
MNRAS 529, 1524–1541 (2024) https://doi.org/10.1093/mnras/stae624 
Advance Access publication 2024 February 29 

Introducing CUDISC : a 2D code for protoplanetary disc structure and 

evolution calculations 

Alfie Robinson , 1 ‹ Richard A. Booth 

2 and James E. Owen 

1 

1 Astr ophysics Gr oup, Imperial College London, Prince Consort Road, London SW7 2AZ, UK 

2 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK 

Accepted 2024 February 27. Received 2024 February 6; in original form 2023 November 22 

A B S T R A C T 

We present a new two-dimensional (2D) axisymmetric code, CUDISC , for studying protoplanetary discs, focusing on the self- 
consistent calculation of dust dynamics, grain-size distribution and disc temperature. Self-consistently studying these physical 
processes is essential for many disc problems, such as structure formation and dust remov al, gi ven that the processes heavily 

depend on one another. To follow the evolution o v er substantial fractions of the disc lifetime, CUDISC uses the CUDA language and 

libraries to speed up the code through GPU acceleration. CUDISC employs a second-order finite-volume Godonuv solver for dust 
dynamics, solves the Smoluchowski equation for dust growth, and calculates radiative transfer using a multifrequency hybrid 

ray-tracing/flux-limited-diffusion method. We benchmark our code against current state-of-the-art codes. Through studying 

steady-state problems, we find that including 2D structure reveals that when collisions are important, the dust vertical structure 
appears to reach a diffusion-settling-coagulation equilibrium that can differ substantially from standard models that ignore 
coagulation. For low fragmentation velocities, we find an enhancement of intermediate-sized dust grains at heights of ∼1 gas 
scale height due to the variation in collision rates with height, and for large fragmentation velocities, we find an enhancement 
of small grains around the disc mid-plane due to collisional ‘sweeping’ of small grains by large grains. These results could be 
important for the analysis of disc spectral energy distributions or scattered light images, given these observables are sensitive to 

the vertical grain distribution. 

Key words: methods: numerical – protoplanetary discs – stars: pre-main-sequence. 
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 I N T RO D U C T I O N  

he past few decades have seen the study of young planetary systems,
nd their formation environments become a rapidly evolving field
ith major interest within the astrophysics community. This is largely
ue to an unprecedented wealth of observations made possible
y recent observatories such as ALMA (Wootten & Thompson
009 ) and the continual disco v ery of div erse e xoplanetary systems
e.g. Mayor et al. 2011 ; Batalha et al. 2013 ; Winn & F abryck y
015 ; Madhusudhan 2019 ; Zhu & Dong 2021 ). Protoplanetary
iscs, the discs of gas and dust that form around young stars,
re the birthplace of such planetary systems and have, therefore,
een subject to e xtensiv e theoretical interest. Various questions
elating to their nature have arisen in recent years that remain at
east partly unanswered by current theoretical models. Examples of
uch problems include the nature of the mechanisms behind ‘sub-
tructure’ formation in protoplanetary discs, as observations have
hown these objects to exhibit diverse features from axisymmetric
ings and gaps to non-axisymmetric arcs (Andrews 2020 ; Bae et al.
022 ); the connection between the spatial distribution and evolution
f chemical species in discs to the eventual compositions of planetary
ores and atmospheres ( ̈Oberg, Murray-Clay & Bergin 2011 ; Booth
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t al. 2017 ; Madhusudhan 2019 ; Eistrup 2023 ); and mechanisms for
he dispersal of protoplanetary discs after their observed lifetimes of

a few Myr (Ercolano & Pascucci 2017 ; Owen & Kollmeier 2019 ).
Exploring these problems requires sophisticated numerical mod-

lling, given the plethora of physical processes that govern the
tructure and evolution of protoplanetary discs. Our understanding
f discs has primarily been advanced through the use of state-of-the-
rt codes for studying the dynamics and thermodynamics of the gas
nd dust that comprise the disc material. Two-dimensional (2D) and
hree-dimensional (3D) simulations have typically been used to study
iscs on short, dynamical time-scales, given their computational
ost, whilst one-dimensional (1D) models have often been used to
tudy discs on longer, secular time-scales. Work done using these
odels has hugely advanced our understanding of protoplanetary

iscs; ho we ver, it has become evident that for certain problems,
he interplay of each of the facets of disc physics – dynamics,
hermodynamics and the dust size distribution – must be studied
elf-consistently o v er secular time-scales. The 1D code DUSTPY

Stammler & Birnstiel 2022 ) is the current state of the art for studying
roblems of this nature; ho we ver, it cannot be used if the problem
epends on the intricacies of the disc vertical structure. Examples
f such problems include temperature instabilities (Watanabe & Lin
008 ; Wu & Lithwick 2021 ; Fuksman & Klahr 2022 ) where 2D
emperature solvers have been used but dust dynamics and growth
eglected, snow line instabilities (Owen 2020 ) where 1D temperature
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Figure 1. The computational grid used in CUDISC . Cell boundaries exist 
along lines of constant radius and constant angle abo v e the mid-plane, θ . 
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Figure 2. The cell structure and indexing implemented in CUDISC . The 
indices in the R and Z directions are i and j , respectively. 
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nd dynamics solvers have been used, and problems relating to disc 
ispersal such as the removal of dust from discs via radiation pressure
Owen & Kollmeier 2019 ; Krumholz, Ireland & Kratter 2020 ), 
hich has been studied with both 1D and 2D solvers but without
ust growth/fragmentation, or entrainment in photoevaporative or 
agnetic winds (Franz et al. 2020 ; Booth & Clarke 2021 ; Hutchison
 Clarke 2021 ; Rodenkirch & Dullemond 2022 ), again with 1D and

D approaches but with dust grain growth neglected. 
This paper presents a new code, CUDISC , that includes 2D 

ultifluid dust dynamics coupled to both 2D temperature evolution 
nd 1D secular gas evolution. Dust and gas can be evolved, whilst
imultaneously evolving the dust grain-size distribution and the re- 
ulting temperature structure. This self-consistent calculation means 
ewer assumptions about the system’s state for a particular scenario 
ust be made. The code uses a 2D grid in the poloidal plane, meaning

hat assumptions about vertical structure in the dust do not have to be
ade as the structure can be calculated self-consistently. In order to 

llo w e volution calculations to be run for significant fractions of the
ypical disc lifetime ( ∼ Myr) in computationally feasible time-scales, 
UDISC utilizes GPU acceleration via the employment of the CUDA 

anguage and libraries. In the rest of this paper, Sections 2 –5 outline
he numerical methods used by CUDISC , whilst Section 6 outlines 
he code structure and Section 7 shows some example science 
alculations made using CUDISC where we study grain growth in 
 steady-state transition disc. 

 G R I D  STRU C TURE  

UDISC is a 2D code in the poloidal plane, with axisymmetry adopted
bout the disc’s rotation axis. The grid is structured in a fashion
hat makes certain features of disc physics easier to calculate; cell 
nterfaces are defined along lines of constant polar angle abo v e the

id-plane, θ , and constant cylindrical radius, R , as shown in Fig. 1 .
his means that the basis vectors of the grid coordinate system
re spherical radius, ˆ r , and c ylindrical height, ˆ Z , although v ector
uantities (such as velocity) are dealt with in the standard cylindrical 
omponents. This grid structure allows for ray-tracing from the 
entral star for calculating quantities such as optical depth whilst 
lso making calculations that require vertical integration easy, such 
s computing hydrostatic equilibrium. Cell spacing can be arbitrary 
n principle, but the standard implementation is logarithmic in R with 
 power law in θ . The individual cell structure is shown in Fig. 2 .
hysical quantities are stored at cell centres, and edge coordinates 
re required for the reconstruction of the cell-centred quantities to 
he cell interfaces for the advection routine (see later sections). Cell
olumes, V i , j , and interface areas A 

R 
i,j and A 

Z 
i,j are given by 

 i,j = 

1 

3 
d ( R 

3 ) i d( tan θ ) j , (1) 

 

R 
i,j = ( R 

e 
i ) 

2 d( tan θ ) j , (2) 
 

Z 
i,j = 

1 

2 

d( R 

2 ) i 
cos θe 

j 

. (3) 

These geometric factors are written in such a way as to a v oid
ivergence as R → 0. Explicitly, d ( R 

n ) i = ( R 

e 
i+ 1 ) 

n − ( R 

e 
i ) 

n and
 ( tan θ ) j = tan θe 

j+ 1 − tan θe 
j . The Z coordinates are then given 

y Z 

e 
i,j = R 

c 
i tan θe 

i,j and Z 

c 
i,j = R 

c 
i tan θc 

i,j . Due to the non-
rthogonality of the grid coordinate bases, when calculating fluxes 
hrough interfaces, the dot-product of velocity with the interface nor- 
als must be calculated to only account for the velocity component

rthogonal to the interface. 
At each edge of the active cell domain, ghost cells are employed

n order to set the boundary conditions. The conditions along each
f the four boundaries can be set independently as either: outflow,
here ghost cell quantities are set by the values in the first adjacent

ctive cell; zero, where ghost cell quantities are set to floor values;
r closed, where ghost cell quantities are set by the values in the
djacent active cell but with zero flux o v er the boundary. The default
et-up assumes vertical symmetry in the disc about the mid-plane and, 
herefore, uses a minimum θ of 0 with a closed boundary condition
nd outflow boundary conditions for the three other boundaries. 

 DY NA MIC S  SOLV ER  

n CUDISC , the dust species are evolved by treating each grain size as
 pressureless fluid and solving their associated advection–diffusion 
quations. We employ a second-order finite-volume Godonuv 
cheme for solving the set of equations (Stone & Gardiner 2009 ).
e write our equations in terms of vector fields of the conserved

uantities, Q , their associated fluxes, F ( Q ), and any source terms,
S . For our system, these fields are given by 

Q i = 

⎛ 

⎜ ⎜ ⎝ 

ρi 

ρi v R,i 

ρi v φ,i R 

ρi v Z,i 

⎞ 

⎟ ⎟ ⎠ 

, (4) 

here ρ i and v i = ( v R,i , v φ,i , v Z,i ) are the volume density and
elocity of dust species i , respectively, 

F i = 

⎛ 

⎜ ⎜ ⎝ 

ρi v i + F diff ,i 

v R,i ( ρi v i + F diff ,i ) 
v φ,i R( ρi v i + F diff ,i ) 
v Z,i ( ρi v i + F diff ,i ) 

⎞ 

⎟ ⎟ ⎠ 

, (5) 
MNRAS 529, 1524–1541 (2024) 
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here the two terms for each conserved quantity are the fluxes
enerated by advection, ρi v i , and diffusion, F diff ,i , 

S i = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 
ρi v 

2 
φ,i 

R 

− ρi �
2 R + f drag ,i,R + f ext ,i,R 

f drag ,i,φ

−ρi �
2 Z + f drag ,i,Z + f ext ,i,Z 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (6) 

here � is the Keplerian angular velocity, 
√ 

GM ∗/ ( R 

2 + Z 

2 ) 3 / 2 ,
nd f drag and f ext are source terms that arise due to dust–gas
rag and any external forces (e.g. radiation pressure). We formulate
iffusion in the momentum equations as the dif fusi ve flux acting
o diffuse the adv ectiv e quantities. We do not currently consider
he other terms discussed in recent works, such as Huang & Bai
 2022 ); these being the advection of the dif fusi ve flux and the
ime-dependent dif fusi ve flux. Dif fusion related terms arise out of

odelling turbulence by writing the density and velocity components
s a short-term average plus a short-term fluctuation, then averaging
he resulting equations o v er the short term, keeping any terms that
nclude correlations between fluctuations (Reynolds averaging, see
.g. Cuzzi, Dobro volskis & Champne y 1993 ). Note that we solve
n azimuthal equation even though all φ deri v ati ves are zero by
xisymmetry, as the advection of angular momentum throughout the
 R , Z ) plane could be important in some problems; this is sometimes
eferred to as 2.5D. Also, note that we write this equation in angular
omentum conserving form as this remo v es the Coriolis force

erm, which has been shown to lead to loss of angular momentum
onservation (see e.g. Kley 1998 ). 

The quantities, Q , are updated by solving the advection–diffusion
quations given by 

∂ Q 

∂ t 
+ ∇ · F = S . (7) 

e solve this set of equations in two stages via operator splitting:
 transport step where the advection–diffusion equations are solved
s homogeneous hyperbolic equations and a source step where the
uantities are updated through the source terms. For the transport
tep, the equations are integrated over volume to find the flux-
onserv ati ve form. Discretizing this gives the equation used to evolve
 quantity Q in cell i , j to time n + 1, 

 

n + 1 
i,j = Q 

n 
i,j −

�t 

V i,j 

( FA ) 
n + 

1 
2 

i,j , (8) 

here ( FA ) i , j is the total area-weighted-flux exiting through the
nterfaces between cell i , j and adjacent cells, given by 

 FA ) i,j = F 

R 
i+ 1 ,j A 

R 
i+ 1 ,j − F 

R 
i,j A 

R 
i,j (9) 

+ F 

Z 
i,j+ 1 A 

Z 
i,j+ 1 − F 

Z 
i,j A 

Z 
i,j . 

he time index of n + 

1 
2 indicates that the fluxes should be calculated

t the half time-step to represent the average flux over the full time-
tep � t . Following Stone & Gardiner ( 2009 ), we calculate these
alf-time fluxes in the following manner: 

(i) The primitive quantities, ( ρi , v i ), are reconstructed at both sides
f the cell interfaces from the conserved quantities at cell centres
sing a first-order donor cell method and a Riemann solver is used to
alculate first-order adv ectiv e flux es through each interface at time
 . 
(ii) The dif fusi v e flux es at each interface at time n are calculated

rom the cell-centred conserved quantities and added to the adv ectiv e
uxes to get the total area-weighted flux exiting each cell at time n ,
 FA ) n i,j . 
NRAS 529, 1524–1541 (2024) 
(iii) The conserved quantities are advanced by a half time-step
sing these fluxes: 

 

n + 

1 
2 

i,j = Q 

n 
i,j −

1 

2 

�t 

V i,j 

( FA ) n i,j , (10) 

(iv) These half-updated quantities are given a half time-step source
pdate (described in detail in Section 3.1 ). 
(v) Primitive quantities at time n + 

1 
2 are now reconstructed from

hese half-updated quantities using a second-order piecewise linear
ethod with a modified van Leer limiter detailed by Mignone ( 2014 ).
hese half-time primitive quantities are used to calculate second-
rder adv ectiv e flux es through each interface at time n + 

1 
2 . 

(vi) The dif fusi v e flux es at each interface at time n + 

1 
2 are

alculated from the half-updated cell-centred quantities and added to
he second-order adv ectiv e flux es to get the total area-weighted flux

xiting each cell at time n + 

1 
2 , ( FA ) 

n + 

1 
2 

i,j . 

In steps (i) and (v), where the adv ectiv e flux es are calculated,
he Riemann problem has to be solved at the cell interfaces. For
ressureless fluids, collisions between fluids with different velocities
ead to ‘delta shocks’, which travel at the Roe-averaged velocity (Roe
981 ), 

ˆ  = 

√ 

ρl v l · ˆ n + 

√ 

ρr v r · ˆ n √ 

ρl + 

√ 

ρr 

, (11) 

here r and l denote the values of the reconstructed quantities to
he left and right of the interface in question. The reconstructed
elocities are dotted with the interface normal, ˆ n , to find the velocity
rthogonal to each interface; this is important given that we use a
on-orthogonal grid. Numerically, we capture this process according
o Leveque ( 2004 ) by taking the upwind flux depending on the sign
f the Roe-averaged velocity: 

 adv = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Q l v l · ˆ n if ˆ v > 0 
Q r v r · ˆ n if ˆ v < 0 
1 
2 ( Q l v l · ˆ n + Q r v r · ˆ n ) if ˆ v = 0 
0 if v l · ˆ n < 0 < v r · ˆ n , 

(12) 

he dif fusi v e flux es are then added to these adv ectiv e flux es to find
he total flux. 

.1 Dust source terms and diffusion 

he source terms given by equation ( 6 ) include curvature terms,
ravitational terms, drag terms, and any other external forces. Drag
s caused by dust–gas interactions and is given by 

f drag = −ρ

t s 
( v − v g ) , (13) 

here v g is the gas velocity and t s is the stopping time that conv e ys
ow well-coupled dust grains are to the gas flow; short stopping times
mply well-coupled dust grains that are entrained in the gas flow. For
he problems that we intend to study using CUDISC , the largest dust
rains have radii ∼cm size, meaning that we are in the regime of
pstein drag. This gives the stopping time as 

 s = 

ρm 

s 

ρg v th 
, (14) 

here ρm is the dust grain internal density, s is the dust grain radius,
g is the gas mass density, and v th is the thermal velocity of the
as, usually given by (8/ π) 1/2 c s , where c s is the isothermal gas sound
peed. 

Including source term updates, the full time-step is given by 
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(i) Q 

∗
i,j = Q 

n 
i,j −

1 

2 

�t 

V i,j 

( F A ) n i,j , 

(ii) Q 

∗∗
i,j = Q 

∗
i,j + 

1 

2 
�t S exp ( P 

n 
i,j ), 

(iii) Q 

∗∗
i,j → P 

∗∗
i,j , 

(iv) P 

n + 

1 
2 

i,j = 

(
ρ∗∗

i,j , v 
∗∗
i,j −

�t/ 2 

�t/ 2 + t s 
( v ∗∗

i,j − v g,i,j ) 

)
, 

(v) Q 

† 
i,j = Q 

n 
i,j −

�t 

V i,j 

( F A ) 
n + 

1 
2 

i,j , 

(vi) Q 

†† 
i,j = Q 

† 
i,j + �t S exp ( P 

n + 

1 
2 

i,j ), 

(vii) Q 

†† 
i,j → P 

†† 
i,j , 

(viii) P 

n + 1 
i,j = 

(
ρ
†† 
i,j , v 

†† 
i,j −

�t 

�t + t s 
( v †† i,j − v g,i,j ) 

)
, 

where Q and P represent conserved quantities and primitive 
uantities, respectively, S exp is the vector of source terms that 
re solved explicitly (curvature, gravity, and external forces) and 
uantities with an asterisk ( ∗) or a dagger ( † ) signify intermediate
tates. Steps (iii) and (vii) signify conversions of conserved quantities 
o primitive quantities. Steps (iv) and (viii) are the drag updates to the
rimitiv e v elocities; these are solv ed implicitly, as if the y were solv ed
xplicitly, then short stopping times would prohibitively limit the 
ength of an explicit time-step. As the implicit update only includes 
he drag terms, the Jacobian for the implicit system of equations is
inear and diagonal, meaning the solution has a simple, exact analytic 
orm. Boundary conditions are set before step (i) and again after step
iv). 

The dif fusi ve mass flux discussed in the previous section arises
ue to the diffusion of dust grains via turbulent gas motions. This
if fusi v e v elocity is calculated in a way analogous to molecular
iffusion (Clarke & Pringle 1988 ; Takeuchi & Lin 2002 ), where the
if fusi ve flux is given by 

F diff ,i = −ρg ν

Sc i 
∇ 

(
ρi 

ρg 

)
, (15) 

here ν is the kinematic viscosity of the disc, and Sc i is the Schmidt
umber, a dimensionless number that represents the strength of the 
ust-gas coupling for a given grain. In the calculations presented in 
his paper, Sc i is set to unity for all dust species; ho we ver, the code
llows any choice for the form of Sc i , which may vary arbitrarily
ith both position and dust properties. Given that we formulate the 
iffusion in the momentum equations as the dif fusi ve flux acting to
if fuse the advecti ve quantities, the dif fusi ve momentum flux at an
nterface is given by F diff ,i multiplied by the left or right advective 
elocity depending on the sign of the dif fusi ve flux itself, 

 diff,mom 

= 

{
F diff v l · ˆ n if F diff > 0 
F diff v r · ˆ n otherwise. 

(16) 

These dif fusi v e flux es are then added to the adv ectiv e flux es
efined earlier to give the total flux. 
The time interval � t for each time-step is determined from the

ourant–Friedrichs–Lewy (CFL; Courant, Friedrichs & Lewy 1928 ) 
ondition: 

t CFL = min 
(
�t adv 

CFL , �t diff 
CFL 

)
, (17) 

here �t adv 
CFL & �t diff 

CFL are the CFL time-steps for advection and 
if fusion, respecti vely, gi ven by 

t adv 
CFL = C 

adv min 
(| d R i /v 

s 
R,i,j | , | d Z i,j /v 

s 
Z,i,j | 
)
, (18) 

here the minimum is o v er all cells i , j and species s , and 

t diff 
CFL = C 

diff min 
(| ( d R i ) 

2 / ( νi,j / Sc s ) | , | ( d Z i,j ) 
2 / ( νi,j / Sc s ) | 

)
. (19) 
oth time-steps have associated Courant numbers, C 

adv & C 

diff , 
hich are safety factors set by default to 0.4 and 0.2, respectively. 

.2 Diffusion 

or both the dust dynamics and the radiati ve dif fusion problem
resented in Section 4 , we need to calculate dif fusi v e flux es. In
eneral, a dif fusi ve flux can be written as 

F = −D∇u, (20) 

here D is the diffusion constant and u is the quantity being diffused.
Calculating the dif fusi ve flux requires care in CUDISC given the

on-orthogonal coordinate system in use. This is because using the 
tandard difference formulae would give gradients of u that are not
erpendicular to the interface in question and therefore using them 

irectly would provide incorrect fluxes across the interfaces. To deal 
ith this, we need a method that calculates the 2D gradient of u

hat we can dot-product with the interface normal to find the flux
cross the interface. To this end, we use the second-order accurate,
onserv ati ve method detailed by Wu, Gao & Dai ( 2012 ) for diffusion
roblems on arbitrary mesh structures. Here, we present this method 
pecifically for our mesh. 

To compute the gradients of u within a cell, Wu et al. introduce
nterpolation points on the cell interfaces. The location of these 
nterpolation points and accompanying values of u are determined 
hrough the conditions (i) u must be continuous everywhere and (ii)
he flux across the interface must be continuous, i.e. D ̂  n · ∇u must
e continuous at the interface, ˆ n being the interface normal vector. 
n this paper, we describe how these interpolation points are found;
or readers interested in why these criteria lead to the interpolation
oints, we refer to the appendix of Wu, Gao & Dai ( 2012 ). The flux
t an interface is built up from one-sided fluxes on each side of an
nterf ace. Tak e a radial interface σ between cells k and l (see Fig. 3 ).
he net flux across the face from the perspective of cell k is given by 

˜ 
 σ = w kσ F kσ − w lσ F lσ , (21) 

here w k σ and w l σ are weights assigned to the one-sided flux
ontributions from the cells on each side of the interface, F k σ and F l σ ,
MNRAS 529, 1524–1541 (2024) 
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Figure 4. The vector decomposition used for the cell interface normals when 
calculating dif fusi v e flux es. Green v ectors show those that point from cell 
centre k to the points on the interface σ that are closest to cell centres k and 
l . The red vector v kl is then constructed via a weighted sum of the two green 
vectors. v km is constructed from vectors for the interface between cells k and 
m but are not shown for simplicity. 
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here these fluxes are directed out of cells k / l across the interface σ .
he weights are defined as 

 kσ = 

μkσ

μkσ + μlσ

, w kσ + w lσ = 1 , (22) 

here μkσ = 

d kσ

D k 
, d k σ being the shortest (perpendicular) distance

etween the cell centre and the plane of the interface σ and D k the
iffusion constant associated with cell k . 
To include all flux orthogonal to the interface σ , the one-sided

ux F k σ is calculated by decomposing the interface normal vector
 σ into two vectors, v kl and v km 

, that point from cell centre k to
he interpolation points on the cell interface in question and the
lockwise-adjacent interface that joins cell k to cell m , as shown in
ig. 4 . To find the interpolation point v kl we first find two vectors that
onnect cell centre k to the points on the interface that are closest to
ell centres k and l , shown as dv kl, 1 and dv kl, 2 in Fig. 4 . v kl is then
onstructed using a weighted sum of dv kl, 1 and dv kl, 2 , 

 kl = w kσ dv kl, 1 + w lσ dv kl, 2 . (23) 

The vector v km 

is constructed similarly but with vectors and
eights associated with interface τ that connects cells k and m .
he interface normal is then decomposed into these two vectors by
olving: 

 kl v kl + c km 

v km 

= n σ (24) 

or the coefficients c kl and c km . These coefficients allow us to calculate
he gradients across the interface without explicitly calculating the
alues of u at the interpolation points. The one-sided flux F k is then
alculated via the weighted sum of these gradients: 

 kσ = −D k [ w lσ c kl ( u l − u k ) + w mτ c km 

( u m 

− u k ) ] . (25) 

To calculate the net flux ˜ F σ from equation ( 21 ), F l σ is constructed
imilarly to F k σ but from the perspective of cell l . For polar/height
nterfaces such as interface λ in Fig. 3 , the process is the same except
hat the stencil for constructing one-sided fluxes uses the interface
n question and the anti-clockwise adjacent interface as opposed to
lockwise. 
NRAS 529, 1524–1541 (2024) 
.3 Gas 

n CUDISC , the 1D viscous evolution equation for gas surface density
s solved, and the 2D gas distribution is calculated through hydrostatic
quilibrium. Currently, there is no feedback from the dust to the
as; ho we ver, it may be added in the future. The viscous evolution
quation is given by (Pringle 1981 ) 

∂ � g 

∂ t 
= 

3 

R 

∂ 

∂ R 

(
R 

1 / 2 ∂ 

∂ R 

( R 

1 / 2 ν� g ) 

)
+ S g , (26) 

here S g represents any source terms (e.g. mass-loss via photoe v ap-
rative winds). The equation is solved in two stages via operator
plitting; in the first stage, the first term on the right-hand side is
olved as a diffusion problem using an explicit forward-time-centred-
patial scheme, and in the second stage, the source terms are solved
sing explicit Eulerian updates. 
The equations we use to calculate the gas velocities are found

rom viscous theory (see e.g. Urpin 1984 ; Balbus & Papaloizou
999 ), written in the coordinate grid basis of CUDISC , ( ̂ r , ˆ Z ). These
elocities are needed explicitly for their influence on dust dynamics
they are not used for evolving the gas. Under the assumption that
 Z � v R , v φ (justified for thin discs as v Z ∼ ( H / R ) v R , where H is the
as scale height; see Urpin 1984 ), we find 

 φ = 

[
GM ∗ cos 2 θ

r 
+ 

r 

ρg 

(
∂ P 

∂ r 
− sin θ

∂ P 

∂ Z 

)]1 / 2 
, (27) 

 R = r cos θ

[
∂ ( rv φ) 

∂ r 
− r sin θ

∂ v φ

∂ Z 

]−1 

×
{

1 

ρg 

[ ∇ · T ] φ − v Z, cyl 
∂ v φ

∂ Z 

}
, (28) 

here the deri v ati ves are performed along the grid directions of
pherical r and cylindrical Z . v Z , cyl is the physical velocity in the Z -
irection. We do not include a form for the vertical velocity due
o viscosity here as it depends on assumptions made about the
urbulence model (see e.g. Philippov & Rafikov 2017 ); it can also be
o v erned by other processes such as disc winds. For these reasons,
y default (and for the tests in this paper) the vertical gas velocity
s assumed to be 0. Different models of vertical gas motions can be
ncluded depending on the problem in question. θ is the angle abo v e
he disc mid-plane, P is the gas pressure, given by the ideal gas law,
nd T is the viscous stress tensor. To calculate [ ∇ · T ] φ , the r φ and
 φ components of T are required. Assuming a Navier–Stok es-lik e
iscosity, these have the forms: 

 

rφ = 

ρg ν

cos 2 θ

[
r 
∂ 

∂ r 

(v φ
r 

)
− sin θ

∂ v φ

∂ Z 

]
, (29) 

 

Zφ = 

ρg ν

cos 2 θ

[
∂ v φ

∂ Z 

− r sin θ
∂ 

∂ r 

(v φ
r 

)]
, (30) 

nd the tensor divergence in the φ direction is explicitly written as 

 ∇ · T ] φ = 

1 

r 3 

∂ ( r 3 T rφ) 

∂ r 
+ 

∂ T Zφ

∂ Z 

. (31) 

These deri v ati ves are calculated using finite differencing on the
rid variables to calculate cell-centred values for the gas velocities. 

.4 Kinematic viscosity 

he kinematic viscosity ν is important for go v erning the gas’
volution and dust diffusion. It is often parametrized following
hakura & Sunyaev ( 1973 ) as αc s H where H is the gas scale height,
nd α is a constant that is used to control the strength of the ef fecti ve
iscosity generated by turbulent processes. With a constant α, this



Introducing CUDISC : a 2D PP D code 1529 

a  

H  

q
e  

t  

C  

f
B  

d
a

3

T
e

d

w  

s  

t

w

T  

m

T
p
s

ρ

w  

(

3

T
t

ρ

w  

y  

D  

p
d  

b  

Figure 5. Advection–diffusion of a 2D Gaussian pulse using the dynamics 
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Figure 6. The L2 error norm for advection–diffusion of a 2D Gaussian pulse 
using the dynamics routine in CUDISC . Slopes of 1/ N and 1/ N 

2 , where the 2D 

grid has size N × N , are shown for reference. 
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ssumes that the viscosity varies with temperature changes in the disc.
o we ver, α need not be assumed constant; it can depend on other
uantities such as ionization fraction or magnetic field strength (see 
.g. Jankovic et al. 2021 ). A different way to parametrize the viscosity
hat remo v es this variation with the temperature profile calculated by
UDISC is ν = ν0 ( R / R 0 ), where the linear dependence on radius comes
rom assuming a mid-plane temperature profile proportional to R 

−1/2 . 
oth methods of setting the viscosity are available in CUDISC . By
efault, v 0 is calculated assuming a mid-plane temperature of 100 K 

t 1 au, but the user can edit this. 

.5 Hydrostatic equilibrium 

he 2D gas density structure is calculated by solving the hydrostatic 
quilibrium equation, 

d P 

d Z 

= − GM ∗
( R 

2 + Z 

2 ) 
3 
2 

ρg Z. (32) 

First, we rewrite the equation using the ideal gas law to obtain 

 log P = 

GM ∗
c 2 s 

d 

(
1 

r 

)
, (33) 

here we have utilized Z d Z / r 3 = d r / r 2 = −d(1/ r ), r being the
pherical radius, and c s is the isothermal sound speed. We then take
he exponential of equation ( 33 ) and in each cell i , j calculate 

P i,j 

P i,j−1 
= exp 

[ 
GM ∗

〈
1 

c 2 s 

〉
i,j 

(
1 

r i,j 
− 1 

r i,j−1 

)] 
, (34) 

here 
〈 

1 
c 2 s 

〉 
i,j 

is the average reciprocal of the sound speed squared, 

〈
1 

c 2 s 

〉
i,j 

= 

1 

2 

[ 
1 

c 2 s ,i ,j 
+ 

1 

c 2 s ,i ,j−1 

] 
. (35) 

he pressure in each cell relative to the cell at j = 0 is then found by
ultiplicatively scanning over Z , 

P i,j 

P i,j= 0 
= 

j ∏ 

k= 1 

P i,k 

P i,k−1 
. (36) 

his method enforces positivity of the calculated pressure. The 
ressure is then converted to density and normalized via the gas 
urface density, 

g,i,j = 

� g,i ( R d R ) i ∑ 

k ω i,k V i,k 

ω i,j , (37) 

here ω i , j is the unnormalized density and ( R d R ) i is calculated as
 R d R ) i = 

1 
2 d( R 

2 ) i = 

1 
2 [( R 

e 
i+ 1 ) 

2 − ( R 

e 
i ) 

2 ]. 

.6 Dynamics tests 

o demonstrate that the code is second-order accurate, we now show 

est problems run using 2D Gaussian pulses with the analytic form 

( x , y , t ) = 

A 

t 
exp 

(
− ( x − x p ( t )) 2 + ( y − y p ( t )) 2 

4 Dt 

)
, (38) 

here x p ( t ) = x 0 + v x ( t − t 0 ) with an equi v alent expression for
 p . For these tests, we used the following parameter choices: A =
 = 1, x 0 = 30, y 0 = 0, t 0 = 0.1, v x = 5, and v y = 2. These
ulses were advected in both R- and Z- directions whilst undergoing 
iffusion from t = t 0 to t = 1. Cells were logarithmically-spaced in R
etween 10 and 50 and linearly-spaced in θ between −π /6 and π /6.
artesian areas and volumes were used, and the boundaries were set
o outflow conditions. An example run can be seen in Fig. 5 . The L2

rror norm, 
√ ∑ 

ij ( ρij − ρan ,ij ) 2 / ( N × N ) , was calculated using the 

nalytic solution, ρan compared to the computed solution, ρ. Fig. 6 
ho ws ho w this error decreases with number of cells N on a 2D N ×
 grid. As shown, the L2 error is proportional to 1/ N 

2 , demonstrating
hat our method is second-order accurate. 

To test our code on disc-related problems, we compared simulated 
teady-state results to analytic results given by Takeuchi & Lin 
 2002 ). The gas was initialized using their analytic density and
elocity profiles. Three dust species (10 μm, 100 μm, and 1 mm) were
nitialized as being well-mixed with the gas (i.e. the same density
nd velocity profiles) with a standard dust-to-gas ratio of 0.01 applied
o the density. In order to study vertical settling, radial fluxes were
et to 0 for comparison with Takeuchi & Lin’s analytic profiles,
nd the code was run for 100 000 yr to ensure a steady state in the
ust, as the settling timescale for the smallest grains in this set-up was
0 000 yr. 300 cells were used in the vertical dimension. Fig. 7 shows
he computed equilibrium dust-to-gas profiles of the dust species 
ompared to the analytic solutions, showing strong agreement. A 

mall discrepancy is visible for the smallest grains at large Z ; this is
ue to our inclusion of the advection of momentum and because we
o not make a thin disc approximation in the gravitational potential
Takeuchi & Lin invoke Z < < R to simplify the problem). With radial
elocities turned on, we also match the analytic profiles for radial
elocity as a function of height, as shown in Fig. 8 . 
MNRAS 529, 1524–1541 (2024) 
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Figure 7. Steady-state dust-to-gas ratios as a function of height abo v e the 
disc mid-plane (in units of the gas scale height, h g ) at a radius of 10 au for 
three dust species. The analytic solutions given by Takeuchi & Lin ( 2002 ) are 
o v erplotted for comparison. 

Figure 8. Steady-state radial velocities as a function of height abo v e the 
disc mid-plane (in units of the gas scale height, h g ) at a radius of 10 au for 
three dust species. The analytic solutions given by Takeuchi & Lin ( 2002 ) are 
o v erplotted for comparison. 
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 T EMPER ATU R E  SOLV ER  

adiative transfer is a complex problem, and various numerical
ethods can be employed whose results differ depending on the
eights attributed to accuracy versus computation time. For certain
roblems, calculated temperatures may need to be highly accurate
nd need not evolve (e.g. comparing line fluxes to observations),
llowing long computation times to be a viable option. Other
roblems may not require such high accuracy in the calculation
f temperature but instead may require fast calculation to assess the
hermal evolution of a system. 

Since the aim of CUDISC is to study the evolution of protoplanetary
iscs o v er long timescales ( ∼10 5 yr or longer), we require a fast
emperature solv er. F or this reason, our method uses a hybrid of
ay-tracing and multiband flux-limited diffusion as opposed to exact
echniques such as Monte Carlo. We benchmark our solver against
ADMC-3D (Dullemond et al. 2012 ), a Monte Carlo code that requires

onger computation times for more accurate results. 
NRAS 529, 1524–1541 (2024) 
.1 Hybrid ray-tracing + multiband flux-limited diffusion 

n CUDISC , we use a hybrid radiative transfer method that employs
ay-tracing from the star for heating due to stellar radiation and multi-
and flux-limited diffusion (FLD) for treating re-emitted/scattered
adiation. FLD is a model developed by Levermore & Pomraning
 1981 ) that aims to solve the radiative transfer problem by treating
he transport of radiative energy as a diffusion problem. The diffusive
ux is limited to ensure that radiation does not propagate faster than

he speed of light. The limiter is chosen to tend towards the correct
hysical forms in limits of high and low optical depth. The following
cheme used in CUDISC is based on similar schemes detailed by
uiper et al. ( 2010 ), Commer c ¸on et al. ( 2011 ), and Bitsch et al.

 2013 ). In conserv ati ve form, the equations go v erning the internal
nergy density, ε, and radiative energy density in a given wavelength
and b , E 

b 
R , are given by 

∂ ε

∂ t 
= −
∑ 

b 

( ∑ 

s 

ρs κ
b 
P ,s 

) (
f b ( T ) B( T ) − cE 

b 
R 

)+ S heat , (39) 

∂ E 

b 
R 

∂ t 
+ ∇ · F 

b = 

( ∑ 

s 

ρs κ
b 
P ,s 

) (
f b ( T ) B( T ) − cE 

b 
R 

)+ S b sca , 

(40) 

here ρs is the mass density of species s , κb 
P ,s is the Planck mean

pacity in wavelength band b for species s , B ( T ) = 4 σT 

4 accounts
or radiative cooling, S heat accounts for heating via stellar irradiation
nd viscous processes and S b sca is the scattered stellar radiation. As
quation ( 40 ) is for a particular wavelength band, a Planck factor f b is
ncluded that accounts for the fraction of total radiated thermal energy
hat is emitted in the particular band in question. We do not include
dv ectiv e terms in our formulation. F 

b is the flux of radiative energy
n a given band, and this term is calculated in flux-limited diffusion
s 

F 

b = − cλb 

ρκb 
R 

∇E 

b 
R , (41) 

here κb 
R is the Rosseland mean opacity in the given band and λb 

he flux-limiter. In our multi-band scheme, the Planck opacities in
quations ( 39 ) and ( 40 ) are calculated using absorption opacities,
hilst the Rosseland opacity is calculated using the total opacity,

bsorption plus scattering. The choice of flux-limiter used for CUDISC

s that given by Kley ( 1989 ), 

b = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 

3 + 

√ 

9 + 10 R 

2 
b 

, for R b < 2 

10 

9 + 10 R b + 

√ 

81 + 180 R b 

, for R b > 2 
(42) 

here 

 b = 

1 

ρκb 
R 

|∇E 

b 
R | 

E 

b 
R 

. (43) 

aking the limits of high and low optical depth ( ρκR � 1 & ρκR �
), the flux tends to the diffusion limit, F = −( c/ 3 ρκR ) ∇E R , and
he free-streaming limit, F = −cE R ( ∇E R / |∇E R | ) , respectively. 

The heating term S heat is split into stellar heating and viscous
eating. The viscous heating is calculated explicitly as 

 visc = 

9 

4 
αρg c 

2 
s �, (44) 

here α parametrizes the ef fecti ve turbulent viscosity of the disc
Shakura & Sunyaev 1973 ), c s is the isothermal sound speed, and

is the Keplerian angular velocity. Stellar heating in each cell is
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alculated via ray tracing from the star using 

 ∗ = 

∑ 

B 

L B 

4 πr 2 �r 
e −τB (1 − e −ρκB �r )(1 − a B ) , (45) 

here the sum is o v er the wav elength bands used for stellar radiation,
 B is the stellar luminosity in each band, and � r is the (spherical)
adial length of the cell. By default, the number of bands used
or stellar heating ( ∼100) is larger than the number used for the
LD routine detailed abo v e ( ∼20) as the heating calculation is
omputationally cheap. For each wavelength band, the e −τB term 

ccounts for the flux that has been attenuated (remo v ed through
xtinction; i.e. absorption plus scattering opacity) by the material 
long the radial path between the star and the cell of interest, whilst
1 − e −ρκB �r ) accounts for the amount of remaining flux that is
ttenuated in the cell. κB is the extinction of stellar radiation at 
he centre of each wavelength band. The term (1 − a B ) includes the
lbedo, a B , to take into account the effect of scattering. The albedo
s calculated as the ratio of scattering opacity to total extinction at
ach wavelength. The dif fusi ve flux generated by scattering at each
avelength is therefore given by 

 sca ,B = 

L B 

4 πr 2 �r 
e −τB (1 − e −ρκB �r ) a B . (46) 

his is then binned into the wavelength bins used for the FLD routine
nd included in equation ( 40 ). 

The internal energy is given by ε = ρc V T , where ρ is the total
ensity of all species and c V is the specific heat at constant volume,
eaning that equation ( 39 ) can be written in terms of B , 

ρc V 

16 σT 3 

∂ B( T ) 

∂ t 
= −ρκP ( B( T ) − cE R ) + S. (47) 

his allows the system of equations to be set up and solved implicitly
or the quantities B and E R . This method ensures the correct
quilibrium is reached for large � t – this being the standard case
or our simulations. We also note that the Commer c ¸on et al. ( 2011 )
inearization writes B ( T ) in terms of T , instead of T in terms of B ( T )
s we do. The discretized forms of equations ( 47 ) and ( 40 ) for cell i ,
 at time-step n are 

ρn 
i,j c V 

16 σ ( T n i,j ) 3 �t 
B 

n + 1 
i,j V i,j 

+ 

∑ 

b 

( ∑ 

s 

ρn 
s ,i ,j κ

b 
P ,s ,i ,j 

) (
f b i,j B 

n + 1 
i,j − cE 

b,n + 1 
R,i,j 

)
V i,j 

= 

ρn 
i,j c V 

16 σ ( T n i,j ) 3 �t 
B 

n 
i,j V i,j + S n heat ,i,j V i,j , (48) 

nd 

E 

b,n + 1 
R,i,j 

�t 
V i,j −
( ∑ 

s 

ρn 
s ,i ,j κP,s ,i ,j 

) (
f b i,j B 

n + 1 
i,j − cE 

b,n + 1 
R,i,j 

)
V i,j 

+ 

i+ 1 ∑ 

k= i−1 

j+ 1 ∑ 

l= j−1 

˜ D 

b 
kl E 

b,n + 1 
R ,k ,l = 

E 

b,n 
R,i,j 

�t 
V i,j + S 

b,n 
sca ,i,j V i,j . 

(49) 

˜ 
 

b 
kl is the diffusion matrix, constructed by summing all terms that 

pply to cell k , l when finding ˜ F σ A σ (equation 21 ) for each of the
our interfaces around cell i , j . The construction of the elements of
˜ 
 kl can be found in more detail in the Appendix. We time-lag the

iffusion constant in equation ( 41 ) and the Planck factor, f b (i.e. they
re e v aluated at t n instead of t n + 1 ). The system of equations defined
y equations ( 48 ) and ( 49 ) are solved using incomplete-LU pre-
onditioning and the Bi-Conjugate Gradient Stabilized (BiCGStab) 
olver described in Naumov ( 2011 ). The convergence criterion is set
y comparing the maximum fractional residual between the left- and 
ight-hand sides of each equation at each iteration to a user-controlled
elative tolerance, set by default to 10 −4 . 

.2 Opacities 

ust absorption and scattering opacities can be set in various ways
n CUDISC . Simple, functional forms that approximate the opacity 
ependence on grain size and wavelength may be used, or opacity
ables generated using packages such as the DSHARP opacity library 
Birnstiel et al. 2018 ) can be read in. If tables are used, CUDISC

an interpolate the opacity data to the user-defined grain sizes 
nd wavelength bins using piecewise-cubic Hermite interpolation 
Fritsch & Carlson 1980 ) in both grain size and wavelength space. In
eneral, more wavelength bins are used for the cheaper stellar heating
alculation in equation ( 45 ) than are used in the FLD scheme. For
onversion between these two wavelength grids, the opacities are 
inned by calculating the Planck mean opacity o v er the range of
avelengths corresponding to each coarse bin – these partial means 

esult in a better estimate of the temperature in optically thin regions
hen a small number of bins are used. 

.3 Radiati v e transfer tests 

o test our temperature solver, we ran modified versions of standard
enchmark tests used in the literature for comparing temperature 
olv ers: the P ascucci et al. ( 2004 ) and Pinte et al. ( 2009 ) tests.
ig. 9 shows the comparison of mid-plane and surface temperatures 
alculated using CUDISC and the Monte Carlo radiative transfer code 
ADMC-3D for the Pinte test, modified to include a distribution of
rain sizes. The density of each grain species i was set by 

i ( R , Z ) = F i 

� tot ( R) √ 

2 πh i ( R) 
exp 

(
− Z 

2 

2 h 

2 
i ( R) 

)
, (50) 

here F i is the fraction of the total surface density � tot distributed
o each grain size and h i the scale height for each grain. The grain-
ize distribution was set according to the MRN (Mathis, Rumpl &
ordsieck 1977 ) distribution with a maximum grain size of 0.5 cm,

nd the total surface density was set according to Pinte et al. ( 2009 )
s 

 tot = � 0 ( R/ au ) −1 . 625 , (51) 

here � 0 was set by the total desired disc mass. The scale height
or each grain size was set as the approximate height reached once
rains are settled (Dubrulle, Morfill & Sterzik 1995 ), 

 i = h g 

√ 

1 

1 + St i /α
, (52) 

here h g is the gas scale height, St i is the grain Stokes number, set
imply in this problem as St i = 0.05 a i ( R /au) where a i is the grain
adius, and α is the gas turbulence parameter, set to 1 × 10 −3 . The
as scale height was set according to Pinte et al. ( 2009 ) as h g =
0( R /100 au) 1.125 au. The opacities of the dust grains were set using
he Birnstiel et al. ( 2018 ) tool for calculating opacities, together
ith the dielectric constants given by Draine ( 2003 ). Scattering was

reated as being isotropic as CUDISC is currently unable to treat
nisotropic scattering. Fig. 9 shows the results for two different total
isc masses (1 × 10 −2 & 10 M ⊕). These masses corresponded to
id-plane optical depths from the star to the observer at 0.81 μm of

7 and 8.7 × 10 4 , respectively. These values are just o v er an order
MNRAS 529, 1524–1541 (2024) 
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M

Figure 9. Comparison of mid-plane and surface temperatures calculated by CUDISC and RADMC-3D for the Pinte et al. ( 2009 ) benchmark adapted to have a 
grain distribution. The x -axis is plotted with units of cylindrical radius minus the inner disc radius (0.1 au). The left and right plots show models with total dust 
masses of 1 × 10 −2 and 10 M ⊕, respectively. 
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f magnitude smaller than the optical depths for the Pinte test at the
ame disc masses, as our use of a grain distribution lowers the o v erall
pacity of the disc due to the presence of large grains. The inner and
uter bounds of the grids were set to (0.1, 400) au in R and (0, π /4)
ad in θ . 150 equally spaced cells were used in θ , whilst the number
f cells in R was adapted depending on the disc mass. For both disc
asses, 200 logarithmically spaced cells were used between 0.15 and

00 au, whilst to minimize the optical depth in cells very close to the
nner edge, we follow the method detailed by Ramsey & Dullemond
 2015 ) and use 40 and 96 logarithmically spaced cells between 0.1
nd 0.15 au for the lower and higher disc masses, respectively. 100
ogarithmically spaced wavelengths between 0.1 and 3000 μm were
sed for stellar heating and binned down to 20 bands for the FLD
alculations. Apart from the binned wavelength bands (which are
ot required), these same grid structures were used in RADMC-3D for
onsistency. Resolution tests were performed, which confirmed that
onvergence was reached for the grid resolutions quoted here. 

We find that our results in the optically thin surface layers are
ccurate to within a few per cent for the entirety of the disc apart
rom the very inner region between 0.1 and 0.2 au. At the mid-plane,
he accuracy varies but remains within ∼20 per cent for most of the
isc – a level of accuracy high enough for our problems. 

 DU ST  G ROW T H  A N D  FRAG MENTATION  

ust coagulation is performed using the method outlined in Brauer,
ullemond & Henning ( 2008 ) but without the vertical integration that

hey use to convert the problem to 1D along the disc mid-plane. In
his method, the Smoluchowski coagulation equation (Smoluchowski
916 ) becomes 

˙k = 

N−1 ∑ 

i= 0 

i ∑ 

j= 0 

ρ̇gain ,ijk −
N−1 ∑ 

i= 0 

ρ̇loss ,ik (53) 

here dots represent time deri v ati ves, N is the total number of dust
pecies, ρk is the density of the k th dust species, and ρ̇gain ,ijk and
˙loss ,ik are the gains in density due to collision products of other grains
through coagulation and fragmentation) and losses in density due to
ollisions between the k th dust species and all others, respectively.
he loss is given by 

˙loss ,ik = m k n i n k K ik ( p coag ,ij + p frag ,ij ) , (54) 
NRAS 529, 1524–1541 (2024) 
here m k is the mass of the k th grain, K ij is referred to as the
ernel, and p coag, ij and p frag, ij are the probabilities of coagulation
nd fragmentation, which follow 

 coag ,ij + p frag ,ij = 1 (55) 

n the absence of bouncing (as assumed here). The form of this kernel
s taken from Birnstiel, Dullemond & Brauer ( 2010 ) and is given by 

 ij = σij �v ij , (56) 

here σ ij is the collision cross-section of the grains and �v ij is the
elativ e v elocity of the grains, giv en by 

v 2 ij = v 2 BM ,ij + v 2 turb ,ij + ( �v lam ,ij ) 
2 , (57) 

here v BM, ij , v turb, ij , and �v lam, ij are the relativ e v elocities due
o Brownian motion, gas turbulence, and laminar dust motion
espectively. Here, �v lam, ij is the root-mean-square relativ e v elocity
etween the dust particles, calculated using the velocities determined
y the dynamical solver. Brownian motion most strongly affects
mall grains and is given by 

 BM ,ij = 

√ 

8 k B T ( m i + m j ) 

πm i m j 

, (58) 

here k B is the Boltzmann constant and T is the disc temperature.
he form of v turb, ij is taken from Ormel & Cuzzi ( 2007 ) and is given
y 

 turb ,ij = 

√ 

αc s V rel ,ij , (59) 

here V rel, ij is the relative velocity between grains scaled to the eddy
elocity 

√ 

αc s , 

 rel ,ij = 

√ 

�V 

2 
I + �V 

2 
II , (60) 

here �V 

2 
I and �V 

2 
II are the relative velocities induced by ‘slow’

lass I and ‘fast’ class II eddies, respecti vely gi ven by equations ( 17 )
nd ( 18 ) in Ormel & Cuzzi ( 2007 ). For computational speed, we use
 quadratic fit to find the Stokes number of the boundary between
lass I and II eddies for a given pair of grains, St ∗ (equation 21 d in
rmel & Cuzzi 2007 ). This fit is accurate to within 2 per cent. 
In a collision, grains can coagulate to form more massive grains or

ragment to produce a remnant grain and a set of fragments that are
istributed o v er lower-mass grains. Combining all of these collision
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roducts gives us the density gain for a dust species as 

˙gain ,ijk = n i n j K ij 

[
p coag ,ij ( m i + m j ) C ijk 

+ p frag ,ij ( m rem ,ij R ijk + m frag ,ij F ijk ) 
]
, (61) 

here C ijk , R ijk , and F ijk are the fractions of the mass associated with
oagulation products, remnant products and fragment products that 
re distributed into bin k , and m rem, ij and m frag, ij are the masses of
emnants and fragments produced by the collision. Note to a v oid
ouble counting, we replace K ij → 

1 
2 K ij when i = j . 

The particle velocities are assumed to follow a Maxwell–
oltzmann distribution around �v ij to calculate the fragmentation 
robability. This is a simplified version of the calculations done 
y Garaud et al. ( 2013 ), who separated the stochastic (turbulent
nd Brownian) motions from the laminar motions; we are therefore 
ssuming that stochastic motions are larger than any laminar relative 
otions. This is also the approach taken by Stammler & Birnstiel

 2022 ). In this way, the fragmentation probability is given by 

 frag ,ij = 

[ 
3 

2 

(
v frag 

�v ij 

)2 

+ 1 

] 
exp 

[ 
−3 

2 

(
v frag 

�v ij 

)2 
] 

. (62) 

he coefficients C ijk , R ijk , and F ijk add the collision products into the
ppropriate mass bins. Since our standard choice of the mass grid is
ogarithmic, these products do not map directly to other mass bins
nd must be split o v er the two bins on either side of the product mass.
efining the integers � ( m ) and u ( m ) as m � ( m ) being the largest mass

uch that m � ( m ) < m and m u ( m ) being the smallest mass such that m u ( m ) 

 m , we may write 

 ijk = 

⎧ ⎨ 

⎩ 

ε( m i + m j ) k = � ( m i + m j ) 
1 − ε( m i + m j ) k = u ( m i + m j ) 
0 otherwise, 

(63) 

nd 

 ijk = 

⎧ ⎨ 

⎩ 

ε( m rem ,ij ) k = � ( m rem ,ij ) 
1 − ε( m rem ,ij ) k = u ( m rem ,ij ) 
0 otherwise, 

(64) 

here 

( m ) = 

m u ( m ) − m 

m u ( m ) − m � ( m ) 
. (65) 

he distribution of fragments, F ijk , is calculated following Rafikov, 
ilsbee & Booth ( 2020 ). First, we assume that the number density
istribution of fragments is given by a power law, 

 ( m )d m ∝ m 

−ηd m, (66) 

here n ( m )d m is the number of particles per unit volume in the mass
ange [ m , m + d m ] and η is the fragmentation parameter that controls
ow fragments are distributed amongst the smaller mass grains; by 
ef ault, we tak e the standard value of 11/6 found in the steady-state
olutions of Dohnanyi ( 1969 ); Tanaka, Inaba & Nakazawa ( 1996 ).
onverting to mass density and inte grating o v er the bins to find the

raction of mass distributed into each bin gives 

 k ( m max ) = 

(
m 

e 
k+ 1 

)2 −η − (m 

e 
k 

)2 −η

m 

2 −η
max −
(
m 

e 
0 

)2 −η
, (67) 

here m max is the mass of the largest fragment and where m 

e 
k+ 1 and

 

e 
k are the upper and lower edges of the k th mass bin. 
We then place each m frag, ij into the bin l by finding the smallest l

uch that m 

e 
l+ 1 > m frag ,ij and setting m max ,ij = m 

e 
l+ 1 . From this we

rrive at F ijk = N k ( m max, ij ). However, F ijk is not used directly. Instead,
e first determine the total amount of fragments falling into each l -
in before distributing them according to N k ( m 

e 
l+ 1 ). This results in
 much more efficient algorithm, as outlined in Rafikov, Silsbee &
ooth ( 2020 ). 
The proportion of mass ending up as fragments is defined as a
ultiple of the mass of the smaller of the two colliding grains.
enoting the more massive particle as the target with mass, m tar and

he smaller as the impactor with mass, m im 

, we define the χ im 

such
hat m frag, ij = min( χ im 

m im 

, m tar ). The remnant mass is then given by 

 rem 

= 

{
m tar − χim 

m im 

for χim 

m im 

< m tar 

0 otherwise , 
(68) 

here χ im 

is a factor controlling the amount of material the impactor
an remo v e relativ e to its mass, usually taken to be unity. The
ragment mass is then given by the total mass of the colliding grains
inus the remnant mass. 
To integrate equation ( 53 ), CUDISC employs the Bogacki- 

hampine 3(2) embedded Runge–Kutta method with error estimation 
Bogacki & Shampine 1989 ) that adaptively calculates the time-step 
equired to meet user-specified relative and absolute tolerances. As 
efault, these are a 1 per cent relative tolerance and an absolute
olerance of 1 × 10 −10 multiplied by the sum o v er all grain densities
n a cell. 

.1 Coagulation tests 

o test our coagulation routine, we produced direct comparisons to 
he 1D disc evolution code DUSTPY using a vertically integrated 
ernel (Birnstiel, Dullemond & Brauer 2010 ), which can be seen
n Fig. 10 . The v ertically inte grated kernel is used to study the
rowth and fragmentation of dust surface densities instead of volume 
ensities and is constructed by dividing the coagulation kernel 

equation 56 ) by 
√ 

2 π( h 

2 
i + h 

2 
j ) , where h i and h j are the scale heights

f the dust grains, assuming a Gaussian vertical density profile. The
elativ e v ertical v elocity is set according to the difference in terminal
ettling velocities of the dust grains in question, taking the dust grain
cale height as its representative height Z above the mid-plane. Each
imulation was run with dynamics turned off, at a single radius in
he disc, with the same initial conditions. The simulations were run
ntil a steady state was reached in the dust grain size distribution. To
ompare the two codes, we plot the mass-grid independent densities 
or each grain, given by 

d ( m ) = m 

∂ � d 

∂ m 

. (69) 
MNRAS 529, 1524–1541 (2024) 
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00 grain species were used for both simulations, as this is compara-
le to the typical amount used for science calculations. The two codes
how strong agreement. The only slight difference at ∼7 × 10 −4 

m is due to different methods used by the two codes to fit the
elativ e turbulent v elocities described in Ormel & Cuzzi ( 2007 ). The
ifference occurs because the approximation used in DUSTPY is not
ontinuous in this region. 

We also ran tests using a constant kernel, the results of which were
onsistent with the analytic solutions. 

 C O D E  STRUCTURE  

he o v erall time evolution is controlled by the CFL condition on
he dust dynamics. Gas, temperature, and coagulation updates are
hen performed when required depending on the evolution time-
cales associated with each physical process. A schematic of the
ode structure can be seen in Fig. 11 . By def ault, gas surf ace density
pdates and subsequent hydrostatic equilibrium calculations are also
erformed at each CFL time-step due to their low computational
ost. For temperature calculations, an update is performed on the first
ime-step of the simulation, and the percentage change with respect
o the initial state is calculated. How often the temperature solver
hould be employed is then controlled by choosing a percentage
olerance for temperature updates that allows the code to calculate the
pproximate time period that can be allowed to elapse before the next
pdate is required; by default, this is set to 0.1 per cent. Ho we ver, this
olerance should be chosen depending on the expected time-scales
f temperature evolution for each specific problem. Coagulation
pdates are managed dif ferently, gi ven that the coagulation routine
s explicit and, as such, performs its own substeps within each global
ime-step (i.e. subcycling). To control how often these updates are
erformed, the final sub-time-step within the coagulation routine
s extracted and used to compare to global time-steps. By default,
he coagulation routine is triggered when one sub-time-step taken
rom the last coagulation step has elapsed in global simulation time;
o we ver, this can be changed by the user. 

 G R A I N  G ROW T H  IN  A  STEADY-STATE  

RANSITION  DISC  

o show a simple science test case and compare it to other works,
e ran simulations of a disc with an inner hole evolving towards
 steady-state, representative of a ‘transition’ disc structure (e.g.
wen 2016 ). To compare to DUSTPY , one simulation was run
ith a vertically isothermal temperature profile set to the mid-
lane temperature adopted by DUSTPY , whilst one had the 2D
emperature solver switched on. We will refer to these simulations
s isothermal and non-isothermal from here on. The gas surface
ensity was set to have a mass within 100 au of 0.017 M � with a
ower-law radial dependence and a sharp exponential cut off at 5 au;
.e. � g = � 0 R 

−1 
AU exp [ −(5 /R AU ) 10 ] . For these tests, the gas surface

ensity was not e volved; ho we ver, the vertical gas density profile
as updated for the non-isothermal test to maintain hydrostatic

quilibrium. Radial gas velocities were set to 0, whilst azimuthal
elocities were updated with the temperature to maintain force
alance. 150 logarithmically-spaced cells were used in R between
 and 20 au, and a total of 150 cells were used in θ between 0 and
/4, with 92 linearly spaced cells between 0 and π /9 with double the

esolution of the remaining linearly spaced 58 cells. This subdivision
as used to enhance the resolution at the mid-plane. The viscosity,
, was set according to Shakura & Sunyaev ( 1973 ) via αc s H . The
arameters chosen for each of the simulations are given in Table 1 .
NRAS 529, 1524–1541 (2024) 
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Table 1. Parameters used for the transition disc simulations detailed in 
Section 7 . 

Parameter Value 

α 10 −3 

μ 2.4 
v frag 100, 1000 cm s −1 

M ∗ 1 M �
R ∗ 1.7 R �
T ∗, eff 4500 K 

M disc 0.017 M �
� 0 250 g cm 

−2 

ρm 1.6 g cm 

−3 

Dust opacities DSHARP mix 
(Birnstiel et al. 2018 ) 
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he stellar radiation was assumed to be a blackbody at the ef fecti ve
emperature given in Table 1 . Note that simulations were run for
ragmentation velocities of 100 and 1000 cm s −1 . For the 100 cm
 

−1 runs, 100 dust species with grain sizes logarithmically spaced 
etween 0.1 μm and 0.5 cm were initialized with a size distribution
ccording to the MRN distribution (Mathis, Rumpl & Nordsieck 
977 ) and spatially distributed as being well-mixed with the gas 
t a local dust-to-gas ratio of 0.01. For the 1000 cm s −1 runs, the
ass grid was adjusted to 135 logarithmically spaced grain sizes 

etween 0.1 μm and 20 cm to account for the larger grains present.
00 and 135 mass bins were used respectively to give m n + 1 / m n =
.38 for both sets of simulations. This choice maintains > 7 bins per
ass decade, a requirement for accuracy in the coagulation routine 

Ohtsuki, Nakagawa & Nakazawa 1990 ). For these calculations, 
hanges in dust composition throughout the disc due to sublimation 
ere neglected. In this section we discuss the 100 cm s −1 runs, whilst

he 1000 cm s −1 runs are discussed in Section 7.2 . 
Fig. 12 shows the 2D dust density profiles of three grain sizes

fter 1 Myr of evolution, at which time the simulations had reached
 steady state, for both the isothermal disc and non-isothermal disc, 
hilst Fig. 13 shows the temperature profile of the non-isothermal 
isc after 1 Myr. Dust settling is apparent from the stratification of
he different grains. The non-isothermal disc also exhibits an increase 
n the proportion of large grains due to the cool interior that allows
or the coagulation of grains up to larger sizes. This is because the
trength of the gas turbulent velocity is proportional to the sound 
peed when assuming a Shakura & Sunyaev ( 1973 ) viscosity, and
educed turbulent velocities allow particles to grow larger before 
eaching the fragmentation limit. The temperature structure of the 
on-isothermal disc also exhibits a super-heated surface layer with 
emperatures greater than the blackbody equilibrium temperature; 
his is due to the small grains that occupy the upper regions of the
isc whose opacities mean they are good absorbers of stellar optical 
hotons, but bad emitters of their own infrared photons (see e.g. 
hiang & Goldreich 1997 ). Abo v e the super-heated layer, the dust
ensities drop to the floor value and the temperature is set by the
pacities given to the gas. By default, these opacities are set as the
ust-to-gas ratio floor value multiplied by the opacities of the smallest 
ust grains, as this leads to a smooth temperature transition in the
pper regions of the disc. In reality, the temperature in the gaseous
tmosphere abo v e the dust disc is controlled by other processes (see
.g. Woitke, Kamp & Thi 2009 ). In principle, these processes can be
ncluded in the framework if necessary. 

Figs 14 and 15 compare the v ertically inte grated dust grain size
istributions for the different simulations at a radius of 6 au and for the
ntire disc, respectively. Vertically integrated mass-grid independent 
ensities were calculated from the volume densities computed by 
UDISC through 

d ( m ) = 

∫ ∞ 

−∞ 

m 

∂ ρd 

∂ m 

d z. (70) 

ig. 15 shows that the spatial distribution of dust is very similar for
ll runs; the maximum grain size is set by fragmentation throughout
he entire disc due to the fairly low choice of 100 cm s −1 as the
ragmentation velocity. The non-isothermal run is slightly more 
eaked at 6 au. This is because the equilibrium spatial distribution
s set by the balance between diffusion and radial drift, and, as
reviously mentioned, the non-isothermal disc has lower turbulence 
nd, therefore, less diffusion of the dust out of the dust trap. Fig. 14
hows that the simulations follow very similar distributions up to 

30 μm, with the non-isothermal run having an o v erall higher
ensity across all grain sizes due to the increased surface density
t the dust trap. The DUSTPY simulation exhibits a much more
rominent trough at 30–40 μm than the CUDISC simulations, and the
pper cut-off in the size distribution differ across the simulations; 
he DUSTPY and non-isothermal runs show similar cut-offs, whilst 
he isothermal run is lower. 

.1 Vertical structure comparison 

o compare the vertical structure, we converted the dust surface 
ensities from DUSTPY into 2D volume densities by calculating the 
iffusion-settling equilibrium in the vertical axis for each dust grain 
see Takeuchi & Lin 2002 ), as might be done when taking a DUSTPY

utput and calculating a radiative transfer simulation. Fig. 16 shows 
he grain-size distributions at 1, 2, and 3 gas scale heights, where the
as scale height is calculated from the mid-plane temperatures. This 
eans the scale heights are the same for the isothermal and DUSTPY

uns, but lower for the non-isothermal run given the cooler interior
emperature. It can now be seen that the upper cut-off grain size for
he isothermal and DUSTPY runs are very similar at the mid-plane
ut differ at increasing height. This arises because the fragmentation 
imit sets the maximum grain size and the fragmentation limit is
roportional to gas density. The density decreases as we mo v e a way
rom the mid-plane in the 2D CUDISC runs, leading to larger Stokes
umbers and, therefore, larger turbulent velocities. This lowers the 
ragmentation threshold on grain size. After vertical integration, this 
eads to the lower cut-off grain size we see in Fig. 14 . For the non-
sothermal simulation, we see a similar result but with the cut-off at
arger sizes due to the cooler interior. After vertical integration, this
eads to the larger maximum grain size seen in Fig. 14 . There are
lso fewer particles at high altitudes for the same reason: the cooler
emperature lowers the scale height of the disc, bringing the dust
loser to the mid-plane. 

The trough in the grain size distribution arises at the particle
ize where turbulent motions start to become a strong source of
elativ e v elocities between particles. The location of the trough is
ependent on the Reynolds number, which represents the strength 
f turbulent motions. In CUDISC , the Reynolds number varies as a
unction of height because it depends on the gas density and sound
peed; ho we ver, in DUSTPY , it is assumed to be equal to the mid-
lane value everywhere. This causes the trough location to vary as a
unction of height in CUDISC , leading to a smearing out of the feature
n the vertically integrated density. 

Fig. 17 shows the density of three different grain sizes, ∼0.5, ∼50,
nd ∼150 μm, as functions of height. The seemingly lower scale
eight of the 150 μm grains in the CUDISC runs when compared to
USTPY is due to the decrease in the maximum grain size allowed by
MNRAS 529, 1524–1541 (2024) 
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Figure 12. Dust profiles for three grain sizes after 1 Myr of evolution for a vertically isothermal disc (left) and a disc with the 2D temperature solver switched 
on (right). These runs were set with v frag = 100 cm s −1 . 

Figure 13. Temperature profile after 1 Myr of evolution for a disc with the 
2D temperature solver switched on and v frag = 100 cm s −1 . 

Figure 14. Vertically integrated mass-grid independent dust densities at a 
radius of 6 au for each v frag = 100 cm s −1 simulation. 
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ragmentation with height in the CUDISC runs discussed earlier. This
ecrease in maximum allowable grain size can be seen by noting that
50 μm is around the peak of the grain size distribution at the mid-
lane in Fig. 16 but that at 1 gas scale height, the peak has mo v ed to
100 μm. This effect is less noticeable for the small grains (i.e. 0.5
m in Fig. 17 ) as the small grain distribution is less affected by the
hange in the upper cut-off grain size. The non-isothermal vertical
rofiles are more condensed than DUSTPY , again due to the cooler
nterior temperatures leading to lower scale heights. 

The vertical profiles found using CUDISC also show increases in the
mount of intermediate size (10–100 μm) grains away from the mid-
lane, with some grain sizes having a higher density at around a gas
cale height than at the mid-plane. To investigate this, we need to look
t how the collision rates vary with height. Fig. 18 shows the collision
ate, Stokes numbers and relative turbulent velocity of grains with
izes 19 and 24 μm as functions of height for the non-isothermal run.
e is the Reynolds number that describes the strength of turbulent
iscosity o v er molecular viscosity, i.e. Re = ν t / νmol , whilst St ∗ is the
tokes number for the boundary between slow and fast eddies (class
 and class II in the terminology used by Ormel & Cuzzi 2007 ) for
 particular particle. Slow eddies have turn-over times longer than
article stopping times and induce large-scale systematic motion in
he grains, whilst fast eddies have turn-over times smaller than the
article stopping times and, therefore, induce stochastic motions in
he particles (V ̈olk et al. 1980 ). Slow eddies do not drive large relative
elocities between similarly sized grains, whereas fast eddies do
Ormel & Cuzzi 2007 ). Close to the mid-plane, the Stokes numbers
f the grains are smaller than the Stokes number associated with
he smallest turbulent eddies (Re −1/2 ), meaning the particles only
xperience slow eddies; therefore, the relative velocities are low. As
e mo v e to higher re gions of the disc, the particle Stokes numbers

re in the intermediate regime, and particles feel the impact of fast
ddies. These stochastic motions lead to larger relative velocities
etween similarly sized particles. The densities of the intermediate-
ized grains are enhanced at these heights due to the increase in
ollision rates in combination with the decrease in maximum grain
ize with height discussed previously. Higher up in the disc, settling
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Figure 15. Dust grain-size distributions as a function of disc radius for each v frag = 100 cm s −1 simulation. The fragmentation limit (given by Birnstiel, Klahr 
& Ercolano 2012 ) is o v erplotted on each distribution for reference. 

Figure 16. Dust grain size distributions at 1, 2, and 3 gas scale heights abo v e the mid-plane for each v frag = 100 cm s −1 simulation. The heights in Z of the 
plotted gas scale heights in each plot are different as they are calculated from the mid-plane temperatures of the CUDISC runs. For the isothermal simulation, this 
is the same as DUSTPY , but for the non-isothermal simulation, the gas scale heights are lower due to the cooler interior of the non-isothermal disc. 

Figure 17. The vertical structure of three different grain sizes at a radius 
of 6 au for the two v frag = 100 cm s −1 CUDISC simulations o v er-plotted on 
the calculated DUSTPY profiles. The gas scale heights are calculated from 

the mid-plane temperatures of the respective CUDISC simulations; as the non- 
isothermal simulation has a cooler mid-plane, the gas scale height is lower in 
the right-hand panel. 
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auses a decrease in dust density that leads to a sharp decrease in
ollisions regardless of large turbulent velocities, counteracting the 
nhancement seen at around one gas scale height. 

.2 Particle sweeping 

hese results differ from those seen by Krijt & Ciesla ( 2016 ), who
ound that small grains become trapped in the disc mid-plane due to
olliding with, and sticking to, larger grains before vertical mixing 
an distribute them higher in the disc. This ‘sweeping-up’ of small
rains by large grains decreases the abundance of small grains at
igh altitudes in regions where particle collision rates at the mid-
lane are high compared to the rate of diffusion due to turbulent
rocesses. A reason why we do not see this effect may be that the
argest grains in our simulations are ∼150 μm – these grains are
ess strongly settled than the cm-sized grains reached in the Krijt &
iesla ( 2016 ) models, lessening the effect that leads to trapping in

he mid-plane. To investigate this, we ran the same set of simulations
ith a higher fragmentation velocity of 1000 cm s −1 . Fig. 19 shows

he v ertically inte grated density as a function of radius and grain size
or this set of simulations, now with the addition of the approximate
rift limit. Both the CUDISC and the DUSTPY simulations show very
imilar dust distributions, with the majority of the disc exhibiting 
rift-limited growth and the largest grains in the dust trap reaching ∼
MNRAS 529, 1524–1541 (2024) 
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M

Figure 18. Collision rates, Stokes numbers, and relative turbulent velocities 
of two different grain sizes, 19 and 24 μm, as a function of height. St ∗ is 
the boundary between class I and class II eddies for a particular particle. Its 
minimum value is equal to the Stokes number of the smallest eddies, Re −1/2 , 
whilst its maximum value is equal to the Stokes number associated with the 
largest eddies (one orbit), 1. 
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 few cm. Turning to the vertical structure, Fig. 20 shows the density
rofiles of three different dust species from each simulation at the
eak of the dust trap ( ∼5.7 au) on the top row and away from the trap
 ∼10 au) on the bottom row. The CUDISC dust profiles in the trap
learly exhibit the trapping of smaller grains around the mid-plane,
s found by Krijt & Ciesla ( 2016 ). Ho we ver, the ef fect is not visible
t 10 au, where the isothermal profiles closely follow the Takeuchi &
NRAS 529, 1524–1541 (2024) 
in ( 2002 ) analytic profiles calculated from the DUSTPY densities,
nd the non-isothermal profiles differ at a few scale heights due to
he hot surface layers that increase the turbulent velocities, lofting
he smaller grains to higher heights. The lack of sweeping at these
adii is to be expected if the cause of the effect is the presence of
arge cm-sized grains, because here the maximum grain size is lower
ue to the disc being in the drift-limited regime. 
Krijt & Ciesla ( 2016 ) found that the effect of sweeping should

e important in regions where the collisional time-scale of grains is
ess than the timescale associated with diffusion to higher regions
f the disc. In terms of disc quantities, this criterion can be written
s α/( � d / � g ) < 1. Fig. 21 shows the radial regions of the discs
n both the low and high fragmentation velocity simulations where
his criterion is satisfied. In the high fragmentation velocity disc, the
ondition is only met around the peak of the dust trap – this concurs
ith our findings, as shown in Fig. 20 . For the low fragmentation
elocity case, the condition is satisfied for the entirety of the disc;
ut we find no evidence of trapping. We suspect this is due to the
ifference in scale height between the largest and smallest grains
n the simulations as discussed abo v e; for the low fragmentation
elocity simulation, the difference between the scale heights of
he 0.5 and 150 μm grains is a factor of ∼2, whilst, for the high
ragmentation velocity simulation, the difference in scale height
etween the 0.5 μm and 1 cm grains is a factor of ∼80. In the
ow fragmentation velocity case, this means that any sweeping by
he largest grains does not manifest itself as an appreciable change in
he vertical density distribution of the smaller grains, as the sweeping
rains and swept-up grains have similar scale heights. The effect is
oticeable, ho we ver, in the high fragmentation velocity case, where
he largest grains are much more settled than the smallest grains. 

.3 Diffusion-settling-coagulation equilibrium 

hese results indicate that the diffusion-settling equilibrium profiles
Takeuchi & Lin 2002 ) for the dust vertical structure do not
ully describe the dust population in regions where collisions are
mportant. In these regions, we suspect that a diffusion-settling-
oagulation equilibrium is established; the form of which varies
epending on the fragmentation v elocity. F or a low fragmentation
elocity of 100 cm s −1 , we find enhancements of intermediate-sized
ust grains at ∼ one gas scale height, whilst for a high fragmentation
elocity of 1000 cm s −1 , we find that large grains sweeping up smaller
rains in the dust trap leads to the enhancement of small grains at
he disc mid-plane. These findings may have implications for the
nalysis of observed disc spectral energy distributions (SEDs) as
ne must assume a disc structure to estimate the emission layers of
ifferent-sized dust grains (see e.g. D’Alessio et al. 2006 ). Scattered
ight images could also be affected, as mid-plane densities calculated
rom the observed small grain distribution at large disc heights are
ependent on the assumed vertical structure of said grains. Ho we ver,
ur results also demonstrate that if one only cares about o v erall,
eneral, disc evolution and not specific problems that require a
esolv ed v ertical dimension (e.g. winds or temperature instabilities
aused by vertical structure), the 1D results from DUSTPY are a good
pproximation to the full 2D problem. 

 SUMMARY  

UDISC is a new protoplanetary disc code that aims to allow long
ime-scale calculations of discs with self-consistently calculated dy-
amics, thermodynamics, and dust grain growth and fragmentation.
odelling these physical processes alongside one another allows
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Figure 19. Dust grain size distributions as a function of disc radius for each v frag = 1000 cm s −1 simulation. The fragmentation and drift limits (given by 
Birnstiel, Klahr & Ercolano 2012 ) are o v erplotted for reference in solid white and dashed white, respectively. 

Figure 20. The vertical structure of three different grain sizes for the v frag = 

1000 cm s −1 simulations. The top and bottom ro ws sho w the profiles within 
the dust trap ( ∼5.7 au), and away from the dust trap ( ∼10 au), respectively. 
The density of the 0.5 cm grain is at the floor value at 10 au in all of 
the simulations due to being abo v e the drift limit. The gas scale heights 
are calculated from the mid-plane temperatures of the respective CUDISC 

simulations. 

Figure 21. The regions of the disc within which the Krijt & Ciesla ( 2016 ) 
criterion for mid-plane trapping of small grains is satisfied, shown as hatched 
regions, for both the low and high fragmentation velocity CUDISC simulations. 
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s to answer important problems in disc physics, such as structure
ormation due to instabilities and dust removal. With the use of GPU
cceleration, CUDISC enables simulations to run for large fractions 
f the disc lifetime, removing the need for running simplified secular
odels. We have shown that 2D structure affects the dust spatial and

rain size distributions even for simple systems, such as dust trapped
n the pressure bump of a transition disc. This may be important when
nalysing SEDs and scattered light images, given the need to assume
ome model of grain vertical structure. We also find that for studying
 v erall disc evolution, 1D models can quite accurately concur with
D models. More features can and will be added to the code as we
ontinue to develop it, such as more detailed dust microphysics and
ce-vapour chemistry, making many other problems in disc physics 
ble to be investigated through the use of CUDISC . 
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PPEN D IX:  D IFFUSION  MATRIX  

he full form of ˜ D kl is found by writing out ˜ F σ (equation 21 ) for
ach interface σ about cell i , j and summing all terms that apply to
ell k , l in the 3 × 3 stencil of cells centred on cell i , j . For this
 x ercise, we will change cell references from the form i , j to the
ingle letter form k , for ease of reading. As an example, referring to
ig. 3 , when calculating the fluxes over the interfaces σ and λ, ˜ F σ

nd ˜ F λ, respectively, according to equation ( 25 ) we find 

˜ 
 σ = −D k w kσ [ w lσ c kl ( u l − u k ) + w mτ c km 

( u m 

− u k ) ] 

+ D l w lσ

[
w kσ c lk ( u k − u l ) + w pνc lp ( u p − u l ) 

]
, (A1) 
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
˜ 
 λ = −D a w aλ

[
w lλc al ( u l − u a ) + w mβc am 

( u m 

− u k ) 
]

+ D l w lλ [ w aλc la ( u l − u a ) + w bεc lb ( u b − u l ) ] , (A2) 

here ν, β, and ε are the interfaces between cells l and p ; a and m ;
nd l and b , respectively. 

Taking for example cell m , the value in the diffusion matrix ˜ D m 

s therefore given by the sum of all terms that are multiplied by u m ,
ultiplied by their respective interface areas A , i.e. 

˜ 
 m 

= −D k w kσ w mτ c km 

A σ − D a w aλw mβc am 

A λ. (A3) 
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