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Abstract

Aim: Human- driven landscape processes such as habitat loss and fragmentation act 
on biodiversity, but their effects are mediated by the spatial scale at which they are 
observed. We aim to analyse the scale- of- effects (direction and spatial extent) of 
landscape- scale processes that best explain species richness and abundance across 
epiphyte communities.
Location: Neotropics, Northern Andes, Colombia, Eastern cordillera.
Taxon: Vascular epiphytes, Orchidaceae.
Methods: We used field data to unravel the scale- of- effect of three landscape pro-
cesses—habitat loss (forest cover), fragmentation (number of patches) and edge ef-
fects (edge density)—on epiphyte biodiversity. Vascular epiphytes were sampled in 
the understorey across 141 plots within 23 Andean forests in the eastern Colombian 
cordillera We focused on the community- level responses (species richness and total 
abundance) of the hyperdiverse vascular epiphyte communities using generalized linear 
mixed models to quantify the direction and the spatial extent of the scale- of- effects.
Results: Habitat loss and edge effects act at fine spatial extents (scale- of- 
effects = 200 m), predicting low species richness and abundance across groups. 
Likewise, fragmentation negatively impacts communities, but operates at larger spa-
tial extents (scale- of- effects = 2000–2400 m radius). The detection of these effects is 
contingent upon the spatial extent and specific landscape processes involved. Models 
of habitat loss within a spatial extent of 800–1500 m (large confidence intervals), frag-
mentation below 300 m, and edge effects above 800 m show weak statistical support 
(marginal r2 = 0.02–0.1). Thus, the impacts of these landscape processes may be over-
looked if studied at inadequate spatial extents.
Main Conclusions: We showed that habitat loss, fragmentation and edge effects all 
play a negative role on understorey epiphytic communities, but their detectability is 
scale dependant. The scale- of- effects can assist landscape designs that are beneficial 
for epiphytic communities, by preserving forest cover, and reducing fragmentation 
and exposure to edge effects at small scales (200–300 m). Conversely, landscape- 
scale actions directed at reducing habitat loss and fragmentation function at larger 
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1  |  INTRODUC TION

Ecological patterns and processes are inherently scale dependent 
(Levin, 1992; Wiens, 1989). Failing to quantify the spatial scale at 
which biodiversity patterns and processes are shaped can lead 
to incorrect quantification of their impacts and potentially in-
effective conservation strategies in a human- dominated world 
(Arroyo- Rodríguez et al., 2020). Detectability of this spatial scale 
is important because populations, species and communities use, 
interpret and respond to their habitats and surroundings in differ-
ent ways. For instance, the average spatial extents at which species 
have the strongest relationship with landscape drivers is 1000 m, 
but its extent ranged from 40 m to 5500 m, making it highly taxa 
and context dependent (Saura, 2020). Although the importance of 
spatial scale and the role of the landscape on shaping biodiversity 
is well- acknowledged (Arroyo- Rodríguez et al., 2020; Jackson & 
Fahrig, 2015; Turner et al., 1989), our understanding of their effects 
and consequences on plant biodiversity is still poor across moun-
tainous landscapes.

Mountain ecosystems are one of the richest biodiversity 
hotspots worldwide, but they have been severely transformed by 
human activities (Rahbek et al., 2019; Vancutsem et al., 2021). For 
instance, the Northern Andes ranks first in diversity of birds, but-
terflies and plants (Myers et al., 2000; Pérez- Escobar et al., 2022), 
but less than 40% of its natural landscape remains (Rodríguez Eraso 
et al., 2013). In general, once the natural landscape is transformed 
by human activities, three main landscape processes appear: (1) hab-
itat loss or the decline of suitable habitat in terms of area (Ewers & 
Didham, 2008; Fahrig, 2003); (2) fragmentation as the physical par-
titioning of the landscape into smaller pieces (Fahrig, 2003, 2017); 
and (3) edge effects from the creation of new edges between two or 
more habitats (Malcolm, 1994; Ries et al., 2017). The effects of these 
landscape processes are highly context- dependent because evi-
dence has shown negative, positive, neutral and interactive effects.

Habitat loss is consistently the strongest landscape process 
on species richness, with negative effects across taxa, scales and 
response metrics (Arroyo- Rodríguez et al., 2020; Fahrig, 2017; 

Saura, 2020), to the point of threatening species' populations with 
extinction (Brooks et al., 2002). In contrast, fragmentation studies 
have shown positive, neutral and negative effects on biodiversity 
(Arroyo- Rodríguez & Dias, 2010; Fletcher et al., 2018; Gestich 
et al., 2019). A multiscale study across the Brazilian Atlantic Forest 
shows that fragmentation negatively affects species richness (flora 
and fauna), but the strength of impact is modulated by forest cover 

in the landscape (Püttker et al., 2020). Edge effects also have several 
negative impacts on plant diversity including the reduction of forest- 
dependent species (Parra- Sánchez et al., 2016; Püttker et al., 2020). 
However, the detectability of the direction and extension of these 
landscape processes relies on the spatial extent (‘scale- of- effects’).

The scale- of- effects is a concept that seeks to unravel the 
most informative spatial extent at which the effect of a particu-
lar landscape process is detectable and relevant for biodiversity 
(Fahrig, 2013; Jackson & Fahrig, 2015). Investigating the scale- of- 
effects requires understanding of the spatial grain and spatial ex-
tent. The spatial grain determines the smallest unit of analysis, which 
in scale- of- effects studies is the sampling plot where the targeted 
taxa and metrics are collected (Turner et al., 1989; McGarigal et al., 
2009). The spatial extent refers to the overall geographic scope of 
the study area, encompassing the boundaries within which data are 
analysed (McGarigal et al., 2009; Turner et al., 2001). In scale- of- 
effects studies, the spatial extent progressively varies in area to 
find the most relevant scale, using concentric extents centred at the 
grain (i.e. sample plot) to quantify the effects of landscape process 
on biodiversity (Jackson & Fahrig, 2015). By further expanding the 
concept, scale- of- effects can also inform the magnitude and direc-
tion of the correlation, which provides insights into the impact (pos-
itive, negative, neutral or not detected) that the landscape process 
has on biodiversity.

The quantification of the scale- of- effects moves beyond a purely 
ecological- methodological concern, towards a pragmatic tool that 
could improve the successful implementation of conservation strat-
egies such as land- sharing/land- sparing actions (Fischer et al., 2014) 
and restoration initiatives (Crouzeilles & Curran, 2016), by detecting 
the spatial extent and direction of the effects of human activity on 
biodiversity. For instance, a global meta- analysis found that suc-
cessful biodiversity outcomes following forest restoration are best 
predicted by the amount of forest cover present within a 5–10- km 
radius (Crouzeilles & Curran, 2016). Therefore, understanding of 
this scale- dependent response can help target effective restoration 
(Brancalion et al., 2019).

Scale- of- effects studies on plant species richness point to neg-
ative effects of habitat loss within 1500–2000 m in the Brazilian 
Atlantic Forest (Püttker et al., 2020), but no effect at fine spatial 
extents within 50–650 m in Costa Rica (Holl et al., 2017). While frag-
mentation shows a reduction of species richness at spatial extents of 
1800–2000 m, its effects are associated with edge effects (Püttker 
et al., 2020). In Mexico, edge density negatively affects seedling 
richness within 50–1000 m, but fragmentation exerts no effects 

spatial extents (>2000 m). Selecting a priori or inadequate spatial extents of analysis 
can obscure the detectability of landscape processes.

K E Y W O R D S
community ecology, fragmentation, habitat loss, landscape ecology, orchids, tropical Andes, 
understorey
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    |  3PARRA- SANCHEZ and EDWARDS

(San- José et al., 2020). These studies demonstrate the need to em-
pirically quantify the scale- of- effects (Arroyo- Rodríguez et al., 2020; 

Jackson & Fahrig, 2015). As we quantify the scale- of- effects on dif-
ferent taxa and ecosystems, new patterns might emerge, especially 
because data collection is often systematically, geographically or 
taxonomically biased, which could bias predictions, especially for 
rare taxa in human- modified landscapes (Fardila et al., 2017; Trimble 
& van Aarde, 2012).

We focus our study on understorey vascular epiphytes, that is, 
non- soil rooted vascular plants that live on a host without parasit-
izing them (Zotz, 2013). This group represents 10% of the global 
vascular flora (Taylor et al., 2021; Zotz, 2013), yet epiphytes are 
usually underrepresented in multiscale studies. Vascular epiphytes 
have several attributes that in combination make them an interest-
ing group for quantifying the impacts of habitat loss and fragmenta-
tion and the spatial extent at which they best predict biodiversity. 
These attributes include: high taxonomical diversity; species with 
high specialization; high mortality rate (four times higher than soil- 
rooted plants; Zuleta et al., 2016); potential dispersal limitation 
(Janzen et al., 2020); large numbers of threatened species (Calderón- 
Saenz, 2007); high interspecies- ecological equivalence (Catchpole & 
Kirkpatrick, 2010); and low- to- negligible interspecific competition 
(Zotz, 2016). At local scale, large trees support higher epiphyte di-
versity than smaller trees, and trees with complex crowns support 
more epiphytes than trees with simple crown structure (Woods 
et al., 2015; Zuleta et al., 2016). In contrast, remnant trees often 
host vascular epiphytes in their crowns (Einzmann & Zotz, 2017a, 
2017b). However, the scale- of- effects of habitat loss, fragmentation, 
and edge effects have not been quantified on vascular epiphytes 
leaving a big gap in our understanding of the appropriate scale 
for landscape management of this speciose group (Flores- Palacios 
& García- Franco, 2007; Hernandez- Perez & Solano, 2015; Köster 
et al., 2009; Larrea et al., 2010; Parra- Sanchez & Banks- Leite, 2020; 

Ruete et al., 2018; Zuleta et al., 2016).
We aim to analyse the scale- of- effects (direction and spatial 

extent) of landscape- scale processes that best explain understorey 
species richness and abundance across epiphyte communities by 
specifically asking: (1) what is the direction and the spatial extent at 
which habitat loss best explain epiphyte communities; and (2) what 
is the direction and the spatial extent at which fragmentation and 
edge effects best explain epiphyte communities? Our first expec-
tation focuses on the positive correlation of epiphyte diversity with 
forest cover, regardless of the spatial extent, because forest cover 
promotes resource availability and landscape connectivity (Arroyo- 
Rodríguez et al., 2020). Our second expectation lies in the consis-
tent negative effects of habitat fragmentation and edge effects 
on epiphyte diversity irrespective of the spatial extent, due to the 
high habitat specialization, potential dispersal limitation in epiphyte 
communities and sensitivity to environmental changes caused by 
habitat loss and fragmentation (Janzen et al., 2020; Werner, 2011; 

Zotz, 2005; Zuleta et al., 2016). Our third expectation is that effects 
might be different for orchids acting at low spatial extents versus 
other epiphytes, due to the sensitivity of orchids to local disturbance 

reflected in altered species densities, high compositional turnover in 
the Andes, and high proportion of orchid species threatened with 
extinction relative to any other epiphytic family (Carmona- Higuita 
et al., 2023; Parra- Sanchez et al., 2023; Parra- Sánchez et al., 2016).

2  |  MATERIAL S AND METHODS

The study was located in the departments of Cundinamarca, Boyacá, 
Meta and Santander, in the Colombian eastern cordillera (Figures 1 

and 2). We sampled 23 forests across a wide elevational range 
(1163–3415 m) belonging to the Andean mountains (Pérez- Escobar 
et al., 2022), with mean cloud cover of 82% (25–90%; Wilson & 
Jetz, 2016), temperature ranging 7–28°C and annual precipitation 
of 891–3711 mm per year. Andean forests were randomly selected 
based on forest availability in the area, logistic constraints (accessi-
bility, permit from landowners, topography), and safety and security 
considerations. We randomized forest selection because forests at 
both extremes of the gradient are scarce either due to deforesta-
tion (<1400 m; Aide et al., 2019), or natural absence above the tree-
line (>3000 m; Bader et al., 2007; Lüttge, 1997). Forest belonged to 
two types: Andino (21 forests) and Altoandino (2) (Etter et al., 2021; 

Table S1). Forests had discrete boundaries surrounded by a predomi-
nantly pastureland matrix. Although all sampled sites belonged to 
the network of protected areas in Colombia (Sistema nacional de 
areas protegidas, SINAP), we considered them as having undergone 
low- intensity human- induced modification, given the easy acces-
sibility by roads or footpaths, selective logging for local uses and 
knowledge from local field assistants.

2.1  |  Sampling

Surveys were conducted from January to November 2019 following 
Parra- Sanchez et al. (2023). We sampled between 2 and 18 sampling 
plots in the understorey of 10 × 30 m in each forest (n = 141). Larger 
forest areas had more plots to ensure wider coverage. Sampling 
plots were randomly placed in sections of the forest at least 30 m 
from edges to reduce the effects of cattle movement and grazing 
(pers. obser. and Parra- Sánchez et al., 2016). Sampling plots were lo-
cated between 150 and 600 m apart inside each forest. This design 
allows us to capture a large variability of species richness and high 
turnover across communities (Parra- Sanchez et al., 2023).

We recorded all individuals on standing tree trunks, fallen tree 
trunks and branches, vines, lianas, leaves on standing trees or her-
baceous plants, palm trees, tree ferns and cycads without soil con-
tact in the understorey. The operational concept of understorey we 
used was the section of the forest between 50 and 200 cm above- 
ground, where it is expected to have lower light levels, reduced 
wind exposure and greater humidity compared to the upper canopy 
(Coenders- Gerrits et al., 2020; Ewers & Banks- Leite, 2013). The 
number of species and adult individuals (i.e. ramets) were recorded, 
while younger stages were not included due to a large uncertainty 
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4  |    PARRA- SANCHEZ and EDWARDS

in species identification. Ramets usually comprised various individ-
ual stems, but for our purpose, a ramet only counts as one single 
individual spatially separated from another set of stems of the same 
or another species, or an empty space (Sanford, 1968). Adult plants 
were defined as all large individuals (within the observed variation in 
the local population) with evidence of developed floral or reproduc-
tive structure, large ramets, many stems per stand and a prominent 
root system.

Identification to species or morphospecies was conducted fol-
lowing specialized literature and expertise of local experts at the 
Herbarium VALLE. Orchid species with no flowers were taken to 
nurseries in the vicinity of the sampled plots, and later visited for 
identification. All dubious individuals and juveniles were ignored due 
to uncertainty in their taxonomical rank.

2.2  |  Response variables

We used observed values of species richness and total abundance 
per plot for the two groups: orchids and non- orchid epiphytes (here-
after NOE; including Bromeliaceae, Gesneriaceae, Araceae and 
ferns). We focused on orchids as the most species- rich epiphytic 
family (Zotz 2021), dominant Andean plant family (Pérez- Escobar 
et al., 2022), its high sensitivity to forest disturbance and edge ef-
fects (Parra- Sanchez & Banks- Leite, 2020) and higher proportion 

of species threatened with extinction than other epiphytic families 
(Carmona- Higuita et al., 2023). We identified 82.2% of orchid plants 
to species level (273 species) and the remaining 17.8% plants to mor-
photypes (59 spp). For all NOE, we morphotyped each species at 
the plot level due to the impossibility of obtaining enough diagnos-
tic characters and high levels of uncertainty in taxonomic identity 
across plots, resulting in a species richness count per plot. Therefore, 
analyses used the total number of species and morphospecies for 
orchids, and only morphospecies at plot level of NOE.

2.3  |  Environmental predictors

We calculated landscape metrics at twelve arbitrary selected spa-
tial extents centred on the sampling plot, thus: buffers of 100, 
200, 300, 500, 800, 1000, 1200, 1500, 1800, 2000, 2200 and 
2400 m (Figure 2). The landscape metrics capture high variability 
across the range of spatial extents (Figure S1). We included a wide 
range of spatial extents because the dispersal of epiphyte species 
varies from a few meters to long distance. Epiphytic plants have 
large dispersal kernels that allow them to cross fragmented habi-
tats (Einzmann & Zotz, 2017a, 2017b; Mondragón et al., 2015), al-
though other wind- dispersed seeds from epiphytic bromeliads and 
orchid species land very closely to their source <10 m (Mondragón 
et al., 2015; Mondragon & Calvo- Irabien, 2006). The grain of the 

F I G U R E  1  Sampling points of epiphytic 
communities across the eastern cordillera 
in Colombia (WGS84). Centroid of the 
focal Andean Forest fragments (in orange, 
n = 23), their respective surrounding 
forest (black) and non- forest (grey), 
and AlosPalsar Digital Elevation model 
(Tadono et al., 2014).

 1
3
6
5
2
6
9
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/jb

i.1
4
8
1
9
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

8
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



    |  5PARRA- SANCHEZ and EDWARDS

forest/non- forest map does not offer sufficient resolution to quan-
tify scales below 100 m (30 × 30 m map resolution).

At each spatial extent, we quantified three landscape metrics 
linked to different ecological processes. First, habitat loss as the per-
cent of forest cover (hereafter, forest cover) as a metric of habitat 
amount available in the landscape as a proxy of resource availabil-
ity (Fahrig, 2013). Second, fragmentation as the number of forest 
patches present in the local landscape (also termed as fragmentation 
per se; Fahrig, 2013). The number of patches quantifies the process 
of habitat partitioning into small, unconnected fragments affecting 
landscape configuration (spatial arrangement of habitats). Third, 
edge density, calculated as the total length of forest edge divided 
by each spatial extent (associated with edge effects, Crouzeilles & 
Curran, 2016). Edge density quantifies the intensity of edge effects 
with higher values being characteristic of more fragmented forests. 
The premise was that the absence of forest leads to the depletion 
of hosts for epiphytic individuals. While other land covers, such as 
sparse trees in the pasture matrix and plantations, provide habitat 
for some epiphyte species, they have far lower species richness than 
later secondary or old- growth forests (Einzmann & Zotz, 2017; H. 

Einzmann & Zotz, 2016).
Landscape metrics were measured using the 30- m resolution 

“global change forest map” from 2018 (hereafter termed GCF; 
Hansen et al., 2013). We defined a threshold of 50% forest cover 
(non- forest <=50, and >50% as forest), after validating 334 field 

points within and outside forest fragments to five forest cover 
thresholds (40%, 50%, 60%, 70%, 90%). To validate our threshold 
of 50% forest cover, we transformed all pixels into binary forest/
non- forest maps for each threshold percentage, then we extracted 
the cover type of each of our 334 validation points, thus each point 
would be either forest or non- forest. Finally, we compared the pro-
portion of points per threshold that matches our validation points 
and the threshold with the highest proportion of points was selected 
(Table S2). From this binary map, we calculated the proportion of for-
est cover in the landscape, number of patches of habitat (forest) and 
edge density exposed to the conditions of the non- forest habitat. 
We constrained our analyses to forest fragments with patch sizes 
>9 ha due to the resolution of GCF. Pixels were classified based on 
the nearest eight pixels connected in any direction allowing us to 
classify based upon the category of the majority of the surrounded 
pixels (McGarigal et al., 2012).

2.4  |  Data analysis

We focused on two aspects of scale- of- effects: the direction and 
the spatial extent. We used a state- of- the- art modelling approach 
with linear mixed models (GLMM) with Poisson distribution er-
rors to quantify the direction (positive, negative, or not significant 
correlation) and spatial extent of each landscape metric (forest 

F I G U R E  2  Location of studied forests (n = 23) along the eastern cordillera, Colombia. Maps depict forest cover (black), matrix (white), 
points represent (orange dots) the centroid of each forest, and buffers around each point represent the spatial extents analysed in our study 
(100–2400 m).
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6  |    PARRA- SANCHEZ and EDWARDS

cover, fragmentation and edge density) on each response variable 
(species richness and total abundance) separately for orchids and 
NOE. Thus, each diversity metric at plot level was modelled in-
dependently with their own set of landscape metrics per spatial 
extent.

In each model, we included a nested spatial random effect (sam-
pling points nested within forests) and an offset parameter (off-

set = elevation) to account for the expected correlation between 
epiphyte species richness and elevation (Cardelus et al., 2006; Parra- 
Sanchez et al., 2023). All explanatory variables were standardized 
to have means equal to zero and two standard deviations to adjust 
for the differences in scales (z- transformation). We further explore 
a not significant effect of the predictors by using a null model, in-
cluding only the intercept with the same structure of the models (i.e. 
error family, offset and response variable). Model assumptions were 
verified with marginal r- squared and residuals for each model were 
visually checked for normality and homoscedasticity (Nakagawa 
et al., 2017).

Although four spatial extents overlapped at 1500 m extents 
(Figure 2), we found no spatial autocorrelations across these four 
models (Durbin- Watson- Test p: <0.05). Several studies have shown 
no evidence that overlapping landscapes compromised either spa-
tial autocorrelation or the scale- of- effects (Zuckerberg et al., 2012, 
2020). We, therefore, considered that our results are robust and 
conservative.

The direction of the scale- of- effects was obtained from each 
model (as the sign of each predictor's estimate) and illustrated by 
plotting the GLMM's estimates with confidence intervals (95%) to 
convey uncertainty. The spatial extent of the scale- of- effects was 
obtained as the difference between the model with the lowest 
Akaike- Information Criterion AIC value against the AIC of each in-
dividual model (ΔAIC) (Jackson & Fahrig, 2015). The range of spa-
tial extents with ΔAIC <2 provide a comparable fit to the observed 
data. Thus, if all models fall into ΔAIC <2 or ΔAIC >2, there is not a 
detectable spatial extent. However, if, for example, a particular land-
scape metric from 100 to 1000 m has an ΔAIC <2 but from 1000 
to 1500 m shows ΔAIC >2, then our spatial extent would be 100–
1000 m. We plotted the ΔAIC of each model as a dependent vari-
able against its respective spatial extent to visually assess the spatial 
extent. Previous studies have used similar statistical approaches 
with Akaike's Information Criterion (Amiot et al., 2021; Gestich 
et al., 2019) and parameter estimates (Galán- Acedo et al., 2018), al-
though the use of AIC has been criticized (Arnold, 2010; Galipaud 
et al., 2017).

Models considering fragmentation metrics and forest cover at 
the same time had multicollinearity issues >5 VIF (variation infla-
tion factor) due to the high correlation among predictors (>0.80 in 

the fixed effects matrix correlation). The nature of this collinearity 
lies in the intrinsic link between habitat loss and fragmentation 
(Didham & Ewers, 2012; Fletcher et al., 2018; Püttker et al., 2020). 
Therefore, models with multiple predictors were excluded from 
the study.

2.5  |  Software

All analyses were performed in R Statistical Software (R Core 
Team, 2021). Data manipulation was done with ‘tidyverse’ (Wickham 
et al., 2019) and ‘jtools’ (Long, 2019). Landscape metrics were com-
puted with ‘landscapemetrics’ (Hesselbarth et al., 2019), and gen-
eralized linear- mixed effect models were fitted using ‘lme4’ and 

‘glmmTMB’ (Bates et al., 2015; Magnusson et al., 2017). Plotting 
was done using ‘ggplot2’ (Wickham & Winston, 2015) and ‘sjPlot’ 
(Lüdecke, 2023).

3  |  RESULTS

3.1  |  Epiphyte surveys

In total, we recorded 16,802 orchid individuals belonging to 332 spe-
cies (273 species and 59 morphotypes), while 8782 individuals of NOE 
were found (non- orchids), with a range of 1 to 12 morphospecies in a 
single plot. Orchids were found in 88% of plots (n = 125), while 96% of 
plots had NOE such as ferns (136 of 141 plots). We found the highest 
species richness in a forest plot with 28 species (bosque Andino, 18 
orchids, 8 NOE) and 899 individuals (357 orchids, 542 NOE).

3.2  |  Landscape context

Our results show that our forests have, in general, high levels of for-
est cover in the landscape. Considering the largest spatial extent 
(2400 m), 69% of the sample forests had ~70% of forest cover (mean: 
67%, range 5.9–100%), while between 61 and 78% of the sampled 
forests had a low number of patches (mean: 37.7, range 4–59), and 
low to middle levels of edge density (mean: 48.22 range: 10.64–
77.62). Across sites, forest cover showed a consistent pattern of high 
cover at 100–200 m (mean: 94.6%), decreasing as the spatial extent 
increases (mean: 72.2% at radii >800 m; Figure S1). The number of 
patches constantly increased with spatial extent without reaching 
a plateau (Figure S1). Edge density was higher at the spatial extent 
between 100 and 800 m, gradually flattening with the spatial extent 
(radii >800 m; Figure S1).

3.3  |  Spatial extent and impact of forest cover on 
community structure

The effect of forest cover on orchids and NOE was consistently posi-
tive across community- level metrics (species richness and total abun-
dance), with the scale- of- effects detected at extents of 100–300 m 
(GLMM forest cover, p < 0.05, Figures 3 and 4; Tables S3 and S4). 
Likewise, the scale- of- effect of total abundance remains consistent 
at 200 m (Figure S3; Tables S3 and S4), indicating that the significant 
relationship between forest cover and community- level metrics are 
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detected at the same spatial scales. However, there was large un-
certainty in confidence intervals and limited explanatory power of 
the models within the spatial extents of 500–1200 m across groups, 
but larger for orchids' total abundance (>300 m). This uncertainty 
suggests that the effect of forest cover might not be reliably de-
tected within these spatial extents (Figure 3, Figure S4; Tables S3 

and S4). The total explanatory power of the models is moderate (or-
chids' conditional pseudo- r2 = 0.77–0.99; NOE’ conditional pseudo-
 r2 = 0.84–0.98) and marginal pseudo- r2 ranges between 0.07 and 
0.26 across metrics (Tables S3 and S4).

3.4  |  Spatial extent and impact of fragmentation on 
community structure

Overall, the scale- of- effects of fragmentation is negative with spe-
cies richness and total abundance, and detectable between 2000 
and 2400 m on orchids and 200 m for NOEs (GLMM fragmenta-
tion, p < 0.05; Tables S5 and S6). Fragmentation consistently exerts 
negative effects on orchid and NOE across spatial extents, but it 
is undetectable at 200 m in orchids and between 300 and 800 m 
in NOEs (models' performances were similar to null models, delta 
AIC = 3.5–8.6; Figure 3; Tables S5 and S6). The explanatory power 

of our models was moderate (orchids conditional pseudo- r2 = 0.79–
0.98; NOE conditional pseudo- r2 = 0.54–0.74) and marginal pseudo-
 r2 ranged between 0.04 and 0.32.

3.5  |  Spatial extent and impact of edge effects on 
community structure

The edge density correlates negatively with our metrics and the 
scale- of- effects was detected between 100 and 200 m (Figure 3; 

Tables S7 and S8), but undetectable at spatial extents larger than 
800 m (delta AIC = 2.2–28.7; Figure 4). At extents ≥1000 m, mod-
els were not significant and showed ΔAIC close to the Null model 
(GLMM edge density, p > 0.05; ΔAIC<5). In contrast, NOE’ total 
abundance consistently showed a negative pattern with edge den-
sity and were significant across all spatial extents without affecting 
the scale- of- effects. The total explanatory powers of edge density 
models´ are moderate (NOE conditional pseudo- r2 = 0.75–0.98; or-
chids conditional pseudo- r2 = 0.82–0.98) and the component related 
to the fixed effects alone (marginal pseudo- r2) ranged between 0.04 
and 0.34.

Edge density was the landscape variable with the highest vari-
ance explained across models (Figures S2–S4; Tables S7 and S8). 

F I G U R E  3  Direction of the effects of forest cover (%), fragmentation (number of patches) and edge density on orchids (a–c) and NOE 
communities (d–f) across 12 radii (100–2400 m) in the eastern cordillera of Colombia. Parameter estimates from generalized linear mixed 
effects models (GLMM) fitted to estimate the effects of each landscape predictor on species richness. Points indicate parameter estimates, 
error bars indicate 95% confidence intervals, and dashed lines show no effect.
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However, the null model was the least plausible model across re-
sponse variables (Δi < 5; Tables S3–S8). The scale- of- effects for for-
est cover, fragmentation and edge density overlapped at different 
spatial extents. This pattern demonstrates the connection between 
landscape processes and the scale at which they could interact 
(Figure 4; Figure S3).

4  |  DISCUSSION

Unravelling the scale- of- effects (direction and spatial extent) at 
which landscape drivers shape biodiversity is key for theoretical and 
practical use. Our empirical study provides evidence that: (1) forest 
cover has positive effects on orchid and NOE communities across 
spatial extents, supporting our first expectation; (2) fragmentation 
and edge effects exert negative impacts on epiphyte diversity, sup-
porting our second expectation, but these impacts are irrespective 
of the focal group and its scale dependence, rejecting our third ex-
pectation; and (3) choosing an inappropriate spatial extent might 
mask the effects of landscape processes on epiphytic communities. 
Preserving or improving forest cover, reducing edge effects at low 

spatial extents (<500 m radius) and reducing fragmentation at larger 
spatial extents (>2000 m radius) are landscape strategies that might 
exert positive effects on epiphytic plant diversity.

4.1  |  The effects of habitat loss and fragmentation 
on epiphytic communities

We found a consistent positive correlation between epiphytic com-
munities and forest cover, especially between 100 and 200 m (scale- 
of- effect), while the detectability was obscure across spatial extents 
<500 and >1200 m. A high proportion of forest cover provides suit-
able conditions for a greater number of species to coexist and thrive 
(Arroyo- Rodríguez et al., 2020; Fahrig, 2013). We speculate this 
reflects sufficient availability of habitat in the landscape allowing 
species and individuals to reach suitable areas, while the opposite 
might occur in areas with lower forest cover (Ahuatzin et al., 2022; 

Arroyo- Rodríguez et al., 2020). However, the ecological processes 
and mechanisms involved in this response requires further study.

Fragmentation's effect on epiphyte communities is negative but 
its detection depends on the spatial extent. Fragmentation might 

F I G U R E  4  Scale of effect of forest cover (%), fragmentation (number of patches) and edge density orchids (a–c) and NOE communities 
(d–f) in the eastern cordillera of Colombia. Y- axis depicts the difference in Akaike's Information Criterion (Delta AIC) in linear mixed models 
of each landscape predictor on species richness (q = 0). The null model includes only the intercept (pink shade). The dashed line represents 
the ΔAIC threshold (ΔAIC = 2) were models have equivalent statistical support. Models with ΔAIC <2 are indicated with black symbols.
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affect understorey epiphytes by moderating large- scale processes 
at 2000–2400 m such as frequent dispersal due to lower connec-
tivity across landscapes (Ewers & Didham, 2005). Furthermore, 
some reviews and empirical studies suggest that fragmentation is 
not important in landscapes with high forest cover in the landscape 
(e.g. >60%), because of the low variability in landscape configura-
tion and high structural connectivity (Püttker et al., 2020; Villard & 
Metzger, 2014). Yet, fragmentation consistently impacts our under-
storey epiphytic communities in landscapes with high proportion of 
forest cover (69% of our landscapes have on average 70% of for-
est cover). Thus, the partitioning of the landscape might be enough 
to affect dispersal of Andean epiphytic communities (Mccormick 
& Jacquemyn, 2014; Mondragon et al., 2014). Further studies ex-
panding the spatial extents might enhance our understanding on the 
effects of fragmentation on epiphytes (as the number of fragments 
increased constantly as the spatial extent increased; Figure S2).

We found that high edge density predicts lower species rich-
ness and abundance. We detected the scale- of- effects for total 
abundance of NOE (100–500 m), but not for orchids or NOE spe-
cies richness (Jackson & Fahrig, 2015), which may suggest that 
epiphytic communities respond to edge effects below our spa-
tial extents, as seen in other studies in the Colombian Andes (ca. 
30 m, Parra- Sánchez et al., 2016). Epiphytic plants in the Brazilian 
Atlantic Forest show edge effects can penetrate at least 500 m 
inside forests and the abundance of 89% of epiphyte species in 
the canopy and understorey is negatively affected by edge ef-
fects reducing the conditions of the core area (Hernandez- Perez 
& Solano, 2015; Parra- Sanchez & Banks- Leite, 2020). Our results 
thus highlight the need to quantify edge effects and to create 
strategies to reduce their effects on biodiversity when designing 
or managing landscapes for conservation. This is especially import-
ant because much of the remaining tropical forest (>70%) globally 
is now near human- modified habitats (Haddad et al., 2015), push-
ing forest species to interact with edge conditions that might pro-
vide them with less optimal conditions (Ewers & Didham, 2005; 

Haddad et al., 2015; Tabarelli et al., 2012).
Our findings that fragmentation and edge effects negatively in-

fluenced both orchids and NOE might be counterintuitive for two 
reasons. First, most epiphyte species and all orchids have wind- 
dispersed propagules (Zotz, 2016), which should not restrict species 
dispersal (Einzmann et al., 2017). Second, our studied forests have 
a relatively high proportion of forest cover, which should decrease 
inter- patch isolation distances, favouring dispersal (Fahrig, 2013, 
2017). Yet our results support the idea that epiphytes might be dis-
persal limited. Dispersal limitation is invoked in epiphytes because 
many species´ diaspores land very closely to their mother- plants 
(Acevedo et al., 2020; Cascante- Marín et al., 2009), and epiphyte 
communities present signalling of recruitment limitation and posi-
tive density dependence (Janzen et al., 2020) that might be involved 
in slow colonization events (Einzmann et al., 2021). Likewise, disper-
sal limitation might surge from tracking suitable conditions within 
forests due to the intrinsic dependency of some orchids to mycor-
rhizae colonies for germination that occur in clusters (McCormick 

et al., 2018; Romero- Salazar et al., 2022). Hence, fragmentation and 
edge density might further exacerbate epiphytes' intrinsic disper-
sal limitation by increasing seed mortality of juveniles and seedlings 
due to dry conditions (Benzing, 1998; Migenis & Ackerman, 1993; 

Mondragón et al., 2015; Winkler et al., 2005), and forest- dependent 
species experiencing high mortality in human- modified habitats 
(Scheffknecht et al., 2010).

Detectability of the scale- of- effects depends on the spatial ex-
tent. Thus, landscape processes can be undetected if the spatial ex-
tent is chosen a priori or not explored at all. For instance, we found 
a consistent detrimental trend of habitat loss impacting both groups, 
but the high uncertainty in the estimates suggests that the effect 
of forest cover might not be reliably detected within 800–1200- m 
spatial extents (Figure 2). Low detectability may be a product of 
the interaction with other landscape drivers (edge density plateaus 
at 800 m) impacting the ability of epiphytes to disperse and utilize 
alternative habitats. Likewise, the role of fragmentation was un-
detected at extents of 200 m and edge effects at spatial extents 
>800 m. This might be a product of low landscape heterogeneity 
because fragmentation had the lowest values at 200 m (Figure S1), 
while edge density plateaus at extents >800 m. Thus, the observed 
pattern might be highly related to landscape variables and regional 
context, which suggests that landscape management strategies 
might provide positive impacts for both groups at the same spatial 
scale (Galán- Acedo et al., 2018; Smith et al., 2011).

The fact that scale- of- effects did not differ, in most cases, be-
tween orchids and NOE communities suggests that both groups are 
shaped by similar patterns and processes such as resource availability 
or community dynamics in the landscape (e.g. migrations, source- sink 
dynamics, adaptation to the same understorey microclimate; Ewers 
& Banks- Leite, 2013; Jackson & Fahrig, 2015; Smith et al., 2011). 
This might be the product of communities composed of highly eco-
logically equivalent species (Catchpole & Kirkpatrick, 2010). For in-
stance, long- term monitoring of epiphytic communities has shown 
that short- distance dispersal and population growth are the dom-
inant process shaping the community dynamics (Cascante- Marín 
et al., 2009; Einzmann et al., 2021; Einzmann & Zotz, 2017a, 2017b).

Preserving forest cover and reducing the impacts of fragmenta-
tion and edge effects have a direct and positive impact on epiphytes 
diversity at the adequate spatial extent. Hypothetically, if the direc-
tion of ‘forest cover’ is sustained across larger spatial extents than 
in our study, preserving epiphytes could be compatible with forest 
restoration strategies, in which the scale- of- effects of restoration 
actions is positive at buffers of 5–10 km (Crouzeilles & Curran, 2016). 
Indeed, epiphytes transplanted into forests under restoration had 
high survival rates in human- modified forests from radii <100 m 
(Reid et al., 2016).

4.2  |  Conservation implications and conclusions

Our study suggests that preserving or increasing the amount of 
habitat at any spatial extent should promote epiphyte diversity, 
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although its positive impact might improve if combined with the re-
duction of fragmentation at coarse spatial (2000–2400 m) and edge 
effects at fine spatial (200 m) extents. The inclusion of strategies to 
reduce fragmentation and to maintain or increase forest cover at the 
same spatial extent would be positive for epiphytic diversity and a 
good starting point for designing biodiversity- rich landscapes in the 
tropics.

The constitution in Brazil and Colombia includes legislation to 
protect forests within private properties in rural areas. Private land-
owners are responsible for preserving at least 80% of native veg-
etation in the Brazilian Amazon, 30% in the Brazilian Cerrado and 
20% in some Andean municipalities in Colombia (LEI No 12.651, de 
25 de maio, 2012; Ley 388 de 1997, 1997). However, the landscape 
configuration of set- aside areas has not been regulated. Thus, the 
same percent of forest might be found in different small fragments 
or even fragmented corridors across private land, increasing edge 
effects. In terms of landscape management, including combined ac-
tions to preserve or encourage low fragmented landscapes with in-
creasing forest cover at the same spatial extent (either at 100–300 m 
or 1500–2400 m) should have important benefits for conservation 
of these epiphytic plants. This scale is probably more suitable for 
bottom- up actions with stakeholders.
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