 0.895 0.955 0.920 0.970
CFNN 0.866 0.783 0.942 0.783 0.950
RNN 0.821 0.672 0.939 0.856 0.955
DT 0.716 #N/A 0.886 0.459 0.800
DA 0.702 0.598 0.873 0.606 0.743
NB 0.657 0.490 0.850 0.492 0.578
SVM 0.851 0.729 0.927 0.720 0.890
KNN 0.821 0.619 0.912 0.592 0.753
EM 0.776 0.595 0.862 0.574 0.793
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A13 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-9 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.940 0.934 0.975 0.940 0.976
NN 0.970 0.963 0.991 0.975 1.000
MNN 0.866 #N/A 0.940 N/A 0.933
CFNN 0.910 0.888 0.966 0.910 0.980
RNN 0.955 N/A 0.987 N/A 0.980
DT 0.731 N/A 0.893 0.484 0.830
DA N/A N/A N/A N/A N/A
NB 0.746 N/A 0.867 0.445 0.803
SVM 0.791 N/A 0.893 0.484 0.885
KNN 0.761 N/A 0.876 0.451 0.663
EM 0.851 N/A 0.923 0.556 0.688
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A14 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-10 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.879 0.741 0.954 0.841 0.957
NN 0.879 0.795 0.952 0.800 0.947
MNN 0.924 0.912 0.965 0.892 0.965
CFNN 0.894 0.752 0.969 0.781 0.927
RNN 0.955 0.967 0.980 0.971 0.982
DT 0.758 #N/A 0.911 0.419 0.863
DA 0.758 N/A 0.893 0.533 0.675
NB 0.621 N/A 0.853 0.336 0.583
SVM 0.803 N/A 0.902 0.464 0.838
KNN 0.742 N/A 0.873 0.420 0.648
EM 0.773 0.544 0.901 0.536 0.890
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A15 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-11 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.935 0.876 0.979 0.952 0.979
NN 0.968 0.964 0.993 0.991 0.999
MNN 0.855 N/A 0.961 N/A 0.927
CFNN 0.903 N/A 0.972 N/A 0.956
RNN 0.919 0.875 0.965 0.919 0.989
DT 0.855 N/A 0.960 0.524 0.886
DA N/A N/A N/A N/A N/A
NB 0.790 N/A 0.937 0.352 0.598
SVM 0.855 N/A 0.941 0.550 0.690
KNN 0.758 N/A 0.905 0.498 0.700
EM 0.823 N/A 0.945 0.362 0.912
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A16 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-12 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.883 0.751 0.955 0.803 0.871
NN 0.867 0.744 0.931 0.733 0.941
MNN 0.917 0.792 0.967 0.807 0.984
CFNN 0.900 0.800 0.951 0.816 0.946
RNN 0.983 0.953 0.995 0.950 1.000
DT 0.767 0.503 0.885 0.510 0.803
DA 0.700 0.517 0.867 0.519 0.705
NB 0.800 0.578 0.924 0.593 0.878
SVM 0.817 0.664 0.889 0.646 0.845
KNN 0.783 0.544 0.900 0.521 0.713
EM 0.833 0.711 0.934 0.727 0.918
*Same abbreviation as Table A2. 
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TABLE A17 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-13 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.913 0.884 0.976 0.969 0.983
NN 0.870 0.812 0.951 0.857 0.977
MNN 0.899 0.874 0.959 0.899 0.941
CFNN 0.928 0.914 0.969 0.912 0.984
RNN 0.855 0.826 0.951 0.904 0.929
DT 0.652 0.468 0.839 0.510 0.670
DA 0.768 0.776 0.886 0.773 0.875
NB 0.768 0.721 0.901 0.704 0.823
SVM 0.783 0.709 0.885 0.645 0.915
KNN 0.841 0.779 0.918 0.755 0.838
EM 0.855 0.839 0.917 0.810 0.918
*Same abbreviation as Table A2. 

TABLE A18 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-14 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.966 0.967 0.984 0.967 1.000
NN 0.931 0.911 0.986 0.983 0.983
MNN 0.931 0.852 0.976 0.907 0.988
CFNN 0.862 0.738 0.946 0.839 0.915
RNN 0.931 0.850 0.985 0.947 0.991
DT 0.724 #N/A 0.905 0.417 0.622
DA 0.759 0.629 0.894 0.612 0.704
NB 0.724 N/A 0.870 0.286 0.404
SVM 0.776 N/A 0.890 0.324 0.894
KNN 0.793 N/A 0.903 0.398 0.650
EM 0.862 0.664 0.944 0.686 0.910
*Same abbreviation as Table A2, #N/A = Not Applicable. 

TABLE A19 THE PERFORMANCE OF DIFFERENT ALGORITHMS FOR TASK-15 
Name *Acc *F1 *Spe *Sen *AUC
FFNN 0.892 0.855 0.954 0.906 0.880
NN 0.923 0.832 0.978 0.845 0.976
MNN 0.815 0.713 0.917 0.789 0.925
CFNN 0.923 0.879 0.970 0.942 0.930
RNN 0.877 0.838 0.939 0.848 0.917
DT 0.631 #N/A 0.844 0.285 0.725
DA 0.677 0.484 0.844 0.467 0.758
NB 0.708 N/A 0.866 0.459 0.798
SVM 0.708 N/A 0.825 0.378 0.768
KNN 0.692 N/A 0.786 0.308 0.673
EM 0.754 0.520 0.867 0.486 0.820
*Same abbreviation as Table A2, #N/A = Not Applicable. 
 
 

 
Fig. A1. The flowchart of the multi-ReliefF method. 
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