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Abstract

The Fundamental Theorem of Asset Pricing is extended to a market model over a

finite probability space with many assets that can be exchanged into one another under

combined fixed and proportional transaction costs. The absence of arbitrage in this

setting is shown to be equivalent to the existence of a family of absolutely continuous

single-step probability measures and a multi-dimensional martingale with respect to

such a family.

Keywords Arbitrage · Transaction costs · Martingale measure

JEL codes C00, C65, G10, G12

1 Introduction

In this paper the Fundamental Theorem of Asset pricing is extended to a market

model with many assets which can be exchanged directly into one another in the

presence of both proportional and fixed transaction costs, and without necessarily

involving a numeraire. The setting is similar to the multi-asset model with proportional

costs introduced by Kabanov (1999) and further developed by Kabanov and Stricker

(2001), Kabanov et al. (2002), Schachermayer (2004), and others, but includes fixed

transaction costs in addition to proportional costs.

In Kabanov’s model (Kabanov 1999) proportional transaction costs are imple-

mented as a matrix of exchange rates π
i j
t > 0 between assets i, j at time t . On

top of that, we allow for fixed cost C
i j
t > 0 whenever a positive quantity of asset i is

exchanged into asset j at time t . Such a combination of fixed and proportional costs is
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ever present in real-world markets, with multiple assets such as currencies exchanged

directly into one another. It is therefore of great importance to characterize the absence

of arbitrage in this setting in terms of risk neutral probabilities.

The main difficulties stem form the fact that the set of solvent portfolios becomes

non-convex when fixed costs are added on top of proportional ones. Moreover, just

like in the case of multiple assets with proportional transaction costs, the absence

of arbitrage in a model with many time steps is not equivalent to the condition that

every single-step model should be free from arbitrage. This precludes an argument by

reduction to a single step or direct application of convex analysis methods to handle

the problem in hand.

It turns out that in the presence of both proportional and fixed transaction costs, the

absence of arbitrage in a market with multiple assets is equivalent to the existence of a

so-called family of absolutely continuous single-step probability measures and a multi-

dimensional martingale with respect to such a family. These notions are introduced

in Sect. 2, and the result extending the Fundamental Theorem of Asset pricing is

established in Theorem 1. The family of single-step probability measures plays a role

similar to a risk neutral probability in the classical friction-free setting. This builds on

the work of Brown and Zastawniak (2020), who proved the Fundamental Theorem of

Asset Pricing under combined, fixed and proportional, transaction costs for a model

with a single risky asset and a cash numeraire. To handle the multi-asset case a different

proof has been developed to circumvent the complexities of an explicit description of

the various non-convex multidimensional geometric objects involved.

The present paper can be seen as a development in a long line of results starting with

the seminal paper by Harrison and Pliska (1981), who established the Fundamental

Theorem of Asset Pricing for discrete time models on a finite probability space in the

absence of market friction. Dalang et al. (1990) extended the theorem to the case of

infinite state space, and Delbaen and Schachermayer (1994, 2006) to continuous time.

Harrison and Pliska’s result was extended to models with proportional transaction costs

by Jouini and Kallal (2001), Kabanov and Stricker (2001), Ortu (2001). Roux (2011)

allowed for interest rate spreads in addition to proportional transaction costs. Models

with proportional transaction costs on an infinite state space were studied by Zhang

et al. (2002), Kabanov et al. (2002), Schachermayer (2004). Further results concerning

the Fundamental Theorem in the presence of proportional costs include (Kabanov

1999; Grigoriev 2005; Bouchard 2006; Guasoni 2006; Cherny 2007; Kabanov and

Safarian 2009; Guasoni et al. 2010, 2012; Denis and Kabanov 2012; Dolinsky and

Soner 2014; Rola 2015; Zhao and Lepinette 2018), and others. Under fixed costs

alone, the Fundamental Theorem was studied in just one paper by Jouini et al. (2001).

Furthermore, no-arbitrage conditions for fixed-cost models in terms of separating risk

measures (but not risk neutral measures as in the Fundamental Theorem) can be found

in the work of Lepinette and Tran (2016, 2017).

This paper extends the previous work, cited above, on multi-asset models under

proportional costs, as well as the results of Jouini et al. (2001) involving fixed costs.

The absence of arbitrage under proportional costs was characterised in terms of the

existence of an equivalent measure and a process with values within the bid-ask spreads

that is a martingale under this measure. Moreover, Jouini et al. (2001) characterised

the absence of arbitrage under fixed costs in terms of the existence of a family of
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absolutely continuous measures on all subtrees such that the asset price process is a

martingale under each of these measures. Here we extend both these approaches in

the multi-asset case in a setting with both proportional and fixed transaction costs. In

doing so, we also simplify the object (a family of measures on all subtrees) used by

Jouini et al. (2001), by demonstrating that a significantly simpler object, a family of

measures on one-step subtrees is enough to characterise the absence of arbitrage not

only under fixed costs, but in fact also under combined, proportional and fixed, costs.

With reference to the work of Lepinette and Tran (2016, 2017), who studied arbi-

trage in a non-convex market model with friction, including simultaneous proportional

and fixed costs, we observe that they characterised the absence of asymptotic arbitrage

in terms of the existence of a so-called equivalent separating probability measure, and

no link with martingale measures was made in their work.

The paper is organised as follows. The preliminaries cover some notation and a

few basic facts and notions. The multi-asset model with fixed and proportional cost is

described in the following section, which leads to the definition of an arbitrage strategy

in this setting. Next, we have some auxiliary results. The Fundamental Theorem of

Asset Pricing for a multi-asset market under fixed and proportional costs is formulated

and proved in the final section.

2 Preliminaries

Let d be a positive integer, the number of assets in the market. By x · y =
∑d

i=1 x i yi

we denote the scalar product of x, y ∈ Rd . Let ei ∈ Rd , i = 1, . . . , d be the canonical

basis in Rd . That is, for any i, j = 1, . . . , d we have (ei ) j = 1 if i = j and (ei ) j = 0

if i �= j . For any x, y ∈ Rd , we shall write x ≤ y (resp. x < y) whenever x i ≤ yi

(resp. x i < yi ) for each i = 1, . . . , d. For any c ∈ R, we shall also write c in place

of c
∑d

i=1 ei ∈ Rd . For a convex cone A ⊂ Rd , the dual cone will be denoted by

A∗ =
{

x ∈ Rd | 0 ≤ x · y for each y ∈ A
}

. If A, B ⊂ Rd are closed convex cones,

then (A∗)∗ = A, (A ∩ B)∗ = A∗ + B∗ and (A + B)∗ = A∗ ∩ B∗.

Let T be a positive integer and (�,�, P) a finite probability space with filtration

F = (Ft )
T
t=0 such that F0 = {∅,�}. The probability measure P will play the role

of physical probability.

Definition 1 For any t = 0, . . . , T , we write �t for the set of atoms in Ft , and refer

to the elements of �t as the nodes at time t . For any t = 0, . . . , T − 1 and any node

λ ∈ �t , we write

succ(λ) = {μ ∈ �t+1 | μ ⊂ λ} ,

and call it the set of successor nodes of λ.

We can regard any Ft -measurable random variable X as a function defined on �t .

Definition 2 By a family of absolutely continuous single-step probability measures we

understand a collection Q of probability measures Qt (λ, · ) defined on the sigma-field

λ ∩ Ft+1 = {λ ∩ A | A ∈ Ft+1}
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for each t = 0, . . . , T − 1 and each λ ∈ �t such that P(λ) > 0, and satisfying the

condition

Qt (λ, μ) = 0 for each μ ∈ succ(λ) such that P(μ) = 0.

Definition 3 Given a family of absolutely continuous single-step probability mea-

sures Q, for any t = 0, . . . , T − 1 and any Ft+1-measurable random variable Y , we

define EQ(Y |Ft ) to be an Ft -measurable random variable such that

EQ(Y |Ft )(λ) =
∑

μ∈succ(λ)

Qt (λ, μ)Y (μ) for each λ ∈ �t with P(λ) > 0.

Moreover, we say that an adapted Rd -valued process S = (St )
T
t=0 is a martingale with

respect to Q whenever

St = EQ(St+1|Ft ) for each t = 0, . . . , T − 1.

For each family of absolutely continuous single-step measures Q, there is the cor-

responding probability measure Q on �T given by

Q(λ) =

{
∏T −1

t=0 Qt (λt , λ t+1) if P(λ) > 0

0 if P(λ) = 0
for every λ ∈ �T ,

where λt ∈ �t , t = 0, . . . , T is the unique sequence of nodes such that λ = λT ⊂

· · · ⊂ λ0. Clearly, Q is absolutely continuous with respect to P. If S is a martingale

with respect the family of measures Q, then it is also a martingale under Q in the

ordinary sense. Generally, Q is a richer structure than Q. The same measure Q may

correspond to several different families Q.

For simplicity, throughout this paper we assume that P(ω) > 0 for each ω ∈ �.

Otherwise we can remove all ω ∈ � such that P(ω) = 0. Because we work on a finite

probability space, this involves no loss of generality.

Example 1 We take a two-step binary tree as the probability space �, with nodes u, d

at time 1 and uu, ud, du, dd at time 2, and two assets: cash with interest rate 0, and a

risky asset with the following bid-ask spreads, where 0 < ε < 1/2:

[3 − ε, 3]

ր

ց

[5 − ε, 5 + ε]

[3, 3 + ε]

ր

ց

ր

ց

[6 − ε, 6 + ε]

[4 − ε, 4 + ε]

[2 − ε, 2 + ε]

[4 − ε, 4 + ε]

There is a family of absolutely continuous single-step measures Q and a process S

with values within the bid ask spreads such that S is a martingale under Q:
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Q0 (�, u) = 0, Q0 (�, d) = 1,

Q1 (u, uu) = 1
2
, Q1 (u, ud) = 1

2
, Q1 (d, du) = 1

2
, Q1 (d, dd) = 1

2

and

S0 = 3

ր

ց

S1(u) = 5

S1(d) = 3

ր

ց

ր

ց

S2(uu) = 6

S2(ud) = 4

S2(du) = 2

S2(dd) = 4

The family Q gives rise to the absolutely continuous measure Q such that

Q (uu) = Q (ud) = 0, Q (du) = Q (dd) =
1

2

and S is a martingale under Q.

Observe that there is no equivalent measure making a process with values within

the bid-ask spreads a martingale. This is related to the fact that there is an arbitrage

opportunity under proportional transaction costs (that is, when the fixed costs are zero):

at time 0 buy the risky asset for the ask price 3, and at time 1 sell it for the bid price 3

at node d or 5 − ε at node u.

Nonetheless, there is in fact no arbitrage opportunity when fixed transaction costs

are also present: in the above strategy there will be a loss due to the fixed costs when

selling the asset for the bid price 3 at node d. We shall see in Theorem 1 that this is

related to the existence of the family of measures Q and the martingale S under Q.

It is also interesting to see what happens if we modify the bid-ask spread at node

ud to be [7 − ε, 7 + ε], leaving the remaining bid-ask spreads as above. This creates

an arbitrage opportunity also in the presence of positive fixed costs: at time 1, node u

buy x > 0 shares of the risky asset for the ask price 5 + ε, and at time 2 sell them for

the bid price 6 − ε at node uu or 7 − ε at node ud. Without fixed costs the profit would

be at least x ((6 − ε) − (5 + ε)) = x (1 − 2ε), and taking x large enough so that this

amount is bigger than the fixed costs paid, one can achieve arbitrage with the fixed

costs present. Observe that in this case there is no family of absolutely continuous

single-step measures that can make a process with values within the bid-ask spreads a

martingale. Once again, this is Theorem 1 at work. Moreover, observe that the above

absolutely continuous measure Q is such that there is a martingale under Q with values

within the bid-ask spreads, but no equivalent measure can have this property.

Based on these observations, we can conclude that:

– An equivalent martingale measure cannot be used to characterise the existence

of arbitrage under combined (that is, proportional and fixed) costs: we have seen

an example where there is no arbitrage under combined costs, yet an equivalent
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martingale measure does not exist. We need to allow nodes of measure zero to

characterise arbitrage under combined costs.

– But an absolutely continuous martingale measure cannot be used to characterise

the lack of arbitrage in the presence of combined costs either: we have seen an

example where an absolutely continuous martingale measure exists, yet there is

arbitrage under combined costs. This is because such a measure can’t keep track

of what happens beyond any node of measure zero (node u in the example), while

the reason why arbitrage exists or not may be beyond such a node.

– A family of absolutely continuous single-step measures is capable of keeping track

beyond nodes of measure zero. The existence of such a family is exactly what is

needed to characterise the absence of arbitrage under combined costs. This is the

result proved in Theorem 1 for multi-asset models.

3 Multi-asset model with fixed and proportional transaction costs

On the probability space (�,�, P) with filtration F = (Ft )
T
t=0 we consider a model

with d assets which can be exchanged into one another. The exchange rates repre-

senting proportional transaction costs are given by an Rd×d -valued adapted process

π = (πt )
T
t=0, and the fixed transaction costs by an Rd×d -valued adapted process

C = (Ct )
T
t=0. We assume that π

i j
t (λ) > 0 and C

i j
t (λ) > 0 for each time t = 0, . . . , T ,

node λ ∈ �t and i, j = 1, . . . , d, where π
i j
t (λ) is the number of units of asset i that

need to be exchanged to receive a single unit of asset j , and where C
i j
t (λ) > 0 is the

fixed cost paid in units of asset i when exchanging a positive quantity of asset i into

asset j at time t and node λ.

A portfolio of assets at time t = 0, . . . , T can be represented by an Rd -valued

Ft -measurable random variable x .

Definition 4 We say that the portfolio is solvent under combined transaction costs

(that is, proportional and fixed transaction costs) when

0 ≤ x j +

d
∑

i=1

zi j −

d
∑

i=1

z j iπ
j i

t −

d
∑

i=1

1{z j i >0}C
j i
t for each j = 1, . . . , d

for some Rd×d -valued Ft -measurable random variable z = (zi j )d
i, j=1 such that zi j ≥

0 for each i, j = 1, . . . , d. The set of such solvent portfolios x under combined

transaction costs will be denoted by Ct .

Here zi j represents the number of units of asset j received by exchanging asset i,

and z j iπ
j i

t the number of units of j changed into i . This solvency condition can

equivalently be written as

0 ≤ x −

d
∑

i, j=1

zi j f
i j
t − ct (z),
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where f
i j
t = π

i j
t ei − e j for each i, j = 1, . . . , d, with ei , i = 1, . . . , d being the

canonical basis in Rd , and where

ct (z) =

d
∑

i, j=1

1{z j i >0}C
j i
t e j .

Definition 5 For any t = 0, . . . , T , we shall also use the symbol Kt to denote the set

of solvent portfolios under proportional costs, which are Rd -valued Ft -measurable

random variables x satisfying the condition

0 ≤ x −

d
∑

i, j=1

zi j f
i j
t

for some Rd×d -valued Ft -measurable random variable z = (zi j )d
i, j=1 such that zi j ≥

0 for each i, j = 1, . . . , d.

Clearly, Kt is a convex cone generated by the vectors ei , i = 1, . . . , d and f
i j
t ,

i, j = 1, . . . , d in the space Lt of Rd -valued Ft -measurable random variables.

Definition 6 A self-financing strategy under combined costs is an Rd -valued pre-

dictable process X = (X t )
T +1
t=0 such that

X t − X t+1 ∈ Ct for each t = 0, . . . , T .

We say that X is an arbitrage strategy under combined costs if, additionally,

X0 = 0, P(0 ≤ XT +1) = 1, P(0 �= XT +1) > 0.

4 Auxiliary results

We construct a random family of closed convex cones Zt by backward induction:

– ZT = KT ;

– If Zt has already been constructed for some t = 1, . . . , T , then

Zt−1(λ) = Kt−1(λ) +
⋂

μ∈succ(λ)

Zt (μ) for each λ ∈ �t−1.

The last condition can also be written as

Zt−1 = Kt−1 + Zt ∩ Lt−1,

where Lt−1 is the set of all Rd -valued Ft−1-measurable random variables.

The following lemma means that Zt consists of portfolios at time t that hedge the

contingent claim with payoff 0 at time T under proportional costs.
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Lemma 1 For any t = 0, . . . , T , the cone Zt consists of all x ∈ Lt such that there is

a sequence ys ∈ Ks , s = t, . . . , T satisfying x = yt + · · · + yT .

Proof We proceed by backward induction on t . For t = T , the claim is obvious

since ZT = KT . Now suppose that the claim holds for some t = 1, . . . , T . Take any

x ∈ Zt−1. Then x ∈ Lt−1. Since Zt−1 = Kt−1+Zt ∩Lt−1, we have x = yt−1+zt−1

for some yt−1 ∈ Kt−1 and zt−1 ∈ Zt ∩ Lt−1. Then, by the induction hypothesis,

there is a sequence ys ∈ Ks , s = t, . . . , T such that zt−1 = yt + · · · + yT . Hence

x = yt−1 + yt +· · ·+ yT . Conversely, suppose that x ∈ Lt−1 and there is a sequence

ys ∈ Ks , s = t − 1, . . . , T such that x = yt−1 + yt +· · ·+ yT . Since yt−1 ∈ Kt−1 ⊂

Lt−1, it follows that yt + · · · + yT ∈ Lt−1 ⊂ Lt , hence yt + · · · + yT ∈ Zt by the

induction hypothesis. As a result, yt−1 + yt +· · ·+ yT ∈ Kt−1 +Zt ∩Lt−1 = Zt−1,

completing the induction argument. ⊓⊔

The next proposition captures the following idea: If Zt (λ) = Rd , then we could

have a portfolio x ∈ Zt (λ) with positions in all assets smaller than any given negative

constant −C . In view of Lemma 1, this portfolio would hedge under proportional

costs the contingent claim with payoff 0 at time T . This, in turn, would mean that

it is possible to construct a portfolio x ′ with non-positive positions in all assets at

time t that hedges under proportional costs a contingent claim with any given payoff

at time T . This means arbitrage under combined (proportional and fixed) costs as the

payoff of the hedged contingent claim can be chosen to be high enough to absorb all

the fixed transaction costs paid as part of the hedging strategy.

Proposition 1 If there is no combined-cost arbitrage strategy, then

Zt (λ) �= Rd for each t = 0, . . . , T and λ ∈ �t .

Proof Suppose that Zt (λ) = Rd for some t = 0, . . . , T and λ ∈ �t . Hence there is

an x ∈ Zt (λ) such that

C < −x,

where

C = T d max{C
i j
t (λ)|i, j = 1, . . . , d, t = 0, . . . , T , λ ∈ �t }.

Since 1λx ∈ Zt , it follows by Lemma 1 that there is a sequence ys ∈ Ks , s = t, . . . , T

such that

yt + · · · + yT = 1λx .

For each s = t, . . . , T , there is an Rd×d -valued Fs-measurable random variable

zs = (z
i j
s )d

i, j=1 such that z
i j
s ≥ 0 for each i, j = 1, . . . , d and

0 ≤ ys −

d
∑

i, j=1

z
i j
s f

i j
s ,
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so ys + cs(zs) ∈ Cs . For each s = 0, . . . , T + 1, we put

Xs = −1{s>t}∩λ

s−1
∑

r=t

(yr + cr (zr )) .

Then X = (Xs)
T +1
s=0 is a predictable process such that

Xs − Xs+1 = 1{s>t}∩λ (ys + cs(zs)) ∈ Cs for each s = 0, . . . , T ,

which means that X is a combined-cost self-financing strategy. Moreover,

XT +1 = −1λ

T
∑

r=t

(yr + cr (zr )) = 1λ

(

−x −

T
∑

r=t

cr (zr )

)

and

0 ≤ C −

T
∑

r=t

cr (zr ) < −x −

T
∑

r=t

cr (zr ),

which means that X is a combined-cost arbitrage strategy. This proves the proposition.

⊓⊔

5 Fundamental theorem

We are ready to state and prove the Fundamental Theorem of Asset Pricing under

combined (fixed and proportional) transaction costs in a multi-asset setting.

Theorem 1 The following conditions are equivalent:

1) There is no combined-cost arbitrage strategy.

2) There exist an adapted Rd -valued process S and a family of absolutely continuous

single-step probability measures Q such that S is a martingale with respect to the

family Q and

0 < S
j
t ≤ Si

t π
i j
t for each t = 0, . . . , T and i, j = 1, . . . , d. (1)

Proof First, observe that (1) is equivalent to St ∈ K ∗
t \ {0} for each t = 0, . . . , T . This

is because the convex cone Kt is generated by the vectors ei and f
i j
t = π

i j
t ei − e j

for i, j = 0, . . . , d, which means that St ∈ K ∗
t \ {0} is equivalent to Si

t = St · ei ≥ 0,

Si
t π

i j
t − S j = St · f i j ≥ 0 for all i, j = 1, . . . , d, and St �= 0. This, in turn, is

equivalent to (1).

1) �⇒ 2). Suppose that there is no combined-cost arbitrage strategy.

Then, by Proposition 1, we have Zt (λ) �= Rd , hence Z ∗
t (λ) �= {0} for each

t = 0, . . . , T and λ ∈ �t . We can construct a process St and a family of single-step
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probability measures Qt by induction on t . For t = 0, we take any S0 ∈ Z ∗
0 \ {0}.

Now suppose that an Ft -measurable random variable St ∈ Z ∗
t \ {0} has already been

constructed for some t = 0, 1, . . . , T − 1. For any λ ∈ �t , we have

Z
∗

t (λ) = K
∗

t (λ) ∩
∑

μ∈succ(λ)

Z
∗

t+1(μ) = K
∗

t (λ) ∩ conv
{

Z
∗

t+1(μ) | μ ∈ succ (λ)
}

,

where conv denotes the convex hull. Hence, there are qμ ≥ 0 and sμ ∈ Z ∗
t+1(μ)

for each μ ∈ succ (λ) such that
∑

μ∈succ(λ) qμ = 1 and
∑

μ∈succ(λ) qμsμ = St (λ).

Moreover, if sν = 0 for some ν ∈ succ (λ), then qν < 1, and we can replace qμ, sμ

by q ′
μ = qμ/(1 − qν) and s′

μ = (1 − qν)sμ for any μ ∈ succ (λ) such that μ �= ν, and

qν, sν by q ′
ν = 0 and any s′

ν ∈ Z ∗
t+1(ν)\ {0}. In this way we can ensure that sμ �= 0 for

each μ ∈ succ (λ). Putting Qt (λ, μ) = qμ, we obtain a probability measure Qt (λ, · )

on λ ∩ �t+1. Moreover, for St+1(μ) = sμ, we get St+1(μ) ∈ Z ∗
t+1(μ)\ {0} for all

μ ∈ succ(λ) and

∑

μ∈succ(λ)

Qt (λ, μ)St+1(μ) = St (λ).

We have constructed an adapted process S and a single-step family of measures Q

such that S is a martingale with respect to Q. Because 0 �= St ∈ Z ∗
t ⊂ K ∗

t , it follows

that (1) is satisfied, completing this part of the proof.

2) �⇒ 1). Suppose that condition 2) is satisfied, and take any combined-cost

self-financing strategy X = (X t )
T +1
t=0 with X0 = 0 and XT +1 ≥ 0.

To begin with, we verify by backward induction that

0 ≤ X t+1 · St for each t = 0, . . . , T .

For t = T , we have 0 ≤ XT +1 · ST since 0 ≤ XT +1 and 0 ≤ ST . Now suppose

that 0 ≤ X t+1 · St for some t = 1, . . . , T . Since X t − X t+1 ∈ Ct , there exists an

Rd -valued Ft -measurable random variable z = (zi j )d
i, j=1 such that zi j ≥ 0 for each

i, j = 1, . . . , d and
∑d

i, j=1 zi j f
i j
t + ct (z) ≤ X t − X t+1, which implies

0 ≤

d
∑

i, j=1

zi j f
i j
t · St + ct (z) · St ≤ X t · St − X t+1 · St

because St ∈ K ∗
t , f

i j
t ∈ Kt , 0 ≤ St and 0 ≤ ct (z), so 0 ≤ f

i j
t · St and 0 ≤ ct (z) · St .

By the induction hypothesis, it follows that

0 ≤ EQ(X t+1 · St |Ft−1) ≤ EQ(X t · St |Ft−1) = X t · EQ(St |Ft−1) = X t · St−1,

completing the induction argument.

Next, we put

τ = max {s = 0, . . . , T + 1 | Xs ≤ . . . ≤ X0} .

123



Fundamental Theorem of Asset Pricing under fixed and…

Because X is predictable, we have

{τ = t} = {X t ≤ · · · ≤ X0} \ {X t+1 ≤ X t } ∈ Ft

for each t = 0, . . . , T + 1, so τ is a stopping time. We claim that τ = T + 1. Suppose

that this is not the case, that is, τ = t on λ for some t = 0, . . . , T and λ ∈ �t . Hence

X k
t+1(λ) > X k

t (λ) for some k = 1, . . . , d. Since X is a combined-cost self-financing

strategy, we have X t − X t+1 ∈ Ct , so

0 ≤ ct (z) ≤ X t − X t+1 −

d
∑

i, j=1

zi j f
i j
t

for some Rd -valued Ft -measurable random variable z = (zi j )d
i, j=1 such that zi j ≥ 0

for each i, j = 1, . . . , d. Because X k
t+1(λ) > X k

t (λ), we therefore must have

0 < −
∑

i, j

zi j (λ)( f
i j
t (λ))k =

∑

i

zik(λ) −
∑

j

zk j (λ)π
k j
t (λ),

so 0 < zik for some i = 1, . . . , d, and therefore

0 < C ik
t (λ) ≤

∑

j

1zi j (λ)>0C
i j
t (λ) ≤ X k

t (λ) − X k
t+1(λ) −

∑

i, j

zi j (λ)( f
i j
t (λ))k .

It follows that

0 < X t (λ) · St (λ) − X t+1(λ) · St (λ) −
∑

i, j

zi j (λ) f
i j
t (λ) · St (λ)

≤ X t (λ) · St (λ) − X t+1(λ) · St (λ).

As a result,

0 ≤ X t+1(λ) · St (λ) < X t (λ) · St (λ) ≤ 0

since 0 ≤ St and X t ≤ . . . ≤ X0 = 0 on λ. This contradiction proves that τ = T + 1.

We can conclude that XT +1 ≤ · · · ≤ X0 = 0, so X cannot be an arbitrage strategy,

completing the proof of the theorem. ⊓⊔
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