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ABSTRACT

We present a new two-dimensional (2D) axisymmetric code, CUDISC, for studying protoplanetary discs, focusing on the self-
consistent calculation of dust dynamics, grain-size distribution and disc temperature. Self-consistently studying these physical
processes is essential for many disc problems, such as structure formation and dust removal, given that the processes heavily
depend on one another. To follow the evolution over substantial fractions of the disc lifetime, CUDISC uses the CUDA language and
libraries to speed up the code through GPU acceleration. CUDISC employs a second-order finite-volume Godonuv solver for dust
dynamics, solves the Smoluchowski equation for dust growth, and calculates radiative transfer using a multifrequency hybrid
ray-tracing/flux-limited-diffusion method. We benchmark our code against current state-of-the-art codes. Through studying
steady-state problems, we find that including 2D structure reveals that when collisions are important, the dust vertical structure
appears to reach a diffusion-settling-coagulation equilibrium that can differ substantially from standard models that ignore
coagulation. For low fragmentation velocities, we find an enhancement of intermediate-sized dust grains at heights of ~1 gas
scale height due to the variation in collision rates with height, and for large fragmentation velocities, we find an enhancement
of small grains around the disc mid-plane due to collisional ‘sweeping’ of small grains by large grains. These results could be
important for the analysis of disc spectral energy distributions or scattered light images, given these observables are sensitive to

the vertical grain distribution.
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1 INTRODUCTION

The past few decades have seen the study of young planetary systems,
and their formation environments become a rapidly evolving field
with major interest within the astrophysics community. This is largely
due to an unprecedented wealth of observations made possible
by recent observatories such as ALMA (Wootten & Thompson
2009) and the continual discovery of diverse exoplanetary systems
(e.g. Mayor et al. 2011; Batalha et al. 2013; Winn & Fabrycky
2015; Madhusudhan 2019; Zhu & Dong 2021). Protoplanetary
discs, the discs of gas and dust that form around young stars,
are the birthplace of such planetary systems and have, therefore,
been subject to extensive theoretical interest. Various questions
relating to their nature have arisen in recent years that remain at
least partly unanswered by current theoretical models. Examples of
such problems include the nature of the mechanisms behind ‘sub-
structure’ formation in protoplanetary discs, as observations have
shown these objects to exhibit diverse features from axisymmetric
rings and gaps to non-axisymmetric arcs (Andrews 2020; Bae et al.
2022); the connection between the spatial distribution and evolution
of chemical species in discs to the eventual compositions of planetary
cores and atmospheres (Oberg, Murray-Clay & Bergin 2011; Booth
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et al. 2017; Madhusudhan 2019; Eistrup 2023); and mechanisms for
the dispersal of protoplanetary discs after their observed lifetimes of
~ a few Myr (Ercolano & Pascucci 2017; Owen & Kollmeier 2019).

Exploring these problems requires sophisticated numerical mod-
elling, given the plethora of physical processes that govern the
structure and evolution of protoplanetary discs. Our understanding
of discs has primarily been advanced through the use of state-of-the-
art codes for studying the dynamics and thermodynamics of the gas
and dust that comprise the disc material. Two-dimensional (2D) and
three-dimensional (3D) simulations have typically been used to study
discs on short, dynamical time-scales, given their computational
cost, whilst one-dimensional (1D) models have often been used to
study discs on longer, secular time-scales. Work done using these
models has hugely advanced our understanding of protoplanetary
discs; however, it has become evident that for certain problems,
the interplay of each of the facets of disc physics — dynamics,
thermodynamics and the dust size distribution — must be studied
self-consistently over secular time-scales. The 1D code DUSTPY
(Stammler & Birnstiel 2022) is the current state of the art for studying
problems of this nature; however, it cannot be used if the problem
depends on the intricacies of the disc vertical structure. Examples
of such problems include temperature instabilities (Watanabe & Lin
2008; Wu & Lithwick 2021; Fuksman & Klahr 2022) where 2D
temperature solvers have been used but dust dynamics and growth
neglected, snow line instabilities (Owen 2020) where 1D temperature
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Figure 1. The computational grid used in cuDIsC. Cell boundaries exist
along lines of constant radius and constant angle above the mid-plane, 6.

and dynamics solvers have been used, and problems relating to disc
dispersal such as the removal of dust from discs via radiation pressure
(Owen & Kollmeier 2019; Krumholz, Ireland & Kratter 2020),
which has been studied with both 1D and 2D solvers but without
dust growth/fragmentation, or entrainment in photoevaporative or
magnetic winds (Franz et al. 2020; Booth & Clarke 2021; Hutchison
& Clarke 2021; Rodenkirch & Dullemond 2022), again with 1D and
2D approaches but with dust grain growth neglected.

This paper presents a new code, CUDISC, that includes 2D
multifluid dust dynamics coupled to both 2D temperature evolution
and 1D secular gas evolution. Dust and gas can be evolved, whilst
simultaneously evolving the dust grain-size distribution and the re-
sulting temperature structure. This self-consistent calculation means
fewer assumptions about the system’s state for a particular scenario
must be made. The code uses a 2D grid in the poloidal plane, meaning
that assumptions about vertical structure in the dust do not have to be
made as the structure can be calculated self-consistently. In order to
allow evolution calculations to be run for significant fractions of the
typical disc lifetime (~ Myr) in computationally feasible time-scales,
cuDisc utilizes GPU acceleration via the employment of the CUDA
language and libraries. In the rest of this paper, Sections 2—5 outline
the numerical methods used by cuDISC, whilst Section 6 outlines
the code structure and Section 7 shows some example science
calculations made using CUDISC where we study grain growth in
a steady-state transition disc.

2 GRID STRUCTURE

cuDiscis a 2D code in the poloidal plane, with axisymmetry adopted
about the disc’s rotation axis. The grid is structured in a fashion
that makes certain features of disc physics easier to calculate; cell
interfaces are defined along lines of constant polar angle above the
mid-plane, 0, and constant cylindrical radius, R, as shown in Fig. 1.
This means that the basis vectors of the grid coordinate system
are spherical radius, 7, and cylindrical height, Z, although vector
quantities (such as velocity) are dealt with in the standard cylindrical
components. This grid structure allows for ray-tracing from the
central star for calculating quantities such as optical depth whilst
also making calculations that require vertical integration easy, such
as computing hydrostatic equilibrium. Cell spacing can be arbitrary
in principle, but the standard implementation is logarithmic in R with
a power law in 8. The individual cell structure is shown in Fig. 2.
Physical quantities are stored at cell centres, and edge coordinates
are required for the reconstruction of the cell-centred quantities to
the cell interfaces for the advection routine (see later sections). Cell
volumes, V;;, and interface areas Af ; and A? ; are given by

Vij= %d(R3)id(tan9)j’ M

A, = (R’ d(tan6);, 2
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Figure 2. The cell structure and indexing implemented in cuDISC. The
indices in the R and Z directions are i and j, respectively.
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These geometric factors are written in such a way as to avoid
divergence as R — 0. Explicitly, d(R"); = (R}, )" — (R})" and
d(tan@); = tan 9; 4 — tan 9;? . The Z coordinates are then given
by Z;;=Ritan6/; and Z;; = R{tan6;;. Due to the non-
orthogonality of the grid coordinate bases, when calculating fluxes
through interfaces, the dot-product of velocity with the interface nor-
mals must be calculated to only account for the velocity component
orthogonal to the interface.

At each edge of the active cell domain, ghost cells are employed
in order to set the boundary conditions. The conditions along each
of the four boundaries can be set independently as either: outflow,
where ghost cell quantities are set by the values in the first adjacent
active cell; zero, where ghost cell quantities are set to floor values;
or closed, where ghost cell quantities are set by the values in the
adjacent active cell but with zero flux over the boundary. The default
set-up assumes vertical symmetry in the disc about the mid-plane and,
therefore, uses a minimum 6 of 0 with a closed boundary condition
and outflow boundary conditions for the three other boundaries.

3 DYNAMICS SOLVER

In cuDiIsc, the dust species are evolved by treating each grain size as
a pressureless fluid and solving their associated advection—diffusion
equations. We employ a second-order finite-volume Godonuv
scheme for solving the set of equations (Stone & Gardiner 2009).
We write our equations in terms of vector fields of the conserved
quantities, @, their associated fluxes, F(Q), and any source terms,
S. For our system, these fields are given by

Pi
PiVR,i
L= , 4
Q; pives R )
PiVz,i

where p; and v; = (vg;, vy, Vz;) are the volume density and
velocity of dust species i, respectively,

0iv;i + Fi;
vR.i(0ivi + Faisr,i)
Fo— : : ’ 5
' vg.i R(0iv; + Faitr,i) ®)

vz,i(0ivi + Fais,i)
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where the two terms for each conserved quantity are the fluxes
generated by advection, p;v;, and diffusion, F g ;,

0
pi”;j
S, = R = — 0iPR + faragir + fextir ; (©6)
fdrag,i,q}

_piQZZ + fdrag‘i,Z + fexLi,Z
where € is the Keplerian angular velocity, /G M, /(R* + Z?)3/2,

and fg,, and f., are source terms that arise due to dust-gas
drag and any external forces (e.g. radiation pressure). We formulate
diffusion in the momentum equations as the diffusive flux acting
to diffuse the advective quantities. We do not currently consider
the other terms discussed in recent works, such as Huang & Bai
(2022); these being the advection of the diffusive flux and the
time-dependent diffusive flux. Diffusion related terms arise out of
modelling turbulence by writing the density and velocity components
as a short-term average plus a short-term fluctuation, then averaging
the resulting equations over the short term, keeping any terms that
include correlations between fluctuations (Reynolds averaging, see
e.g. Cuzzi, Dobrovolskis & Champney 1993). Note that we solve
an azimuthal equation even though all ¢ derivatives are zero by
axisymmetry, as the advection of angular momentum throughout the
(R, Z) plane could be important in some problems; this is sometimes
referred to as 2.5D. Also, note that we write this equation in angular
momentum conserving form as this removes the Coriolis force
term, which has been shown to lead to loss of angular momentum
conservation (see e.g. Kley 1998).

The quantities, Q, are updated by solving the advection—diffusion
equations given by
00

—+V-F=S8§. 7
o T 0

We solve this set of equations in two stages via operator splitting:
a transport step where the advection—diffusion equations are solved
as homogeneous hyperbolic equations and a source step where the
quantities are updated through the source terms. For the transport
step, the equations are integrated over volume to find the flux-
conservative form. Discretizing this gives the equation used to evolve
a quantity Q in cell i, j to time n + 1,
At nJrl

ot =0, — Vo EA ®)
where (FA),; is the total area-weighted-flux exiting through the
interfaces between cell i, j and adjacent cells, given by

(FA),; = Fz’il,inRJrl,j - Fil,ejAfj (€
+F AL o — FAL

The time index of n + % indicates that the fluxes should be calculated
at the half time-step to represent the average flux over the full time-
step At. Following Stone & Gardiner (2009), we calculate these
half-time fluxes in the following manner:

(i) The primitive quantities, (p;, v;), are reconstructed at both sides
of the cell interfaces from the conserved quantities at cell centres
using a first-order donor cell method and a Riemann solver is used to
calculate first-order advective fluxes through each interface at time
n.

(i) The diffusive fluxes at each interface at time n are calculated
from the cell-centred conserved quantities and added to the advective
fluxes to get the total area-weighted flux exiting each cell at time n,
(FA) ;.
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(iii) The conserved quantities are advanced by a half time-step
using these fluxes:

”Jr% n 1 A[ n
0/’ =0 — EW/_(FA),.J, (10)

(iv) These half-updated quantities are given a half time-step source
update (described in detail in Section 3.1).

(v) Primitive quantities at time n + % are now reconstructed from
these half-updated quantities using a second-order piecewise linear
method with a modified van Leer limiter detailed by Mignone (2014).
These half-time primitive quantities are used to calculate second-
order advective fluxes through each interface at time n 4 %

(vi) The diffusive fluxes at each interface at time n + % are
calculated from the half-updated cell-centred quantities and added to

the second-order advective fluxes to get the total area-weighted flux
el
exiting each cell at time n + %, (FA)I.‘J;2 .

In steps (i) and (v), where the advective fluxes are calculated,
the Riemann problem has to be solved at the cell interfaces. For
pressureless fluids, collisions between fluids with different velocities
lead to ‘delta shocks’, which travel at the Roe-averaged velocity (Roe

1981),

\/Evl 'ﬁ+\/prvr <A
Vor+ /or

where r and [/ denote the values of the reconstructed quantities to
the left and right of the interface in question. The reconstructed
velocities are dotted with the interface normal, i, to find the velocity
orthogonal to each interface; this is important given that we use a
non-orthogonal grid. Numerically, we capture this process according
to Leveque (2004) by taking the upwind flux depending on the sign
of the Roe-averaged velocity:

) an

D=

Ovr - if 9> 0
o i ifo <0
Fav = %(lel A+ Qv - R) ifD=0 (12)
0 ifv,-A<0<v, -0,

The diffusive fluxes are then added to these advective fluxes to find
the total flux.

3.1 Dust source terms and diffusion

The source terms given by equation (6) include curvature terms,
gravitational terms, drag terms, and any other external forces. Drag
is caused by dust—gas interactions and is given by

0
fdrag = _;(v - vg)v (]3)

where v, is the gas velocity and ; is the stopping time that conveys
how well-coupled dust grains are to the gas flow; short stopping times
imply well-coupled dust grains that are entrained in the gas flow. For
the problems that we intend to study using CUDISC, the largest dust
grains have radii ~cm size, meaning that we are in the regime of
Epstein drag. This gives the stopping time as

PR (14)

s
PgVth

where p,, is the dust grain internal density, s is the dust grain radius,
pg is the gas mass density, and vy, is the thermal velocity of the
gas, usually given by (8/7)%c,, where ¢, is the isothermal gas sound
speed.

Including source term updates, the full time-step is given by
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(viii) P} = <pi’j, it ot — Ug.i,j)),
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(iv) P,-Yj = pjj’;, v

L] At + ts ij

where Q and P represent conserved quantities and primitive
quantities, respectively, Sex, is the vector of source terms that
are solved explicitly (curvature, gravity, and external forces) and
quantities with an asterisk (%) or a dagger (}) signify intermediate
states. Steps (iii) and (vii) signify conversions of conserved quantities
to primitive quantities. Steps (iv) and (viii) are the drag updates to the
primitive velocities; these are solved implicitly, as if they were solved
explicitly, then short stopping times would prohibitively limit the
length of an explicit time-step. As the implicit update only includes
the drag terms, the Jacobian for the implicit system of equations is
linear and diagonal, meaning the solution has a simple, exact analytic
form. Boundary conditions are set before step (i) and again after step
>iv).

The diffusive mass flux discussed in the previous section arises
due to the diffusion of dust grains via turbulent gas motions. This
diffusive velocity is calculated in a way analogous to molecular
diffusion (Clarke & Pringle 1988; Takeuchi & Lin 2002), where the
diffusive flux is given by

PV [ Pi
Fag; = — 2=V (*l) , (15)
. s

where v is the kinematic viscosity of the disc, and Sc; is the Schmidt
number, a dimensionless number that represents the strength of the
dust-gas coupling for a given grain. In the calculations presented in
this paper, Sc; is set to unity for all dust species; however, the code
allows any choice for the form of Sc;, which may vary arbitrarily
with both position and dust properties. Given that we formulate the
diffusion in the momentum equations as the diffusive flux acting to
diffuse the advective quantities, the diffusive momentum flux at an
interface is given by F g; multiplied by the left or right advective
velocity depending on the sign of the diffusive flux itself,

if Fdiff >0

Faieevy -
n . 1
-ii  otherwise. (16)

Fdiff,mom - {Fd‘ffv
iff Ur

These diffusive fluxes are then added to the advective fluxes
defined earlier to give the total flux.

The time interval Ar for each time-step is determined from the
Courant-Friedrichs—Lewy (CFL; Courant, Friedrichs & Lewy 1928)
condition:

AtcpL = min (A3, A& 17

where A& & At3T are the CFL time-steps for advection and
diffusion, respectively, given by

Al = C*"min (|dR; /vy, ;1. 1dZ: /vy, ;1) . (18)
where the minimum is over all cells i, j and species s, and

At&l = % min (|(dR;)?/(vi,;/Seo)l, IdZi ;) /(v ;/Se)) . (19)
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Figure 3. The cell stencil used for calculating diffusive fluxes over interfaces.
The cells are shown as orthogonal for illustrative ease. The total flux F,
through the interface o that connects cells k and [ is calculated using the
one-sided fluxes, Fi, and Fj,. The same can be said for the total flux £, for
interface A but with the one-sided fluxes F,;; and F;.. The cell colours indicate
which cells are used to construct the one-sided fluxes: cells with yellow for
Fs, cyan for Fy,, green for Fy,, and red for Fy,.

Both time-steps have associated Courant numbers, cdv & cdiff,
which are safety factors set by default to 0.4 and 0.2, respectively.

3.2 Diffusion

For both the dust dynamics and the radiative diffusion problem
presented in Section 4, we need to calculate diffusive fluxes. In
general, a diffusive flux can be written as

F = —DVu, (20)

where D is the diffusion constant and u is the quantity being diffused.

Calculating the diffusive flux requires care in CUDISC given the
non-orthogonal coordinate system in use. This is because using the
standard difference formulae would give gradients of u that are not
perpendicular to the interface in question and therefore using them
directly would provide incorrect fluxes across the interfaces. To deal
with this, we need a method that calculates the 2D gradient of u
that we can dot-product with the interface normal to find the flux
across the interface. To this end, we use the second-order accurate,
conservative method detailed by Wu, Gao & Dai (2012) for diffusion
problems on arbitrary mesh structures. Here, we present this method
specifically for our mesh.

To compute the gradients of u within a cell, Wu et al. introduce
interpolation points on the cell interfaces. The location of these
interpolation points and accompanying values of u are determined
through the conditions (i) # must be continuous everywhere and (ii)
the flux across the interface must be continuous, i.e. Dii - Vu must
be continuous at the interface, 7i being the interface normal vector.
In this paper, we describe how these interpolation points are found;
for readers interested in why these criteria lead to the interpolation
points, we refer to the appendix of Wu, Gao & Dai (2012). The flux
at an interface is built up from one-sided fluxes on each side of an
interface. Take a radial interface o between cells k and / (see Fig. 3).
The net flux across the face from the perspective of cell k is given by

Fs = Wio Fro — Wio Flo, (21)

where wy, and w, are weights assigned to the one-sided flux
contributions from the cells on each side of the interface, F, and F),,
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Cell m

Figure 4. The vector decomposition used for the cell interface normals when
calculating diffusive fluxes. Green vectors show those that point from cell
centre k to the points on the interface o that are closest to cell centres k and
1. The red vector vy is then constructed via a weighted sum of the two green
vectors. v, is constructed from vectors for the interface between cells k and
m but are not shown for simplicity.

where these fluxes are directed out of cells /I across the interface o .
The weights are defined as

Mko

Wie = ——»
’ Mko + Mo

Wio + Wi = 17 (22)

where pr, = d[ﬁ—‘k’, di» being the shortest (perpendicular) distance
between the cell centre and the plane of the interface o and Dy the
diffusion constant associated with cell k.

To include all flux orthogonal to the interface o, the one-sided
flux Fy, is calculated by decomposing the interface normal vector
n, into two vectors, vy and vy, that point from cell centre k to
the interpolation points on the cell interface in question and the
clockwise-adjacent interface that joins cell k to cell m, as shown in
Fig. 4. To find the interpolation point v;; we first find two vectors that
connect cell centre k to the points on the interface that are closest to
cell centres k and /, shown as dvy,; ; and dvy, , in Fig. 4. vy is then
constructed using a weighted sum of dvy; ; and dvy, »,

Vi = Wio dViy,1 + Wi dvy 2. (23)

The vector vy, is constructed similarly but with vectors and
weights associated with interface t that connects cells k and m.
The interface normal is then decomposed into these two vectors by
solving:

CuVi + CkmVim = Ro 24

for the coefficients ¢y, and cy,,,. These coefficients allow us to calculate
the gradients across the interface without explicitly calculating the
values of u at the interpolation points. The one-sided flux F} is then
calculated via the weighted sum of these gradients:

Fro = =Dy [wig ety — ur) + Wi Cm (U — ug)] . (25)

To calculate the net flux 1:"(, from equation (21), Fy, is constructed
similarly to Fy, but from the perspective of cell /. For polar/height
interfaces such as interface A in Fig. 3, the process is the same except
that the stencil for constructing one-sided fluxes uses the interface
in question and the anti-clockwise adjacent interface as opposed to
clockwise.

MNRAS 529, 1524-1541 (2024)

3.3 Gas

In cuDisc, the 1D viscous evolution equation for gas surface density
is solved, and the 2D gas distribution is calculated through hydrostatic
equilibrium. Currently, there is no feedback from the dust to the
gas; however, it may be added in the future. The viscous evolution
equation is given by (Pringle 1981)

0x 30 0
Ttg = 23R (Rl/zﬁ(ze”%zg)> +S,, (26)
where S, represents any source terms (e.g. mass-loss via photoevap-
orative winds). The equation is solved in two stages via operator
splitting; in the first stage, the first term on the right-hand side is
solved as a diffusion problem using an explicit forward-time-centred-
spatial scheme, and in the second stage, the source terms are solved
using explicit Eulerian updates.

The equations we use to calculate the gas velocities are found
from viscous theory (see e.g. Urpin 1984; Balbus & Papaloizou
1999), written in the coordinate grid basis of CUDISC, (7, 2). These
velocities are needed explicitly for their influence on dust dynamics
— they are not used for evolving the gas. Under the assumption that
vz <K Vg, Vg (justified for thin discs as vz ~ (H/R)vg, where H is the
gas scale height; see Urpin 1984), we find

GM, cos* 0 LT oP . ,OP 12 o
Vp = |——— — | — — 81 _ s
¢ r Py \ OF 0Z
) v, ]!
vg = rcosf { (;:¢) —rsin@a—vz‘b}
1 6v¢
—[V-Tly —Vz.cyi— ¢, 28
X{pg[ ]4) UZ,ylaZ} ( )

where the derivatives are performed along the grid directions of
spherical r and cylindrical Z. vz, .y is the physical velocity in the Z-
direction. We do not include a form for the vertical velocity due
to viscosity here as it depends on assumptions made about the
turbulence model (see e.g. Philippov & Rafikov 2017); it can also be
governed by other processes such as disc winds. For these reasons,
by default (and for the tests in this paper) the vertical gas velocity
is assumed to be 0. Different models of vertical gas motions can be
included depending on the problem in question. € is the angle above
the disc mid-plane, P is the gas pressure, given by the ideal gas law,
and T is the viscous stress tensor. To calculate [V - T'],, the r¢p and
Z¢ components of T are required. Assuming a Navier—Stokes-like
viscosity, these have the forms:

gV 0 /vy . Ovy
7% =" |r—(2)—sing—|, 29
cos2 6 {r or ( r ) Y 29)
ov 0 (v
720 = P27 159 g S (Y2 30
cos26 |0z "V or ( r ) ’ (30)

and the tensor divergence in the ¢ direction is explicitly written as

o, - 12T | ar%
r3  or 0Z

These derivatives are calculated using finite differencing on the

grid variables to calculate cell-centred values for the gas velocities.

(3N

3.4 Kinematic viscosity

The kinematic viscosity v is important for governing the gas’
evolution and dust diffusion. It is often parametrized following
Shakura & Sunyaev (1973) as ac,H where H is the gas scale height,
and « is a constant that is used to control the strength of the effective
viscosity generated by turbulent processes. With a constant ¢, this
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assumes that the viscosity varies with temperature changes in the disc.
However, o need not be assumed constant; it can depend on other
quantities such as ionization fraction or magnetic field strength (see
e.g. Jankovicetal. 2021). A different way to parametrize the viscosity
that removes this variation with the temperature profile calculated by
cuDIsCis v = vo(R/Ry), where the linear dependence on radius comes
from assuming a mid-plane temperature profile proportional to R~'/2,
Both methods of setting the viscosity are available in cUDISC. By
default, vy is calculated assuming a mid-plane temperature of 100 K
at 1 au, but the user can edit this.

3.5 Hydrostatic equilibrium

The 2D gas density structure is calculated by solving the hydrostatic
equilibrium equation,

dp GM

—=——p,Z. (32)
dZ ( R2 + Z2) 5

First, we rewrite the equation using the ideal gas law to obtain

GM, 1
S d<;), (33)

where we have utilized ZdZ/r* = dr/r*> = —d(1/r), r being the
spherical radius, and ¢y is the isothermal sound speed. We then take
the exponential of equation (33) and in each cell i, j calculate

1 1 1
GM<7> Qf— >} (34)
¢ /i \Tij  Tij-1

where <i2> is the average reciprocal of the sound speed squared,
/i

(1) =[]
S) =5z t2 :
c? ij 2 Cij  Csij-1

The pressure in each cell relative to the cell at j = 0 is then found by
multiplicatively scanning over Z,

P P

e I (36)
Pij=o oy Pk
This method enforces positivity of the calculated pressure. The

pressure is then converted to density and normalized via the gas
surface density,

X, i(RAR);
= ———w; ,
Pg.i,j S Vi J

where w; ; is the unnormalized density and (RdR); is calculated as
(RAR); = 3d(R?); = 1[(R,1)* — (RO

dlog P =

P

Pij

= exp

(37)

3.6 Dynamics tests

To demonstrate that the code is second-order accurate, we now show
test problems run using 2D Gaussian pulses with the analytic form

_u—%mﬁ+@—nwﬁ)

4Dt (38)

A
px,y, )= T e

where x,(t) = xo + v(t — 1) with an equivalent expression for
¥p- For these tests, we used the following parameter choices: A =
D=1,x =30,y0=0,% =01, v, =35, and v, = 2. These
pulses were advected in both R- and Z-directions whilst undergoing
diffusion from ¢ = 7y to t = 1. Cells were logarithmically-spaced in R
between 10 and 50 and linearly-spaced in 6 between —x/6 and /6.
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Figure 5. Advection—diffusion of a 2D Gaussian pulse using the dynamics
routine in CUDISC. The left and right panels show the initial and final states,
respectively. This simulation had a resolution of 512 x 512 cells.
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Figure 6. The L2 error norm for advection—diffusion of a 2D Gaussian pulse
using the dynamics routine in CUDISC. Slopes of 1/N and 1/N?, where the 2D
grid has size N x N, are shown for reference.

Cartesian areas and volumes were used, and the boundaries were set
to outflow conditions. An example run can be seen in Fig. 5. The L2

erTor norm, \/Zij (0ij — Pan,ij)?/(N x N), was calculated using the

analytic solution, p,, compared to the computed solution, p. Fig. 6
shows how this error decreases with number of cells Non a 2D N x
N grid. As shown, the L2 error is proportional to 1/N?, demonstrating
that our method is second-order accurate.

To test our code on disc-related problems, we compared simulated
steady-state results to analytic results given by Takeuchi & Lin
(2002). The gas was initialized using their analytic density and
velocity profiles. Three dust species (10 pm, 100 pm, and 1 mm) were
initialized as being well-mixed with the gas (i.e. the same density
and velocity profiles) with a standard dust-to-gas ratio of 0.01 applied
to the density. In order to study vertical settling, radial fluxes were
set to O for comparison with Takeuchi & Lin’s analytic profiles,
and the code was run for 100 000 yr to ensure a steady state in the
dust, as the settling timescale for the smallest grains in this set-up was
90000 yr. 300 cells were used in the vertical dimension. Fig. 7 shows
the computed equilibrium dust-to-gas profiles of the dust species
compared to the analytic solutions, showing strong agreement. A
small discrepancy is visible for the smallest grains at large Z; this is
due to our inclusion of the advection of momentum and because we
do not make a thin disc approximation in the gravitational potential
(Takeuchi & Lin invoke Z < <R to simplify the problem). With radial
velocities turned on, we also match the analytic profiles for radial
velocity as a function of height, as shown in Fig. 8.
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Figure 7. Steady-state dust-to-gas ratios as a function of height above the
disc mid-plane (in units of the gas scale height, h,) at a radius of 10 au for
three dust species. The analytic solutions given by Takeuchi & Lin (2002) are
overplotted for comparison.
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Figure 8. Steady-state radial velocities as a function of height above the
disc mid-plane (in units of the gas scale height, h,) at a radius of 10 au for
three dust species. The analytic solutions given by Takeuchi & Lin (2002) are
overplotted for comparison.

4 TEMPERATURE SOLVER

Radiative transfer is a complex problem, and various numerical
methods can be employed whose results differ depending on the
weights attributed to accuracy versus computation time. For certain
problems, calculated temperatures may need to be highly accurate
and need not evolve (e.g. comparing line fluxes to observations),
allowing long computation times to be a viable option. Other
problems may not require such high accuracy in the calculation
of temperature but instead may require fast calculation to assess the
thermal evolution of a system.

Since the aim of CUDISC is to study the evolution of protoplanetary
discs over long timescales (~10° yr or longer), we require a fast
temperature solver. For this reason, our method uses a hybrid of
ray-tracing and multiband flux-limited diffusion as opposed to exact
techniques such as Monte Carlo. We benchmark our solver against
RADMC-3D (Dullemond et al. 2012), a Monte Carlo code that requires
longer computation times for more accurate results.
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4.1 Hybrid ray-tracing + multiband flux-limited diffusion

In cuDisc, we use a hybrid radiative transfer method that employs
ray-tracing from the star for heating due to stellar radiation and multi-
band flux-limited diffusion (FLD) for treating re-emitted/scattered
radiation. FLD is a model developed by Levermore & Pomraning
(1981) that aims to solve the radiative transfer problem by treating
the transport of radiative energy as a diffusion problem. The diffusive
flux is limited to ensure that radiation does not propagate faster than
the speed of light. The limiter is chosen to tend towards the correct
physical forms in limits of high and low optical depth. The following
scheme used in CUDISC is based on similar schemes detailed by
Kuiper et al. (2010), Commercon et al. (2011), and Bitsch et al.
(2013). In conservative form, the equations governing the internal
energy density, €, and radiative energy density in a given wavelength
band b, E%, are given by

Oe

3= % < ES pskf,‘x> (fb(T)B(T) - CE%) + Sheat» 39)
0EY

SRV = (Zs pst,vs> (f2(T)B(T) — cE}) + 8L,

(40)

where p; is the mass density of species s, Kf,,s is the Planck mean
opacity in wavelength band b for species s, B(T) = 40 T* accounts
for radiative cooling, S, accounts for heating via stellar irradiation
and viscous processes and Sfca is the scattered stellar radiation. As
equation (40) is for a particular wavelength band, a Planck factor f* is
included that accounts for the fraction of total radiated thermal energy
that is emitted in the particular band in question. We do not include
advective terms in our formulation. F? is the flux of radiative energy
in a given band, and this term is calculated in flux-limited diffusion
as

cAb
F' = - " _VEb, 41)

KR
where «% is the Rosseland mean opacity in the given band and A”
the flux-limiter. In our multi-band scheme, the Planck opacities in
equations (39) and (40) are calculated using absorption opacities,
whilst the Rosseland opacity is calculated using the total opacity,
absorption plus scattering. The choice of flux-limiter used for CUDISC
is that given by Kley (1989),

2
. 3-1—97\/@’ for R, <2 )
, forR, >2
9+ 10R, + /81 + 180R,
where
Ry, = L%. (43)
piy  Eg

Taking the limits of high and low optical depth (pkg > 1 & pxgp K
1), the flux tends to the diffusion limit, F = —(c¢/3pkg)V Eg, and
the free-streaming limit, F = —cEg(V ER/|V Eg|), respectively.

The heating term Sy, is split into stellar heating and viscous
heating. The viscous heating is calculated explicitly as

9
Svise = Z(ngCSZQ, (44)
where o parametrizes the effective turbulent viscosity of the disc
(Shakura & Sunyaev 1973), ¢, is the isothermal sound speed, and
Q2 is the Keplerian angular velocity. Stellar heating in each cell is
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calculated via ray tracing from the star using

Lp
S, = (] —
EB: 47'tr2Are (1-e

where the sum is over the wavelength bands used for stellar radiation,
Ly is the stellar luminosity in each band, and Ar is the (spherical)
radial length of the cell. By default, the number of bands used
for stellar heating (~100) is larger than the number used for the
FLD routine detailed above (~20) as the heating calculation is
computationally cheap. For each wavelength band, the e ™ term
accounts for the flux that has been attenuated (removed through
extinction; i.e. absorption plus scattering opacity) by the material
along the radial path between the star and the cell of interest, whilst
(1 — e=P*847) accounts for the amount of remaining flux that is
attenuated in the cell. kp is the extinction of stellar radiation at
the centre of each wavelength band. The term (1 — ap) includes the
albedo, ap, to take into account the effect of scattering. The albedo
is calculated as the ratio of scattering opacity to total extinction at
each wavelength. The diffusive flux generated by scattering at each
wavelength is therefore given by

Lg
47r2 Ar
This is then binned into the wavelength bins used for the FLD routine
and included in equation (40).

The internal energy is given by € = pcyT, where p is the total
density of all species and cy is the specific heat at constant volume,
meaning that equation (39) can be written in terms of B,

pcy 0B(T)
16673 0Ot
This allows the system of equations to be set up and solved implicitly
for the quantities B and Eg. This method ensures the correct
equilibrium is reached for large Ar — this being the standard case
for our simulations. We also note that the Commercon et al. (2011)
linearization writes B(T) in terms of 7, instead of T in terms of B(T)
as we do. The discretized forms of equations (47) and (40) for cell i,
J at time-step n are

“EATY(1 — ap), (45)

Ssca,B = 3713(1 - e7pKHAr)aB' (46)

= —pkp(B(T) — cEg) + S. (47)

pl?l,jcv n+l1
n i,j V’J
160 (T) AL

n b,
+Z (Z p;l,i,j/(f’,x,i,j) (f, B 1 ER,';EI) Vi
b s
pi! jCv
m lelj"_Sth“j i,j» (48)
and
Eh n+l
R, )
' Viij = <ch!jKP“]> (flbjB,n-;l —CEZ’.ijl) Vi
i+1  j+1 Eb‘"
N b,n+1 R,i,j bon
+Z Z DLERY = A;jVi/‘f'Sml, i

k=i—11=j-1
(49)

D}, is the diffusion matrix, constructed by summing all terms that
apply to cell k, [ when finding F, A, (equation 21) for each of the
four interfaces around cell i, j. The construction of the elements of
Dy can be found in more detail in the Appendix. We time-lag the
diffusion constant in equation (41) and the Planck factor, f* (i.e. they
are evaluated at #* instead of #* + ). The system of equations defined
by equations (48) and (49) are solved using incomplete-LU pre-
conditioning and the Bi-Conjugate Gradient Stabilized (BiCGStab)
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solver described in Naumov (2011). The convergence criterion is set
by comparing the maximum fractional residual between the left- and
right-hand sides of each equation at each iteration to a user-controlled
relative tolerance, set by default to 107,

4.2 Opacities

Dust absorption and scattering opacities can be set in various ways
in cuDisc. Simple, functional forms that approximate the opacity
dependence on grain size and wavelength may be used, or opacity
tables generated using packages such as the DSHARP opacity library
(Birnstiel et al. 2018) can be read in. If tables are used, cuDISC
can interpolate the opacity data to the user-defined grain sizes
and wavelength bins using piecewise-cubic Hermite interpolation
(Fritsch & Carlson 1980) in both grain size and wavelength space. In
general, more wavelength bins are used for the cheaper stellar heating
calculation in equation (45) than are used in the FLD scheme. For
conversion between these two wavelength grids, the opacities are
binned by calculating the Planck mean opacity over the range of
wavelengths corresponding to each coarse bin — these partial means
result in a better estimate of the temperature in optically thin regions
when a small number of bins are used.

4.3 Radiative transfer tests

To test our temperature solver, we ran modified versions of standard
benchmark tests used in the literature for comparing temperature
solvers: the Pascucci et al. (2004) and Pinte et al. (2009) tests.
Fig. 9 shows the comparison of mid-plane and surface temperatures
calculated using CUDISC and the Monte Carlo radiative transfer code
RADMC-3D for the Pinte test, modified to include a distribution of
grain sizes. The density of each grain species i was set by

Ziot(R) ( z? ) (50)
B ey P\ T ammy )

where F; is the fraction of the total surface density ¥ distributed
to each grain size and A; the scale height for each grain. The grain-
size distribution was set according to the MRN (Mathis, Rumpl &
Nordsieck 1977) distribution with a maximum grain size of 0.5 cm,
and the total surface density was set according to Pinte et al. (2009)
as

pi(R, Z) =

T = Zo(R/au)™ "%, (51

where X was set by the total desired disc mass. The scale height
for each grain size was set as the approximate height reached once
grains are settled (Dubrulle, Morfill & Sterzik 1995),

[ 1
hi =hyy | ——-, 52
BV 1+ St /a (52)

where h, is the gas scale height, St; is the grain Stokes number, set
simply in this problem as St; = 0.05a;(R/au) where a; is the grain
radius, and « is the gas turbulence parameter, set to 1 x 107>, The
gas scale height was set according to Pinte et al. (2009) as h, =
10(R/100 au)''? au. The opacities of the dust grains were set using
the Birnstiel et al. (2018) tool for calculating opacities, together
with the dielectric constants given by Draine (2003). Scattering was
treated as being isotropic as CUDISC is currently unable to treat
anisotropic scattering. Fig. 9 shows the results for two different total
disc masses (1 x 1072 & 10 Mg,). These masses corresponded to
mid-plane optical depths from the star to the observer at 0.81 pwm of
87 and 8.7 x 10% respectively. These values are just over an order
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Figure 9. Comparison of mid-plane and surface temperatures calculated by cUDISC and RADMC-3D for the Pinte et al. (2009) benchmark adapted to have a
grain distribution. The x-axis is plotted with units of cylindrical radius minus the inner disc radius (0.1 au). The left and right plots show models with total dust

masses of 1 x 1072 and 10 Mg, respectively.

of magnitude smaller than the optical depths for the Pinte test at the
same disc masses, as our use of a grain distribution lowers the overall
opacity of the disc due to the presence of large grains. The inner and
outer bounds of the grids were set to (0.1, 400) au in R and (0, 7 /4)
rad in 6. 150 equally spaced cells were used in 6, whilst the number
of cells in R was adapted depending on the disc mass. For both disc
masses, 200 logarithmically spaced cells were used between 0.15 and
400 au, whilst to minimize the optical depth in cells very close to the
inner edge, we follow the method detailed by Ramsey & Dullemond
(2015) and use 40 and 96 logarithmically spaced cells between 0.1
and 0.15 au for the lower and higher disc masses, respectively. 100
logarithmically spaced wavelengths between 0.1 and 3000 um were
used for stellar heating and binned down to 20 bands for the FLD
calculations. Apart from the binned wavelength bands (which are
not required), these same grid structures were used in RADMC-3D for
consistency. Resolution tests were performed, which confirmed that
convergence was reached for the grid resolutions quoted here.

We find that our results in the optically thin surface layers are
accurate to within a few per cent for the entirety of the disc apart
from the very inner region between 0.1 and 0.2 au. At the mid-plane,
the accuracy varies but remains within ~20 per cent for most of the
disc — a level of accuracy high enough for our problems.

5 DUST GROWTH AND FRAGMENTATION

Dust coagulation is performed using the method outlined in Brauer,
Dullemond & Henning (2008) but without the vertical integration that
they use to convert the problem to 1D along the disc mid-plane. In
this method, the Smoluchowski coagulation equation (Smoluchowski
1916) becomes

N—-1 i N-1
pk = § § pgain,ijk - § plossjk
i=0

i=0 j=0

(53)

where dots represent time derivatives, N is the total number of dust
species, py is the density of the kth dust species, and Pgain,ijx and
Ploss.ik are the gains in density due to collision products of other grains
(through coagulation and fragmentation) and losses in density due to
collisions between the kth dust species and all others, respectively.
The loss is given by

Pross,it = Mk Kit(Peoag,ij + Phrag.ij)s (54)
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where my, is the mass of the kth grain, Kj; is referred to as the
kernel, and peoagj and prag; are the probabilities of coagulation
and fragmentation, which follow

Pcoag,ij + Prrag,ij = 1 (55)

in the absence of bouncing (as assumed here). The form of this kernel
is taken from Birnstiel, Dullemond & Brauer (2010) and is given by

K,'j :O','jAU,'j, (56)
where o j; is the collision cross-section of the grains and Av; is the
relative velocity of the grains, given by

AU,-zj = U]%M.ij + Utzurbjj + (Avlam.ij)zy (57)

where vpmj, Vwmb,j> and Avimg are the relative velocities due
to Brownian motion, gas turbulence, and laminar dust motion
respectively. Here, Avjyy,; is the root-mean-square relative velocity
between the dust particles, calculated using the velocities determined
by the dynamical solver. Brownian motion most strongly affects
small grains and is given by

8kpT (m; +m;)
s =\,
im;j

where kg is the Boltzmann constant and 7 is the disc temperature.
The form of vy ; is taken from Ormel & Cuzzi (2007) and is given
by

Vturb,ij = \/Ecs Vrel,ij»

where Vi ; is the relative velocity between grains scaled to the eddy
velocity /acy,

Veelij = 1/ AV? + AV,

where AVP? and AV} are the relative velocities induced by ‘slow’
class I and ‘fast’ class II eddies, respectively given by equations (17)
and (18) in Ormel & Cuzzi (2007). For computational speed, we use
a quadratic fit to find the Stokes number of the boundary between
class I and II eddies for a given pair of grains, St* (equation 21 d in
Ormel & Cuzzi 2007). This fit is accurate to within 2 per cent.

In a collision, grains can coagulate to form more massive grains or
fragment to produce a remnant grain and a set of fragments that are
distributed over lower-mass grains. Combining all of these collision

(58)

(59)

(60)
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products gives us the density gain for a dust species as
Ogain,ijk = nin;K;; [pcoag.ij(mi +m;)Ciji
+ Prrag,ij (Mrem,ij Rijk + Miragij Fijk)] , (61)

where Cy, Rj, and Fyj, are the fractions of the mass associated with
coagulation products, remnant products and fragment products that
are distributed into bin k, and men;; and my,, ; are the masses of
remnants and fragments produced by the collision. Note to avoid
double counting, we replace K;; — %K,-j when i =j.

The particle velocities are assumed to follow a Maxwell—
Boltzmann distribution around Avj; to calculate the fragmentation
probability. This is a simplified version of the calculations done
by Garaud et al. (2013), who separated the stochastic (turbulent
and Brownian) motions from the laminar motions; we are therefore
assuming that stochastic motions are larger than any laminar relative
motions. This is also the approach taken by Stammler & Birnstiel
(2022). In this way, the fragmentation probability is given by

3/ Vpae \ 2 3/ Vtae \
Pfrag,ij = [2 <ﬁ> + 1| exp [—2 (ﬁ) ] . (62)
ij 1

The coefficients Cjx, Rjj, and Fi add the collision products into the
appropriate mass bins. Since our standard choice of the mass grid is
logarithmic, these products do not map directly to other mass bins
and must be split over the two bins on either side of the product mass.
Defining the integers £(m) and u(m) as my,, being the largest mass
such that my,,, < m and m,,, being the smallest mass such that n1,,,
> m, we may write

Cijk = 1— E(mi + m_,-) k= u(m,- + mj) (63)
0 otherwise,

and
S(mrem,ij) k= Z("’lrem,ij)

Rijk = 1- é‘(erem,ij) k= u(mrem,ij) (64)
0 otherwise,

where

e(m) = e — 1 (65)

My(m) — Me@m) '
The distribution of fragments, Fiy, is calculated following Rafikov,
Silsbee & Booth (2020). First, we assume that the number density
distribution of fragments is given by a power law,

n(m)dm o« m™"dm, (66)

where n(m)dm is the number of particles per unit volume in the mass
range [m, m + dm] and 7 is the fragmentation parameter that controls
how fragments are distributed amongst the smaller mass grains; by
default, we take the standard value of 11/6 found in the steady-state
solutions of Dohnanyi (1969); Tanaka, Inaba & Nakazawa (1996).
Converting to mass density and integrating over the bins to find the
fraction of mass distributed into each bin gives

(mi)™" = (mp)™"
M — (m)*™"

Nk(mmax) = ’ (67)
where mmy is the mass of the largest fragment and where mj_ | and
my, are the upper and lower edges of the kth mass bin.

We then place each myy,g ; into the bin / by finding the smallest /
such that m{,; > Myg; and setting Mmmay ;j = my, . From this we
arrive at Fj = Ni(mpax, ;7). However, Fij is not used directly. Instead,
we first determine the total amount of fragments falling into each /-
bin before distributing them according to Ni(m{, ). This results in
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Figure 10. Comparison of steady-state dust grain size distributions calcu-
lated by cuDISC and DUSTPY. The simulation parameters used were R = 20
au, T=36K, u =24, = 107 and vy = 100 cm s~ 1.

a much more efficient algorithm, as outlined in Rafikov, Silsbee &
Booth (2020).

The proportion of mass ending up as fragments is defined as a
multiple of the mass of the smaller of the two colliding grains.
Denoting the more massive particle as the target with mass, my,, and
the smaller as the impactor with mass, m;y,, we define the xi, such
that Mg jj = MIN() jmMim» Miar). The remnant mass is then given by

Mr — XimMim for XimMim < Mar
Mrem = {O otherwise, (68)
where xin, is a factor controlling the amount of material the impactor
can remove relative to its mass, usually taken to be unity. The
fragment mass is then given by the total mass of the colliding grains
minus the remnant mass.

To integrate equation (53), cuDIsC employs the Bogacki-
Shampine 3(2) embedded Runge—Kutta method with error estimation
(Bogacki & Shampine 1989) that adaptively calculates the time-step
required to meet user-specified relative and absolute tolerances. As
default, these are a 1 per cent relative tolerance and an absolute
tolerance of 1 x 107! multiplied by the sum over all grain densities
in a cell.

5.1 Coagulation tests

To test our coagulation routine, we produced direct comparisons to
the 1D disc evolution code DUSTPY using a vertically integrated
kernel (Birnstiel, Dullemond & Brauer 2010), which can be seen
in Fig. 10. The vertically integrated kernel is used to study the
growth and fragmentation of dust surface densities instead of volume
densities and is constructed by dividing the coagulation kernel

(equation 56) by 4 / 27t(h[2 + h?), where h; and h; are the scale heights
of the dust grains, assuming a Gaussian vertical density profile. The
relative vertical velocity is set according to the difference in terminal
settling velocities of the dust grains in question, taking the dust grain
scale height as its representative height Z above the mid-plane. Each
simulation was run with dynamics turned off, at a single radius in
the disc, with the same initial conditions. The simulations were run
until a steady state was reached in the dust grain size distribution. To
compare the two codes, we plot the mass-grid independent densities
for each grain, given by
0%y

o,(m)=m——. (69)
om
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200 grain species were used for both simulations, as this is compara-
ble to the typical amount used for science calculations. The two codes
show strong agreement. The only slight difference at ~7 x 107
cm is due to different methods used by the two codes to fit the
relative turbulent velocities described in Ormel & Cuzzi (2007). The
difference occurs because the approximation used in DUSTPY is not
continuous in this region.

We also ran tests using a constant kernel, the results of which were
consistent with the analytic solutions.

6 CODE STRUCTURE

The overall time evolution is controlled by the CFL condition on
the dust dynamics. Gas, temperature, and coagulation updates are
then performed when required depending on the evolution time-
scales associated with each physical process. A schematic of the
code structure can be seen in Fig. 11. By default, gas surface density
updates and subsequent hydrostatic equilibrium calculations are also
performed at each CFL time-step due to their low computational
cost. For temperature calculations, an update is performed on the first
time-step of the simulation, and the percentage change with respect
to the initial state is calculated. How often the temperature solver
should be employed is then controlled by choosing a percentage
tolerance for temperature updates that allows the code to calculate the
approximate time period that can be allowed to elapse before the next
update is required; by default, this is set to 0.1 per cent. However, this
tolerance should be chosen depending on the expected time-scales
of temperature evolution for each specific problem. Coagulation
updates are managed differently, given that the coagulation routine
is explicit and, as such, performs its own substeps within each global
time-step (i.e. subcycling). To control how often these updates are
performed, the final sub-time-step within the coagulation routine
is extracted and used to compare to global time-steps. By default,
the coagulation routine is triggered when one sub-time-step taken
from the last coagulation step has elapsed in global simulation time;
however, this can be changed by the user.

7 GRAIN GROWTH IN A STEADY-STATE
TRANSITION DISC

To show a simple science test case and compare it to other works,
we ran simulations of a disc with an inner hole evolving towards
a steady-state, representative of a ‘transition’ disc structure (e.g.
Owen 2016). To compare to DUSTPY, one simulation was run
with a vertically isothermal temperature profile set to the mid-
plane temperature adopted by DUSTPY, whilst one had the 2D
temperature solver switched on. We will refer to these simulations
as isothermal and non-isothermal from here on. The gas surface
density was set to have a mass within 100 au of 0.017 My with a
power-law radial dependence and a sharp exponential cut off at 5 au;
ie. X, = EOR;I'J exp [—(5/Rau)'°]. For these tests, the gas surface
density was not evolved; however, the vertical gas density profile
was updated for the non-isothermal test to maintain hydrostatic
equilibrium. Radial gas velocities were set to 0, whilst azimuthal
velocities were updated with the temperature to maintain force
balance. 150 logarithmically-spaced cells were used in R between
3 and 20 au, and a total of 150 cells were used in 8 between 0 and
/4, with 92 linearly spaced cells between 0 and /9 with double the
resolution of the remaining linearly spaced 58 cells. This subdivision
was used to enhance the resolution at the mid-plane. The viscosity,
v, was set according to Shakura & Sunyaev (1973) via ac;H. The
parameters chosen for each of the simulations are given in Table 1.
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Figure 11. The schematic for CUDISC. Dust and gas dynamics are updated
every time-step, whilst temperature and coagulation updates are performed
when certain conditions are met. These conditions can be controlled by the
user in order to align with the time-scales relevant to the physical problem at
hand.
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Table 1. Parameters used for the transition disc simulations detailed in
Section 7.

Parameter Value

o 1073

N 2.4

Vfrag 100, 1000 cm s~!
M, 1 Mg

R, 1.7Rgp

Ty, eff 4500 K
Mgise 0.017 Mg

2o 250 g cm ™2
Pm 1.6 gcm™3

DSHARP mix
(Birnstiel et al. 2018)

Dust opacities

The stellar radiation was assumed to be a blackbody at the effective
temperature given in Table 1. Note that simulations were run for
fragmentation velocities of 100 and 1000 cm s~!. For the 100 cm
s~! runs, 100 dust species with grain sizes logarithmically spaced
between 0.1 um and 0.5 cm were initialized with a size distribution
according to the MRN distribution (Mathis, Rumpl & Nordsieck
1977) and spatially distributed as being well-mixed with the gas
at a local dust-to-gas ratio of 0.01. For the 1000 cm s~! runs, the
mass grid was adjusted to 135 logarithmically spaced grain sizes
between 0.1 pm and 20 cm to account for the larger grains present.
100 and 135 mass bins were used respectively to give m,,  {/m, =
1.38 for both sets of simulations. This choice maintains >7 bins per
mass decade, a requirement for accuracy in the coagulation routine
(Ohtsuki, Nakagawa & Nakazawa 1990). For these calculations,
changes in dust composition throughout the disc due to sublimation
were neglected. In this section we discuss the 100 cm s~! runs, whilst
the 1000 cm s~! runs are discussed in Section 7.2.

Fig. 12 shows the 2D dust density profiles of three grain sizes
after 1 Myr of evolution, at which time the simulations had reached
a steady state, for both the isothermal disc and non-isothermal disc,
whilst Fig. 13 shows the temperature profile of the non-isothermal
disc after 1 Myr. Dust settling is apparent from the stratification of
the different grains. The non-isothermal disc also exhibits an increase
in the proportion of large grains due to the cool interior that allows
for the coagulation of grains up to larger sizes. This is because the
strength of the gas turbulent velocity is proportional to the sound
speed when assuming a Shakura & Sunyaev (1973) viscosity, and
reduced turbulent velocities allow particles to grow larger before
reaching the fragmentation limit. The temperature structure of the
non-isothermal disc also exhibits a super-heated surface layer with
temperatures greater than the blackbody equilibrium temperature;
this is due to the small grains that occupy the upper regions of the
disc whose opacities mean they are good absorbers of stellar optical
photons, but bad emitters of their own infrared photons (see e.g.
Chiang & Goldreich 1997). Above the super-heated layer, the dust
densities drop to the floor value and the temperature is set by the
opacities given to the gas. By default, these opacities are set as the
dust-to-gas ratio floor value multiplied by the opacities of the smallest
dust grains, as this leads to a smooth temperature transition in the
upper regions of the disc. In reality, the temperature in the gaseous
atmosphere above the dust disc is controlled by other processes (see
e.g. Woitke, Kamp & Thi 2009). In principle, these processes can be
included in the framework if necessary.

Figs 14 and 15 compare the vertically integrated dust grain size
distributions for the different simulations at a radius of 6 au and for the
entire disc, respectively. Vertically integrated mass-grid independent
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densities were calculated from the volume densities computed by
cuDisc through

om

Fig. 15 shows that the spatial distribution of dust is very similar for
all runs; the maximum grain size is set by fragmentation throughout
the entire disc due to the fairly low choice of 100 cm s~! as the
fragmentation velocity. The non-isothermal run is slightly more
peaked at 6 au. This is because the equilibrium spatial distribution
is set by the balance between diffusion and radial drift, and, as
previously mentioned, the non-isothermal disc has lower turbulence
and, therefore, less diffusion of the dust out of the dust trap. Fig. 14
shows that the simulations follow very similar distributions up to
~ 30um, with the non-isothermal run having an overall higher
density across all grain sizes due to the increased surface density
at the dust trap. The DUSTPY simulation exhibits a much more
prominent trough at 30-40 pm than the CUDISC simulations, and the
upper cut-off in the size distribution differ across the simulations;
the DUSTPY and non-isothermal runs show similar cut-offs, whilst
the isothermal run is lower.

ou(m) = /Oc moPiy, (70)

7.1 Vertical structure comparison

To compare the vertical structure, we converted the dust surface
densities from DUSTPY into 2D volume densities by calculating the
diffusion-settling equilibrium in the vertical axis for each dust grain
(see Takeuchi & Lin 2002), as might be done when taking a DUSTPY
output and calculating a radiative transfer simulation. Fig. 16 shows
the grain-size distributions at 1, 2, and 3 gas scale heights, where the
gas scale height is calculated from the mid-plane temperatures. This
means the scale heights are the same for the isothermal and DUSTPY
runs, but lower for the non-isothermal run given the cooler interior
temperature. It can now be seen that the upper cut-off grain size for
the isothermal and DUSTPY runs are very similar at the mid-plane
but differ at increasing height. This arises because the fragmentation
limit sets the maximum grain size and the fragmentation limit is
proportional to gas density. The density decreases as we move away
from the mid-plane in the 2D CUDISC runs, leading to larger Stokes
numbers and, therefore, larger turbulent velocities. This lowers the
fragmentation threshold on grain size. After vertical integration, this
leads to the lower cut-off grain size we see in Fig. 14. For the non-
isothermal simulation, we see a similar result but with the cut-off at
larger sizes due to the cooler interior. After vertical integration, this
leads to the larger maximum grain size seen in Fig. 14. There are
also fewer particles at high altitudes for the same reason: the cooler
temperature lowers the scale height of the disc, bringing the dust
closer to the mid-plane.

The trough in the grain size distribution arises at the particle
size where turbulent motions start to become a strong source of
relative velocities between particles. The location of the trough is
dependent on the Reynolds number, which represents the strength
of turbulent motions. In cuDISC, the Reynolds number varies as a
function of height because it depends on the gas density and sound
speed; however, in DUSTPY, it is assumed to be equal to the mid-
plane value everywhere. This causes the trough location to vary as a
function of height in CUDISC, leading to a smearing out of the feature
in the vertically integrated density.

Fig. 17 shows the density of three different grain sizes, ~0.5, ~50,
and ~150 pm, as functions of height. The seemingly lower scale
height of the 150 wm grains in the CUDISC runs when compared to
DUSTPY is due to the decrease in the maximum grain size allowed by
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Figure 12. Dust profiles for three grain sizes after 1 Myr of evolution for a vertically isothermal disc (left) and a disc with the 2D temperature solver switched

on (right). These runs were set with vfrag = 100 cm s~L.
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Figure 14. Vertically integrated mass-grid independent dust densities at a
radius of 6 au for each vfg = 100 cm s~! simulation.
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fragmentation with height in the CUDISC runs discussed earlier. This
decrease in maximum allowable grain size can be seen by noting that
150 pm is around the peak of the grain size distribution at the mid-
plane in Fig. 16 but that at 1 gas scale height, the peak has moved to
~100 um. This effect is less noticeable for the small grains (i.e. 0.5
pm in Fig. 17) as the small grain distribution is less affected by the
change in the upper cut-off grain size. The non-isothermal vertical
profiles are more condensed than DUSTPY, again due to the cooler
interior temperatures leading to lower scale heights.

The vertical profiles found using CUDISC also show increases in the
amount of intermediate size (10-100 wm) grains away from the mid-
plane, with some grain sizes having a higher density at around a gas
scale height than at the mid-plane. To investigate this, we need to look
at how the collision rates vary with height. Fig. 18 shows the collision
rate, Stokes numbers and relative turbulent velocity of grains with
sizes 19 and 24 pum as functions of height for the non-isothermal run.
Re is the Reynolds number that describes the strength of turbulent
viscosity over molecular viscosity, i.e. Re = v,/vyo1, Whilst St* is the
Stokes number for the boundary between slow and fast eddies (class
I and class II in the terminology used by Ormel & Cuzzi 2007) for
a particular particle. Slow eddies have turn-over times longer than
particle stopping times and induce large-scale systematic motion in
the grains, whilst fast eddies have turn-over times smaller than the
particle stopping times and, therefore, induce stochastic motions in
the particles (Volk et al. 1980). Slow eddies do not drive large relative
velocities between similarly sized grains, whereas fast eddies do
(Ormel & Cuzzi 2007). Close to the mid-plane, the Stokes numbers
of the grains are smaller than the Stokes number associated with
the smallest turbulent eddies (Re~"?), meaning the particles only
experience slow eddies; therefore, the relative velocities are low. As
we move to higher regions of the disc, the particle Stokes numbers
are in the intermediate regime, and particles feel the impact of fast
eddies. These stochastic motions lead to larger relative velocities
between similarly sized particles. The densities of the intermediate-
sized grains are enhanced at these heights due to the increase in
collision rates in combination with the decrease in maximum grain
size with height discussed previously. Higher up in the disc, settling
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causes a decrease in dust density that leads to a sharp decrease in
collisions regardless of large turbulent velocities, counteracting the
enhancement seen at around one gas scale height.

7.2 Particle sweeping

These results differ from those seen by Krijt & Ciesla (2016), who
found that small grains become trapped in the disc mid-plane due to
colliding with, and sticking to, larger grains before vertical mixing
can distribute them higher in the disc. This ‘sweeping-up’ of small
grains by large grains decreases the abundance of small grains at
high altitudes in regions where particle collision rates at the mid-
plane are high compared to the rate of diffusion due to turbulent
processes. A reason why we do not see this effect may be that the
largest grains in our simulations are ~150 pm — these grains are
less strongly settled than the cm-sized grains reached in the Krijt &
Ciesla (2016) models, lessening the effect that leads to trapping in
the mid-plane. To investigate this, we ran the same set of simulations
with a higher fragmentation velocity of 1000 cm s~!. Fig. 19 shows
the vertically integrated density as a function of radius and grain size
for this set of simulations, now with the addition of the approximate
drift limit. Both the cUDISC and the DUSTPY simulations show very
similar dust distributions, with the majority of the disc exhibiting
drift-limited growth and the largest grains in the dust trap reaching ~
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Figure 18. Collision rates, Stokes numbers, and relative turbulent velocities
of two different grain sizes, 19 and 24 pm, as a function of height. St* is
the boundary between class I and class II eddies for a particular particle. Its
minimum value is equal to the Stokes number of the smallest eddies, Re~ 172,
whilst its maximum value is equal to the Stokes number associated with the
largest eddies (one orbit), 1.

a few cm. Turning to the vertical structure, Fig. 20 shows the density
profiles of three different dust species from each simulation at the
peak of the dust trap (~5.7 au) on the top row and away from the trap
(~10 au) on the bottom row. The cuDISC dust profiles in the trap
clearly exhibit the trapping of smaller grains around the mid-plane,
as found by Krijt & Ciesla (2016). However, the effect is not visible
at 10 au, where the isothermal profiles closely follow the Takeuchi &
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Lin (2002) analytic profiles calculated from the DUSTPY densities,
and the non-isothermal profiles differ at a few scale heights due to
the hot surface layers that increase the turbulent velocities, lofting
the smaller grains to higher heights. The lack of sweeping at these
radii is to be expected if the cause of the effect is the presence of
large cm-sized grains, because here the maximum grain size is lower
due to the disc being in the drift-limited regime.

Krijt & Ciesla (2016) found that the effect of sweeping should
be important in regions where the collisional time-scale of grains is
less than the timescale associated with diffusion to higher regions
of the disc. In terms of disc quantities, this criterion can be written
as a/(X4/2,) < 1. Fig. 21 shows the radial regions of the discs
in both the low and high fragmentation velocity simulations where
this criterion is satisfied. In the high fragmentation velocity disc, the
condition is only met around the peak of the dust trap — this concurs
with our findings, as shown in Fig. 20. For the low fragmentation
velocity case, the condition is satisfied for the entirety of the disc;
but we find no evidence of trapping. We suspect this is due to the
difference in scale height between the largest and smallest grains
in the simulations as discussed above; for the low fragmentation
velocity simulation, the difference between the scale heights of
the 0.5 and 150 pm grains is a factor of ~2, whilst, for the high
fragmentation velocity simulation, the difference in scale height
between the 0.5 um and 1 cm grains is a factor of ~80. In the
low fragmentation velocity case, this means that any sweeping by
the largest grains does not manifest itself as an appreciable change in
the vertical density distribution of the smaller grains, as the sweeping
grains and swept-up grains have similar scale heights. The effect is
noticeable, however, in the high fragmentation velocity case, where
the largest grains are much more settled than the smallest grains.

7.3 Diffusion-settling-coagulation equilibrium

These results indicate that the diffusion-settling equilibrium profiles
(Takeuchi & Lin 2002) for the dust vertical structure do not
fully describe the dust population in regions where collisions are
important. In these regions, we suspect that a diffusion-settling-
coagulation equilibrium is established; the form of which varies
depending on the fragmentation velocity. For a low fragmentation
velocity of 100 cm s~!, we find enhancements of intermediate-sized
dust grains at ~ one gas scale height, whilst for a high fragmentation
velocity of 1000 cm s~!, we find that large grains sweeping up smaller
grains in the dust trap leads to the enhancement of small grains at
the disc mid-plane. These findings may have implications for the
analysis of observed disc spectral energy distributions (SEDs) as
one must assume a disc structure to estimate the emission layers of
different-sized dust grains (see e.g. D’ Alessio et al. 2006). Scattered
light images could also be affected, as mid-plane densities calculated
from the observed small grain distribution at large disc heights are
dependent on the assumed vertical structure of said grains. However,
our results also demonstrate that if one only cares about overall,
general, disc evolution and not specific problems that require a
resolved vertical dimension (e.g. winds or temperature instabilities
caused by vertical structure), the 1D results from DUSTPY are a good
approximation to the full 2D problem.

8 SUMMARY

CcuDISC is a new protoplanetary disc code that aims to allow long
time-scale calculations of discs with self-consistently calculated dy-
namics, thermodynamics, and dust grain growth and fragmentation.
Modelling these physical processes alongside one another allows
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simulation. The fragmentation and drift limits (given by
Birnstiel, Klahr & Ercolano 2012) are overplotted for reference in solid white and dashed white, respectively.
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criterion for mid-plane trapping of small grains is satisfied, shown as hatched
regions, for both the low and high fragmentation velocity CUDISC simulations.

us to answer important problems in disc physics, such as structure
formation due to instabilities and dust removal. With the use of GPU
acceleration, CUDISC enables simulations to run for large fractions
of the disc lifetime, removing the need for running simplified secular
models. We have shown that 2D structure affects the dust spatial and
grain size distributions even for simple systems, such as dust trapped
in the pressure bump of a transition disc. This may be important when
analysing SEDs and scattered light images, given the need to assume
some model of grain vertical structure. We also find that for studying
overall disc evolution, 1D models can quite accurately concur with
2D models. More features can and will be added to the code as we
continue to develop it, such as more detailed dust microphysics and
ice-vapour chemistry, making many other problems in disc physics
able to be investigated through the use of CUDISC.
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APPENDIX: DIFFUSION MATRIX

The full form of Dy, is found by writing out £, (equation 21) for
each interface o about cell i, j and summing all terms that apply to
cell k, [ in the 3 x 3 stencil of cells centred on cell i, j. For this
exercise, we will change cell references from the form i, j to the
single letter form k, for ease of reading. As an example, referring to
Fig. 3, when calculating the fluxes over the interfaces o and A, F,
and F,, respectively, according to equation (25) we find

Fy = —Dywio [Wig cur(ty — ) + Wone Chom (U — ug)]
+Dywiy [Weo Cu (i — ur) + wpucip(y — up)] (A1)
© 2024 The Author(s).
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Introducing cuDisc: a 2D PPD code 1541

FA = —D,wg, [wlkcal(ul - ua) + wmﬂcam(um - Mk)]

+Dywiy [Warcra (U — ug) + wpecrp(uy — up)], (A2)

where v, 8, and € are the interfaces between cells [ and p; a and m;
and / and b, respectively.

Taking for example cell m, the value in the diffusion matrix D,
is therefore given by the sum of all terms that are multiplied by u,,,
multiplied by their respective interface areas A, i.e.

Dm = _DkwkawmrckmAv - Dawu)»wmﬁcamA)w (A3)

This paper has been typeset from a TEX/IATEX file prepared by the author.
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