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A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair .Y;D/ with Y a smooth
rational projective complex surface and D D D1 C � � � CDl 2 j�KY j an anticanonical singular nodal
curve. Under some natural conditions on the pair, we propose a series of correspondences relating five
different classes of enumerative invariants attached to .Y;D/:

(1) the log Gromov–Witten theory of the pair .Y;D/,
(2) the Gromov–Witten theory of the total space of

L
i OY .�Di /,

(3) the open Gromov–Witten theory of special Lagrangians in a Calabi–Yau 3–fold determined by .Y;D/,
(4) the Donaldson–Thomas theory of a symmetric quiver specified by .Y;D/, and
(5) a class of BPS invariants considered in different contexts by Klemm and Pandharipande, Ionel and

Parker, and Labastida, Mariño, Ooguri and Vafa.

We furthermore provide a complete closed-form solution to the calculation of all these invariants.
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394 Pierrick Bousseau, Andrea Brini and Michel van Garrel

1 Introduction

1.1 Looijenga pairs

A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair Y.D/ WD .Y;D/ consisting

of a smooth rational projective complex surface Y and an anticanonical singular nodal curve D D

D1C � � � CDl 2 j�KY j. A prototypical example of Looijenga pair is given by .Y;D/D .P2;D1CD2/

for D1 a line and D2 a conic not tangent to D1.

Looijenga pairs [79] were first systematically studied in relation with resolutions and deformations of

elliptic surface singularities and with degenerations of K3 surfaces; see Friedman and Scattone [41]. More

recently, Looijenga pairs have played an important role as two-dimensional examples for mirror symmetry;

see Barrott [9], Bousseau [13], Gross, Hacking and Keel [53], Hacking and Keating [60], Mandel [81]

and Yu [114; 115] and, for the theory of cluster varieties, Gross, Hacking and Keel [52], Mandel [82] and

Zhou [117]. These new developments have had in return nontrivial applications to the classical geometry

of Looijenga pairs; see Engel [38], Friedman [40] and Gross, Hacking and Keel [53; 54].

1.2 Summary of the main results

In this paper we develop a series of correspondences relating different enumerative invariants associated

to a given Looijenga pair. We start off by giving a very succinct summary of the main objects we will

consider, and the main statements we shall prove.

1.2.1 Geometries Let .Y;D DD1C � � � CDl/ be a Looijenga pair with l � 2. In this paper we will

construct four different geometries out of .Y;D/:

� the log Calabi–Yau surface geometry Y.D/;

� the local Calabi–Yau .lC2/–fold geometry EY.D/ WD Tot
�
OY .�D1/˚ � � � ˚OY .�Dl/

�
;

� a noncompact Calabi–Yau threefold geometry canonically equipped with a disjoint union of l � 1

Lagrangians,

Y op.D/ WD
�
Tot
�
O.�Dl/! Y n .D1[ � � � [Dl�1/

�
; L1 t � � � tLl�1

�
;

where Li are fibred over real curves in Di ;

� for l D 2, a noncommutative geometry given by a symmetric quiver Q.Y.D// made from the

combinatorial data of the divisors Di and their intersections.

1.2.2 Enumerative theories Our main focus will be on the enumerative geometry of curves in these

geometries. More precisely, to a Looijenga pair Y.D/ satisfying some natural positivity conditions, we

shall associate several classes of a priori different enumerative invariants:

� log GW All genus log GW invariants of Y.D/, counting curves in the surface Y with maximal

tangency conditions along the divisors Di .

� local GW Genus-zero local GW invariants of the CY .lC2/–fold EY.D/.

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 395

� open GW All genus open GW invariants counting open Riemann surfaces in the CY3–fold

Y op.D/ with l � 1 boundary components mapping to L1 t � � � tLl�1.

� local BPS Genus-zero local BPS invariants of EY.D/, in the form of Gopakumar–Vafa/Klemm–

Pandharipande/Ionel–Parker (GV/KP/IP) BPS invariants.

� open BPS All genus open BPS invariants of Y op.D/, in the form of Labastida–Mariño–Ooguri–

Vafa (LMOV) BPS invariants.

� quiver DT If l D 2, Donaldson–Thomas (DT) invariants of Q.Y.D//.

1.2.3 Correspondences Under some positivity conditions on .Y;D/, we will prove that the invariants

above essentially coincide with one another. In particular, we shall show

(i) an equality between log GW and local GW in genus zero (Theorem 1.4),

(ii) an equality between log GW and open GW in all genera (Theorem 1.5),

(iii) an equality between local BPS and open BPS in genus zero for all l ,

(iv) an equality between local BPS and quiver DT for l D 2, ie when the local geometry EY.D/ is CY4
(Theorem 1.6).

The equality (i) establishes for log CY surfaces a version of a conjecture of van Garrel, Graber and Ruddat

about log and local GW invariants [43], while (ii) and (iv) are new. Equality (iii) follows from (i)–(ii)

after a BPS-type change of variables.

1.2.4 Integrality Furthermore, we shall prove that the enumerative invariants of Looijenga pairs

considered in this paper obey strong integrality constraints (Theorem 1.7), reflecting the conjectured

integrality of the open BPS and local BPS counts. This shows the existence of novel integral structures

underlying the higher-genus log GW theory of Y.D/. Restricting to genus zero, we will obtain as a

corollary an algebrogeometric proof of the conjectured integrality of the genus-zero Gopakumar–Vafa

invariants of the CY .lC2/–fold EY.D/. In particular, for l D 2, this proves for CY4 local surfaces an

integrality conjecture of Klemm and Pandharipande [68, Conjecture 0].

1.2.5 Solutions Moreover, we will completely solve the enumerative counts for these geometries

(Theorems 1.4 and 1.5), by finding explicit closed-form, nonrecursive expressions for the generating

series of the invariants associated to our Looijenga pairs.

The rest of the introduction is organised as follows:

� Section 1.3 sets the stage by giving a self-contained account of the enumerative theories we shall

consider.

Geometry & Topology, Volume 28 (2024)



396 Pierrick Bousseau, Andrea Brini and Michel van Garrel

� Section 1.4 illustrates the geometric picture underpinning the web of correspondences explored in

the paper. We spell out the enumerative relations (i)–(iv) in the broadest generality where we believe

them to hold, and describe in detail the geometric heuristics which led us to (i) in Section 1.4.1

(Conjecture 1.1), to (ii) in Section 1.4.2 (Conjectures 1.2 and 1.3), and to (iii)–(iv) in Section 1.4.3.

� Section 1.5 puts these ideas on a rigorous footing. We first place a natural positivity condition on the

irreducible components Di by requiring them to be all smooth and nef; depending on the context,

we often supplement this with a mild condition of “quasi-tameness”, whose rationale is justified

in Sections 1.5.1 and 1.5.2. The statements of the proof of the correspondences, the integrality

results, and the full solutions for our enumerative counts are spelled out in Theorems 1.4–1.7.

� Section 1.6 surveys the implications of our results for related work, with emphasis on the possible

sheaf-theoretic interpretations of the BPS invariants we consider.

1.3 Enumerative problems

1.3.1 Higher-genus log Gromov–Witten invariants Log Gromov–Witten theory, which was developed

by Abramovich and Chen [25; 1] and Gross and Siebert [58], provides a deformation-invariant way to count

curves with prescribed tangency conditions along a normal crossings divisor, by virtual intersection theory

on moduli spaces of stable log maps. For Y.D/ a Looijenga pair whereD has l�2 irreducible components,

we consider rational curves in Y with given degree d 2 H2.Y;Z/ that meet each component Dj in one

point of maximal tangency d �Dj and pass through l � 1 given points in Y . Counting such curves is

an enumerative problem of expected dimension 0 and we denote by N log
0;d
.Y.D// the corresponding log

Gromov–Witten invariants.

For g � 0, the expected dimension of the moduli space of genus g curves in Y with given degree

d 2 H2.Y;Z/ that meet each component Dj in one point of maximal tangency d �Dj and pass through

l�1 given points in Y , is g. On the other hand, assigning to every stable log map f WC !Y.D/ the vector

space H0.C; !C / of sections of the dualising sheaf of the domain curve defines a rank g vector bundle

over the moduli space, called the Hodge bundle, and we denote by �g its top Chern class. We define log

Gromov–Witten invariants N log
g;d
.Y.D// by integration of .�1/g�g over the virtual fundamental class of

the moduli space. For genus gD 0, N log
0;d
.Y.D// recovers the naive count of rational curves but for g > 0,

the log Gromov–Witten invariants N log
g;d
.Y.D// no longer have an obvious interpretation in terms of naive

enumeration of curves. Fixing the degree d and summing over all genera, we define generating series

(1-1) N
log
d
.Y.D//.„/ WD

1
�
2 sin

�
1
2
„
��l�2

X

g>0

N
log
g;d
.Y.D//„2g�2Cl :

The term
�
2 sin

�
1
2
„
��2�l

is natural from the point of view of the q–refined scattering diagrams of Section 4.

It is accounted for in the correspondence with the open invariants.

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 397

1.3.2 Local Gromov–Witten invariants To a Looijenga pair Y.D/D .Y;D DD1 C � � � CDl/, we

associate the .lC2/–dimensional noncompact Calabi–Yau variety EY.D/ WD Tot
�Ll

iD1.OY .�Di //
�
. We

view Y in EY.D/ via the inclusion given by the zero section. We refer to EY.D/ as the local geometry

attached to Y.D/. If each component Di is nef, then for every d 2 H2.Y;Z/ intersecting Di generically,

the moduli space of genus-zero stable maps to EY.D/ of degree d is compact: every stable map to EY.D/
of class d factors through the zero section Y . Thus, it makes sense to consider the local genus-zero

Gromov–Witten invariants N loc
0;d
.Y.D//, which define virtual counts of rational curves in EY.D/ passing

through l � 1 given points in Y .

1.3.3 Higher-genus open Gromov–Witten invariants Let X be a semiprojective toric Calabi–Yau

3–fold, ie a toric Calabi–Yau 3–fold which admits a presentation as the GIT quotient of a vector space

by a torus action; see Hausel and Sturmfels [61]. We will be concerned with a class of Lagrangian

submanifolds of X considered by Aganagic and Vafa [7], which we simply refer to as toric Lagrangians:

symplectically, these are singular fibres of the Harvey–Lawson fibration associated toX. A toric Lagrangian

is diffeomorphic to R2 �S1, and so its first homology group is isomorphic to Z.

We fix L D L1 [ � � � [Ls a disjoint union of toric Lagrangians Li in X. In informal terms, the open

Gromov–Witten theory of .X;L D L1 [ � � � [Ls/ should be a virtual count of maps to X from open

Riemann surfaces of fixed genus, relative homology degree, and boundary winding data around S1 ,!L. A

precise definition of such counts in the algebraic category has been given by Li, Liu, Liu and Zhou [77; 76]

using relative Gromov–Witten theory and virtual localisation. These invariants depend on the choice

of a framing f of L, which is a choice of integer fi for each connected component Li of L. Given

partitions �1; : : : ; �s of lengths `.�1/; : : : ; `.�s/, we denote by OgIˇ I.�1;:::;�s/.X;L; f/ the invariants

defined in [77; 76], which are informally open Gromov–Witten invariants counting connected genus g

Riemann surfaces of class ˇ 2 H2.X;L;Z/ with, for every 1 � i � s, `.�i / boundary components

wrapping Li with winding numbers given by the parts of �i . We package the open Gromov–Witten

invariants Og;ˇ;�1;:::;�s
.X;L; f/ into formal generating functions

(1-2) Oˇ I E�.X;L; f/.„/ WD
X

g�0
„2g�2C`. E�/OgIˇ I E�.X;L; f/;

where `. E�/D
Ps
iD1 `.�i /. We simply denote by OgIˇ .X;L; f/ and Oˇ .X;L; f/.„/ the s–holed open

Gromov–Witten invariants obtained when each partition �i consists of a single part (whose value is then

determined by the class ˇ 2 H2.X;L;Z/).

1.3.4 Quiver DT invariants Let Q be a quiver with an ordered set Q0 of n vertices v1; : : : vn 2 Q0 and

a set of oriented edges Q1 D f˛ W vi ! vj g. We let NQ0 be the free abelian semigroup generated by Q0,

and, for d D
P
divi and e D

P
eivi 2 NQ0, we write EQ.d; e/ for the Euler form

(1-3) EQ.d; e/ WD

nX

iD1
diei �

X

˛ W vi !vj

diej :

Geometry & Topology, Volume 28 (2024)



398 Pierrick Bousseau, Andrea Brini and Michel van Garrel

Assume that Q is symmetric; that is, for every i and j , the number of oriented edges from vi to vj is

equal to the number of oriented edges from vj to vi . The Euler form is then a symmetric bilinear form.

The motivic DT invariants DTdIi .Q/ of Q are defined by the equality

(1-4)
X

d2Nn

.�q1=2/EQ.d;d/xdQn
iD1.qI q/di

D
Y

d¤0

Y

i2Z

Y

k�0

�
1� .�1/ixdq�k�.iC1/=2��DTdIi .Q/;

where xd D
Qn
iD1 x

di

i ; see Efimov [34], Kontsevich and Soibelman [70] and Reineke [107]. In other

words, the motivic DT invariants are defined by taking the plethystic logarithm of the generating series of

Poincaré rational functions of the stacks of representations of Q. The numerical DT invariants DTnum
d .Q/

are defined by

(1-5) DTnum
d .Q/ WD

X

i2Z

.�1/iDTd;i .Q/:

According to Efimov [34], the numerical DT invariants DTnum
d .Q/ are nonnegative integers.

1.3.5 Open/closed BPS invariants Gromov–Witten invariants define virtual counts of curves and are

in general rational numbers, but they are well-known to exhibit hidden integrality properties in terms

of underlying BPS counts. The original physics definition, due to Gopakumar and Vafa [48; 47] in the

classical context of closed Gromov–Witten invariants of Calabi–Yau 3–folds, predicted the form of these

counts in terms of degeneracies of BPS particles in four/five dimensions arising from type IIA/M-theory

as D2/M2–branes wrapping 2–cycles in the compactification. A longstanding effort has been made

on multiple fronts to make the physics definition rigorous either using the associated cohomologies of

sheaves (see Katz [64] and Maulik and Toda [90]), stable pairs (see Pandharipande and Thomas [101]),

and direct symplectic methods (see Ionel and Parker [62]). In this paper, we will consider BPS invariants

for genus-zero Gromov–Witten invariants of Calabi–Yau 4–folds and higher-genus open Gromov–Witten

invariants of toric Calabi–Yau 3–folds. As an immediate corollary we obtain a new definition of all genus

BPS invariants of Looijenga pairs (1-21).

Let Y.D/D .Y;D DD1CD2/ be a 2–component Looijenga pair. The corresponding local geometry

EY.D/ is a noncompact Calabi–Yau 4–fold. Following Greene, Morrison and Plesser [50, Appendix B]

and Klemm and Pandharipande in [68, Section 1.1], we define BPS invariants KPd .EY.D// in terms of

the local genus-zero Gromov–Witten invariants N loc
0;d
.Y.D// by the formula

(1-6) KPd .EY.D//D
X

kjd

�.k/

k2
N loc
d=k.Y.D//:

Let X be a toric Calabi–Yau 3–fold, L D L1 [ � � � [Ls a disjoint union of toric Lagrangian branes

and f a choice of framing. Following Labastida and Mariño [73], Labastida, Mariño and Vafa [74],

Mariño and Vafa [88] and Ooguri and Vafa [100], we define the Labastida–Mariño–Ooguri–Vafa (LMOV)

Geometry & Topology, Volume 28 (2024)
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log GW
log/local

local GW

KP/IP

open BPS

LMOVknots/quivers

quiver DT

refined log/open

open GW

Figure 1: Enumerative invariants of Y.D/ and their mutual relations.

generating function of BPS invariants �d .X;L; f /.q/ 2 Q.q1=2/ in terms of the s–holed higher-genus

open Gromov–Witten generating series Oˇ .X;L; f/.„/ by the formula

(1-7) �ˇ .X;L; f/.q/D Œ1�2q

� sY

iD1

wi

Œwi �q

�X

kjˇ

�.k/

k
Oˇ=k.X;L; f/.�ik log q/;

where w1; : : : ; ws are the winding numbers around the Lagrangians L1; : : : ; Ls of the boundary compo-

nents of an s–holed Riemann surface with relative homology class ˇ, and where Œn�q WD qn=2� q�n=2

are the q–integers, defined for all integers n.

1.4 The web of correspondences: geometric motivation

The enumerative theories of the previous section have superficially distant flavours, but they will turn out

to be in close and often surprising relation to each other (Figure 1). We start by explaining the general

geometric motivation behind the web of relations below, deferring rigorous statements for the case of

Looijenga pairs to Section 1.5.

1.4.1 From log to local invariants Let .Y;D D D1 C � � � CDl/ be a log smooth pair of maximal

boundary; unless specified at this stage we do not restrict to Y being a surface, and neither do we

impose the condition that .Y;D/ be log Calabi–Yau, nor any positivity conditions on Dj . We will

say that a curve class d 2 H2.Y;Z/ is D–convex if d �Di > 0 for all i , and for every decomposition

d D ŒC1�C � � � C ŒCm� 2 H2.Y;Z/, with each Cj an effective curve, we have Cj �Di � 0 for all i and j .

We begin by introducing some intermediate geometries built from Y.D/: for m D 1; : : : ; l C 1, let

(1-8) Y .m/ WD Tot

�M

k�m

OY .�Dk/

�
;

Geometry & Topology, Volume 28 (2024)



400 Pierrick Bousseau, Andrea Brini and Michel van Garrel

and D.m/ be the preimage ��1�S
k<mDk

�
by the projection � W Y .m/ ! Y . Note that, by definition,

Y .1/.D.1//D EY.D/ and Y .lC1/.D.lC1//D Y.D/: the geometries Y .m/.D.m// for 1 < m � l consist

of intermediate setups where a log condition is imposed on fDkgk<m, and a local one on fDkgk�m.

For d a D.m/–convex curve class, we denote by N log
0;d
.Y .m/.D.m/// a genus-zero maximal tangency log

GW invariant of class d of Y .m/.D.m// with a choice of point and  –class insertions; see Section 4.1.

D.m/–convexity ensures that this is well-defined, despite Y .m/.D.m// not being proper for m � l .

Assume first that l D 1, ie that D is a smooth divisor. In van Garrel, Graber and Ruddat [43], the

genus-zero local Gromov–Witten invariants of EY.D/ were related to the genus-zero maximal tangency

Gromov–Witten theory of .Y;D/ by the stationary log/local correspondence,

(1-9) N loc
0;d .Y.D//D

.�1/d �D�1

d �D
N

log
0;d
.Y.D//:

The argument of [43] is geometric, and it gives a stronger statement at the level of virtual fundamental

classes: EY.D/ is degenerated to Y � A1 glued along D � A1 to a line bundle over the projective bundle

P .OD˚OD.�D//. This degeneration moves genus-zero stable maps inEY.D/ to genus-zero stable maps

splitting along both components of the central fibre: the degeneration formula then states thatN loc
0;d
.Y.D//

equals the weighted sum over splitting type of the product of invariants associated to each component,

and a careful analysis shows that only one term is nonzero, leading to (1-9). In [43, Conjecture 6.4], a

conjectural cycle-level log-local correspondence was also proposed for simple normal crossing pairs:

we propose here a slight variation of its restriction to stationary invariants and anticanonical D in the

following conjecture.

Conjecture 1.1 (the stationary log/local correspondence for maximal log CY pairs) Suppose that

.Y;D DD1C � � � CDl/ is a log smooth log Calabi–Yau pair of maximal boundary, d a D–convex curve

class , and 1� n<m � l C 1. Then

(1-10) N
log
0;d
.Y .m/.D.m///D

�m�1Y

iDn

.�1/d �Di C1d �Di

�
N

log
0;d
.Y .n/.D.n///:

In particular , when .n;m/D .1; l C 1/,

(1-11) N
log
0;d
.Y.D//D

� lY

iD1
.�1/d �Di C1d �Di

�
N loc
0;d .Y.D//:

When all Dj are nef and .n;m/D .1; l C 1/, this gives the numerical version of [43, Conjecture 6.4] for

point insertions and anticanonical D. When m� n D 1, (1-10) is an extension of the main result of [43]

to the noncompact case.

The extent to which the argument of [43] generalises to the case of simple normal crossings pairs of

Conjecture 1.1 is a somewhat thorny issue. In particular, the cycle-level conjecture of [43, Conjecture 6.4]
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Stable maps to Looijenga pairs 401

is known to fail in the nonstationary sector for general l , as recently observed in a non-log Calabi–Yau

example by Nabijou and Ranganathan [96]. At the same time, there is a nontrivial body of evidence that

a generalisation of the stationary sector equality (1-9) (ie with descendent point insertions only) might

hold for simple normal crossings log Calabi–Yau pairs Y.D/; see Bousseau, Brini and van Garrel [18]

for a proof for toric orbifold pairs. It is therefore an open question to find the exact boundaries of validity

of the stationary log-local correspondence, and in this paper we chart a conceptual pathway to delineate

them for the (special, but central) case of log Calabi–Yau pairs of Conjecture 1.1, as follows.

At a geometric level, the degeneration of [43] can be generalised to a birational modification of one where

the generic fibre is EY.D/, and the special fibre is obtained by gluing, for each j D 1; : : : ; l , Y � .A1/l

along Dj � .A1/l to a rank l vector bundle over P .ODj
˚ODj

.�Dj //. After an (explicit) birational

modification this gives a log smooth family: we describe the details of the degeneration for the case of

surfaces in Section 5.1. When l > 1, instead of the degeneration formula the decomposition formula [2]

applies, expressing N loc
0;d
.Y.D// as a weighted sum of terms, indexed by tropical curves h W� !�, where

� is the dual intersection complex of the central fibre:

(1-12) N loc
0;d .Y.D//D

X

hW �!�

mh

jAut.h/j
N

loc;h
0;d

.Y.D//:

The geometric picture above, and the ensuing decomposition formula (1-12), provides a rather general

and geometrically motivated blueprint to measure the deviation, or lack thereof, of the local invariants

from their expected relation to maximal tangency log invariants in (1-11). As a proof-of-concept step,

and as we shall describe in detail in Section 5.1, in this paper we show how this framework bears fruit in

the context of Looijenga pairs:1 here correction terms indexed by nonmaximal tangency tropical curves

turn out, remarkably, to all individually vanish, whilst the maximal tangency tropical contribution exactly

returns the right-hand side of (1-11).

1.4.2 From log to open invariants Let Y.D/ be a log Calabi–Yau surface. By (1-8), the complement

Y .l/nD.l/ is isomorphic to the total space of O.�Dl/! Y n.D1[� � �[Dl�1/; sinceD is anticanonical,

this is a noncompact Calabi–Yau threefold. We propose that the log invariantsN log
0;d
.Y.D// can be precisely

related to open Gromov–Witten invariants of Y .l/ nD.l/ with boundary in fixed disjoint Lagrangians Lk ,

with k < l , near the divisor D.l/. These Lagrangians should have a specific structure as described in

[8, Section 7], namely they should be fibred over Lagrangians L0
k

in ��1.Dk/ with fibres Lagrangians in

the normal bundle .N��1.Dk/=Y .m//jL0
k

. Writing L WD
S
k<l Lk and Y op.D/ WD .Y .l/ nD.l/; L/, there

is a natural isomorphism � W Hrel
2 .Y

op.D/;Z/! H2.Y;Z/ induced by the embedding Y .l/ nD.l/ ,! Y .l/

and the identification of winding degrees along Lk with contact orders along Dk ; see Proposition 6.6 for

details.

1It is an intriguing question, and one well beyond the scope of this paper, to test how this philosophy generalises to log Calabi–Yau
varieties of any dimension, and to revisit the non-log Calabi–Yau, nonstationary negative result of [96] in this light.
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L

P

Figure 2: Exchanging log and open conditions.

Suppose now that there is a well-posed definition2 of genus-zero open GW counts O0Id .Y op.D// as in

Georgieva [45] and Solomon and Tukachinsky [109]. In such a scenario, we expect a close relationship

between these and the log invariant N log
0;d
.Y.D//.

Conjecture 1.2 (log-open correspondence for surfaces) Let Y.D/ be a log Calabi–Yau surface with

maximal boundary and d a D–convex curve class. Then

(1-13) O0I��1.d/.Y
op.D//D

� lY

kD1

.�1/d �Dk�1

d �Dk

�
N

log
0;d
.Y.D//:

There is an intuitive symplectic heuristics behind Conjecture 1.2: removing a tubular neighbourhood

of D.l/ turns pseudoholomorphic log curves in Y .l/ with prescribed tangencies along D.l/ into pseudo-

holomorphic open Riemann surfaces with boundaries in L, with winding numbers determined by the

tangencies; see Figure 2. The relative factor
Q
k<l.�1/

d �Dk�1.d �Dk/
�1 at the level of GW counts in

Conjecture 1.2 can be understood by looking at the simplest example where Y D P1�A1, D1 D f0g � A1

andD2Df1g�A1, where 0;12P1. For the curve class d times the class of P1 we haveN log
0;d
.Y.D//D1,

as there exists a unique degree d cover of P1 fully ramified over two points, and the order d automorphism

group of this cover is killed by the point condition. By Conjecture 1.1, and in particular (1-10) with

m D 2, we deduce that N log
0;d
.Y .2/.D.2///D .�1/d�1=d ; on the other hand, the open geometry Y op.D/

is C3 with a singular Harvey–Lawson Lagrangian L of framing zero (see Construction 6.4): the degree d

multicovers of the unique embedded disk [65, Theorem 7.2] contribute O0I��1.d/.Y
op.D//D 1=d2, from

which the relative factor in (1-13) is recovered.

2An example of this situation (see Construction 6.4) is when, up to deformation, both Y and the divisors Dk (k < l) are toric,
implying that Y op.D/ is a toric Calabi–Yau threefold geometry equipped with framed toric Lagrangians Lk : in this case the
open GW invariants were introduced in Section 1.3.3.
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Much as in Conjecture 1.1, the invariants in Conjecture 1.2 live in different dimensions: (1-13) relates

log invariants of the log CY surface Y.D/ to open invariants of special Lagrangians in a Calabi–Yau

threefold. Note that combining Conjectures 1.1 and 1.2 further gives a surprising conjectural relation

(1-14) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//;

which equates the GW invariants of the CY3 open geometry Y op.D/ with the local GW invariants of the

CY (l C 2) variety EY.D/.
3

We also expect a precise uplift of this picture to higher-genus invariants. For a single irreducible divisor,

an all-genus version of the log-local correspondence of [43] was described in [19, Theorems 1.1–1.2]. Its

generalisation to a log-open correspondence in higher genus for a completely general pair is likely to take

an unwieldy form, but we expect it to be particularly simple for a maximal boundary log Calabi–Yau

surface. Indeed, in the degeneration to the normal cone along Dl , only multiple covers of a P1–fibre

in P .ODl
˚ ODl

.�Dl// will contribute. The resulting combination of the multiplicity d �Dl in the

degeneration formula with the higher-genus multiple cover contribution

.�1/d �Dl C1

.d �Dl/Œd �Dl �q

leads us to predict a precise, and tantalisingly simple q–analogue of Conjecture 1.2.

Conjecture 1.3 (the all-genus log-open correspondence for surfaces) Let Y.D/ be a log CY surface

with maximal boundary and d a D–convex curve class. With notation as in Sections 1.3.1 and 1.3.3, we

have

(1-15) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �Dl C1

Œd �Dl �q

l�1Y

kD1

.�1/d �DkC1

d �Dk
N

log
d
.Y.D//.�i log q/:

The factor Œ1�l�2q corresponds to the relative normalisation of the higher-genus generating functions in

(1-1) and (1-2). The allusive hints of this section will be put on a rigorous footing in Section 1.5.2.

1.4.3 Quivers and BPS invariants Given Y.DDD1CD2/ a 2–component Looijenga pair, the virtual

count of curves in the noncompact Calabi–Yau 4–fold EY.D/ (see Klemm and Pandharipande [68])

is expected to be expressible in terms of sheaf counting (see Cao, Maulik and Toda [23; 24]). More

precisely, it is expected that the BPS invariants of EY.D/ are extracted from a DT4 virtual fundamental

3The relation (1-14) is in tune with physics expectations from type IIA string theory compactification on R1;1 �X , where X
is a Calabi–Yau fourfold: the low energy effective theory is a N D .2; 2/ QFT, whose effective holomorphic superpotential is
computed by the genus-zero Gromov–Witten invariants of X. Now precisely the same type of holomorphic F–terms can be
engineered by considering D4–branes wrapping special Lagrangians on a Calabi–Yau 3–fold [100]: the superpotential here is a
generating function of holomorphic disk counts with boundary on the Lagrangian three-cycle. It was suggested by Mayr [91]
(see also [4]) that there exist cases where 2d superpotentials can be engineered in both ways, resulting in an identity between
local genus-zero invariants of CY 4–folds and disk invariants of CY 3–folds: the equality in (1-14) asserts just that.
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class associated to the moduli space of one-dimensional coherent sheaves on EY.D/. As coherent sheaves

are often very closely related to modules over quivers, it might be tempting to ask if curve counting

in EY.D/ (and, via the arguments of the previous section, the log/open GW theory of Y.D/) can be

described in terms of some quiver DT theory.

This is more than a suggestive speculation. Consider for example Y D P2 and D DD1CD2 the union

of a line D1 and a conic D2, so that EY.D/ is the total space of OP2.�1/˚OP2.�2/. Let MHiggs
P1 .d; n/

be the moduli space of rank-d , degree-n O.1/–twisted Higgs bundles O˚d
P1 ! O˚d

P1 ˝OP1.1/ on P1.

The total space of OP1.1/ is the complement of a point in P2, and as P1 has normal bundle O.1/ in P2,

M
Higgs
P1 .d; n/ sits as an open part of the moduli space of one-dimensional coherent sheaves on EY.D/.

At the same time, as O.1/ has two sections on P1, MHiggs
P1 .d; n/ is isomorphic to the moduli space of

representations of the quiver with one vertex and two loops. Strikingly, we remark here that this is reflected

into a completely unexpected identity for the corresponding invariants: the Klemm–Pandharipande BPS

invariants of EY.D/ computed in [68, Section 3.2] simultaneously coincide (up to sign) with the DT

invariants of the 2–loop quiver computed in Reineke [107, Theorem 4.2], as well as with the top Betti

numbers4 BHiggs
d

.P1/ WD dim Htop.M
Higgs
P1 .d; n/;Q/ of the moduli spaces of O.1/–twisted Higgs bundles

on the line considered in Rayan [106, Section 5]:

(1-16) jKPd .OP2.�1/˚OP2.�2//j D B
Higgs
d

.P1/D DTnum
d .2–loop quiver/

D .1; 1; 1; 2; 5; 13; 35; 100; 300; 925; 2915; 9386; : : : /d :

From a sheafy point of view, this raises the question how the definition of Calabi–Yau 4–fold invariants

from the moduli space of coherent sheaves [23; 24] interacts with the quiver description, and whether

such a startling coincidence is an isolated example — or not.

An upshot of Conjectures 1.1 and 1.2 is a surprising Gromov–Witten-theoretic take on this question:

for l D 2 and when Y op.D/ is an open geometry given by toric Lagrangians in a toric CY3, the quiver

can be reconstructed systematically from the geometry of Y.D/ via a version of the “branes–quivers”

correspondence introduced in Ekholm, Kucharski and Longhi [36; 35], Kucharski, Reineke, Stošić and

Sułkowski [72] and Panfil, Stošić and Sułkowski [102]. According to the open GW/quiver dictionary

of [35], the quiver nodes are identified with basic (in the sense of [36; 35]) embedded holomorphic disks

with boundary on L, edges and self-edges correspond to linking and self-linking numbers of the latter,

and the DT invariants of the quiver return (up to signs) the genus-zero LMOV count of holomorphic disks

obtained as “boundstates” of the basic ones [36, Section 4].

Now, by the q! 1 limit of (1-7), the genus-zero LMOV and GW invariants of Y op.D/ are related to each

other by the same BPS change of variables relating KP invariants and local GW invariants ofEY.D/ in (1-6).

Then a direct consequence of the conjectural open D local GW equality (1-14) is that the KP invariants

of the local CY4–fold EY.D/ coincide with the LMOV invariants of the open CY3 geometry Y op.D/—

4The degree-independence of these Betti numbers, at least for .d; n/D 1, is explained in [106, Section 5].
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which by the branes-quivers correspondence above are in turn DT invariants of a symmetric quiver! In

particular, for the example above of Y D P2 and D D D1 CD2 the union of a line and a conic, we

shall find the open geometry Y op.D/ to be three-dimensional affine space with a single toric Lagrangian

at framing one (see Construction 6.4) — and as expected, in this case the quiver construction in [102,

Section 5.1] returns exactly the quiver with one vertex and two loops we had found in (1-16). In general,

this connection leads to some nontrivial implications for the Gopakumar–Vafa/Donaldson–Thomas theory

of CY4 local surfaces from log Gromov–Witten theory, which we describe precisely in Sections 1.6.1

and 1.6.3.

1.5 The web of correspondences: results

In order to state our results, we introduce some notions of positivity for Looijenga pairs. A Looijenga pair

Y.D/D .Y;D DD1C � � � CDl/ is nef if each irreducible component Di of D is smooth and nef: note

that the condition that the components Di are smooth implies in particular that l � 2, and nefness entails

that a generic stable map to Y is D–convex, which implies that the corresponding local Gromov–Witten

invariants are well-defined.

A nef Looijenga pair Y.D/ is tame if either l > 2 or D2i > 0 for all i , and quasi-tame if the associated

local geometry EY.D/ is deformation equivalent to the local geometry EY 0.D0/ associated to a tame

Looijenga pair Y 0.D0/: we explain the relevance of these two properties in Section 1.5.1. As we will

show in Section 2, there are 18 smooth deformation types of nef Looijenga pairs in total, 11 of which are

tame and 15 are quasi-tame. In particular, a nef Looijenga pair Y.D/ is uniquely determined by Y and the

self-intersection numbers D2i , and we sometimes use the notation Y.D21 ; : : : ;D
2
l
/ for Y.D/; see Table 1.

We state our results in a slightly discursive form below, including pointers to their precise versions in the

main body of the text.

1.5.1 The stationary log-local correspondence Our first result establishes the stationary log/local

correspondence of Conjecture 1.1 in the form given by (1-11).

Theorem 1.4 (Theorem 5.1, Lemma 3.1, Theorem 3.3, Theorem 3.5, Proposition 3.6) For every nef

Looijenga pair Y.D/, the genus-zero log invariants N
log
0;d
.Y.D// and the genus-zero local invariants

N loc
0;d
.Y.D// are related by

(1-17) N loc
0;d .Y.D//D

� lY

jD1

.�1/d �Dj �1

d �Dj

�
N

log
0;d
.Y.D//:

Moreover , we provide a closed-form solution to the calculation of both sets of invariants in (1-17).

As explained in Section 1.4.1, the key idea to prove Theorem 1.4 is by a degeneration argument, illustrated

in Section 5.1 for l D 2: we follow the general strategy of [43] to deduce log-local relations from a
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degeneration to the normal cone, and we solve in our case of interest the difficulties of the normal-

crossings situation through a detailed study of the tropical curves contributing in the decomposition

formula of Abramovich, Chen, Gross and Siebert [2] for log Gromov–Witten invariants. For l > 2, and

more generally when Y.D/ is tame, it turns out to be more convenient to structure the proof so that an

uplift to the all-genus story, absent in other approaches, is immediate. The notion of tameness is first

shown to be synonymous of finite scattering, and for tame pairs we compute closed-form solutions for

the log Gromov–Witten invariants using tropical geometry, more precisely two-dimensional scattering

diagrams; see Gross [51], Gross, Hacking and Keel [53], Gross, Pandharipande and Siebert [56] and

Mandel [84]. The statement of the theorem for tame cases follows by subsequently comparing with a

closed-form solution of the local theory via Givental-style mirror theorems: the proof follows from a

general statement valid for local invariants of toric Fano varieties in any dimension twisted by a sum

of concave line bundles (Lemma 3.1), and the notion of tameness is shown to coincide here with the

vanishing of quantum corrections to the mirror map. For non-quasi-tame cases, we use a blowup formula

which allows to restrict to the case of highest Picard number; the proof of the equality (1-17) in this case,

in Theorem 3.3, requires a highly nontrivial mirror map calculation.

1.5.2 The all-genus log-open correspondence A notable property of the scattering approach to

Theorem 1.4 for l > 2 (and, in general, for tame Looijenga pairs) is that it can be bootstrapped to

obtain all-genus results for the log invariants through the q–deformed version of the two-dimensional

scattering diagrams of Gross [51], Gross, Hacking and Keel [53], Gross, Pandharipande and Siebert [56]

and Mandel [84] and the general connection between higher-genus log invariants of surfaces with �g–

insertion and q–refined tropical geometry studied in Bousseau [12; 14]. This is key to establishing the

following version of Conjectures 1.2 and 1.3.

Theorem 1.5 (Theorems 4.5, 4.9, 4.10 and 6.7) For every quasi-tame Looijenga pair Y.D/ distinct from

dP3.0; 0; 0/, there exists a triple Y op.D/D .X;L; f/, geometrically related to Y.D/ by Construction 6.4,

where X is a semiprojective toric Calabi–Yau 3–fold , LD L1 [ � � � [Ll�1 is a disjoint union of l � 1

toric Lagrangians in X, f is a framing for L, and there exists an isomorphism � W H2.X;L;Z/
��! H2.Y;Z/

such that

(1-18) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//D

lY

iD1

.�1/d �Di C1

d �Di
N

log
0;d
.Y.D//:

Furthermore , if Y.D/ is tame ,

(1-19) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �Dl C1

Œd �Dl �q

l�1Y

iD1

.�1/d �Di C1

d �Di
N

log
d
.Y.D//.�i log q/:

Moreover , we provide a closed-form solution to the calculation of the invariants in (1-18)–(1-19).

The open geometry Y op.D/ is constructed following the ideas of Section 1.4.2; see Section 6.2 for

full details. Key to the proof of Theorem 1.5 is the fact that quasi-tame Looijenga pairs can always be
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deformed to pairs for which the both surface Y and the divisorsDi with i < l are toric: as we shall explain

in Section 6.2, the corresponding open geometry Y op.D/ is given by suitable Aganagic–Vafa (singular

Harvey–Lawson) Lagrangian branes in a toric Calabi–Yau threefold, whose open Gromov–Witten theory

can be compactly encoded through the topological vertex.5 Conjecture 1.3 then predicts a completely

unexpected relation between the q–scattering and topological vertex formalisms, which Theorem 1.5

establishes for tame pairs. The combinatorics underlying the resulting comparison of invariants is in

general extremely nontrivial: for l D 2, it can be shown to be equivalent to Jackson’s q–analogue of the

Pfaff–Saalschütz summation for the 3�2 generalised q–hypergeometric function.

We furthermore conjecture that the higher-genus log-open correspondence of Theorem 1.5 extends to all

quasi-tame pairs. The scattering diagrams become substantially more complicated in the nontame cases,

and (1-18) translates into an intricate novel set of q–binomial identities: see Conjecture B.3 for explicit

examples.6 The log-local correspondence of Theorem 1.4 establishes their limit for q ! 1.

1.5.3 BPS invariants and quiver DT invariants As anticipated in Section 1.4.3, the log/open cor-

respondence of Theorem 1.5 can be leveraged to produce a novel correspondence between log/local

Gromov–Witten invariants and quiver DT theory.

Theorem 1.6 (Theorem 7.3) Let Y.D/ D .Y;D1 CD2/ be a 2–component quasi-tame Looijenga

pair. Then there exists a symmetric quiver Q.Y.D// with �.Y /� 1 vertices and a lattice isomorphism

� W Z.Q.Y.D///0
��! H2.Y;Z/ such that

(1-20) DTnum
d .Q.Y.D///D

ˇ̌
ˇKP�.d/.EY.D//C

X

i

˛iıd;vi

ˇ̌
ˇ;

with ˛i 2 f�1; 0; 1g. In particular , KPd .EY.D// 2 Z.

A symplectic proof of the integrality of genus-zero BPS invariants for projective Calabi–Yau 4–folds,

although likely adaptable to the noncompact setting, was given by Ionel–Parker in [62]. In Theorem 1.6,

the integrality for the local Calabi–Yau 4–foldsEY.D/ follows from the identification of the BPS invariants

with DT invariants of a symmetric quiver.7 We construct the symmetric quiver Q.Y.D// by combining

the log-open correspondence given by Theorem 1.5 with a correspondence previously established by

Panfil and Sułkowski [103] between toric Calabi–Yau 3–folds with “strip geometries” and symmetric

quivers; see also Kimura, Panfil, Sugimoto and Sułkowski [67].

Theorem 1.5 associates to a Looijenga pair Y.D/ satisfying Property O the toric Calabi–Yau 3–fold

geometry Y op.D/. Denote by �d .Y.D//.q/ WD���1.d/.Y
op.D//.q/ the open BPS invariants defined

5A conceptual explanation for the exclusion of dP3.0; 0; 0/ from the statement of Theorem 1.5 is given by the notion of
Property O, which we introduce in Definition 6.3.
6After the first version of this paper appeared on the arXiv, we received a combinatorial proof of Conjecture B.3 from
C Krattenthaler [71].
7The equality modulo the integral shift by

P
i ˛i ıd;vi

in (1-20) can be traded to an actual equality of absolute values at the
price of considering a larger disconnected quiver zQ, and a corresponding epimorphism z� W Z.zQ.Y.D///0 ! H2.Y;Z/; see [103].
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in (1-7). In general, for any Looijenga pair we can define

(1-21) �d .Y.D//.q/ WD Œ1�2q

� lY

iD1

1

Œd �Di �q

�X

kjd

.�1/d=k�DCl�.k/
Œk�2�l
q k2�l N

log
d=k

.Y.D//.�ik log q/:

When Y.D/ is tame and satisfies Property O, the equivalence of the definitions (1-7) and (1-21) is a

rephrasing of the log-open correspondence of Theorem 1.5 at the level of BPS invariants.

A priori, �d .Y.D//.q/ 2 Q.q1=2/. By a direct arithmetic argument, we prove the following integrality

result, which in particular establishes the existence of an integral BPS structure underlying the higher-genus

log Gromov–Witten theory of Y.D/.

Theorem 1.7 (Theorem 8.1) Let Y.D/ be a quasi-tame Looijenga pair. Then

�d .Y.D//.q/ 2 q� 1
2
gY.D/.d/ZŒq�

for an integral quadratic polynomial gY.D/.d/.

1.5.4 Orbifolds In the present paper, we mainly focus on the study of the finitely many deformation

families of nef Looijenga pairs .Y;D/ with Y smooth. Nevertheless, most of our techniques and results

should extend to the more general setting where we allow Y to have orbifold singularities at the intersection

of the divisors: the log Gromov–Witten theory is then well-defined since Y.D/ is log smooth, and the local

Gromov–Witten theory makes sense by viewing Y and EY.D/ as smooth Deligne–Mumford stacks. There

are infinitely many examples of nef/tame/quasi-tame Looijenga pairs in the orbifold sense. Deferring

a treatment of more general examples to our companion note [17], we content ourselves here to show

in Section 9 that the log-local, log-open and Gromov–Witten/quiver correspondences still hold for the

infinite family of examples obtained by taking Y D P.1;1;n/, the weighted projective plane with weights

.1; 1; n/, and D DD1CD2 with D1 a line passing through the orbifold point and D2 a smooth member

of the linear system given by the sum of the two other toric divisors.

1.6 The web of correspondences: implications

The results of the previous section subsume and were motivated by several disconnected strands of

development in the study of the enumerative invariants in Sections 1.3.1–1.3.5. We briefly describe here

how they relate to and impact ongoing progress in some allied contexts.

1.6.1 BPS structures in log/local GW theory The relation of log GW invariants to BPS invariants

in Theorem 1.7 echoes very similar8 statements relating log GW theory to DT and LMOV invariants in

Bousseau [15; 14], and in particular it partly demystifies the interpretation of log GW partition functions

8A nontrivial difference is that here the log Gromov–Witten invariants are not interpreted as BPS invariants themselves, unlike in
[15; 14], but rather are related to them via (1-21).
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as related to some putative open curve counting theory on a Calabi–Yau 3–fold in [14, Section 9] by

realising the open BPS count in terms of actual, explicit special Lagrangians in a toric Calabi–Yau

threefold. Aside from its conceptual appeal, its power is revealed by some of its immediate consequences:

the Klemm–Pandharipande conjectural integrality [68, Conjecture 0] for local CY4 surfaces follows as a

zero-effort corollary of the log-open correspondence of Theorem 1.5 by constructing the associated quiver

in Theorem 1.6, identifying the KP invariants of the local surface with its DT invariants, and applying

Efimov’s theorem [34].

We note that this chain of connections opens the way to a proof of the Calabi–Yau 4–fold Gromov–

Witten/Donaldson–Thomas correspondence [23; 24], which is an open conjecture even for the simplest

local surfaces. The analysis of the underlying integrality of the q–scattering calculation in Theorem 1.7

furthermore gives, in the limit q ! 1, an algebrogeometric version of symplectic results of Ionel and

Parker [62] for Calabi–Yau vector bundles on toric surfaces; and away from this limit, it provides a refined

integrality statement whose enumerative salience for the local theory is hitherto unknown, and worthy of

further study: see Section 1.6.3.

1.6.2 The general log-open correspondence for surfaces Throughout the heuristic description of the

motivation for Conjectures 1.1–1.3, we have been mindful not to impose any nefness condition on the

divisors Di : the only request we made was for the genus-zero obstruction theory of the local theory

to be encoded by a genuine obstruction bundle over the untwisted moduli space. This was taken into

account by the condition of D–convexity for the stable maps: restricting to D–convex maps widens the

horizon of the log/local correspondence of [43] to a vast spectrum of cases which were not accounted

for in previous studies of the correspondence. And indeed, in the broadest generality where the open

invariants can be defined in the algebraic category, the methods proposed here extend straightforwardly

to treat the cases when one or more of the irreducible components Di have negative self-intersection:

Conjectures 1.1–1.3 hold with flying colours in these cases as well, with all l > 2 anticanonical pairs

satisfying Property O that remarkably enjoy the same salient properties of the tame nef pairs, such as

finite scattering, closed-form resummation of the topological vertex, and triviality of the mirror map; their

detailed study will appear in work-in-progress of Brini, van Garrel and Schüler.

The discussion of Section 1.4.2 also opens the door to pushing the log/open correspondence beyond the

maximal contact setting: it is tempting to see how the maximal tangency condition could be removed from

Conjecture 1.2, with the splitting of contact orders amongst multiple points on the same divisor being

translated to windings of multiple boundary disks ending on the same Lagrangian. The multicovering

factor of (1-19) would then be naturally given by a product of individual contact orders/disk windings —

an expectation that the reader can verify to be fulfilled in the basic example presented there of .Y;D/D

.P1�A1;A1[A1/. More generally, the link to the topological vertex and open GW invariants of arbitrary

topology raises a fascinating question how much the topological vertex knows of the log theory of the

surface — and how it can be effectively used in the construction of (quantum) SYZ mirrors.
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1.6.3 Relation to the Cao–Maulik–Toda conjecture Another direction towards a geometric under-

standing of the integrality of KP invariants is provided by sheaf-counting theories for Calabi–Yau 4–folds,

which were originally introduced by Borisov and Joyce [11] (see also Cao and Leung [22]) and have

recently been given an algebraic construction by Oh and Thomas [98]. More precisely, Cao, Maulik

and Toda have conjectured in [24] (resp. in [23]) explicit relations between genus-zero KP invariants

and stable pair invariants (resp. counts of one-dimensional coherent sheaves) on Calabi–Yau 4–folds.

Recently, Cao, Kool and Monavari [21] have checked the conjecture of [24] for low-degree classes on

local toric surfaces; their proof hinges on the solution of the Gromov–Witten/Klemm–Pandharipande side

given by Theorems 1.4 and 1.6 in this paper.

The results of Theorems 1.6 and 1.7 also raise a host of new questions. First and foremost, it would

be extremely interesting to find for local toric surfaces a direct connection between the symmetric

quivers appearing in Theorem 7.3 and the moduli spaces of coherent sheaves appearing in the conjectures

of [24; 23]. Furthermore, since for l D 2 we have KPd .EY.D// D �d .Y.D//, a fascinating direction

would be to find an interpretation of the q–refined invariants �d .Y.D//.q/ in terms of the Calabi–Yau

4–fold EY.D/. A natural suggestion is that �d .Y.D//.q/ should take the form of some appropriately

refined Donaldson–Thomas invariants of EY.D/. As the topic of refined DT theory of Calabi–Yau 4–folds

is still in its infancy, we leave the question open for now.
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2 Nef Looijenga pairs

We start off by establishing some general facts about the classical geometry of nef log Calabi–Yau (CY)

surfaces. We first proceed to classify them in the smooth case, recall some basics of their birational

geometry and the construction of toric models, and describe the structure of their pseudoeffective

cone in preparation for the study of curve counts in them. We then end by introducing the notions of

(quasi)tameness.
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2.1 Classification

We start by giving the following definition.

Definition 2.1 An l–component log CY surface with maximal boundary, or l–component Looijenga pair,

is a pair Y.D/ WD .Y;D DD1 C � � � CDl/ consisting of a smooth rational projective surface Y and a

singular nodal anticanonical divisor D that admits a decomposition D DD1C � � � CDl . We say that an

l–component log CY surface is nef if l � 2 and each Di is a smooth, irreducible and nef rational curve.

Examples of log CY surfaces arise when Y is a projective toric surface and D is the complement of the

maximal torus orbit in Y ; we call these pairs toric. By definition, if Y.D/ is nef, Y is a weak Fano surface

together with a choice of distribution of the anticanonical degree amongst components Di preserving the

condition that Di �C � 0 for any effective curve C and all i D 1; : : : ; l with l � 2. We classify these by

recalling some results of di Rocco [33]; see also [27, Section 2] and [28; 29].

Let dPr be the surface obtained from blowing up r � 1 general points in P2. The Picard group of dPr is

generated by the hyperplane class H and the classes Ei of the exceptional divisors. The anticanonical

class is �KdPr D 3H �
Pr
iD1Ei . Recall that a line class on dPr is l 2 Pic.dPr/ such that l2 D �1

and �KdPr � l D 1; for r � 5 and up to permutation of the Ei , they are given by Ei , H �E1 �E2 or

2H �
P5
iD1Ei . Furthermore, for n� 0, denote by Fn the nth Hirzebruch surface. Its Picard group is of

rank 2 generated by the sections C�n (resp. Cn), with self-intersections �n (resp. n), and by the fibre

class f , subject to the relation that C�nCnf DCn. Note that F0 ' P1�P1 and F1 ' dP1 is the blowup

of P2 in one point.

Lemma 2.1 [33] Assume that 1� r � 5 and let D 2 Pic.dPr/. Then D is nef if and only if

(i) for r D 1, D � l � 0 for all line classes l and D � .H �E1/� 0,

(ii) for 5� r � 2, D � l � 0 for all line classes l .

2.1.1 l D 2 Let’s start by setting l D 2. With the sole exception of dP4.H; 2H �E1�E2�E3�E4/

versus dP4.H � E1; 2H � E2 � E3 � E4/, the next proposition shows that up to deformation and

permutation of the factors, and assuming that D1 and D2 are nef, Y.D/ is determined by Y and the

self-intersections fD21 ;D
2
2g. We will consequently employ the shorthand notation Y.D/$ Y.D21 ;D

2
2/

to indicate this, making precise which one is meant in the case of dP4.0; 1/.

Proposition 2.2 Let Y.D DD1CD2/ be a 2–component nef log CY surface. Then up to deformation

and interchange of D1 and D2, Y.D1;D2/ is one of the following , abbreviated by Y.D21 ;D
2
2/ except in

cases (4) and (5):

(1) P2.1; 4/,

(2) dPr.1; 4� r/ for 1� r � 3,
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(3) dPr.0; 5� r/ for 1� r � 3,

(4) dP4.H; 2H �E1�E2�E3�E4/,

(5) dP4.H �E1; 2H �E2�E3�E4/,

(6) dP5.0; 0/,

(7) F0.0; 4/,

(8) F0.2; 2/.

Proof A minimal model of Y is given by P2, F0 or Fn for n � 2. By assumption �KY D D1 CD2

is nef, ruling out Fn for n > 2. If Y D F0, then the stipulated decompositions of �KF0 are immediate. If

F2 is a minimal model of Y , then Y D F2. In this case, the only possible decomposition of �KF2 into nef

divisors is as D1 D C�2C 2f D C2 and D2 D C2. The resulting pair F2.2; 2/ is deformation equivalent

to F0.2; 2/; see the proof of Proposition 2.6.

Assume now that P2 is a minimal model of Y . If Y D P2, we are done. Otherwise, up to deformation,

we may assume that Y D dPr . Since �KY is nef, r � 9. As D1 and D2 are nef, they are of the form

dH �
Pr
iD1 aiEi for d � 1 and ai � 0. Applying Lemma 2.1, we find that the only nef decompositions

are as follows:

� either D1 DH , D2 D 2H �
Pr
iD1Ei for r � 4,

� or D1 DH �Ej , D2 D 2H �
Pr
i¤j Ei for r � 5.

They are all basepoint-free by [33] (see [27, Lemma 2.7]) and hence a general member will be smooth by

Bertini.

2.1.2 l D 3 Next, we classify the surfaces with l D 3 nef components. The shorthand notation

Y.D21 ;D
2
2 ;D

2
3/ is employed as in the previous section.

Proposition 2.3 Let Y.D DD1CD2CD3/ be a 3–component log CY surface with Y smooth and D1,

D2 and D3 nef. Then up to deformation and permutation of D1, D2 and D3, Y.D21 ;D
2
2 ;D

2
3/ is one of

the following:

(1) P2.1; 1; 1/,

(2) dP1.1; 1; 0/,

(3) dP2.1; 0; 0/,

(4) dP3.0; 0; 0/,

(5) F0.2; 0; 0/.

Proof A minimal model of Y is given by P2, F0 or Fn for n� 2. By assumption �KY DD1CD2CD3

is nef, ruling out Fn for n� 2. For P2, the only possibility is to choose D1;D2;D3 in class H . For F0,

it is to choose D1 DH1CH2 the diagonal and D2 DH1, D3 DH2. Necessarily, all other surfaces are
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given by iterated blowups of the minimal models, keeping the divisors nef, leading to the list. As in the

previous proposition, they are all basepoint-free and thus a general member will be smooth.

2.1.3 l � 4 For l D 4, a minimal model for Y is F0, for which the only possibility is given by D being

its toric boundary. There are no other cases preserving nefness of the divisors. For 5 components or more,

there are no surfaces keeping each divisor nef.

2.2 Toric models

We consider two basic operations on log CY surfaces Y.D/.

� Let zY be the blowup of Y at a node of D and let zD be the preimage of D in zY . Then the log CY

surface . zY ; zD/ is said to be a corner blowup of Y.D/.

� Let zY be the blowup of Y at a smooth point of D. Let zD be the strict transform of D in zY . Then

the log CY surface . zY ; zD/ is said to be an interior blowup of Y.D/.

A corner blowup does not change the complement Y nD, whereas an interior blowup does; accordingly

corner blowups do not change log Gromov–Witten invariants [3].

Definition 2.2 Let � W Y.D/�! Y .D/ be a sequence of interior blowups between log CY surfaces such

that Y .D/ is toric. Then � is said to be a toric model of Y.D/.

We will describe toric models by giving the fan of .Y ;D/ with focus–focus singularities on its rays. A

focus–focus singularity on the ray corresponding to a toric divisor F encodes blowing up F at a smooth

point. Each focus–focus singularity produces a wall and interactions of them create a scattering diagram

Scatt.Y.D//, as we discuss in Section 4.2.

Proposition 2.4 [53, Proposition 1.3] Let Y.D/ be a log CY surface. Then there exist log CY surfaces

zY . zD/ and Y .D/, with the latter toric , and a diagram

(2-1)

zY . zD/

'

{{

�

##

Y.D/ Y .D/

such that ' is a sequence of corner blowups and � is a toric model.

The diagrams as in (2-1) are far from unique, and they are related by cluster mutations [52]. Because of the

invariance of log Gromov–Witten invariants by corner blowups, we can calculate the log Gromov–Witten

invariants of Y.D/ on the scattering diagram Scatt.Y.D// associated to the toric model � .
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2.3 The effective cone of curves

Given Y.D/ a nef log CY surface and d 2A1.Y /, it will be convenient for the discussion in the foregoing

sections to determine numerical conditions for d to be an element of the pseudoeffective cone. If Y D Fn,

NE.Y / is just the monoid generated by C�n and f , so let us assume that Y D dPr. We will write a curve

class d as d0
�
H �

Pr
iD1Ei

�
C
Pr
iD1 diEi . If �.Y / � 2, then the extremal rays of the effective cone

NE.Y / of Y are generated by extremal classes D with D2 � 0, and in the case of del Pezzo surfaces

these are the line and fibre classes described above. Using the classification [27, Examples 2.3 and 2.11],

up to permutation of the Ei and Ej , we find the following lists of generators of extremal rays of NE.Y /:

� If r D 1,

(2-2) E1; H �E1:

� If 2� r � 4,

(2-3) Ei ; H �Ei ; H �Ei �Ej for i ¤ j:

� If r D 5,

(2-4) Ei ; H �Ei ; H �Ei �Ej for i ¤ j; 2H �

5X

iD1
Ei :

Note that the effective cone is closed since it is generated by finitely many elements. The following

proposition can be specialised to the del Pezzo surfaces dPr for r � 5 by setting the corresponding di
to 0 and removing the superfluous equations such as the last one, which only holds for r D 5.

Proposition 2.5 A class d D d0
�
H �

P5
iD1Ei

�
C
P5
iD1 diEi of dP5 is effective if and only if

(2-5) d0 � 0; di � 0; di C dj C dk � d0; di C dj C dk C dl � 2d0; 2di C
X

j¤i
dj � 3d0;

where the i; j; k; l are always pairwise distinct.

The statement follows from the explicit description of the effective cone as generated by extremal rays. A

direct calculation using the Polymake package in Macaulay2 computes the halfspaces defining the cone,

yielding the above inequalities for the effective curves.

2.4 Tame and quasi-tame Looijenga pairs

The computation of curve-counting invariants of nef Looijenga pairs is strongly affected by the number l

of smooth irreducible components of D and the positivity of Di for i D 1; : : : ; l . We spell this out with

the following definition, whose significance will be worked out in Sections 3.1 and 4.2.

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 415

Let Y.D/ be a nef Looijenga pair and let

(2-6) EY.D/ WD Tot

� lM

iD1
OY .�Di /

�

be the total space of the direct sum of the dual line bundles to Di for i D 1; : : : ; l .

Definition 2.3 We call a nef log CY surface .Y;D DD1 C � � � CDl/ tame if either l > 2 or D2i > 0

for all i . A nef log CY surface Y.D/ is quasi-tame if EY.D/ is deformation equivalent to EY 0.D0/, with

Y 0.D0/ tame.

We will use the abbreviated notation EY.D2
1 ;D

2
2/

for the local Calabi–Yau fourfold EY.D1CD2/ associated

by (2-6) to a 2–component log CY surface Y.D21 ;D
2
2/ in the classification of Proposition 2.2. Quasitame

pairs are classified by the following proposition.

Proposition 2.6 The following varieties are deformation-equivalent :

(1) EF0.0;4/, EF0.2;2/ and EF2.2;2/;

(2) EdPr .1;4�r/ and EdPr .0;5�r/, where 1� r � 4.

Proof For the first part of the proposition, denote by H1 and H2 the two generators of the Picard group

of F0 corresponding to the pullbacks of a point in P1 along proj1;2 W F0 ! P 1. The Euler sequence on P1,

pulled back to F0 along proj1 and tensored by O.�H2/, yields

(2-7) 0! O.�2H1�H2/! O.�H1�H2/˚O.�H1�H2/! O.�H2/! 0:

This determines a family with general fibre the total space of O.�H1�H2/˚O.�H1�H2/ and special

fibre the total space of O.�H2/˚O.�2H1�H2/, hence a deformation between EF0.0;4/ and EF0.2;2/.

Next, consider again the Euler sequence over P1,

(2-8) 0! O.�2/! O.�1/˚O.�1/! O ! 0;

and the associated deformation of the total space of O.�1/˚O.�1/ into the total space of O ˚O.�2/.

Taking the projectivisation of this family yields a deformation between F0 and F2. In this deformation,

�H1�H2 specialises to �C2. Taking twice the associated line bundles yields the deformation between

EF0.2;2/ and EF2.2;2/.

To prove the second part, assume first that r D 1. We start with the relative (dual) Euler sequence for the

fibration dP1 ! P1 with distinct sections with image H and E1

(2-9) 0! O ! O.H/˚O.E1/! O.H CE1/! 0:

We tensor it with O.�2H/ to obtain

(2-10) 0! O.�2H/! O.�H/˚O.�2H CE1/! O.�H CE1/! 0:

This determines a family with general fibre the total space of O.�H/˚O.�2H CE1/ and special fibre

the total space of O.�2H/˚O.�H CE1/, hence a deformation between EdP1.1;3/ and EdP1.0;4/.
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Y.D/ l K2Y D1 D2 D3 D4 tame quasi-tame

P2.1; 4/ 2 9 H 2H – – X X

F0.2; 2/ 2 8 H1 CH2 H1 CH2 – – X X

F0.0; 4/ 2 8 H1 H1 C 2H2 – – ✗ X

dP1.1; 3/ 2 8 H 2H �E1 – – X X

dP1.0; 4/ 2 8 H �E1 2H – – ✗ X

dP2.1; 2/ 2 7 H 2H �E1 �E2 – – X X

dP2.0; 3/ 2 7 H �E1 2H �E2 – – ✗ X

dP3.1; 1/ 2 6 H 2H �E1 �E2 �E3 – – X X

dP3.0; 2/ 2 6 H �E1 2H �E2 �E3 – – ✗ X

dP4.1; 0/ 2 5 H 2H �E1 �E2 �E3 �E4 – – ✗ ✗

dP4.0; 1/ 2 5 H �E1 2H �E2 �E3 �E4 – – ✗ ✗

dP5.0; 0/ 2 4 H �E1 2H �E2 �E3 �E4 �E5 – – ✗ ✗

P2.1; 1; 1/ 3 9 H H H – X X

F0.2; 0; 0/ 3 8 H1 CH2 H1 H2 – X X

dP1.1; 1; 0/ 3 8 H H H �E1 – X X

dP2.1; 0; 0/ 3 7 H H �E1 H �E2 – X X

dP3.0; 0; 0/ 3 6 H �E1 H �E2 H �E3 – X X

F0.0; 0; 0; 0/ 4 8 H1 H2 H1 H2 X X

Table 1: Classification of smooth nef Looijenga pairs.

Dually, we have

(2-11) 0! H0.O.H �E1//! H0.O.H//˚ H0.O.2H �E1//! H0.O.2H//;

and a section of O.2H �E1/ in the general fibre gives a section of O.2H/ in the special fibre. Hence

we have a divisor D in the family in class 2H �E1 for the general fibre and of class 2H for the special

fibre. Blowing up a general point of D in the family gives a deformation between EdP2.1;2/ and EdP2.0;3/.

Iterating the process, we obtain the desired deformations.

We summarise the discussion of this section in Table 1. There are 18 smooth deformation types of nef

Looijenga pairs in total, 11 of which are tame and 15 of which are quasi-tame. The three non-quasi-tame

cases occur when Y is a del Pezzo surface of degree 5 or less.

3 Local Gromov–Witten theory

3.1 1–Pointed local Gromov–Witten invariants

In this section, we provide general formulas for the Gromov–Witten invariants with point insertions of toric

Fano varieties in any dimension twisted by a sum of concave line bundles. For the remainder of this section,
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let Y be an n–dimensional smooth projective variety of Picard rank r , let DDD1C� � �CDl 2An�1.Y /
with D 2 j�KY j and each Di smooth and irreducible, and let d be a D–convex curve class.

Let EY.D/ WD Tot
�Ll

iD1.OY .�Di //
�

be as in (2-6) and let �Y W EY.D/ ! Y be the natural projec-

tion. Since d is D–convex, the moduli space M0;m.EY.D/; d / of genus-zero m–marked stable maps

Œf W C !EY.D/� with f�.ŒC �/ D d 2 H2.Y;Z/ is scheme-theoretically the moduli stack M0;m.Y; d/

of stable maps to the base Y , as every stable map to the total space factors through the zero section

Y ,!EY.D/. In particular, M0;m.EY.D/; d / is proper. Consider the universal curve � W C ! M0;m.Y; d/,

and denote by f WC !Y the universal stable map. Then H0.C; f �OY .�Di //D0 and we have obstruction

bundles ObDj
WD R1��f �OY .�Dj /; of rank d �Dj � 1 with fibre H1.C; f �OY .�Dj // over a stable

map Œf WC ! Y �. The virtual fundamental class on M0;m.EY.D/; d / is defined by intersecting the virtual

fundamental class on M0;m.Y; d/ with the top Chern class of
L
j ObDj

:

(3-1) ŒM0;m.EY.D/; d /�
vir WDctop.ObD1

/\� � �\ctop.ObDl
/\ŒM0;m.Y; d/�

vir 2HmCl�1.M0;m.Y; d/;Q/:

There are tautological classes  i WD c1.Li /, where Li is the i th tautological line bundle on M0;m.Y; d/

whose fibre at Œf W .C; x1; : : : ; xm/ ! Y � is the cotangent line of C at xi , and we denote by evi the

evaluation maps at the i th marked point. For an effective D–convex curve class d 2 H2.Y;Z/, genus-zero

local Gromov–Witten invariants of EY.D/ with point insertions on the base are defined as

N loc
0;d .Y.D// WD

Z

ŒM0;l�1.EY.D/;d/�vir

l�1Y

jD1
ev�
j .�

�
Y ŒptY �/;(3-2)

N
loc; 
0;d

.Y.D// WD

Z

ŒM0;1.EY.D/;d/�vir
ev�
1.�

�
Y ŒptY �/[ l�21 ;(3-3)

which we think of as the virtual counts of curves through l � 1 points (resp. 1–point with a  –condition)

on the zero section of the vector bundle EY.D/.

Since D is anticanonical, EY.D/ is a noncompact Calabi–Yau .nCl/–fold. The case nC l D 3 has been

the main focus in the study of local mirror symmetry, and as such it has been abundantly studied in the

literature [26]. It turns out that the lesser studied situation when nC l > 3 has a host of simplifications,

often leading to closed-form expressions for (3-2)–(3-3). We start by fixing some notation which will

be of further use throughout this section. Let T ' .C?/l ˚ EY.D/ be the fibrewise torus action and

denote by �i 2 H.BT /, with i D 1; : : : ; l , its equivariant parameters. Let f�˛g˛ be a graded C–basis for

the nonequivariant cohomology of the image of the zero section Y ,!EY.D/ with deg�˛ � deg�˛C1;

in particular, �1 D 1H.Y /. Its elements have canonical lifts �˛ ! '˛ to T –equivariant cohomology

forming a C.�1; : : : ; �l/ basis for HT .EY.D//. The latter is furthermore endowed with a perfect pairing

(3-4) �EY.D/
.'˛; 'ˇ / WD

Z

Y

�˛ [�ˇS
i eT .OY .�Di //

;

with eT denoting the T –equivariant Euler class. In what follows, we will indicate by ��1
EY.D/

.'˛; 'ˇ / the

inverse of the Gram matrix (3-4).

Geometry & Topology, Volume 28 (2024)



418 Pierrick Bousseau, Andrea Brini and Michel van Garrel

Let now � 2 HT .EY.D//. The J –function of EY.D/ is the formal power series

(3-5) J
EY.D/

big .�; z/ WD zC � C
X

d2NE.Y /

X

n2ZC

X

˛;ˇ

��1
EY.D/

.'˛; 'ˇ /

nŠ

�
�; : : : ; �;

'˛

z� 

�EY.D/

0;nC1;d
'ˇ ;

where we employed the usual correlator notation for GW invariants,

(3-6) h�1 
k1

1 ; : : : ; �n 
kn
n i

EY.D/

0;n;d
WD

Z

ŒM0;m.EY.D/;d/�vir

Y

i

ev�
i .�i / 

ki

i :

Restriction to t D
PrC1
iD1 ti'i and use of the divisor axiom gives the small J –function

(3-7) J
EY.D/

small .t; z/ WD ze
P
ti'i=z

�
1C

X

d2NE.Y /

X

˛;ˇ

��1.'˛; 'ˇ /EY.D/
et.d/

�
'˛

z.z� 1/

�EY.D/

0;1;d

'ˇ

�
:

Lemma 3.1 Suppose that Y is a toric Fano variety and either nC l D 4 and Di is ample for all i , or

nC l > 4 and Di is nef for all i . Let T WD fTi 2 AdimY�1.Y /gnCr
iD1 be the collection of its prime toric

divisors , and
Fm
iD1 Si D f1; : : : ; nC rg a length-m partition of nC r such that Di WD

P
j2Si

Tj . For an

effective curve class d 2 NE.Y /, write di WD d �Di and ti WD d �Ti for its intersection multiplicities with

the nef divisors Di and the toric divisors Ti , respectively. Then

(3-8) N
loc; 
0;d

.Y.D1C � � � CDl//D
.�1/

Pl
iD1.di �1/

Ql
iD1 di

lY

iD1

�
di

ftj gj2Si

�
;

where � k

fij gmjD1

�
D

kŠQm
jD1 ij Š

is the multinomial coefficient.

Proof By (3-3) and (3-7), we have

(3-9) N
loc; 
0;d

.Y.D//D
X

ˇ

�.'x̨; 'ˇ /EY.D/
Œz1�let.d/C

P
ti'i=z'ˇ �J

EY.D/

small .t; z/;

where x̨ is defined by 'x̨ D Œpt�. From (3-4), we have �.'x̨; 'ˇ /EY.D/
D ıx̨1

Ql
iD1 �

�1
i , hence

(3-10) N
loc; 
0;d

.Y.D//D
1

Ql
iD1 �i

Œz1�let.d/C
P
ti'i=z1HT .Y /�J

EY.D/

small .t; z/:

The right-hand side can be computed by Givental-style toric mirror theorems. Let �a WD T _
a 2 H2.Y / be

the Poincaré dual class of the ath toric divisor of Y , let �i WD c1.O.�Di // be the T –equivariant Chern

class of Di , and let yi with i D 1; : : : ; r C 1 be variables in a formal disk around the origin. Writing
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.x/n WD �.xCn/=�.x/ for the Pochhammer symbol of .x; n/ with n 2 Z, the I–function of EY.D/ is

the HT .EY.D//–valued Laurent series

(3-11) IEY.D/.y; z/ WD zC
Y

i

y
'i=z
i

X

0¤d2NE.Y /

Y

i

y
di

i z
1�l

Q
i �i .�i=zC 1/di �1Q
a.�a=zC 1/ta

;

and its mirror map is their formal O.z0/ coefficient,

(3-12) zt iEY.D/
.y/ WD Œz0'i �I

EY.D/.y; z/:

Then [46; 31; 30]

(3-13) J
EY.D/

small .ztEY.D/.D/.y/; z/D IEY.D/.y; z/:

Inspecting (3-11) shows that if either nC l > 4, or nC l D 4 and Di is ample, the mirror map does not

receive quantum corrections:

(3-14) zt iEY.D/
.y/D logyi :

Therefore, under the assumptions of the lemma,

(3-15) N
loc; 
0;d

.Y.D//D
1

Ql
iD1 �i

h
z1�lY

i

y
di

i

Y

i

y
'i=z
i 1HT .Y.D//

i
IEY.D/.y; z/

D
1

Ql
iD1 �i

h
z1�lY

i

y
di

i

i
IEY.D/.y; z/

ˇ̌
ˇ
'˛!0

:

The claim then follows by substituting �aj'˛!0 D 0 and �i j'˛!0 D ��i into (3-11).

3.1.1 Quasitame Looijenga pairs Let us now go back to the case of log CY surfaces and specialise

the discussion in the previous section to Y.D/ a tame Looijenga pair. The key observation in the proof of

Lemma 3.1 was that no contributions to the O.z0/ Laurent coefficient of the I–function could possibly

come from any stable maps in any degrees, which is automatic for nC l > 4, and requires that di > 0

when nC l D 4. We can in fact partly relax the condition that Di is ample by just requiring by fiat that

no curves with di D d �Di D 0 contribute to the mirror map. A direct calculation from (3-11) shows

that in the case of nef log CY surfaces with Y a Fano surface, this relaxed assumption coincides with

Y.D/ being tame as in Definition 2.1. Since, by Proposition 2.2, Y is toric for all tame cases, Lemma 3.1

computes (3-3) for all of them.

Example 3.1 Let Y.D/ D P2.1; 4/. Then Lemma 3.1 gives for the degree-d local invariants of the

projective plane

(3-16) N
loc; 
0;d

.Y.D//DN loc
0;d .Y.D//D

.�1/d

2d2

�2d
d

�
:

This recovers a direct localisation calculation by Klemm and Pandharipande in [68, Proposition 2].
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Example 3.2 Let Y.D/D F0.2; 2/ and write d D d1H1C d2H2. Lemma 3.1 yields

(3-17) N
loc; 
0;d

.Y.D//DN loc
0;d .Y.D//D

1

.d1C d2/2

�d1Cd2
d1

�2

as in [68, Proposition 3].

Moreover, if Y.D/ is a quasi-tame Looijenga pair, the Calabi–Yau vector bundle EY.D/ is deformation

equivalent to EY 0.D0/ for some tame Looijenga pair by definition. It therefore carries the same local

Gromov–Witten theory, and the calculation of N loc; 
0;d

.Y.D//DN
loc; 
0;d

.Y 0.D0// from Lemma 3.1 extends

immediately to these cases as well.

3.1.2 Nonquasi-tame Looijenga pairs Lemma 3.1 cannot be immediately extended to non-quasi-tame

pairs Y.D/, as Y is not toric and EY.D/ does not deform to EY 0.D0/ for tame Y 0.D0/. We will proceed

by exhibiting a closed-form solution for the case of lowest anticanonical degree Y.D/D dP5.0; 0/. This

recovers all other cases with l D 2 by blowing down, as per the following.

Proposition 3.2 (blowup formula for local GW invariants) Let Y.D/ be an l–component log CY

surface. Let � W Y 0.D0/! Y.D/ be the l–component log CY surface obtained by an interior blowup at a

general point of D with exceptional divisor E. Let d be a curve class of Y.D/ and let d 0 WD ��d . Then

(3-18) N loc
0;d .Y.D//DN loc

d 0 .Y
0.D0// and N

loc; 
0;d

.Y.D//DN
loc; 
d 0 .Y 0.D0//:

Proof By [87, Proposition 5.14],

(3-19) x��ŒM0;m.Y
0; d 0/�vir D ŒM0;m.Y; d/�

vir;

where x� is the morphism between the moduli spaces induced by � . Since E � d 0 D 0,

(3-20) x��ŒM0;m.EY 0.D0/; d
0/�vir D ŒM0;m.EY.D/; d /�

vir:

Theorem 3.3 With notation as in Proposition 2.5, we have

(3-21) N loc
0;d .dP5.0; 0//D

1X

j1;:::;j4D0

�
.�1/d1Cd2Cd3Cd4Cd5.d1Cd2Cd3Cd4Cd5�3d0Cj1Cj2�1/Š

j1Šj2Šj3Šj4Š.d1Cd2Cd4�2d0Cj1/Š.�d1Cd0�j1�j2/Š.�d3Cd5Cj4/Š

�
.d1Cd4�d0Cj1Cj3�1/Š.d1Cd5�d0Cj2Cj4�1/Š.d4Cd5�d0Cj3Cj4�1/Š

.d1Cd3Cd5�2d0Cj2/Š.�d4Cd0�j1�j3/Š.�d2Cd4Cj3/Š.�d5Cd0�j2�j4/Š

�
1

.d2Cd3�d0�j3�j4/Š..d1Cd4Cd5�2d0Cj1Cj2Cj3Cj4�1/Š/2

�
:
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Sketch of the proof The strategy of the proof runs by deforming dP5 to the blowup of F0 at four

toric points, which is only weak Fano but allows to work torically along the lines of Lemma 3.1 at the

price of extending the pseudoeffective cone by four generators of self-intersection �2. These contribute

nontrivially to the mirror map, alongside curves with zero intersections with the boundary divisors

D1 D H � E1 and D2 D 2H �
P
i¤1Ei . However, the mirror map turns out to be algebraic, and

furthermore it remarkably has a closed-form rational inverse, leading to the final result (3-21). Full details

are given in Appendix A.

Remark 3.4 The final expression (3-21) is significantly more involved than (3-8), to which it reduces

when blowing down to the quasi-tame del Pezzo cases dPk for k � 3 by setting di D d0 for all i � kC 1

using (3-18), since then only the summand with ji D 0 for all i survives. It is also noteworthy that, while

the summands in (3-21) are not symmetric under permutation of the degrees fd2; d3; d4; d5g, the final

sum is highly nonobviously warranted to be S4–invariant since the left-hand side is,9 and we verified this

explicitly in low degrees. The BPS invariants arising from (3-21) should also be integers, and we checked

this is indeed the case for a large sample of nonprimitive classes with multicovers of order up to 11.

3.2 Multipointed local GW invariants

The primary multipoint invariants (3-2) of nef Looijenga pairs with l > 2 can be reconstructed from the

descendent single-insertion invariants (3-3). We shall show how this arises by combining the associativity

of the quantum product with the vanishing of quantum corrections for particular classes.

3.2.1 l D 3 It suffices to compute the invariants for the case of maximal Picard rank, dP3.0; 0; 0/, from

which the other l D 3 cases can be recovered by blowing down.

Theorem 3.5 With notation as in Proposition 2.5, we have

N loc
0;d .dP3.0; 0; 0//D .d20 � d1d0� d2d0� d3d0C d1d2C d1d3C d2d3/N

loc; 
0;d

.dP3.0; 0; 0//;(3-22)

N
loc; 
0;d

.dP3.0; 0; 0//(3-23)

D
.�1/d1Cd2Cd3C1.d1� 1/Š.d2� 1/Š.d3� 1/Š

.d1C d2� d0/Š.d1C d3� d0/Š.d2C d3� d0/Š.d0� d1/Š.d0� d2/Š.d0� d3/Š
:

Proof In the notation of the proof of Lemma 3.1, for i; j D 2; : : : ; 5 the components of the small

J –function of EdP3.0;0;0/ satisfy the quantum differential equations

(3-24) zr'i
r'j

J
EdP3.0;0;0/

small .t; z/D r'i?t'j
J
EdP3.0;0;0/

small .t; z/;

where ˛ ?t ˇ denotes the small quantum cohomology product, and the cohomology classes

f'1 D 1HT .EdP3.0;0;0//; : : : ; '5g

9There is an obvious S5 symmetry under permutation of the exceptional classes Ei in Y , which is reduced to an S4 symmetry in
the degrees .d2; d3; d4; d5/ in EY.D/ by the splitting D1 DH �E1, D2 D 2H �E2 �E3 �E4 �E5.
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are denoted as in the proof of Lemma 3.1. We take f'ig
5
iD2 to be the basis elements of HT .EdP3.0;0;0//

given by lifts to T –equivariant cohomology of the integral Kähler classes dual to fCi 2 H2.dP3;Z/gi
with CiC1 D Ei for i D 1; 2; 3, and C5 D H �E1 �E2 �E3, and an effective curve will be written

d D d0C5 C
P3
iD1 diCiC2. From the proof of Lemma 3.1, the small J –function in the tame setting

equates the I–function,

(3-25) J
EdP3.0;0;0/

small .t; z/D

X

di>0

e
P3

iD0 tiC2di

"
.�1/d1Cd2Cd3.�2��1/.�3��2/

z2
�
zC�2C�3��5

z

�

�d0Cd1Cd2

�
zC�2C�4��5

z

�

�d0Cd1Cd3

.�4��3/

�
z��1C�2

z

�

d1�1

�
z��2C�3

z

�

d2�1

�
z��3C�4

z

�

d3�1�
zC�3C�4��5

z

�

�d0Cd2Cd3

�
z��2C�5

z

�

d0�d1

�
z��3C�5

z

�

d0�d2

�
z��4C�5

z

�

d0�d3

#
:

By (3-7), the small quantum product can be computed from the O.z�1/ formal Taylor coefficient of

(3-25) as

(3-26) 'i ?t 'j D
X

˛

'˛Œz
�1'˛�@2ti tj J

EdP3.0;0;0/

small .t; z/:

Inspection of (3-25) shows that the right-hand side receives quantum corrections of the form 1=n2 from

curves with either di D ıijn or di D .1� ıij /n and j ¤ 0, n 2 NC, with vanishing contributions in all

other degrees. This implies that

(3-27) .@2t5 � @t2@t5 � @t3@t5 � @t4@t5 C @t2@t3 C @t3@t4 C @t2@t4/Œz
�1�J

EdP3.0;0;0/

small .t; z/D 0;

which amounts to

(3-28) '5 ?t '5�

4X

jD2
'5 ?t 'i C

5X

j>iD2
'i ?t 'j D '5['5�

4X

jD2
'5['i C

4X

j>iD2
'i ['j :

It is immediate to verify that the right-hand side is the Poincaré dual of the point class. Therefore,

from (3-24),

(3-29) N loc
0;d .dP3.0; 0; 0//D .d20 � d1d0� d2d0� d3d0C d1d2C d1d3C d2d3/N

loc; 
0;d

.dP3.0; 0; 0//;

and the second equation in the statement follows by Lemma 3.1.

3.2.2 l D 4 In this case D is the toric boundary, and the invariants N loc
0;d
.F0.0; 0; 0; 0// were computed

in [18] by a strategy similar to that of Theorem 3.5. The final result is the following proposition.

Proposition 3.6 [18, Theorem 3.1, Corollary 6.4]

(3-30) N loc
0;d .F0.0; 0; 0; 0//D d21 d

2
2N

loc; 
0;d

.F0.0; 0; 0; 0//D 1:
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Y.D/ N
loc; 
0;d

N loc
0;d
=N

loc; 
0;d

P2.1; 4/
1

2d2

�
2d

d

�
1

F0.2; 2/

F0.0; 4/

�
1

d1 C d2

�
d1 C d2
d1

��2
1

dP1.1; 1/

dP2.0; 4/

.�1/d1

d0.d1 C d0/

�
d0
d1

��
d1 C d0
d0

�
1

dP2.1; 2/

dP2.0; 3/

.�1/d0Cd1Cd2

d0.d1 C d2/

�
d0
d1

��
d0
d2

��
d1 C d2
d0

�
1

dP3.1; 1/

dP3.0; 2/

.�1/d1Cd2Cd3.d0�1/Š.d1Cd2Cd3�d0�1/Š

.d0�d1/Š.d0�d2/Š.d0�d3/Š.d1Cd2�d0/Š.d1Cd3�d0/Š.d2Cd3�d0/Š
1

dP4.1; 0/

dP4.0; 1/
(3-21)

ˇ̌
d5!d0

1

dP5.0; 0/ (3-21) 1

P2.1; 1; 1/
.�1/dC1

d3
d2

F0.2; 0; 0/ �
1

d1d2.d1 C d2/

�
d1 C d2
d2

�
d1d2

dP1.1; 1; 0/
.�1/d1C1

d20 d1

�
d0
d1

�
d1d0

dP2.1; 0; 0/
.�1/d0Cd1Cd2C1

d0d1d2

�
d0
d1

��
d1

d0 � d2

�
d1d2

dP3.0; 0; 0/
.�1/d1Cd2Cd3C1

d1d2d3

�
d1

d0 � d2

��
d2

d0 � d3

��
d3

d0 � d1

�
d20�.d1Cd2Cd3/d0

Cd1d2Cd1d3Cd2d3

F0.0; 0; 0; 0/ 1 d21 d
2
2

Table 2: Local Gromov–Witten invariants of nef Looijenga pairs.

This concludes the calculation of local invariants with point insertions for nef Looijenga pairs. We collate

the results in Table 2.

4 Log Gromov–Witten theory

4.1 Log Gromov–Witten invariants of maximal tangency

Let Y.D/ be an l–component log CY surface with maximal boundary. We endow Y with the divisorial

log structure coming from D. The log structure is used to impose tangency conditions along the

componentsDj ofD. In this paper we will be looking at genus g stable maps into Y of class d 2 H2.Y;Z/
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that meet each component Dj in one point of maximal tangency d �Dj . The appropriate moduli space

Mlog
g;m.Y.D/; d/ of maximally tangent basic stable log maps was constructed in all generality in [58; 25; 1].

There are tautological classes  i WD c1.Li / for Li the i ith tautological line bundle on Mlog
g;m.Y.D/; d/

whose fibre at Œf W .C; x1; : : : ; xm/ ! Y � is the cotangent line of C at xi . Let evi be the evaluation

map at the i th marked point, and for � W C ! Mlog
g;m.Y.D/; d/ the universal curve with relative dualising

sheaf !� , denote by E WD ��!� the Hodge bundle, which is a rank g vector bundle on Mlog
g;m.Y.D/; d/.

The gth lambda class is its top Chern class �g WD cg.E/.

We will be concerned with the virtual log GW count of genus g curves in Y of degree d meeting Dj in

one point of maximal tangency d �Dj , passing through l � 1 general points of Y and with insertion �g ,

(4-1) N
log
g;d
.Y.D// WD

Z

ŒM
log
g;l�1

.Y.D/;d/�vir
.�1/g �g

l�1Y

jD1
ev�
j .Œpt�/:

Furthermore, we will denote by N log; 
0;d

.Y.D// the genus-zero log GW invariants of maximal tangency

passing through one general point of Y with psi class to the power l � 2,

(4-2) N
log; 
0;d

.Y.D// WD

Z

ŒM
log
0;1.Y.D/;d/�

vir
ev�
1.Œpt�/[ l�21 :

It will be useful in the following to define all-genus generating functions for the logarithmic invariants of

Y.D/ at fixed degree,

(4-3) N
log
d
.Y.D//.„/ WD

1
�
2 sin

�
1
2
„
��l�2

X

g>0

N
log
g;d
.Y.D//„2g�2Cl :

In the setting of Proposition 2.4, it follows from [3] that N log
g;d
.Y.D// (resp. N log; 

0;d
.Y.D//) equals the

log GW invariant of . zY ; zD/, of class '�d , with maximal tangency along each of the strict transforms

of Di , not meeting the other boundary components and meeting l � 1 general points of zY (resp. one

point with psi class to the power of l � 2). The above numbers are deformation invariant in log smooth

families [85].

4.2 Scattering diagrams

Our main tool for the calculation of (4-1)–(4-2) will be their associated quantum scattering diagrams

and quantum broken lines [83; 14; 13; 32; 16]. In the classical limit, in dimension 2 this is treated in

[56; 53; 51] and in full generality in [57; 55]. The quantum scattering diagram consists of an affine

integral manifold B and a collection of walls d with wall-crossing functions fd. The latter are functions

on open subsets of the mirror.

Let � W . zY ; zD/�! .Y ;D/ be a toric model as in Proposition 2.4 with s interior blowups. Up to deformation,

we may assume that the blowup points are disjoint. Note that s D �top.Y nD/ D �top. zY n zD/ is an
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invariant of the interior. We construct an affine integral manifold B from � as follows. First, we start

with the fan of .Y ;D/. Then, for every interior blowup, we add a focus–focus singularity in the direction

of the corresponding ray. In practice, we introduce cuts connecting the singularities to infinity and we use

charts to identify the complements of the cuts with an open subset of R2.

Let ı1; : : : ; ıs denote the focus–focus singularities andB.Z/ be the set of integral points ofB n fı1; : : : ; ısg.

In the limit where the singularities are sent to infinity, B.Z/ can be identified with the integral points

of the fan of .Y ;D/. The singularity ıj corresponds to an interior blowup on a toric divisor D.ıj / of

.Y ;D/ with exceptional divisor Ej . Viewing the ray of the fan of .Y ;D/ corresponding to D.ıj / as

going from .0; 0/ to infinity, denote by �j its primitive direction.

Each ıj creates a quantum wall dj propagating into the direction ��j and decorated with the wall-crossing

function fdj
WD 1C tj z

�j , where tj D t ŒEj � is a formal variable keeping track of the exceptional divisor

and z�j is the tangent monomial xayb if �j D .a; b/. Note that the wall also propagates into the �j
direction (decorated with 1C tj z

��j ), but that part of the scattering diagram is not relevant to us.

When two walls meet, this creates scattering: up to perturbation, we may assume that at most two walls dj
and dk come together at one point, which in the following is taken to be the origin for simplicity. We

refer to [56] for the general case and only describe the explicit result in the two cases relevant to us:

� Simple scattering (det.�j ; �k/D ˙1) The scattering algorithm draws an additional quantum

wall d in the direction ��j � �k decorated with the function 1C tj tkz
�j C�k .

� Infinite scattering (det.�j ; �k/D ˙2) The algorithm creates a central quantum wall d in the

direction ��j � �k decorated with the function

(4-4)

1
2
.ind.�j C�k/�1/Y

`D� 1
2
.ind.�j C�k/�1/

.1� q� 1
2

C`tj tkz�j C�k /�1.1� q
1
2

C`tj tkz�j C�k /�1;

where ind.�j C �k/ is the index of �j C �k . We then add quantum walls d1; : : : ; dn; : : : in the

directions �.nC 1/�j �n�k decorated with functions

(4-5) 1C tnC1
j tnk z

.nC1/�j Cn�k ;

for n� 0, as well as quantum walls 1d; : : : ; nd; : : : in the directions �n�j � .nC 1/�k decorated

with functions

(4-6) 1C tnj t
nC1
k

zn�j C.nC1/�k

for n� 0.

The classical scattering algorithm is recovered in the classical limit q
1
2 D 1. Only the central quantum

wall in the case det.�j ; �k/ D ˙2 is different from its classical version, for which the wall-crossing

function specialises to .1� tj tkz
�j C�k /�2 ind.�j C�k/.
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If u and u0 are adjacent chambers of B separated by the quantum wall d decorated with fd, we can

define a quantum wall-crossing transformation �d from u to u0 as follows. Denote by nd=u the primitive

orthogonal vector pointing from d into u. Let m be such that hnd=u; mi � 0. For a polynomial a in the

variables tj , consider an expression azm, which we think of as a function on u. Then, writing

(4-7) fd D
X

r�0
crz

r�d ;

where ��d is the primitive direction of d,

(4-8) �d W azm 7! azm

1
2
.hnd=u;mi�1/Y

`D� 1
2
.hnd=u;mi�1/

�X

r�0
crq

r`zr�d
�
:

Note that in the classical limit q
1
2 D1, we recover the formula for the classical wall-crossing transformation,

which is � cl
d W azm 7! f

hnd=u;mi
d azm. Writing �d.azm/D

P
i aiz

mi , any summand aizmi is called a result

of quantum transport of azm from u to u0.

The final object we will need is the algebra of quantum broken lines associated to the scattering diagram,

which we describe in the generality needed here; see [55] for full details in the classical limit. Let

B0 WD B n fı1; : : : ; ıs; dj \ dk j for all j; kg. Let zm be an asymptotic monomial, in our case this means

that mD .a; b/¤ .0; 0/, and let p 2 B . Then a quantum broken line ˇ with asymptotic monomial zm

and endpoint p consists of

(1) a directed piecewise straight path in B0 of rational slopes, coming from infinity in the direction �m,

bending only at quantum walls and ending at p;

(2) a labelling of the initial ray by L1 and the successive line segments in order by L2; : : : ; Ls , where

p is the endpoint of Ls;

(3) if Li \LiC1 2 di , then, iteratively defined from 1 to s, the assignment of a monomial aizmi , where

� a1z
m1 D zm,

� aiC1zmiC1 is a result of the quantum transport of aizmi across di ,

� Li is directed in the direction �mi .

Note that if ndi=Li
is the primitive orthogonal vector to di pointing into the half-plane containing Li ,

then, as Li is directed in the direction �mi , we have hndi=Li
; mi i � 0, and so the quantum transport of

aiz
mi across di is indeed well-defined. We call aendz

mend D asz
ms the end monomial of ˇ and aend the

end coefficient of ˇ.

If zm is an asymptotic monomial, the theta function #m is the sum of the end monomials of all broken

lines with asymptotic monomial zm and ending at p. Note that a priori #m depends on p, but it is one of

the main results of [55] that it is constant in chambers and transforms from chamber to chamber according

to the wall-crossing transformations.
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We first describe the classical algebra of theta functions, ie we set q
1
2 D 1. For A an element in the algebra

of theta functions, we denote by hA; #mi the coefficient of #m in A; note that hA; #mi is a polynomial in

the tj . Then the identity component h#m1 �#m2 ; #0i is given as the sum of products of end coefficients

a1enda
2
end over all broken lines ˇ1 with asymptotic monomial zm

1

and ˇ2 with asymptotic monomial zm
2

such that m1end D �m2end. The identity component h#m1 �#m2 �#m3 ; #0i is given as the sum of products of

end coefficients a1enda
2
enda

3
end over all broken lines ˇ1, ˇ2, ˇ3, with asymptotic monomials zm

1

, zm
2

, zm
3

and such that m1end Cm2end Cm3end D 0.

For .Y.D DD1C� � � CDl//, consider the scattering diagram associated to a toric model � coming from

a diagram as in Proposition 2.4,

(4-9)

zY . zD/

'

{{

�

##

Y.D/ Y .D/

Then the proper transform and pushforward of Dj is a toric divisor in Y corresponding to a ray in B . Up

to reordering the indices, we assume that the ray corresponding to Dj is directed by �j .

Proposition 4.1 [84] Let Y.D/ be an l–component log Calabi–Yau surface of maximal boundary. Let

d 2 H2.Y;Z/ be an effective curve class and write ej WD d �'�Ej for j D 1; : : : ; s, where ' is as in (4-9).

� Assume that l D 2. Set m1 D .d �D1/�1 andm2 D .d �D2/�2. Then N
log
0;d
.Y.D// is the coefficient

of
Qs
jD1 t

ej
j in h#m1 �#m2 ; #0i.

� Assume that lD3. Set m1D .d �D1/�1,m2D .d �D2/�2 and m3D .d �D3/�3. Then N
log; 
0;d

.Y.D//

is the coefficient of
Qs
jD1 t

ej
j in h#m1 �#m2 �#m3 ; #0i.

We return to the algebra of quantum theta functions. For every m1; m2 and p 2 B0, denote by Cm1;m2

the polynomial in the variables tj with coefficients in ZŒq˙ 1
2 � given as the sum of products of end

coefficients a1enda
2
end over all quantum broken lines ˇ1 with asymptotic monomial zm

1

and ˇ2 with

asymptotic monomial zm
2

, with common endpoint p and such that m1end D �m2end. The polynomial

Cm1;m2 is independent of the choice of p 2 B0.

Proposition 4.2 Let Y.D/ be an l–component log Calabi–Yau surface of maximal boundary. Let

d 2 H2.Y;Z/ be an effective curve class and write ej WD d �'�Ej for j D 1; : : : ; s, where ' is as in (4-9).

� Assume that l D 2. Set m1 D .d �D1/�1 and m2 D .d �D2/�2. Then after the change of variables

q D ei„, the series

(4-10) N
log
d
.Y.D//.„/D

X

g>0

N
log
g;d
.Y.D//„2g

is the „–expansion of the q–polynomial which is the coefficient of
Qs
jD1 t

ej
j in Cm1;m2 .
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� Assume that l D 3. Set m1 D .d �D1/�1, m2 D .d �D2/�2 and m3 D .d �D3/�3. Then after the

change of variables q D ei„, the series

(4-11) N
log
d
.Y.D//.„/D

1

2 sin
�
1
2
„
�
X

g>0

N
log
g;d
.Y.D//„2gC1

is the „–expansion of the q–polynomial obtained as the sum over all quantum broken lines ˇ1

with asymptotic monomial zm1 , ˇ2 with asymptotic monomial zm2 , and ˇ3 with asymptotic

monomial zm3 , with common endpoint and such that m1end Cm2end Cm3end D 0, of

(4-12)
Œjdet.m1end; m

2
end/j�q

Œ1�q
a1enda

2
enda

3
end:

Here aiendz
mi

end are the end monomials of the broken lines ˇi and the q–integers Œ � �q are defined in

(4-18) below.

Proof We only give a sketch of the proof as it is an adaptation of the proof of the Frobenius structure

conjecture of [84], which in the setting relevant to us is stated in Proposition 4.1 above.

Recall first the geometric argument of the proof of [84]. The starting point is to consider the degeneration

of [56] of Y.D/ to a toric situation: using toric transversality in the cluster setting, the curves do not

fall into the codimension-one strata of D and one may apply the degeneration formula, expressing

N
log; 
0;d

.Y.D// in terms of log GW invariants of the central fibre, which can in turn be computed via the

toric tropical correspondence theorem [97; 85]. In the scattering diagram, the tropical curves correspond to

constellations of broken lines, and the product of the end coefficients equals the product of the multiplicity

of the tropical curve with the terms coming from the degeneration formula.

To see how this is modified to obtain higher-genus invariants, the study of the degeneration of [56]

is done using the techniques introduced in [14], and then the result follows from the toric tropical

correspondence theorem for higher-genus log Gromov–Witten invariants with �g–insertion proven in [12].

The toric transversality of the log maps in the degeneration is a consequence of the vanishing result of

[12, Lemma 8].

To further encompass two-pointed insertions, one can see that tropically, by [85], a  –class corresponds

to a marked 3–valent vertex with multiplicity 1. In the case of 2–pointed invariants, one can carry out the

same degeneration as above, therefore leading to the same tropical curves in the fan of the central fibre.

The one difference is that previously one 3–valent vertex corresponded to a point with a  –class, and

hence carried multiplicity 1, whereas in the case of 2–pointed invariants this vertex is no longer marked

and carries its Block–Göttsche [10] multiplicity

Œjdet.m1end; m
2
end/j�q

Œ1�q
;

and instead there are two marked 2–valent vertices elsewhere (which do not carry any multiplicity).
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4.2.1 Binomials and q–binomial coefficients In our applications of Propositions 4.1 and 4.2, we will

mostly consider (quantum) broken lines bending along (quantum) walls fd decorated by a function of the

form

(4-13) fd D 1C tz�d ;

where ��d is the primitive direction of d. By the binomial theorem, we have

(4-14) f
hn;mi
d D .1C tz�d/hn;mi D

hn;miX

kD0

�
hn;mi

k

�
tkzk�d :

Therefore, each application of transport across such a wall will produce a binomial coefficient, and so our

genus-zero log Gromov–Witten invariants will be product of binomial coefficients. By the q–binomial

theorem, we have

(4-15)

1
2
.hn;mi�1/Y

`D� 1
2
.hn;mi�1/

�
1C tq`z�d

�
D

hn;miX

kD0

�
hn;mi

k

�

q

tkzk�d ;

where the q–binomial coefficients

(4-16)

�
N

k

�

q

WD
ŒN �qŠ

Œk�qŠŒ.N � k/�qŠ

are defined in terms of the q–factorials

(4-17) Œn�qŠ WD

nY

jD1
Œj �q;

where the q–integers are

(4-18) Œn�q WD qn=2� q�n=2:

It follows that the formulas for the higher-genus log Gromov–Witten invariants N
log
d
.Y.D//.„/ will be

obtained by replacing binomial coefficients by q–binomial coefficients in the formulas for the genus-zero

invariant N log
0;d
.Y.D//.

4.3 Log Gromov–Witten invariants under interior blowup

Proposition 4.3 (blowup formula for log GW invariants) Let Y.D/ be an l–component log CY surface

with maximal boundary. Let � W Y 0.D0/ ! Y.D/ be the l–component log CY surface with maximal

boundary obtained by an interior blowup at a general point of D with exceptional divisor E. Let d be a

curve class of Y.D/ and let d 0 WD ��d . Then

N
log
g;d
.Y.D//DN

log
g;d 0.Y

0.D0//;(4-19)

N
log; 
0;d

.Y.D//DN
log; 
0;d 0 .Y

0.D0//:(4-20)
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Proof Let Dj be the irreducible component of D containing the point that we blow up. We consider the

degeneration of Y.D/ to the normal cone of Dj : the fibre over any point of A1� f0g is Y.D/ and the

special fibre over f0g has two irreducible components, which are isomorphic to Y.D/ and a P1–bundle

Pj over Dj , and are glued together along a copy of Dj . Let Dj be the closure of Dj � .A1 � f0g/ in

the total space of the degeneration. After blowing up a section of Dj ! A1, we obtain a family with

fibre Y 0.D0/ over any point of A1� f0g, and special fibre over f0g given by the union of two irreducible

components, which are isomorphic to Y.D/ and to the blowup zPj of Pj at one point. We compare

the invariants N log
g;d

and N log; 
0;d

of Y.D/ and Y 0.D0/ using this degeneration. Following the general

strategy of [14, Section 5], using in particular the vanishing result of [12, Lemma 8] to guarantee toric

transversality of the log maps in the degeneration, we obtain that the invariants of Y.D/ and Y 0.D0/ only

differ by a multiplicative factor coming from multiple covers of a fibre of zPj ! Dj . By deformation

invariance, we can assume that this fibre is a smooth P1–fibre, with trivial normal bundle in zPj . Therefore,

the correction factor is an integral over a moduli space of stable log maps to P1 with extra insertion of

the class e.H1.C;OC //D .�1/g�g . Because our genus g invariants already contain an insertion of �g
and �2g D 0 for g > 0 by Mumford’s relation [95], the correction factor only receives contributions from

genus zero. The genus-zero corrections involves degree d �Dj stable log maps to .P1; f0g [ f1g/, fully

ramified over 0 and 1. The corresponding moduli space is a point with an automorphism group of order

d �Dj and so contributes 1=.d �Dj /. Because of the extra .d �Dj / multiplicity factor in the degeneration

formula, the total multiplicative correction factor is 1.

As a consequence of Proposition 4.3, if we calculate N log
g;d
.Y.D// and N log; 

0;d
.Y.D// for all g and d ,

then we will know the invariants for all interior blowdowns of Y.D/. Therefore it is enough to cal-

culate the invariant for the cases of highest Picard rank in Propositions 2.2 and 2.3. In the following

section, we calculate the higher-genus log invariants N
log
d
.Y.D//.„/ for all tame Looijenga pairs: using

Proposition 4.3, it is enough to consider the pairs dP3.1; 1/, dP3.0; 0; 0/ and F0.0; 0; 0; 0/, which are

treated in Theorems 4.5, 4.9 and 4.10.

For nontame pairs, the genus-zero invariants can be obtained by combining the log-local correspondence

of Theorem 5.1 and (3-21) in Theorem 3.3 giving the local invariants. For quasi-tame pairs we furthermore

make the following general conjecture for the higher-genus invariants N
log
d
.Y.D//.„/.

Conjecture 4.4 Let Y.D/ and Y 0.D0/ be nef 2–component log CY surfaces with maximal boundary

such that the corresponding local geometries EY.D/ and EY 0.D0/ are deformation equivalent. Then , under

suitable identification of d , we have

(4-21)

� lD2Y

jD1
Œd �D0

j �q

�
N

log
d
.Y.D//.„/D

� lD2Y

jD1
Œd �Dj �q

�
N

log
d
.Y 0.D0//.„/:

Conjecture 4.4 holds in the genus-zero, ie q
1
2 D1, limit, as a corollary of the log-local correspondence given

by Theorem 5.1 and of the deformation invariance of local Gromov–Witten invariants. In higher genus,
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Conjecture 4.4 translates to conjectural, new nontrivial q–binomial identities: see eg Conjecture B.3 for

the cases of dP1.0; 4/ and F0.0; 4/.

4.4 Toric models: l D 2

Extending [15, Section 5] we find toric models for all l D 2 nef log Calabi–Yau surfaces except for

F0.2; 2/, which we leave to the reader as an exercise. For each toric model, we draw the corresponding

fans with focus–focus singularities. By [40, Lemma 2.10], a log Calabi–Yau surface with maximal

boundary .Y ;D/ is toric if the sequence of self-intersection numbers of irreducible components of D is

realised as the sequence of self-intersection numbers of toric divisors on a toric surface. Once we have

the toric models, we calculate the part of the scattering diagram relevant to us, and by Proposition 4.1 the

relevant structural coefficients for the multiplication of theta functions yield the maximal tangency log

Gromov–Witten invariants.

4.4.1 Tame pairs: simple scattering By Proposition 4.3, it suffices to consider the case Y.D/ D

dP3.1; 1/. Start with P2.1; 4/. The anticanonical decomposition of D is given by D1 a line and D2 a

smooth conic not tangent to D1. For notational convenience, in what follows we will identify D1 and

D2 (resp. F1 and F2) with their strict transforms (resp. pushforwards) under blowups (resp. blowdowns).

Denote by pt one of the intersection points of D1 and D2 and by L the line tangent to D2 at pt. We blow

up pt, leading to the exceptional divisor F1. We further blow up the intersection of F1 with D2 and write

F2 for the exceptional divisor. Denote the resulting log Calabi–Yau surface with maximal boundary by

.BP2.1; 4/; zD/, where zD is the strict transform of D.

The toric model .P2.1; 4/;D/ is given by blowing down the strict transform of L, so that P2.1; 4/D F2

and D D D1 [ F1 [ F2 [ D2, with F1 the .�2/–curve of F2, D2 a section of self-intersection 2,

and D1 and F2 linearly equivalent to fibre classes. Labelling the toric boundary divisors with their

self-intersections, we obtain the diagram at the left of Figure 3.

To obtain the toric model for dP3.1; 1/, we need to blow up a nontoric point on F2 (thus reproducing L),

and three nontoric points on D2. Tropically, this amounts to introducing a focus–focus singularity on the

ray of F2 and three on the ray of D2 as in Figure 3 to the right. Walls emanate out of these focus–focus

singularities. While they propagate into two directions, for our calculations only one direction matters

(the other ray being close to infinity and thus noninteracting). We perturb the focus–focus singularities

on D2 horizontally.

The cone of curves is generated by H �Ei �Ej for 1� i < j � r and the Ei . In particular, any curve

class d 2 H2.dP3;Z/ can be written as d D d0.H �E1�E2�E3/C d1E1C d2E2C d3E3.

Theorem 4.5 Putting q D ei„, we have

(4-22) N
log
d
.dP3.1; 1//.„/D

�
d3

d0� d1

�

q

�
d3

d0� d2

�

q

�
d0
d3

�

q

�
d1C d2C d3� d0

d3

�

q

:
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D2.2/

D1.0/F1.�2/

F2.0/

D2

D1F1

F2�

�

�

�

Figure 3: Left: the toric model of P2.1; 4/. Right: the toric model of dP3.1; 1/.

Proof Write t D zŒL� and let ti D zŒEi �. Since D1 DH and D2 D 2H �E1 �E2 �E3, we have the

following intersection multiplicities:

d �D1 D d0; d �D2 D d1C d2C d3� d0 and d �Ei D d0� di :

All of the scattering is simple. The initial wall-crossing functions are drawn in Figure 4, and all

successive functions are easily obtained. We have two broken lines, one coming from the D1–direction

with attaching monomial .xy2/d �D1 and one coming from the D2–direction with attaching monomial

.y�1/d �D2 . Provided we choose our endpoint p to be sufficiently far into the x–direction, Figure 4

contains all the relevant walls. We start from the broken line coming from theD2 direction and summarise

the wall-crossing functions attached to the walls it meets:

1 1C tx�1; 2 1C t t3x
�1y�1; 3 1C t t2x

�1y�1;

4 1C t t1x
�1y�1; 5 1C t2t1t2t3x

�2y�3:

Crossing these walls leads to yd0�d1�d2�d3 mapping to
�
d1C d2C d3� d0

k

�

q

�
d1C d2C d3� d0� k

k1

�

q

�
d1C d2C d3� d0� k

k2

�

q

�

�
d1C d2C d3� d0� k

k3

�

q

�
2d1C 2d2C 2d3� 2d0� 3k� k1� k2� k3

k4

�

q

� tkCk1Ck2Ck3C2k4 t
k1Ck4

3 t
k2Ck4

2 t
k3Ck4

1 x�k�k1�k2�k3�2k4 yd0�d1�d2�d3�k1�k2�k3�3k4 :

The intersection multiplicities with the divisors impose the following conditions:

(4-23) kCk1Ck2Ck3C2k4 D d0; k1Ck4 D d0�d3; k2Ck4 D d0�d2; k3Ck4 D d0�d1:

Choose as indeterminate k. For the coefficient to be nonzero, 0� k � d1C d2C d3� d0. Then

(4-24)
k4 D kC 2d0� d1� d2� d3; k1 D d1C d2� d0� k;

k2 D d1C d3� d0� k; k3 D d2C d3� d0� k:
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x
y

�

� � �

1C tx�1

1
C
t 1
y

�1

1
C
t 2
y

�1

1
C
t 3
y

�1

yd0�d1�d2�d3

xd0y2d0

1

2

3

4

5

�p

Figure 4: Scatt dP3.1; 1/.

Hence the sum of the coefficients of the broken lines is

d1Cd2Cd3�d0X

kD0

 �
d1C d2C d3� d0

k

�

q

�
d1C d2C d3� d0� k

d3

�

q

�
d1C d2C d3� d0� k

d2

�

q

�

�
d1C d2C d3� d0� k

d1

�

q

�
2d1C 2d2C 2d3� 2d0� 3k� k1� k2� k3

k4

�

q

!

D

k.d0;d1;d2;d3/X

kD0

 �
d1C d2C d3� d0

k

�

q

�
d1C d2C d3� d0� k

d3

�

q

�
d1C d2C d3� d0� k

d2

�

q

�

�
d1C d2C d3� d0� k

d1

�

q

�
d0

kC 2d0� d1� d2� d3

�

q

!
;

where k.d0; d1; d2; d3/ WD minfd0; d1C d2� d0; d1C d3� d0; d2C d3� d0g.
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Therefore, we obtain

(4-25) N
log
d
.dP3.1; 1//.„/D

X

k>0

 �
d1C d2C d3� d0

k

�

q

�
d1C d2C d3� d0� k

d3

�

q

�
d1C d2C d3� d0� k

d2

�

q

�

�
d1C d2C d3� d0� k

d1

�

q

�
d0

kC 2d0� d1� d2� d3

�

q

!
:

Writing the q–binomial coefficients in terms of q–factorials, and changing the indexing variable

k 7! k� d0C 1
2
.d1C d2C d3/;

we have

(4-26)
Œd0�qŠŒd1C d2C d3� d0�qŠ

Œd1�qŠŒd2�qŠŒd3�qŠ

�
X

k

�
1
2
.d1C d2C d3/� k

�
q
Š

��
1
2
.d1C d2� d3/� k

�
q
Š
�
1
2
.d1C d3� d2/� k

�
q
Š
�
1
2
.d2C d3� d1/� k

�
q
Š

�
�
k� d0C 1

2
.d1C d2C d3/

�
q
Š
�
kC d0� 1

2
.d1C d2C d3/

�
q
Š
�

:

We re-sum this explicitly using the q–Pfaff–Saalschütz identity10 in the form given in [116, Equation (1q)]:

(4-27)
X

k

ŒaC bC c � k�qŠ

Œa� k�qŠŒb� k�qŠŒc � k�qŠŒk�m�qŠŒkCm�qŠ
D

�
aC b

aCm

�

q

�
aC c

cCm

�

q

�
bC c

bCm

�

q

:

Therefore, specialising (4-27) to aCbD d1, bCc D d3, aCc D d2, aCmD d0�d3, bCmD d0�d2

and cCmD d0� d1, we have

(4-28) N
log
d
.dP3.1; 1//.„/D

Œd0�qŠŒd1C d2C d3� d0�qŠ

Œd1�qŠŒd2�qŠŒd3�qŠ

�
d1

d0� d3

�

q

�
d2

d0� d1

�

q

�
d3

d0� d2

�

q

;

which after elementary simplifications gives (4-22).

Remark 4.6 It follows from the above proof that Theorem 4.5 is in fact equivalent to the q–Pfaff–

Saalschütz identity. In genus zero, Theorem 5.1 applied to dP3.1; 1/ gives a geometric proof of

Theorem 4.5. Thus, we obtain a new geometric, albeit quite indirect, proof of the classical (q D 1)

Pfaff–Saalschütz identity.

4.4.2 Nontame pairs: infinite scattering Figure 19 gives the toric model of F0.0; 4/. For the other

nontame pairs, let 1� r � 5. Then dPr.0; 5� r/ is obtained from P2.1; 4/ by blowing up the first point

on the line D1 and the remaining r � 1 points on the conic D2. Hence we obtain the toric model of

dPr.0; 5� r/ by adding 1 focus–focus singularity on the ray D1 and r � 1 focus–focus singularities on

the ray D2, as in Figure 5. The singularities on the ray of D2 can be perturbed horizontally.

10Unlike [44; 116], we are using q–factorials and q–binomial coefficients symmetric under q 7! q�1. This explains the absence
in the above expression of the power qn

2�k2
, which is present in [116, Equation (1q)].
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D2

D1F1

F2
�

�

�

�

�

�

r � 1

Figure 5: dPr.0; 5� r/.

Write a curve class d 2 H2.dP3.0; 2/;Z/ as d D d0.H �E1 �E2 �E3/C d1E1 C d2E2 C d3E3. As

D1 DH �E1 and D2 D 2H �E2 �E3, we get that d �D1 D d1 and d �D2 D d2 C d3. As EdP3.0;2/

is deformation equivalent to EdP3.1;1/ by Proposition 2.6, Conjecture 4.4 and Theorem 4.5 give the

following conjecture.

Conjecture 4.7 The generating function N
log
d
.dP3.0; 2//.„/ equals

(4-29)
Œd1�qŒd2C d3�q

Œd0�qŒd1C d2C d3� d0�q

�
d3

d0� d1

�

q

�
d3

d0� d2

�

q

�
d0
d3

�

q

�
d1C d2C d3� d0

d3

�

q

;

where q D ei„.

Theorem 5.1 in Section 5.1 implies that Conjecture 4.7 holds in the classical limit q
1
2 D 1. Direct

scattering computation for dPr.0; 5� r/ with r > 1 are particularly daunting owing to the presence of

infinite scattering, and in particular the final formulas take the shape of somewhat intricate multiple

q–sums, which Conjecture 4.7 predicts should take a remarkably simple q–binomial form. We exemplify

this for the blowdown geometries dP1.0; 4/ and F0.0; 4/ in Section B. For these cases, the specialisation

of Conjecture 4.7 reduces to nontrivial, and apparently novel, conjectural q–binomial identities; see eg

Conjecture B.3.

4.5 Toric models: l D 3

For l D 3, recall from (4-2) (resp. (4-1)) that N log; 
0;d

.Y.D// (resp. N log
0;d
.Y.D//) is the genus-zero log

Gromov–Witten invariant of maximal tangency passing through one point with psi-class (resp. passing

through 2 points). By Proposition 4.3, it is enough to treat dP3.0; 0; 0/ as the other cases are obtained

from it by interior blowdowns. We leave the description of the other toric models as an exercise to the

reader.
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Via Proposition 4.1, the invariant N log; 
0;d

.Y.D// is calculated from the scattering diagram as a structural

coefficient of the product of three theta functions. For each constellation of three broken lines, the union

of these corresponds to a tropical curve in the degeneration encoded by the scattering diagram. It is

counted with multiplicity given by the product of the coefficients of the final monomials of the broken

lines. Using Proposition 4.2, one can compute the generating series N
log
d
.Y.D//.„/ of higher-genus

2–point log Gromov–Witten invariants. The relevant tropical curves are identical to those entering the

computation of N log; 
0;d

.Y.D//. The difference is in the weighting of the tropical curves. For the  class,

the trivalent vertex at the endpoint of the broken lines carry weight 1. For the 2–point invariants, we

consider quantum broken lines, and the trivalent vertex is counted with Block–Göttsche multiplicity.

Let Y.D/D dP3.0; 0; 0/. We take D1 in class H �E3, D2 in class H �E2, D3 in class H �E1 and

d D d0.H �E1 �E2 �E3/C d1E1 C d2E2 C d3E3. Then d �D1 D d3, d �D2 D d2, d �D3 D d1,

d �E1 D d0�d1, d �E2 D d0�d2 and d �E3 D d0�d3. The calculations of Figure 6 give for the broken

line 1 the contribution

(4-30)

�
d1

d0� d2

�
t
d0�d2

2 x�d1yd2�d0 ;

for the broken line 2 the contribution

(4-31)

�
d2

d0� d3

�
t
d0�d3

3 xd0�d3yd0�d2�d3 ;

and from the broken line 3 the contribution

(4-32)

�
d3

d0� d1

�
t
d0�d1

1 xd3Cd1�d0yd3 :

Taken together, we obtain the following result.

Theorem 4.8 We have

(4-33) N
log; 
0;d

.dP3.0; 0; 0//D

�
d1

d0� d2

��
d2

d0� d3

��
d3

d0� d1

�
:

For the 2–point invariant, the tropical multiplicity at p is

(4-34)

ˇ̌
ˇ̌det

�
d1 d1C d3� d0

�d2C d0 d3

�ˇ̌
ˇ̌D jd1d3C d1d2C d2d3� d0d2� d0d1� d0d3C d20 j:

For the invariant to be nonzero, the curve class needs to lie in the effective cone determined (see

Proposition 2.5) by

(4-35) d0 � 0; di � 0; d1C d2C d3 � d0:

Also, for the binomial coefficients to be nonzero, the curve class needs to satisfy the equations

(4-36) 0� d0� d2 � d1; 0� d0� d3 � d2; 0� d0� d1 � d3:

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 437

x
y

D2

D1

D3 �

�

C

1C t1x
�1

1
C
t 2
y

�1

1
C
t 3
xy

x�d1

y�d2

xd3yd3

3

21
�
p

Figure 6: dP3.0; 0; 0/.

These inequalities determine a cone. Using the Polyhedra package of Macaulay2, in the basis

.H �E1�E2�E3; E1; E2; E3/

we find extremal rays generated by

(4-37) .1; 1; 1; 0/; .1; 1; 0; 1/; .1; 0; 1; 1/; .2; 1; 1; 1/:

Using this as a new basis, we find that the quadratic form in (4-34) is given by

(4-38) xyC xzCyzCw.xCyC z/Cw2;

which is always positive in the cone. Therefore, we have proven the following result.

Theorem 4.9 The generating function N
log
d
.dP3.0; 0; 0//.„/ equals

(4-39)
Œd20 � d1.d0� d2/� d2.d0� d3/� d3.d0� d1/�q

Œ1�q

�
d1

d0� d2

�

q

�
d2

d0� d3

�

q

�
d3

d0� d1

�

q

;

where q D ei„.

4.6 Toric models: l D 4

There is only one 4–component log Calabi–Yau surface with maximal boundary, namely the toric surface

F0.0; 0; 0; 0/. For d D d1H1C d2H2, through tropical correspondence [92; 97; 85; 86], we calculated

in [18] that

(4-40) N
log; 
0;d

.F0.0; 0; 0; 0//D 1 and N
log
0;d
.F0.0; 0; 0; 0//D d21 d

2
2 :
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To obtain the higher-genus invariant, we replace the tropical multiplicities by the Block–Göttsche multi-

plicities [10]. Applying [12] we obtain the following result.

Theorem 4.10 We have

(4-41) N
log
d
.F0.0; 0; 0; 0//.„/D

Œd1d2�
2
q

Œ1�2q
:

5 Log-local correspondence

In this section, we prove the following log-local correspondence theorem.

Theorem 5.1 For every nef Looijenga pair Y.D/, the genus-zero log invariants N
log
0;d
.Y.D// and the

genus-zero local invariants N loc
0;d
.Y.D// are related by

(5-1) N loc
0;d .Y.D//D

� lY

jD1

.�1/d �Dj �1

.d �Dj /

�
N

log
0;d
.Y.D//:

The proof will be divided into two parts. In Section 5.1, we prove the result for l D 2 by a degeneration to

the normal cone argument. In Section 5.2, we prove the result for l D 3 and l D 4 by direct comparison

of the local results of Section 3 with the log results of Section 4.

5.1 Log-local for 2 components

For convenience in the following proof, we state separately the case l D 2 of Theorem 5.1.

Theorem 5.2 For every 2–component nef Looijenga pair Y.D/, we have

(5-2) N loc
0;d .Y.D//D

� lY

jD1

.�1/d �Dj �1

.d �Dj /

�
N

log
0;d
.Y.D//:

The proof of Theorem 5.2 takes the remainder of Section 5.1, and is a degeneration argument in log

Gromov–Witten theory.

5.1.1 Construction of the degeneration We first construct the relevant degeneration for a general

l–component nef Looijenga pair Y.D/D .Y;D1C � � � CDl/.

Let x�xY W xY ! A1 be the degeneration of Y to the normal cone of D, obtained by blowing up D � f0g

in Y � A1. Irreducible components of the special fibre xY0 WD x��1
xY .0/ are Y and, for every 1 � j � l ,

xPj WD P .O˚NDj jY /, whereNDj jY is the normal bundle toDj in Y . For every double point p 2Dj\Dj 0

of D, a local description of xY0 is given by Figure 7, left. In particular, we have a point p@ in xY0 where
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❅
❅
❅

❅
❅

Figure 7: Left: local description of xY0. Right: toric polyhedral decomposition of R2�0 describing
locally xY0 (fan picture).

the total space xY is singular. This can be seen as follows. Locally near a double point p 2 Dj 0 \Dj ,

the degeneration to the normal cone admits a toric description, whose fan is given by the closure of

the cone over the polyhedral decomposition of R2�0 in Figure 7, right. The point p@ corresponds to the

3–dimensional cone obtained by taking the closure of the cone over the unbounded region of R2�0 in

Figure 7, right. This cone is generated by four rays, so is not simplicial and so p@ is a singular point.

More precisely, p@ is an ordinary double point in xY . Every singular point of xY is of the form p@ for p a

double point of D.

We resolve the singularities of xY by blowing up the ordinary double points p@, and we obtain a new

degeneration �Y W Y ! A1. The total space Y is now smooth and the special fibre Y0 WD ��1
Y .0/ is a

normal crossings divisor on Y . We view Y as a log scheme for the divisorial log structure defined by

Y0 � Y . Viewing A1 as a log scheme for the divisorial log structure defined by f0g � A1, the morphism

�Y W Y ! A1 can naturally be viewed as a log smooth log morphism.

Irreducible components of Y0 consist of Y , the strict transform Pj of the xPj for every 1� j � l , and for

every double point p of D the exceptional divisor Sp ' P1 � P1 created by the blowup of p@. Locally

near a double point p 2Dj \Dj 0 , irreducible components of Y0 are glued together as in Figure 8, left.

Locally near p, the total space Y admits a toric description whose fan is the closure of the cone over

the polyhedral decomposition of R2�0 given in Figure 8, right. We remark that the log structure that we

consider on Y is only partially compatible with this local toric description: one needs to remove from the

toric boundary the horizontal toric divisors in order to obtain the divisorial log structure defined by the

special fibre.

For every 1� j � l , let Dj be the closure in Y of the divisor Dj �.A1�f0g/� Y �.A1�f0g/. We have

(5-3) OY.�Dj /jY0
D OY0

�
�

�
D@j [

[

p2Dj

D@j;p

��
;

where the union is taken over the double points p of D contained in Dj .
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j
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j 0;p
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❅
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❅
❅❅
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Figure 8: Left: local description of Y0. Right: toric polyhedral decomposition of R2�0 describing
locally Y0 (fan picture).

We define V WD Tot
�Ll

jD1OY.�Dj /
�

and denote by �V W V ! Y and �V W V ! A1 the natural projections.

We also denote by V0 WD ��1
V .0/ the special fibre and by �V0

W V0 ! Y0 the restriction of �V to the special

fibre.

The irreducible components of V0 are

V0;Y WD Tot.O˚l
Y /;(5-4)

V0;j WD Tot.OPj
.�D@j /˚O

˚.l�1/
Pj

/ for every 1� j � l;(5-5)

and, for every double point p 2Dj \Dj 0 of D,

(5-6) V0;p WD Tot.OSp
.�D@j;p/˚OSp

.�D@j 0;p/˚O
˚.l�2/
Sp

/:

We view V as a log scheme for the divisorial log structure defined by V0 � V , and then �V W V ! A1

is naturally a log smooth log morphism. We remark that the log structure on V is the pullback of the

log structure on Y , ie the log morphism �V W V ! Y is strict. In particular, V and Y have identical

tropicalisations.

For every 1 � j � l , we consider the projectivisation P .OY.�Dj /˚OY/ of OY.�Dj / and the corre-

sponding fibrewise compactification

(5-7) P WD P .OY.�D1/˚OY/�Y � � � �Y P .OY.�Dl/˚OY/

of V . We denote by �P W P !Y and �P W P ! A1 the natural projections. We also denote by P0 WD��1
P
.0/

the special fibre and by �P0
W P0 ! Y0 the restriction of �P to the special fibre. We denote by P0;Y ,

P0;j and P0;p the irreducible components of P0 obtained by compactification of V0;Y , V0;j and V0;p.

We view P as a log scheme for the divisorial log structure defined by P0 � P , and then �P W P ! A1

is naturally a log smooth log morphism. We remark that the log structure on P is the pullback of the

log structure on Y , ie the log morphism �P W P ! Y is strict. In particular, P and Y have identical

tropicalisations.
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Figure 9: Local description of �.

Let � be the polyhedral complex obtained by taking the fibre over 1 of the tropicalisation of �P W P ! A1.

Combinatorially, � is the dual intersection complex of the special fibre V0; see Figure 9. Vertices of �

consist of

� vY corresponding to the irreducible component P0;Y ,

� vj corresponding to the irreducible component P0;j for every 1� j � l ,

� vp corresponding to the irreducible component P0;p for every double point p of D.

Edges of � consist of

� eY;j connecting vY and vj for every 1� j � l , corresponding to the divisor P0;Y \ P0;j ,

� e
p
j;j 0 connecting vj and vj 0 for every double point p 2 Dj \Dj 0 of D, corresponding to the

component of the divisor P0;j \ P0;j 0 containing p,

� ep;j connecting vp and vj for every double point p 2Dj \Dj 0 of D, corresponding to the divisor

P0;j \ P0;p, and ep;j 0 connecting vp and vj 0 , corresponding to the divisor P0;j 0 \ P0;p.

Faces of � consist of

� a triangle fp of sides eY;j , eY;j 0 , epj;j 0 for every double point p 2Dj \Dj 0 of D, corresponding

to the triple intersection P0;Y \ P0;j \ P0;j 0 ,

� a triangle gp of sides epj;j 0 , ep;j , ep;j 0 for every double point p 2Dj \Dj 0 of D, corresponding to

the triple intersection P0;p \ P0;j \ P0;j 0 .

As we are assuming that the components of D form a cycle, the boundary @� of � can be described as

(5-8) @�D
[

1�j�l
.@�/j ;

where for every 1� j � l ,

(5-9) .@�/j WD
[

p2Dj \Dj 0

ep;j :

We view P0 as a log scheme by restriction of the log structure on P . We denote by �P0
W P0 ! ptN the

corresponding log smooth log morphism to the standard log point. We view the curve class d as a class

on P0 via the embedding Y0 ! P0 induced by the zero section of V0. Let M0;m.Y
loc.D/; d/ be the
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moduli space of genus-zero class d stable log maps to �P0
W P0 ! ptN with m marked points with contact

order 0 with P0;Y . Let ŒM0;m.P0; d /�
vir be the corresponding virtual fundamental class, of dimension

l � 1Cm. Using the nefness of the divisors Dj , the condition d �Dj > 0 for every 1� j � l , and the

deformation invariance of log Gromov–Witten invariants, we have

(5-10) N loc
0;d .Y.D//D

Z

ŒM0;l�1.P0;d/�vir

l�1Y

kD1
ev�
k.�

�
P0
ŒptY �/;

where evk is the evaluation at the kth interior marked point and ŒptY � is the class of a point on Y � Y0.

5.1.2 Degeneration formula According to the decomposition formula of Abramovich, Chen, Gross

and Siebert [2], we have

(5-11) ŒM0;l�1.P0; d /�vir D
X

hW �!�

mh

jAut.h/j
ŒMh

0;l�1.P0; d /�
vir:

The sum is over the genus-zero rigid decorated parametrised tropical curves h W � !�, where � has l �1

unbounded edges, all contracted by h to vY , and the sum of classes attached to the vertices of � is d .

The moduli space Mh
0;l�1.P0; d / parametrises genus-zero class d stable log maps to �P0

W P0 ! ptN
marked by h.

Therefore, we have

(5-12) N loc
0;d .Y.D//D

X

hW �!�

mh

jAut.h/j
N

loc;h
0;d

.Y.D//;

where

(5-13) N
loc;h
0;d

.Y.D// WD

Z

ŒMh
0;l�1

.P0;d/�vir

l�1Y

kD1
ev�
k.�

�
P0
ŒptY �/;

and evk is the evaluation at the kth marked point. Thus, for every h W � ! �, we have to compute

N
loc;h
d

.Y.D//.

Let �h be a polyhedral complex obtained by refining the polyhedral decomposition of � and containing

the h.�/ in its one-skeleton, ie such that, for every vertex V of � , h.V / is a vertex of �h, and for every

edge E of � , h.E/ is an edge of �h. We denote by Yh0 , Vh0 and Ph
0 the corresponding log modifications

of Y0, V0 and P0. Let Mh
0;l�1.P

h
0 ; d / the moduli space of stable log maps to Ph

0 marked by h. By the

invariance of log Gromov–Witten invariants under log modification [3], we have

(5-14) N
loc;h
0;d

.Y.D// WD

Z

ŒMh
0;l�1

.Ph
0 ;d/�

vir

l�1Y

kD1
ev�
k.�

�
P

h
0

ŒptY �/:

For every vertex V of � , let PV be the irreducible component of Ph
0 corresponding to the vertex h.V /

of �h. We view PV as a log scheme for the divisorial log structure defined by the divisor @PV , which is
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the union of intersection divisors with the other irreducible components of Ph
0 . Similarly, we define the

component YV of Yh0 and @YV , so that PV is a .P1/l–bundle over YV .

If h.V / 2�h� @�h, then PV is the trivial .P1/l–bundle over YV . If furthermore, h.V / …
Sl
jD1 eY;j ,

then .YV ; @YV / is a toric variety with its toric boundary.

If h.V / 2 ep;j �vp for some p 2Dj \Dj 0 , let D@j;V be the irreducible component of Dj \Yh0 contained

in YV . Then PV is the fibrewise product over YV of the P1–bundle

(5-15) P
�
OYV

.�D@j;V /˚OYV

�

with the trivial .P1/l�1–bundle. Moreover, .YV ; @YV [D@j;V / is a toric variety with its toric boundary.

If h.V /D vp for some p 2Dj \Dj 0 , then, still denoting by Sp, D@j;p and D@j;p the strict transforms in

Yh0 of Sp, D@j;p, and D@j;p, PV is the fibrewise product over YV D Sp of the P1–bundle

(5-16) P
�
OSp

.�D@j;p/˚OSp

�
;

of the P1–bundle

(5-17) P
�
OSp

.�D@j 0;p/˚OSp

�
;

and of the trivial .P1/l�2–bundle. Moreover, .YV ; @YV [D@j;p [D@j 0;p/ is a toric variety with its toric

boundary.

For every vertex V of � , let MV be the moduli space of genus-zero stable log maps to Ph
0;V , with class

given by the class decoration of V, and contact orders specified by the local behaviour of h around V.

Our goal is to compute the invariant N loc;h
d

.Y.D// in terms of the virtual classes ŒMV �
vir. We are in a

particularly favourable situation: we consider curves of genus zero and the dual intersection complex �h

has dimension 2. In such case, the degeneration formula in log Gromov–Witten theory has a particular

simple form, as described in Section 6.5.2 of [105]; see also Section 4 of [104] for the corresponding

discussion in the language of exploded manifolds.

We choose a flow on � such that unbounded edges are incoming and such that every vertex has at most

one outgoing edge. Such flow exists as � has genus zero and then there is exactly one vertex, which we

denote by V0, without outgoing incident edge, and which we call the sink of the flow. All vertices distinct

from V0 have exactly one outgoing edge. In fact, for every vertex V of � , we can find such flow with

sink V0 D V .

For every edge E of � , we denote by PE the stratum of Ph
0 dual to E. The stratum PE is a divisor

if E is bounded and is the irreducible component PV if E is unbounded and incident to the vertex V.

For every E, PE is a .P1/l–bundle over a stratum YE of Yh0 , and we denote by �E W PE ! YE the

corresponding projection.

For every edge E incident to a vertex V, we have the evaluation map

(5-18) evV;E WMV ! PE :
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For every vertex V distinct from V0, let Ein.V / be the set of incoming incident edges to V, and let EV be

the outgoing incident edge to V. The virtual class ŒMV �
virt defines a map

(5-19) �V W
Y

E2Ein.V /

H�.PE /! H�.PEV
/

by

(5-20) �V

� Y

E2Ein.V0/

˛E

�
WD .evV;EV

/�
�� Y

E2Ein.V /

ev�
V;E ˛E

�
\ ŒMV �

virt
�
:

Note that if Ein.V / is empty, then �V is a map of the form

(5-21) �V W Q ! H�.PEV
/:

Denote by Ein.V0/ the set of incoming incident edges to V0. The virtual class ŒMV0
�virt defines a map

(5-22) �V0
W

Y

E2Ein.V0/

H�.PE /! Q

by

(5-23) �V0

� Y

E2Ein.V0/

˛E

�
WD

Z

ŒMV0
�virt

Y

E2Ein.V0/

ev�
V0;E

˛E :

Denote by E1.�/ the set of unbounded edges of � . Composing the maps �V and �V0
, we obtain a map

(5-24) �h W
Y

E2E1.�/

H�.PE /! Q:

For every edge E of � , let ptE 2 H2.YE / be the class of a point on YE . We consider the class

��
EptE 2 H2.PE /. The degeneration formula is then

(5-25) N
loc;h
d

.Y.D//D �h

� Y

E2E1.�/

��
EptE

�
:

We define a rigid genus-zero parametrised tropical curve xh W x� !� as follows. Let x� be the star-shaped

graph consisting of vertices Vj for 0� j � l , and edges Ej connecting V0 and Vj for 1� j � l . We assign

the length 1=.d �Dj / to the edge Ej . Let xh W x� !� be the piecewise linear map such that xh.V0/D vY

and xh.Vj /D vj for 1� j � l . In particular, we have xh.Ej /D eY;j for 1� j � j . As eY;j has integral

length 1, we deduce that Ej has weight d �Dj . Finally, curve classes decoration of the vertices are given

by: dV0
D d and dVj

is equal to .d �Dj / times the class of a P1–fibre of Pj for 1� j � l .

Lemma 5.3 We have

(5-26) N
loc;xh
0;d

.Y.D//D

� lY

jD1

.�1/d �Dj �1

.d �Dj /2

�
N

log
0;d
.Y.D//:
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Proof We choose the flow on � with sink V0. Applying the degeneration formula gives immediately the

result, using the fact that the normal bundle in P0 to a P1–fibre of Pj is O.�1/˚O˚.lC1/ and so the

corresponding multicover contribution is

(5-27)
.�1/d �Dj �1

.d �Dj /2
;

by [20, Proof of Theorem 5.1].

Theorem 5.4 Assume l D 2. Let h W � !� be a rigid decorated parametrised tropical curve as above

with N
loc;h
0;d

.Y.D//¤ 0. Then hD xh.

Theorem 5.4 follows from a judicious analysis of the possible topologies of contributing tropical curves,

which we perform in Appendix C. Theorem 5.2 then follows from the combination of Theorem 5.4,

Lemma 5.3, and the decomposition formula using that jAut.xh/j D 1 and mxh D
Ql
jD1.d �Dj /.

5.2 The log-local correspondence for 3 and 4 components

We end the proof of Theorem 5.1 for lD3 and lD4. For lD3, it is enough to treat the case of dP3.0; 0; 0/,

as all the other 3–component cases are obtained from it by blowup, and the result is preserved under

blowup by combination of Propositions 3.2 and 4.3. The result for dP3.0; 0; 0/ follows by comparing the

local result given by Theorem 3.5 with the log result given by Theorem 4.9.

For l D 4, the result follows by comparing the local result given by (3-30) and the log result given

by (4-41).

6 Open Gromov–Witten theory

In this section we relate the quantised scattering calculations of Section 4 to the higher-genus open

Gromov–Witten theory of Aganagic–Vafa A–branes. We first give in Section 6.1 an overview of the

framework of [76] to cast open toric Gromov–Witten theory within the realm of formal relative invariants,

and recall the topological vertex formalism of Aganagic, Klemm, Mariño and Vafa. Our treatment

throughout this section, while self-contained, will keep the level of detail to the necessary minimum, and

we refer the reader to [76; 39] for further details. The reader who is familiar with this material may wish

to skip to Section 6.2, where the stable log counts of Section 4 are related to open Gromov–Witten theory,

with the main statement condensed in Theorem 6.7, and proved in Section 6.3.

In the following, for a partition � ` d of d 2 N we write j�j D d for the order of �, `� D r for the

cardinality of the partitioning set, �� WD
P`�

iD1 �i .�i � 2i C 1/ for its second Casimir invariant, and

let mj .�/ WD #f�i j �i D j g`�

iD1 and z� WD
Q
j mj .�/Šj

mj .�/. We furthermore denote by P the set of

partitions, and Pd the set of partitions of order d . We will extensively need, particularly in the proof of

Theorem 6.7, some classical results on principally specialised shifted symmetric functions, for which

notation and necessary basic results are collected in Appendix D.
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6.1 Toric special Lagrangians

LetX be a smooth complex toric threefold withKX 'OX . If the affinisation morphism to Spec.�.X;OX //

is projective, X can be realised as a symplectic quotient CrC3==G, where G ' U.1/r acts on the affine

coordinates fzig
rC3
iD1 of CrC3 D SpecCŒz1; : : : ; zrC3� by

.t1; : : : ; tr/ � .z1; : : : ; zrC3/D

� rY

iD1
t
w

.i/
1

i � z1; : : : ;

rY

iD1
t
w

.i/
rC3

i � zrC3
�
;

where w.i/j 2 Z for i D 1; : : : ; r and j D 1; : : : ; r C 3 are the weights of the G–action [61]. This is a

Hamiltonian action with respect to the canonical Kähler form on CrC3,

(6-1) ! WD
i
2

rC3X

iD1
dzi ^ dxzi ;

with moment map

z�.z1; : : : ; zrC3/D

� rC3X

iD1
w
.1/
i jzi j

2; : : : ;

rC3X

iD1
w
.r/
i jzi j

2

�
:

If .t1; : : : ; tk/ 2 H1;1.X I R/' .u.1/r/? is a Kähler class, then X is the geometric quotient

(6-2) X D z��1.t1; : : : ; tr/=G;

with symplectic structure given by the Marsden–Weinstein reduction !t of (6-1) onto the quotient (6-2),

where Œ!t �D .t1; : : : ; tr/ 2 H1;1.X I R/.

We will be concerned with a class of special Lagrangian submanifolds LD L yw;c of .X; !t / constructed

by Aganagic and Vafa [7], which are invariant under the natural Hamiltonian torus action on X. They are

defined by

(6-3)
rC3X

iD1
yw1i jzi j

2 D c;

rC3X

iD1
yw2i jzi j

2 D 0;

rC3X

iD1
arg zi D 0;

with ywai 2 Z,
PrC3
iD1 ywai D 0 and c 2 R. These Lagrangians have the topology of R2 � S1, and they

intersect a unique torus fixed curve CL along an S1: we say that L is an inner (resp. outer) brane if

CL ' P1 (resp. C). Throughout the foregoing discussion we will assume that L is always an outer brane.

Let T ' .C?/2 be the algebraic subtorus of .C?/3 �X acting trivially on KX , and TR ' U.1/2 be its

maximal compact subgroup. Then by construction any toric Lagrangian L is preserved by TR, which

acts on C � S1 by scaling .�1; �2/ � .w; �/ ! .�1w; �2�/. Writing �T W X ! R2 ' .u.1/2/� for the

moment map of the TR–action, the union of the 1–dimensional .C?/3 orbit closures of X is mapped

by �T to a planar trivalent metric graph �X whose sets of vertices .�X /0, compact edges .�X /
cp
1 and

noncompact edges .�X /nc
1 correspond to T –fixed points, T –invariant proper curves, and T –invariant

affine lines in X respectively. Since the moment map is an integral quadratic form, the tangent directions
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of the edges have rational slopes in R2: we can explicitly keep track of this information by regarding �X
as a topological graph11 decorated by the assignment to each vertex v 2 .�X /0 of primitive integral lattice

vectors pev 2 Z2, representing the directions of the edges e emanating from v 2 .�X /0. The graph �X is

determined bijectively by the weights w.i/j , and knowing it suffices to reconstruct X.

Remark 6.1 Let †.X/ be the fan of X. As KX ' OX , †.X/ can be described as a cone in R3 over a

polyhedral decomposition of an integral polygon P in R2 � f1g � R3. The graph �X can be obtained as

the dual graph of the polyhedral decomposition of P taking orientations to be outgoing at every vertex.

Conversely, one can recover (the SL.2;Z/–equivalence class of) P � R2 and its decomposition as the

dual polygon of �X , and then †.X/ as the cone in R3 over P � R2 � f1g.

IfL is a toric outer Lagrangian, its image under�T is a point�T .L/ lying on the noncompact edge�T .C /

representing the curve it is incident to. Write eL WD �T .C /, v for its adjacent vertex, and e0
L for the

first edge met by moving clockwise from eL with respect to the orientation determined by the plane

containing �X .

Definition 6.1 A framing of L is the choice of an integral vector f such that peL
v ^ p

e0
L
v D p

eL
v ^ f;

equivalently, f D p
e0

L
v �f p

eL
v for some f 2 Z. We say that L is canonically framed if f D 0, ie f D p

e0
L
v .

Remark 6.2 By construction, since f ^ p
eL
v > 0, a framing at an outer vertex is always pointing in the

clockwise direction.

Definition 6.2 We call .X;L; f/ a toric Lagrangian triple if

� X is a semiprojective toric CY3 variety,

� LD
F
i L ywi ;ci

is a disjoint union of Aganagic–Vafa special Lagrangian submanifolds of X , and

� f is the datum of a framing choice for each connected component of L.

We will write �.X;L;f/ for the graph obtained from �X by the extra decoration of an integral vector incident

to the edge eL representing the toric outer Lagrangian L at framing f; see Figure 10.

Example 6.1 Let w.1/ D .1; 1;�1;�1/, yw.2/ D .1; 0;�1; 0/ and yw.3/ D .0; 1;�1; 0/. For any t ¤ 0,

the corresponding toric variety X is the resolved conifold Tot
�
OP1.�1/˚OP1.�1/

�
, with

R
0�P1 !t D t .

The compact edge e5 corresponds to the P1 given by the zero section of X. The edges ei for i D 1; 2; 3; 4

correspond to the T –invariant A1–fibres above the points Œ1 W 0� and Œ0 W 1� of the P1 base. The weights yw.i/

furthermore determine a toric Lagrangian, whose image in the toric graph lies in e1, and is depicted in

Figure 10 at framing f D p
e5
v1

� p
e1
v1

.

11In doing so we forget the metric information about �X which stems from a choice of a Kähler structure on X : this is
inconsequential for the definition of the invariants in the next section. We thus make a slight abuse of notation, by indicating the
decorated topological graph obtained by forgetting the information about the lengths of the edges by the same symbol �X .
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p
e4
v1

p
e5
v1

p
e1
v1

p
e5
v2

p
e3
v2

p
e2
v2

f

Figure 10: The toric Calabi–Yau graph �.X;L;f/ of the resolved conifold with an outer Lagrangian
at framing f D fcan � p

e1
v1

, ie f D 1.

6.1.1 Open Gromov–Witten invariants In informal terms, the open Gromov–Witten theory of .X;LD

L1 [ � � � [Ls/ for toric Lagrangians Li with i D 1; : : : ; s is a virtual count of maps to X from open

Riemann surfaces of fixed genus, relative homology degree, and boundary winding data around S1 ,! L.

This raises two orders of problems when trying to define these counts in the algebraic category, as the

boundary conditions for the curve counts are imposed in odd real dimension, and the target geometry is

noncompact. A strategy to address both issues simultaneously for framed outer toric Lagrangians, and

which we will follow for the purposes for the paper, was put forward by Li, Liu, Liu and Zhou [76], which

we briefly review below. The main idea in [76] is to replace the toric Lagrangian triple .X;L; f/ by a

formal relative Calabi–Yau pair . yX; yD/, where yX is obtained as the formal neighbourhood along a partial

compactification, specified by L and the framing f, of the toric 1–skeleton of X, and yD D yD1C � � � C yDs

is a formal divisor12 in the partial compactification yX with K yX C yD D 0, the aim being to trade the

theory of open stable maps with prescribed windings along the boundary circles on L by a theory of

relative stable maps with prescribed ramification profile above torus fixed points in yX , as previously

suggested in [77]. The resulting moduli space Mrel
gIˇ I�1;:::;�s

. yX; yD/ of degree ˇ stable maps from

`.�1/C � � � C`.�s/–pointed, arithmetic genus g nodal curves with ramification profile �i above yDi at

the punctures is a formal Deligne–Mumford stack carrying a perfect obstruction theory ŒT 1 ! T 2� of

virtual dimension `.�1/C� � �C`.�s/. While the moduli space is not itself proper, it inherits a T ' .C?/2

action from yX with compact fixed loci, and open Gromov–Witten invariants

(6-4) OgIˇ I.�1;:::;�s/.X;L; f/ WD
1

jAut. E�/j

Z

ŒMrel
gIˇI�1;:::;�s

. yX; yD/�vir;T

eT .T 1;m/

eT .T 2;m/
;

where the T i;m for i D 1; 2 denote the moving parts of the obstruction theory, and are defined in a standard

manner by T –virtual localisation [49]. It is a central result of [76] that the Calabi–Yau condition on T

entails that Og;ˇ;.�1;:::;�s/.X;L; f/ are nonequivariantly well-defined rational numbers: the invariants

12See [76, Section 5] for the details of the relevant construction.
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however do depend on the framings fi specified to construct the formal relative Calabi–Yau . yX; yD/, in

keeping with expectations from large N duality [100].

It will be helpful to package the open Gromov–Witten invariants Og;ˇ;�1;:::;�s
.X;L; f/ into formal

generating functions. Let x.i/ D .x
.i/
1 ; x

.i/
2 ; : : :/ for i D 1; : : : ; s be formal variables and for a partition �

define x
.i/
� WD

Q`.�/
jD1 x

.i/
�j

. We further abbreviate Ex E� D .x
.1/
�1
; : : : ; x

.s/
�s
/, E�D .�1; : : : ; �s/, j E�j D

P
i j�i j

and `. E�/D
P
i `.�i /, and define the connected generating functions

(6-5)

Oˇ I E�.X;L; f/.„/ WD
X

g

„2g�2C`. E�/OgIˇ I E�.X;L; f/;

O E�.X;L; f/.Q; „/ WD
X

ˇ

Oˇ; E�.X;L; f/.„/Q
ˇ ;

O.X;L; f/.Q; „; x/ WD
X

E�2.P/s
O E�.X;L; f/.Q; „/Ex E�;

as well as generating functions of disconnected invariants in the winding number and representation bases

(6-6) Z.X;L; f/.Q; „; x/ WD exp .O.X;L; f/.Q; „; x//

DW
X

E�2.P/s
Z E�.X;L; f/.Q; „/Ex E�

DW
X

E�2.P/s

X

E�2.P/s

sY

iD1

��i
.�i /

z�i

WE�.X;L; f/.Q; „/Ex E�:

Here ��.�/ denotes the irreducible character of Sj�j evaluated on the conjugacy class labelled by �.

When x D 0, (6-6) reduces to the ordinary generating function of disconnected Gromov–Witten invariants

of X.

6.1.2 The topological vertex The invariants (6-6) can be computed algorithmically to all genera using

the topological vertex of Aganagic, Klemm, Mariño and Vafa [6]. We can succinctly condense this into

the following three statements:

(1) Let X D C3, LD
S3
iD1Li , and Li D L yw.i/;c with yw.i/j D ıi;j � ıi;jC1 mod 3, i D 1; : : : ; 3 be the

outer Lagrangians of C3 as in Figure 11, and fix framing vectors fi for each of them. Then

(6-7) W E�.C
3; L; f/D

3Y

iD1
qfi�.�i /=2.�1/fi j�i jW E�.C

3; L; fcan/;

where q D ei„.

(2) Let .X .1/; L.1/; f.1// and .X .2/; L.2/; f.2// be smooth toric Calabi–Yau 3–folds with framed outer

toric Lagrangians L.i/ D
Ssi
jD1L

.i/
j . Suppose that there exist noncompact edges zei 2 .�.X.i/;L.i/;f.i///

nc
1

Geometry & Topology, Volume 28 (2024)



450 Pierrick Bousseau, Andrea Brini and Michel van Garrel

p
e3
v

p
e2
v

p
e1
v

f3

f1

f2

Figure 11: The framed vertex .C3; L1[L2[L3/, depicted with framings f1D p
e2
v , f2D p

e2
v Cp

e3
v

and f3 D p
e1
v .

emanating from vertices zvi 2 .�.X.i/;L.i/;f.i///0 such that�T .L
.i/
si /\zei ¤∅, and that moreover, pze1

zv1
D�p

ze2

zv2

and f
.1/
s1 D f

.2/
s2 ; see Figure 12. We can construct a planar trivalent graph �X1[e12

X2
decorated with triples

of primitive integer vectors at every vertex by considering the disconnected union of �X.1/ and �X.2/ ,

deleting ze1 and ze2, and adding a compact edge e12 connecting zv1 to zv2. A toric Calabi–Yau 3–graph

reconstructs uniquely a smooth toric CY3 with a T action isomorphic to the T –equivariant formal

neighbourhood of the configuration of rational curves specified by the edges, and we call X the threefold

determined by the glueing procedure such that �X D �X1[e12
X2

. In the same vein, the collection of

framed Lagrangians L.i/ on Xi determine framed outer Lagrangians LD
Ss1Cs2�2
iD1 Li on X : we have

canonical projection maps �i W �X ! �X.i/ , and we place an outer Lagrangian brane at framing fj on all

noncompact edges e such that �i .e/\�T .L
.i/
j /¤ ∅ for some j . Write

E�D .�
.1/
1 ; : : : ; �

.1/
s1�1; �

.2/
1 ; : : : ; �

.2/
s2�1/;

E�.1/12 D .�
.1/
1 ; : : : ; �

.1/
s1�1; �12/ and E�12

.2/
D .�

.2/
1 ; : : : ; �

.2/
s2�1; �

T
12/:

p
e

.1/
3

v.1/

p
e

.1/
2

v.1/

p
e

.1/
1

v.1/

f
.1/
2

f
.1/
1

f
.1/
3

f
.2/
1

f
.2/
2

f
.2/
3

p
e

.1/
1

v.2/

p
e

.2/
2

v.2/

p
e

.2/
3

v.2/

p
e

.1/
3

v.1/

p
e

.1/
2

v.1/

p
e

.1/
1

v.1/

f
.1/
2

f
.1/
1

f
.2/
1

f
.2/
2

p
e

.2/
1

v.2/

p
e

.2/
2

v.2/

p
e

.2/
3

v.2/

glue

Figure 12: The glueing procedure for the topological vertex. In the notation of the text, we have
s1 D s2 D 3, ze1 D e

.1/
2 , ze2 D e

.2/
3 , ze0

1 D e
.1/
3 and ze0

2 D e
.2/
1 .
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Then the following glueing formula holds:

(6-8) W E�.X;L; f/.Q; „/D
X

�122P

.�Qˇ12
/j�12jqf12�.�12/=2.�1/f12j�12jW E�.1/

12

.X .1/; L.1/; f.1//.Q; „/

�W E�.2/
12

.X .2/; L.2/; f.2//.Q; „/:

Here f12 D det.pze0
1
; pze0

2
/, where ze0

i 2 .�.X;L;f//1 is the first edge met when moving counterclockwise

from zei , and Qˇ12
is the exponentiated Kähler parameter associated to the homology class ˇ12 D

Œ��1
T .e12/� 2 H2.X;Z/. The glueing formula (6-8) originally proposed by [6] is derived in [76] as a

consequence of Li’s degeneration formula for relative Gromov–Witten theory [75].

(3) The glueing formula (6-8) allows us to recursively compute open Gromov–Witten invariants of any

toric Lagrangian triple .X;L; f/ starting from those of the framed vertex, ie affine 3–space with framed

toric Lagrangians incident to each coordinate line. The framing transformation (6-7) further reduces the

problem to the knowledge of the open Gromov–Witten invariants of .C3; L D L1 [L2 [L3; f
can/ in

canonical framing fi D fcan
i WD piC1 mod 3. This is given by

(6-9) W�1;�2;�3
.C3; L; fcan/.„/D q�.�1/=2

X

ı2P

s�t
1=ı
.q�C�3/s�2=ı.q

�C�t
3/s�3

.q�/;

where the shifted skew Schur function s˛=ˇ .q
�C
 / is defined in (D-12). The formula (6-9) follows from

an explicit evaluation of formal relative Gromov–Witten invariants in terms of descendent triple Hodge

integrals. It was first proved in [78; 76] when �3 D ∅, and the general case was established in [89].

An immediate consequence of (6-8) and (6-9) is that if i W .X;L; f/ ,! .X 0; L0; f 0/ is an embedding of toric

Lagrangian triples corresponding to an embedding of graphs i# W �.X;L;f/ ,! �.X 0;L0;f0/, where �.X 0;L0;f0/

is obtained from �.X;L;f/ by addition of a single vertex v2 and glueing along a compact edge e12 to a

vertex v1 2 .�.X;L;f//0 by the above procedure, then

(6-10) W E�.X;L; f/.Q; „/D W E�.X
0; L0; f 0/.Q; „/jQˇ12

D0:

6.2 The higher-genus log-open principle

In this section we associate certain toric Lagrangian triples to the geometry of Looijenga pair, under an

additional condition given by the following definition.

Definition 6.3 Let Y.D D D1 C � � � CDl/ be a nef Looijenga. We say that it satisfies Property O if

EY.D/ deforms to EY 0.D0/ for a Looijenga pair Y 0.D0 DD0
1C � � � CD0

l
/ such that

� Y 0 is a toric surface,

� D0
i is a prime toric divisor for all i D 1; : : : ; l � 1, and

� any nontrivial effective curve in Y 0 is D0
l
–convex.
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Example 6.2 Denote by Y 0.D0
1;D

0
2/ the toric surface whose fan is given by Figure 14, with D0

1 D

H �E3 and the class of D0
2 corresponding to the sum of the other rays. Y 0.D0

1;D
0
2/ is obtained from

P2.1; 4/D P2.D1;D2/ by blowing up a smooth point on D1 and two infinitesimally close points on D2.

Moving the latter two apart (while staying on D2) determines a deformation to dP3.0; 2/. Given nefness

ofD0
2, it follows that dP3.0; 2/ satisfies Property O. By Proposition 2.6, dP3.1; 1/ also satisfies Property O.

The property holds after blowing down .�1/–curves, including for F0.0; 4/. Applying Proposition 2.6 it

thus also holds for F0.2; 2/ and F2.2; 2/.

Example 6.3 Consider now dP4.D1;D2/ with D21 D 0. Deforming dP4.D1;D2/ to a smooth toric

surface with D1 a toric divisor leads to the fan of Figure 14 with an additional ray in the lower half-plane.

Up to deformation, there are two ways of doing so: by adding a ray either between H �E1�E2 and E2,

or between E2 and E1�E2. Either way, this creates a curve C with C � .�K �D1/ < 0 and therefore

dP4.0; 1/ does not satisfy Property O. The same argument applies to dP5.0; 0/.

Example 6.4 When l > 2, Property O is always satisfied for all surfaces except for dP3.0; 0; 0/. The

only way of deforming dP3 to a toric surface with D1 and D2 toric is to take the fan of Figure 15 and

add a ray in the lower-left quadrant. But this creates a curve C with C � .�K �D1�D2/ < 0, and hence

dP3.0; 0; 0/ does not satisfy Property O.

From Table 1, Property O coincides with quasi-tameness of Y.D/, with the sole exception of dP3.0; 0; 0/.

We make some informal comments about the geometric transition from stable log maps to open maps,

which inform the construction of the open geometries below. This discussion is motivated by [8, Section 7]

and in particular a natural generalisation of [8, Conjecture 7.3]. That description applied to our setting

makes clear the structure of the toric Lagrangians. Denote by .Y;D D D1 C � � � C Dl/ a possibly

noncompact log Calabi–Yau variety. For a maximally tangent stable log map to .Y;D/, the expectation is

that maximal tangency dj with Dj can be replaced by an open boundary condition of winding number dj
with a special Lagrangian Lj near Dj . The special Lagrangian needs to have the property that it bounds

a holomorphic disk D in the normal bundle to Dj ; see [8, Section 7]. This property dictates how to

compactify Y nDj : in a toric limit, D is simply the disk used to compactify the edge the framing lies on.

If d is a Dj –convex curve class, then we can alternatively remove the maximal tangency condition by

twisting the geometry by OY .�Dj /. Dj –convexity then guarantees that no maps move into the fibre

direction. To obtain the Calabi–Yau threefold geometry from a surface, we adopt the convention of

twisting by the last divisor Dl .

In the toric limits of Construction 6.4, the choice of framing corresponds to a choice of compactification.

If an outer edge e has framing f , then (see [76, Section 3.2]) the normal bundle of the compactification C

of e is O.f /˚O.�1� f /. In our setting, one line bundle is the normal bundle OC .C
2/ of the curve C

in the surface and the other is the normal bundle OY .�Dl/jC of the curve in the fibre direction. In

Construction 6.4, it follows from our conventions that if the framing points to the interior of the polytope,
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then the normal bundle of C in the surface is O.f /, and if the framing points to the outside of the

polytope, then the normal bundle of C in the surface is O.�1� f /. In particular, from a Looijenga

pair Y.D1; : : : ;Dl/ satisfying Property O, we construct a dual Aganagic–Vafa open Gromov–Witten

geometry via the following construction.

Construction 6.4 Let Y.D1; : : : ;Dl/ be a Looijenga pair satisfying Property O for Y 0.D0
1; : : : ;D

0
l
/.

Denote by �Y 0 the polytope of Y 0 polarised by �KY 0 . We assume that �Y 0nSj ¤l D
0
j

is 2–dimensional

or, equivalently, that D0
l

is not toric, implying l < 4. Denote by ej the edge of �Y 0 corresponding to D0
j

for 1 � j � l � 1 and denote by el ; : : : ; elCr the remaining edges. Up to reordering, we may assume

that the ei are oriented clockwise. We construct a toric Lagrangian triple Y op.D/ WD .X;L; f/ as follows.

In �Y 0 remove the edge e1 and replace it by a framing f1 on elCr parallel to e1. By Definition 6.1 and

Remark 6.2, there is a unique way to do so, and f1 points into the interior of �Y 0 . Denote the resulting

graph by �1. If l D 2, add outer edges to �1 so that each vertex satisfies the balancing condition and

denote the resulting toric Calabi–Yau graph by � . If l D 3, in �1 remove the edge e2 and replace it by a

framing on e3 parallel to e2. Denote the resulting graph by �2. Add edges to �2 so that each vertex

satisfies the balancing condition, and denote the resulting toric Calabi–Yau graph by � .

The graph � in Construction 6.4 gives the discriminant locus of the SYZ fibration of the toric Calabi–

Yau threefold X D Tot.KY 0nSj ¤l D
0
j
/. The base of the fibration is an R–bundle over the polyhedron

�Y 0nSj ¤l D
0
j

. The framings determine toric special LagrangiansLj , and the added outer edges correspond

to the toric fibres of O.�D0
l
/. As is readily seen from the fan, f1 (resp. �1� f2) is the degree of the

normal bundle of the divisor in Y 0 corresponding to elCr (resp. to e3). The framing keeps track of the

compactification of Y 0 n
S
j¤l D

0
j .

Remark 6.3 Tangency with more than one point can be incorporated by having parallel framings on

different outer edges.

Remark 6.4 If �Y 0nD0
1[D0

2
is not 2–dimensional, then we blow up Y in a smooth point of D such

that the resulting zY . zD/ satisfies Property O. We construct zY op. zD/, and recover the open invariants of

Y.D/ by considering the curve classes that do not meet the exceptional divisor. In particular, for l > 3

we stipulate that Construction 6.4 can be extended through suitable flopping of .�1;�1/–curves in the

toric Calabi–Yau 3–fold geometry. We leave a precise formulation to future work, and develop the sole

example relevant to our paper to illustrate this.

Example 6.5 We adapt the construction to the only nef Looijenga pair with 4 boundary components

F0.H1;H2;H
0
1;H

0
2/. Since �F0 n.H1[H2[H 0

1/
is 1–dimensional, we start by blowing up a smooth point

ofH 0
1. In a toric deformation, we obtain dP2.0; 0;�1; 0/ with divisorsD0

1DH1,D0
2DH2,D0

3DH 0
1�E

and D0
4 DH 0

2. We assume that the corresponding e1; : : : ; e5 are ordered clockwise in �dP2
. Start with

the graph �2 from Construction 6.4. Balance the vertices and flop the inner edge. On the inner edge, add
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Figure 13: The toric CY3 graph of dPop
2 .0; 0;�1; 0/.

a framing parallel to e3. The result is the graph of Figure 13, with the notational shift f2 $D0
1, f3 $D0

2,

f1 $ D0
3. To obtain the graph for F0.0; 0; 0; 0/, we remove the two outer edges that have no framing.

The result is Figure 16.

Lemma 6.5 Let Y.D1; : : : ;Dl/ and Y 0.D0
1; : : : ;D

0
l
/ be as in Construction 6.4. Then H2.Y;Z/ D

H2.Y 0;Z/ is generated by the divisors corresponding to e3; : : : ; elCr .

Proof In the fan of Y 0, define an ordering of the 2–dimensional cones by letting �i be the cone

corresponding to ei \ eiC1 when 1� i < l C r and �lCr be the cone corresponding to elCr \ e1. Define

cones �i WD �i \
T
j2Ji

�j , where Ji is the set of j > i such that �i \�j is 1–dimensional. Then �1 D f0g,

�i is the ray corresponding to eiC1 for 2 � i < l C r and �lCr D �lCr . By [42, Section 5.2, Theorem],

these cones generate H�.Y 0;Z/; hence the divisors corresponding to e3; : : : ; elCr generate H2.Y 0;Z/.

Note that Hrel
2 .Y

op.D/;Z/ is generated by the curve classes Œe� corresponding to inner edges e and by

the relative disk classes ŒDe� corresponding to outer edges e with framings. By the corresponding short

exact sequence, the latter can be identified with ŒS1� 2 H1.S1;Z/, where L� S1 D @De and the degrees

in the ŒS1� keep track of the winding numbers. By construction, the e thus described are edges of �Y 0 .

Definition 6.5 Let Y.D1; : : : ;Dl/ and Y 0.D0
1; : : : ;D

0
l
/ be as in Construction 6.4. Define

(6-11) � W Hrel
2 .Y

op.D/;Z/! H2.Y;Z/

by sending Œe� to the divisor corresponding to e in Y .

Proposition 6.6 The morphism � is an isomorphism.

Proof This is a direct consequence of Lemma 6.5.
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Example 6.6 We continue with Example 6.5. Following Figure 13, denote by ei the edge with framing fi

for i D 1; 2; 3. Generalising Definition 6.5, we define � W Hrel
2 .dPop

2 .0; 0;�1; 0/;Z/
��! H2.dP2;Z/ by

(6-12) �Œe1�D ŒD0
2�D ŒH2�; �Œe2�D ŒD0

4�E�D ŒH2�E�; �Œe3�D ŒD0
3�D ŒH1�E�;

which yields an isomorphism.

Theorem 6.7 (the higher-genus log-open principle) Suppose Y.D/ satisfies Property O. Then

(6-13) O0I��1.d/.Y
op.D//DN loc

0;d .Y.D//D

lY

iD1

.�1/d �Di C1

d �Di
N

log
0;d
.Y.D//:

Moreover , if Y.D/ is tame ,

(6-14) O��1.d/.Y
op.D//.�i log q/D Œ1�l�2q

.�1/d �Dl C1

Œd �Dl �q

l�1Y

iD1

.�1/d �Di C1

d �Di
N

log
d
.Y.D//.�i log q/:

Remark 6.8 As is evident from Example 6.2, Y op.D/ depends on the toric model and hence is not

unique. However, it can be checked directly for the examples of Table 1 that if .X .1/; L.1/; f.1//

and .X .2/; L.2/; f.2// correspond to two such choices, then there exists a $ W Hrel
2 .X

.1/; L.1/;Z/ ��!

Hrel
2 .X

.2/; L.2/;Z/ such that �.1/ D �.2/ ı$ .

6.3 Proof of Theorem 6.7

In order to work our way to a general Y.D/ satisfying Property O, we first show that if � WY 0.D0/!Y.D/

is an interior blowup, Construction 6.4 implies that the higher-genus open GW invariants O��1.d/.Y
op.D//

satisfy the same blowup formula (4-19) of the log invariants on the right-hand side of (6-14).

Proposition 6.9 (blowup formula for open GW invariants) Let � W zY . zD/! Y.D/ be an interior blowup

of Looijenga pairs with both zY . zD/ and Y.D/ satisfying Property O , and denote by ��
op the monomorphism

of abelian groups defined by

(6-15)

H2.Y.D/;Z/

��1

��

�

� ��
// H2. zY . zD/;Z/

��1

��

Hrel
2 .Y

op.D/;Z/
�

�

��
op

// Hrel
2 .

zY op. zD/;Z/

Then Oj .Y
op.D//D O��

opj .
zY op. zD// for all j 2 Hrel

2 .Y
op.D/;Z/.

Sketch of the proof We provide an overview here and leave the details to the reader. The claim is proved

by noting that Construction 6.4 implies the following: if Y.D/ is obtained from zY . zD/ by contraction of

a .�1/–curve, then Y op.D/ is an open embedding into a flop of zY op. zD/ along a .�1;�1/–curve. The

resulting nontrivial equality of open Gromov–Witten invariants under restriction on the image of ��
op is

then a combination of the invariance of open Gromov–Witten invariants under “forgetting an edge” in

(6-10) and the flop invariance of the topological vertex [69].
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By the previous proposition it then suffices to prove Theorem 6.7 for the pairs Y.D/ of highest Picard

number for each value of l D 2; 3; 4, as all other pairs are recovered from these by blowing-down. We

show this from a direct use of the topological vertex to determine the left-hand side of (6-14). The reader

is referred to Appendix D for notation and basic results for shifted power sums p˛.q�C
 / and shifted

skew Schur functions s˛=ˇ .q
�C
 / in the principal stable specialisation. The notation f˛; ˇgQ indicates

the symmetric pairing on P of (D-15).

6.3.1 l D 2: holomorphic disks The classification of Propositions 2.2 and 2.3, the deformation

equivalences in Proposition 2.6 and the definition of Property O in Definition 6.3 together imply that if

Y.D DD1 C � � � CDl/ and Y.D0 DD0
1 C � � � CD0

l
/ are l–component Looijenga pairs both satisfying

Property O, then there is a toric model for both with resulting Y op.D/ D Y op.D0/: in other words a

model Y op.D/ for the open geometry only depends on Y and the number of irreducible components

of D. Since 2–component log CY surfaces with maximal boundary come in pairs Y.D/ and Y.D0/ from

Table 1, throughout this section we will simplify notation and write ‡.Y / WD Y op.D/D Y op.D0/ for the

toric Lagrangian triple they share.

By Proposition 6.9, it suffices to consider the case of highest Picard rank Y D dP3. If Y.D/ is either

dP3.1; 1/ or dP3.0; 2/, a toric model for Y is given by the toric surface Y 0 described by the fan of

Figure 14, and in particular D0 DH �E3 is a toric divisor. Therefore Y.D/ satisfies Property O and,

by Remark 6.1, ‡.dP3/ is described by the toric CY3 graph of Figure 14. With conventions as in

Figure 14, let C1 D ��1
T .e2/, C2 D ��1

T .e5/ and C3 D ��1
T .e7/, and for a relative 2–homology class

j 2 H2.‡.dP3/;Z/, write j D j0ŒS
1�C

P3
iD1 ji ŒCi �.

We will compute generating functions of higher-genus 1–holed open Gromov–Witten invariants of

‡.dP3/ in class j , using the theory of the topological vertex. For simplicity, we’ll employ the shorthand

notation Oj1;j2;j3Ij0
.‡.dP3// (resp. Oj0

.‡.dP3//) to denote the generating function Oˇ I�.‡.dP3//

(resp. Oˇ .‡.dP3//) in (6-6) with ˇ D
P3
iD1 ji ŒCi � and �D .j0/ a 1–row partition of length j0. From

H �E3

H �E1 �E2

E2

E1 �E2

H �E1 �E3

E3

p
e2
v2

p
e5
v2p

e4
v2

f

p
e7
v3

p
e5
v3

p
e2
v1p

e1
v1

p
e3
v1

p
e6
v3

p
e7
v4

p
e9
v4

p
e8
v4

Figure 14: ‡.dP3/D dPop
3 .0; 2/D dPop

3 .1; 1/ from the blowup of the plane at three nongeneric
toric points.
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(6-5) and (6-6), we have

(6-16) Oj0
.‡.dP3//D

Z.j0/.‡.dP3//

Z∅.‡.dP3//
D
X

�2P

��..j0//

z.j0/

W�.‡.dP3//

W∅.‡.dP3//
D

j0�1X

sD0

.�1/s

j0

W.j0�s;1s/.‡.dP3//

W∅.‡.dP3//
;

where we have used the Murnaghan–Nakayama rule [112, Corollary 7.17.5]

(6-17) ��..j0//D

�
.�1/s if � D .j0� s; 1s/;

0 else:

The framing f in Figure 14 is shifted by one unit f D �1 from the canonical choice fcan D p
e2
v1

. From

(6-7), (6-8) and (6-9), we then have, for any ˛ 2 P , that

(6-18) W˛.‡.dP3//.Q; „/

D .�1/j˛jq� 1
2
�.˛/

�
X

�;�;�;ı;�2P

s�t .�Q1q
�C˛/s˛.q�/s�=ı.q�/s�=ı.q�/Q

j�j
2 s�=�.q

�/s�=�.q
�/s�t .�Q3q

�/

D
.�1/j˛js˛t .q�/f˛;∅gQ1

f˛;∅gQ1Q2
f∅;∅gQ3

f∅;∅gQ2Q3

f∅;∅gQ2
f˛;∅gQ1Q2Q3

;

where we have used (D-13) and, repeatedly, (D-15) to express the sums over partitions in terms of Cauchy

products. Then, specialising to ˛ D .j0� s; 1s/ a hook partition with j0 boxes and sC 1 rows, and using

(D-11) and (D-18), we have

(6-19)
W.‡.dP3//.j0�s;1s/

W.‡.dP3//∅
D
.�1/j0s.sC1;1j0�s�1/.q

�/f.j0�s; 1
s/;∅gQ1

f.j0�s; 1
s/;∅gQ1Q2

f.j0�s; 1s/;∅gQ1Q2Q3

D
.�1/j0q

� 1
2.
j0

2
/C 1

2
j0s

Œj0�qŒj0�s�1�qŠŒs�qŠ

Qj0�1
kD0 .1�q

kQ1q
�s/

Qj0�1
lD0 .1�q

lQ1Q2q
�s/

Qj0�1
mD0.1�qmQ1Q2Q3q�s/

:

Replacing this into (6-16) we get

(6-20) Oj0
.‡.dP3//.Q; „/

D

j0�1X

sD0

.�1/s

j0

W.j0�s;1s/.‡.dP3//.Q; „/

W∅.‡.dP3//.Q; „/

D
.�1/j0q

� 1
2.
j0

2
/

j0Œj0�qŠ

1X

j1;j2;j3D0

 
q

1
2
j1.j0�1/

�
j0

j1� j2

�

q

�
j0

j2� j3

�

q

�
j0C j3� 1

j3

�

q

� .�1/j1Cj3Q
j1

1 Q
j2

2 Q
j3

3

j0�1X

sD0

�
j0� 1

s

�

q

.�q�j1/sq
1
2
j0s

!

D
.�1/j0

j0Œj0�qŠ

1X

j1;j2;j3

�
j0

j1� j2

�

q

�
j0

j2� j3

�

q

�
j0C j3� 1

j3

�

q

.�1/j1Cj3Q
j1

1 Q
j2

2 Q
j3

3

Œj1� 1�qŠ

Œj1� j0�qŠ
;
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H �E1

H �E2E1
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Figure 15: dPop
2 .1; 0; 0/ from dP2 and D1 DH �E1, D2 DH �E2.

where the q–binomial theorem has been used to expand the products in (6-19) and to perform the

summation over s in the last line. Isolating the O.Q
j1

1 Q
j2

2 Q
j3

2 / coefficient yields

(6-21) Oj1;j2;j3Ij0
.‡.dP3//.„/D

.�1/j1Cj0Cj3 Œj0�q

j0Œj1�qŒj0C j3�q

�
j0

j1� j2

�

q

�
j0

j2� j3

�

q

�
j0C j3
j3

�

q

�
j1
j0

�

q

:

From Figure 14, the lattice isomorphism � W Hrel
2 .‡.dP3/;Z/! H2.dP3;Z/ in this case reads

(6-22) �ŒS1�D ŒH �E1�E2�; �ŒC1�D ŒE2�; �ŒC2�D ŒE1�E2�; �ŒC3�D ŒH �E1�E3�;

and the change of variables relating the curve degrees .d0; d1; d2; d3/ in H2.dP3;Z/ and the relative

homology variables .j0I j1; j2; j3/ in Hrel
2 .‡.dP3/;Z/ is therefore

(6-23) d0 ! j0C j3; d1 ! j2; d2 ! j1� j2C j3; d3 ! j0:

Combining the change of variables (6-23) and the log result of (4-22) in Theorem 4.5 returns (6-21),

establishing (6-14) for Y.D/ D dP3.1; 1/. Furthermore, taking the genus-zero limit q ! 1 and using

Theorem 5.1, Lemma 3.1 and Proposition 2.6 implies (6-13), completing the proof of Theorem 6.7 for

Y.D/D dP3.D21 ;D
2
2/. Use of Propositions 6.9 and 4.3 then concludes the proof of Theorem 6.7 for any

Y.D/ satisfying Property O with l D 2.

6.3.2 l D 3: holomorphic annuli The 3–component Looijenga pair of highest Picard rank satisfying

Property O is Y.D/D dP2.1; 0; 0/. Taking D1 DH �E1, D2 DH �E2 we have that Y , D1 and D2 are

toric, and dPop
2 .1; 0; 0/ is described by the toric CY3 graph on the left in Figure 15. Write C D ��1

T .e3/,

and for a relative 2–homology class j 2 Hrel
2 .dPop

2 .1; 0; 0/;Z/ write j D j1ŒD1�Cj2ŒD2�CjC ŒC �, where

ŒDi � are integral generators of the first homology of the outer Lagrangians incident to edges adjacent to

the vertices vi for i D 1; 2 in Figure 15. As in the previous section, we will write OjC Ij1;j2
.dPop

2 .1; 0; 0//

(resp. Oj1;j2
.dPop

2 .1; 0; 0//) for the generating function Oˇ; E�.dPop
2 .1; 0; 0// (resp. O E�.dPop

2 .1; 0; 0//),
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with ˇ D jC ŒC � and E�D ..j1/; .j2// a pair of 1–row partitions of length .j1; j2/. From (6-5), (6-6) and

(6-17), we have

(6-24) Oj1;j2
.dPop

2 .1; 0; 0//.Q; „/D
Zj1;j2

.dPop
2 .1; 0; 0//

Z∅;∅.dPop
2 .1; 0; 0//

�
Z.j1/;∅.dPop

2 .1; 0; 0//Z∅;.j2/.dPop
2 .1; 0; 0//

Z∅;∅.dPop
2 .1; 0; 0//

2

D

j1�1X

s1D0

j2�1X

s2D0

.�1/s1Cs2

j1j2

�
W.j1�s1;1s1 /;.j2�s2;1s2 /.dPop

2 .1; 0; 0//

W∅;∅.dPop
2 .1; 0; 0//

�
W.j1�s1;1s1 /;∅.dPop

2 .1; 0; 0//W∅;.j2�s2;1s2 /.dPop
2 .1; 0; 0//

W∅;∅.dPop
2 .1; 0; 0//

2

�
:

The framings f1 and f2 in Figure 15 are, respectively, shifted by one unit f D �1 from the canonical

choice fcan D p
e3
v1

, and equal to the canonical framing f2 D p
e4
v2

. Then (6-7), (6-8) and (6-9) give

(6-25) W˛ˇ .dPop
2 .1; 0; 0//.Q; „/D .�1/j˛jq��.˛/=2 X

�;ı;2P

s�t .�q�C˛Q/s˛.q�/s�=ı.q�/sˇ=ı.q�/

D .�1/j˛js˛t .q�/f˛;∅gQ
X

ı2P

sˇ t=ıt .�q��/sıt .�q�C˛Q/

D .�1/j˛js˛t .q�/f˛;∅gQsˇ t .�q��;�q�C˛Q/;

where we have used (D-14), (D-7) and (D-15) to perform the summations over partitions. Then, restricting

to ˛ D .j1� s1; 1
s1/ and ˇ D .j2� s2; 1

s2/,

(6-26) Oj1;j2
.dPop

2 .1; 0; 0//.Q; „/

D

j1�1X

s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y

kD0
.1� qkQq�s1/

� Œp.j2/.�Qq
�C.j1�s1;1s1 /;�q��/�p.j2/.�Qq

�;�q��/�

D

j1�1X

s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y

kD0
.1� qkQq�s1/

� Œp.j2/.�Qq
�C.j1�s1;1s1 //�p.j2/.�Qq

�/�

D

j1�1X

s1D0

.�1/j1Cs1Cj2C1

j1j2
s.s1C1;1j1�s1�1/.q

�/

j1�1Y

kD0
.1� qkQq�s1/.�Qq�s1� 1

2 /j2 Œqj2j1 � 1�

D
.�1/j1C1Qj2 Œj1j2�q

j1j2Œj2Cm�q

j1X

mD0

�
j1
m

�

q

�
j2Cm

j1

�

q

.�Q/m;

where in the first equality we have used (D-3) and (6-17), in the second the fact that for a 1–row partition

˛ D .d/, p.d/.x1; : : : ; xn; : : : Iy1; : : : ; yn; : : : /D p.d/.x1; : : : ; xn; : : : /Cp.d/.y1; : : : ; yn; : : : /, and in

the third equality the fact that the difference of infinite power sums in the term in square brackets telescopes
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to just two terms; the final calculations are repeated applications of the q–binomial theorem. Extracting

the O.QjC / coefficient, we get

(6-27) OjC Ij1;j2
.dPop

2 .1; 0; 0//.„/D
.�1/j1C1CjC Cj2 Œj1j2�q

j1j2ŒjC �q

�
j1

jC � j2

�

q

�
jC
j1

�

q

:

From Figure 15, the homomorphism of homology groups � W Hrel
2 .dPop

2 .1; 0; 0/;Z/ ! H2.dP2;Z/ is

given by

(6-28) �ŒD1�D ŒE1�; �ŒD2�D ŒE2�; �ŒC �D ŒH �E1�E2�;

and the resulting map of curve degrees is

(6-29) d0 ! jC ; d1 ! j1; d2 ! j2:

Together with the log results given by (4-39) in Theorem 4.9 and the blowup formulas of Propositions 4.3

and 6.9 for the log and open invariants, this proves Theorem 6.7 for l D 3.

6.3.3 l D 4: holomorphic pairs of pants According to Example 6.5, for the only 4–component case

Y.D/D F0.0; 0; 0; 0/, we have that Y op.D/ is given by the 3–dimensional affine space with Aganagic–

Vafa A–branes L.i/ for i D 1; 2; 3 at framing shifted by �1, 0, and �1 ending on the three legs of the

vertex, as in Figure 16. We will be concerned with counts of 3–holed open Gromov–Witten invariants of

F
op
0 .0; 0; 0; 0/, with winding numbers .j1; j1; j2/; see Example 6.6.

The connected generating function, by (6-5) and (6-6), is

(6-30) Oj1;j1;j2
.F

op
0 .0; 0; 0; 0//.„/

D Z.j1/.j1/.j2/.F
op
0 .0; 0; 0; 0//�Z.j1/.j1/∅.F

op
0 .0; 0; 0; 0//Z∅∅.j2/.F

op
0 .0; 0; 0; 0//

�Z.j1/∅.j2/.F
op
0 .0; 0; 0; 0//Z∅.j1/∅.F

op
0 .0; 0; 0; 0//

�Z∅.j1/.j2/.F
op
0 .0; 0; 0; 0//Z.j1/∅∅.F

op
0 .0; 0; 0; 0//

C 2Z.j1/∅∅.F
op
0 .0; 0; 0; 0//Z∅.j1/∅.F

op
0 .0; 0; 0; 0//Z∅∅.j2/.F

op
0 .0; 0; 0; 0//;

where, by (6-17),

(6-31) Z.j1/;.j1/;.j2/.F
op
0 .0; 0; 0; 0//

D
X

s0;s1;s2

.�1/s0Cs1Cs2

j 21 j2
W.F

op
0 .0; 0; 0; 0//.j1�s0;1s0 /;.j1�s1;1s1 /;.j2�s2;1s2 /

and, from (6-7) and (6-9),

(6-32) W˛ˇ
 .F
op
0 .0; 0; 0; 0//D .�1/j˛jCj
 jX

ı

s˛t=ı.q
�C
 /sˇ=ı.q�C
 t

/s
 t .q�/:
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p
e1
v

p
e3
v

p
e2
v

f1

f2

f3

Figure 16: The toric CY3 graph of F
op
0 .0; 0; 0; 0/.

Elementary manipulations from (6-30)–(6-32) lead to

(6-33) Oj1;j1;j2
.F

op
0 .0; 0; 0; 0//.„/

D
X

s0;s1;s2

.�1/s0Cs1Cs2Cj1Cj2

j 21 j2

��
s˛t .q�C
 /� s˛t .q�/

��
sˇ .q

�C
 t

/� sˇ .q
�/
�
s
 t .q�/

C
X

ı¤∅

�
s˛t=ı.q

�C
 /sˇ=ı.q�C
 t

/� s˛t=ı.q
�/sˇ=ı.q

�/
�
s
 t .q�/

�

with

˛ D .j1� s0; 1
s0/; ˇ D .j1� s1; 1

s1/; 
 D .j2� s2; 1
s2/:

The part of the summation in the middle line, after carrying out the sums over s0, s1 and s2 using (D-3)

and (6-17), is equal to

(6-34)
j2�1X

s2D0

.�1/s2C1Cj2

j 21 j2

�
p.j1/.q

�C.j2�s2;1s2 //�p.j1/.q
�/
��
p.j1/.q

�C.s2C1;1j2�s2�1//�p.j1/.q
�/
�

�s.s2C1;1j2�s2�1/.q
�/

D

j2�1X

s2D0

.�1/s2

j 21 j2
.qj1.j2�s2�1=2/�qj1.�s2�1=2//.qj1.s2C1=2/�qj1.s2C1=2�j2//s.j2�s2;1s2 /.q

�/

D
1

j 21 j2

Œj1j2�
2
q

Œj2�q
;

while the part in the last line is equal to zero. Indeed, when ı D ˛t , we have sˇ=ı.x/ D ıˇ˛t (since

j˛j D jˇj D j1 in our case, ˛t � ˇ implies ˛t D ˇ), so the terms appearing in the difference in the second
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row of (6-33) are either individually zero or cancel out each other. When ı ¤ ˛t , we can use Lemma D.1

to expand s˛t=ı.x/ in terms of ordinary Schur functions s�.x/ with j�j D j˛j� jıj: it is easy to see that in

the sum over s0 the contribution labelled by each such Young diagram appears exactly twice and weighted

with opposite signs. Therefore,

(6-35) Oj1;j1;j2
.F

op
0 .0; 0; 0; 0//.„/D

1

j 21 j2

Œj1j2�
2
q

Œj2�q
:

By construction from Examples 6.5 and 6.6,

(6-36) d1 ! j2 and d2 ! j1;

and comparing with (4-41) gives (6-14), which concludes the proof of Theorem 6.7.

Y.D/ �Y op.D/

P2.1; 4/

dP1.1; 3/

dP1.0; 4/

dP2.1; 2/

dP2.0; 3/

dP3.1; 1/

dP3.0; 2/

F0.2; 2/

F0.0; 4/

Y.D/ �Y op.D/

P2.1; 1; 1/

dP1.1; 1; 0/

dP2.1; 0; 0/

F0.2; 0; 0/

F0.0; 0; 0; 0/

Table 3: Y op.D/ for l–component Looijenga pairs satisfying Property O.
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7 KP and quiver DT invariants

7.1 Klemm–Pandharipande invariants of CY4–folds

Let Z be a smooth projective complex Calabi–Yau variety of dimension four and d 2 H2.Z;Z/. Since

vdimMg;n.Z; d/ D 1� gC n, the only nonvanishing genus-zero primary Gromov–Witten invariants

of Z without divisor insertions are13

(7-1) GW0;d I
 .Z/ WD

Z

ŒM0;1.Z;d/�vir
ev?1 
 for 
 2 H4.Z;Z/:

The same considerations apply to the case ofZ the Calabi–Yau total space of a rank .4�r/ concave vector

bundle on an r–dimensional smooth projective variety. It was proposed by Greene, Morrison and Plesser

in [50, Appendix B] and further elaborated upon by Klemm and Pandharipande in [68, Section 1.1] that a

higher-dimensional version of the Aspinwall–Morrison should conjecturally produce integral invariants

KP0;d .Z/, virtually enumerating rational degree-d curves incident to the Poincaré dual cycle of 
 ,

(7-2) GW0;d I
 .Z/D
X

kjd

KP0;d=kI
 .Z/
k2

:

Conjecture 7.1 (Klemm–Pandharipande) KP0;d I
 .Z/ 2 Z.

A symplectic proof of Conjecture 7.1 for projective Z, although likely adaptable to the noncompact

setting, was given by Ionel and Parker in [62].

Our main focus will be on Z a noncompact CY4 local surface, ie r D 2. In this case there is a single

generator 
 D Œpt� for the fourth cohomology of Z, given by the Poincaré dual of the point class on the

zero section, and we will henceforth use the simplified notation KP0;d .Z/ WD KP0;d IŒpt�.Z/.

7.2 Quiver Donaldson–Thomas theory

Let Q be a quiver with an ordered set Q0 of n vertices v1; : : : vn 2 Q0 and a set of oriented edges

Q1 D f˛ W vi ! vj g. We let NQ0 be the free abelian semigroup generated by Q0, and for d D
P
divi and

e D
P
eivi 2 NQ0, we write EQ.d; e/ for the Euler form

(7-3) EQ.d; e/ WD

nX

iD1
diei �

X

˛ W vi !vj

diej :

We assume in what follows that Q is symmetric; that is, for every i and j , the number of oriented edges

from vi to vj is equal to the number of oriented edges from vj to vi . The Euler form is then a symmetric

13By the same formula, there are nonvanishing elliptic unpointed Gromov–Witten invariants for Z, which will not concern us in
this paper. There are no Gromov–Witten invariants for a CY4 in genus g > 1.
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bilinear form. To C a symmetric bilinear pairing on Zn, we associate the generalised q–hypergeometric

series

(7-4) ˆC .qI x1; : : : ; xn/ WD

1X

d2Nn

.�q1=2/C.d;d/xdQn
iD1.qI q/di

;

where xd D
Qn
iD1 x

di

i . The motivic Donaldson–Thomas partition function associated to the cohomological

Hall algebra of Q (without potential) is the generating function [34]

(7-5) PQ.qI x1; : : : ; xn/ WDˆEQ
.qI x1; : : : ; xn/;

and the motivic DT invariants DTdIi .Q/ of Q are the formal Taylor coefficients in the expansion of its

plethystic logarithm [34; 70; 107],

(7-6) PQ.qI x1; : : : ; xn/D Exp

�
1

Œ1�q

X

d¤0

X

i2Z

DTdIi .Q/xd.�q1=2/�i
�

D exp

� 1X

nD1

1

nŒn�q

X

d¤0

X

i2Z

DTQ
dIix

nd.�q1=2/�ni
�

D
Y

d¤0

Y

i2Z

Y

k�0

�
1� .�1/ixdq�k�.iC1/=2��DTdIi .Q/:

It will be of particular interest for us to consider a suitable semiclassical limit of (7-6)

(7-7) y
.i/
Q .x1; : : : ; xn/ WD lim

q!1

PQ.qI x1; : : : ; q
1=2xi ; : : : ; xn/

PQ.qI x1; : : : ; q�1=2xi ; : : : xn/

D lim
q!1

Exp

�X

d¤0

1

Œ1�q

X

i2Z

Œdi �qDTQ
dIix

d.�q1=2/�i
�

D
Y

d¤0

Y

i2Z

.1� xd/�jdjDTnum
d .Q/;

where

(7-8) DTnum
d .Q/ WD

X

i2Z

.�1/iDTd;i .Q/

are the numerical DT invariants. From (7-7), the numerical invariants can be extracted from the logarithmic

primitive of y.i/Q .x/ with respect to xi ,

(7-9)
Z

dxi
xi

logy.i/Q .x/DW
X

d¤0
Ad.Q/x

d;

as

(7-10) Ad.Q/D
X

kjd

DTnum
d=k
.Q/

k2
:
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The generating series

yQ.x1; : : : ; xn/ WD

nY

iD1
y
.i/
Q .x1; : : : ; xn/

has an interpretation as a generating function of Euler characteristics of certain noncommutative Hilbert

schemes Hilbd.Q/ attached to the moduli space of semistable representations of the quiver Q [37; 107],

(7-11) yQ.x1; : : : ; xn/D
X

d2ZQ0

�.Hilbd.Q//x
d 2 ZŒŒx��:

In particular, this implies that
�Pn

iD1 di
�
DTnum

d .Q/ 2 Z. More is true [34; 107] by the following theorem.

Theorem 7.2 (Efimov [34]) The numerical Donaldson–Thomas invariants of a symmetric quiver Q

without potential are positive integers , DTnum
d .Q/ 2 N.

7.3 KP integrality from DT theory

The genus-zero log-local and log-open correspondences of Theorem 6.7 imply that KP invariants of toric

local surfaces are, up to a sign and possibly an integral shift, numerical DT invariants of a symmetric

quiver. Combined with Theorem 7.2 this gives an algebrogeometric proof of Conjecture 7.1 for

Z D Tot
�
O.�D1/˚O.�D2/! Y

�
:

Theorem 7.3 Let Y.D/ be a 2–component quasi-tame Looijenga pair. Then there exists a symmetric

quiver Q.Y.D// with �.Y /� 1 vertices and a lattice isomorphism � W Z.Q.Y.D///0
��! H2.Y;Z/ such

that

(7-12) DTnum
d .Q.Y.D///D

ˇ̌
ˇKP�.d/.EY.D//C

X

i

˛iıd;vi

ˇ̌
ˇ;

with ˛i 2 f�1; 0; 1g. In particular , KPd .EY.D// 2 Z.

Proof The statement is a direct consequence of Theorem 6.7 combined with the strips–quivers correspon-

dence of [103], which we briefly review here in our context. Since Y.D/ is a 2–component quasi-tame pair,

it satisfies Property O by the discussion of Section 6.3. From Lemma D.1 and the proof of Theorem 6.7

(see in particular (6-19)), we have

(7-13)
W.j0/.Y

op.D//.Q; „/

W∅.Y op.D//.Q; „/
D
.�1/fj0q

.fC1=2/
�
j0

2

�

Œj0�qŠ

Qr
iD1. zQ.1/i I q/j0Qs
kD1. zQ.2/

k
I q/j0

;

where f is the integral shift of f from canonical framing, .r; s/ are nonnegative integers with rC sC1D

�.Y /�1, and zQi D
QrCs
mD1Q

am;i
m with am;i 2 f�1; 0; 1g for i D 1; : : : ; rC s. Elementary manipulations
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and use of the q–binomial theorem (see [103, Section 4.1]) show that

(7-14)  Y.D/.Q; „; z/ WD
X

j0�0

W.j0/.Y
op.D//.Q; „/

W∅.Y op.D//.Q; „/
zj0

D

Qr
iD1. zQi I q/1Qs

kD1. zQrCkI q/1

�ˆC.Y.D//
�
q.r�s�1/=2z; zQ.1/1 ; : : : ; zQ.1/r ; q1=2 zQ.2/1 ; : : : ; q1=2 zQ.2/s

�
;

where

(7-15) C.Y.D//D

0
BBBBBBBBB@

f C 1

r‚ …„ ƒ
1 � � � 1

s‚ …„ ƒ
1 � � � 1

1
:::

1

0 � � � 0
:::

:::

0 � � � 0

0 � � � 0
:::

:::

0 � � � 0

9
=
;r

1
:::

1

0 � � � 0
:::

:::

0 � � � 0

1 � � � 0
:::

:::

0 � � � 1

9
=
;s

1
CCCCCCCCCA

and moreover, the genus-zero limit of the logarithm of (7-14) is the generating function of disk invariants

of Y op.D/ [5],

(7-16) lim
„!0

„ log Y.D/.Q; „; z/D lim
„!0

„O.Y op.D//.Q; „; x/
ˇ̌
x E�Dzj0ı E�;.j0/

D
X

ˇ

O0Ij1;:::;jrCsI.j0/.Y
op.D//zj0

rCsY

iD1
Q
ji

i :

The matrix C has nonnegative off-diagonal entries, and ˆC .qI x1; : : : ; xrCsC1/ cannot therefore be

immediately interpreted as a motivic quiver DT partition function. However, writing Q.Y.D// for the

symmetric quiver with adjacency matrix C.Y.D//, we have [103, Appendix A],

(7-17) ˆC.Y.D//.qI x1; : : : ; xrCsC1/D
Y

d¤0

Y

j2Z

Y

k�0

�
1� .�1/j xdq�k�.jC1/=2��E

C.Y.D//

dIj

DˆEQ.Y.D//
.q�1I q�1=2x1; : : : ; q�1=2xrCsC1/:

The exponents EC.Y.D//
dIj are then equal to the motivic DT invariants of Q.Y.D// up to sign. Furthermore,

the numerical DT invariants also agree with the absolute value of EC.Y.D//;num
d WD

P
j .�1/

j E
C.Y.D//
dIj

[103, Appendix A],

(7-18) DTnum
d .Q.Y.D///D jEC.Y.D//;num

d j:

For j D .j0; j1; : : : ; jrCs/, define now the disk BPS invariants of Y op.D/ by

(7-19) O0;j1;:::;jrCsI.j0/.Y
op.D// WD

X

kjgcd.j0;:::;jrCs/

1

k2
Dj=k.Y

op.D//:
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Y.D/ Q.Y.D//

P2.1; 4/

F0.2; 2/

F0.0; 4/

dP1.1; 3/

dP1.0; 4/

dP2.1; 2/

dP2.0; 3/

dP3.1; 1/

dP3.0; 2/

Table 4: Quivers for 2–component quasi-tame Looijenga pairs.

From (7-13) and (7-16), we have that

D�.d/.Y
op.D//C

X

i

˛iıd;vi
D E

C.Y.D//;num
d ;

where

˛i D

8
<
:

0 for i D 1;

�1 for i D 2; : : : ; r C 1;

C1 for i D r C 2; : : : ; r C sC 1;

(7-20)

�.d1; : : : ; drCsC1/D

�
d1;

rCsX

mD1
am;2dmC1; : : : ;

rCsX

mD1
am;rCsdmC1

�
:(7-21)

But by (6-13), Oj .Y op.D// D N loc
�.j /
.Y.D//, and therefore Dj .Y

op.D// D KP�.j /.EY.D//, from which

the claim follows by setting � WD � ı � .

Remark 7.4 Theorem 7.3, combined with Theorem 5.1, resembles previous correspondences identifying

log GW invariants to DT invariants of quivers, and in particular [15], but it differs from them in a number

of key respects: the quiver DT invariants here are identified with the (absolute value of the) BPS invariants

of the local geometry, and therefore imply a finer integrality property of the log invariants via (5-1)

and (7-2). Furthermore, unlike in [15], the motivic refinement is not expected to reconstruct the open

Gromov–Witten count at higher genus, as the higher orders in „ of (7-16) include contributions of open

stable maps with more than one boundary component. A separate discussion of the open BPS structure of

the higher-genus theory is the subject of the next section.
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Example 7.1 Let Y.D/ D P2.1; 4/. In this case we have r D s D 0, f D 1, and Q.P2.1; 4// is the

2–loop quiver. Moreover, the identification of dimension vectors with curve degrees is simply the identity,

� D id, and the integral shift in (7-12) and (7-20) vanishes, ˛1 D 0. Then, by Theorem 7.3, the absolute

value of the KP invariants of EP2.1;4/ gives the unrefined DT invariants of Q.P2.1; 4//. We can in fact

check directly that KPd .EP2.1;4//D .�1/dDTnum
d
.Q.P2.1; 4///: according to [107, Theorem 3.2],

(7-22) DTnum
d .Q.P2.1; 4///D

.�1/d

d2

X

kjd
�
�
d

k

�
.�1/k

�2k�1
k�1

�
;

and the result follows from (3-16) and the equality

(7-23) 1

2

�2k
k

�
D
1

2

.2k/Š

.kŠ/2
D
1

2

2k

k

.2k� 1/Š

kŠ.k� 1/Š
D
�2k�1
k�1

�
:

Remark 7.5 (non-quasi-tame pairs) The condition in Theorem 7.3 that Y.D/ is a 2–component quasi-

tame pair is likely to be necessary. For example, for Y.D/ a non-quasi-tame pair, we do not expect that

the result of the finite summation (3-21) can be further simplified down to a form akin to (3-8) as a ratio

of products of factorials, unlike the case of the hypergeometric summations in the proof of Theorem 4.5.

A little experimentation shows that, writing N loc
0;d
.dP5.0; 0//Dm.d/=n.d/ with gcd.m.d/; n.d//D 1,

the numerator m.d/ is divisible by very large primes � 107 for low degrees di � 101 with di ¤ d0 for

i > 0. This creates a tension with m.d/ being a product of factorials with arguments linear in di with

coefficients � 101, as those would be divisible by at most the largest prime in the range � 101� 102. As

generating functions of numerical DT invariants are always generalised hypergeometric functions [102],

and their coefficients are therefore always products of ratios of factorials in the degrees, the KP/DT

correspondence of Theorem 7.3 is unlikely to extend to the non-quasi-tame setting.

Remark 7.6 (l > 2) For l–components pairs with l > 2, a correspondence between quivers and .l�1/–

holed open GW partition functions has received some preliminary investigation in the context of the

links-quivers correspondence [72; 36], where open stable maps are considered with the same colouring by

symmetric Young diagrams for all the connected components of the boundary. The general case of stable

maps with arbitrary windings which is relevant for our purposes may, however, fall outside the remit of

the open BPS/quiver DT correspondence. In particular, suppose that Q is a symmetric quiver such that

PQ.˛1x; : : : ; ˛rx; ˇ1y; : : : ; ˇ2y/D
X

m;n

xmynW.m/;.n/.X;L1[L2; f1; f2/

with ˛i , ˇi 2 CŒq� and framed toric special Lagrangians L1, L2 in a Calabi–Yau threefoldX. The simplest

instance is X D C3 and L1, L2 framed toric Lagrangians on different legs: this arises for instance by

considering dPop
1 .1; 1; 0/ and F

op
0 .2; 0; 0/. It is easy to check that the analogue of the semiclassical limit

(7-16) for the annulus generating function would be

(7-24) lim
q!1

DqxD
q
y logPQ.˛1x; : : : ; ˛rx; ˇ1y; : : : ; ˇsy/D

X

j1;j2;ˇ

xj1yj2O0Ij1;j2
.X;L1[L2; f1; f2/;

Geometry & Topology, Volume 28 (2024)



Stable maps to Looijenga pairs 469

where Dqx denotes the q–derivative with respect to x. When X D C3, a natural guess in line with the

disk case would be to take Q a quiver with two vertices, with dimension vectors in bijection with winding

numbers along the homology circles in L1 and L2. However it is straightforward to verify from (7-6) that

for rCsD 2, the left-hand side of (7-24) does not have a limit as q! 1 unless Q is disconnected, in which

case the limit is identically zero, and hence disagrees with the right-hand side. Although this may not

necessarily extend to quivers with higher number of vertices and finely tuned identifications of dimension

vectors with winding degrees, it does suggest that a suitable generalisation of the correspondence might

be required to encompass the counts of annuli as well.

8 Higher-genus BPS invariants

For Y.D/ a (not necessarily tame) l–component Looijenga pair satisfying Property O, we define

(8-1) �d .Y.D//.q/ WD Œ1�2q

� l�1Y

iD1

d �Di
Œd �Di �q

�X

kjd

�.k/

k
O��1.d=k/.Y

op.D//.�ik log q/;

and for Y.D/ an l–component pair, not necessarily satisfying Property O, we write

(8-2) �d .Y.D//.q/ WD Œ1�
2
q

� lY

iD1

1

Œd �Di �q

�X

kjd
.�1/d=k�DCl Œk�l�2q kl�2�.k/Nlog

d=k
.Y.D//.�ik log q/:

The compatibility of (8-1) and (8-2) when Y.D/ satisfies both tameness and Property O follows from

Theorem 6.7. From Table 1 and the discussion following Definition 6.3, any quasi-tame l–component

Looijenga pair either satisfies Property O, or it is tame, or both: in this setting we will take �d .Y.D//.q/

to be either of the applicable definitions (8-1) or (8-2). We further write simply �d .Y.D// for the

genus-zero limit �d .Y.D//.1/,

(8-3) �d .Y.D// WD
1

Ql
iD1.d �Di /

X

kjd
.�1/

Pl
iD1 d=k�Di C1 �.k/

k4�2lN
log
0;d=k

.Y.D//

D
X

kjd

�.k/

k4�l O0;��1.d=k/.Y
op.D//

D
X

kjd

�.k/

k4�l N
loc
d=k.Y.D//:

A priori we can only expect �d .Y.D// 2 Q and �d .Y.D//.q/ 2 Q.q1=2/. By (8-2) and (8-3), how-

ever, �d .Y.D// and �d .Y.D//.q/ are amenable to a physical interpretation as Labastida–Mariño–

Ooguri–Vafa (LMOV) partition functions [74; 73; 100; 88]. These heuristically count BPS domain

walls in an M–theory compactification on Y op.D/ (see in particular [88, equation 2.10]): writing

�d .Y.D//.q/ D
P
j nd;j .Y.D//q

j , the LMOV invariants nd;j .Y.D// would compute the net de-

generacy of M2–branes with spin j and magnetic and bulk charge specified by d , ending on an M5–brane

wrapped around the framed toric Lagrangian L in Y op.D/D .X;L; f/. From the vantage point of string
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theory, (8-2) (resp. (8-3)) are then expected to be integral Laurent polynomials (resp. integers: for l D 2,

since �d .Y.D// D KPd .EY.D// D D.Y op.D// by (7-2), (7-19), (8-3) and (6-13), this is implied by

Theorem 7.3). The next theorem shows that this is indeed the case.

Theorem 8.1 (the higher-genus open BPS property) Let Y.D/ be a quasi-tame Looijenga pair. Then

�d .Y.D//.q/ 2 q� 1
2
gY.D/.d/ZŒq� for an integral quadratic polynomial gY.D/.d/.

Clearly, from (4-3) and (8-1)–(8-2), we have �d .q/D�d .q
�1/, so Theorem 8.1 implies in particular

that �d .q/ is a Laurent polynomial truncating at O.q˙gY.D/.d/=2/.

To prove Theorem 8.1 we shall need the following two lemmas. Let !d be a primitive d th root of unity.

Lemma 8.2 (the q–Lucas theorem [99]) Let n�m be nonnegative integers. Then

(8-4)

�
n

m

�

!d

D !
1
2
m.m�n/

d

�
bn=dc

bm=dc

��
n� dbn=dc

m� dbm=dc

�

!d

:

In particular , if d jm and d jn, �
n

m

�

!d

D !
1
2
m.m�n/

d

�
n=d

m=d

�
:

Proof See eg [108, Theorem 2.2] for a proof.

Lemma 8.3 Let d jmjn 2 ZC. Then

@q

�
n

m

�

q

ˇ̌
ˇ̌
qD!d

D 0:

Proof For every i < n with d −i we have
�
n
i

�
!d

D 0, since then

(8-5)

�
n� dbn=dc

i � dbi=dc

�

!d

D

�
0

i mod d

�

!d

D 0:

The Cauchy binomial theorem,

(8-6)
nX

mD0
tmq

1
2
m.nC1/

�
n

m

�

q

D

nY

iD1
.1C tqi /;

implies that

(8-7) q
1
2
m.nC1/

�
n

m

�

q

D em.q; : : : ; q
n/;

where ej .x1; : : : ; xn/ is the j th elementary symmetric polynomials in n variables. We differentiate (8-7)

and evaluate at q D !d , where now d jmjn. Write nD abd , mD bd for a; b 2 ZC. From (8-6) we find

(8-8) @q

nY

iD1
.1Ctqi /D

nY

iD1
.1Ctqi /

� nX

jD1

jtqj�1

1C tqj

�
D

nX

iD0
t iei .q; : : : ; q

n/ �t

nX

jD1

1X

kD0
j.�t /kqkjCj�1:
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Let us now evaluate at q D !d and take the O.tm/ coefficient on both sides. We have

(8-9) @qem.q; : : : ; q
n/jqD!d

D Œtm�

nX

iD0
t iei .!d ; : : : ; !

n
d / � t

nX

jD1

1X

kD0
j.�t /k!kjCj�1

d

D Œtbd �

abX

iD0
tdi!

id.nC1/=2
d

!
id.id�n/=2
d

�ab
i

�
� t

nX

jD1

1X

kD0
j.�t /k!kjCj�1

d

D

b�1X

iD0
!

1
2
id.dC1/

d

�ab
i

� abdX

jD1
j.�1/bd�1�id!bdj�1�idj

d

D .�1/mC1n.nC 1/

2!d

b�1X

iD0
.�1/i

�ab
i

�
D
.�1/bCmn.nC 1/

2a!d

�ab
b

�
;

where we have used (8-5) and Lemma 8.2. On the other hand,

(8-10)
@

@q
q

1
2
m.nC1/

�
n

m

�

q

ˇ̌
ˇ̌
qD!d

D
m.nC 1/

2!d
!
m.mC1/=2
d

�ab
b

�
C!

m.nC1/=2
d

@q

�
n

m

�

q

ˇ̌
ˇ̌
qD!d

D
m.nC 1/

2!d
.�1/bCm

�ab
b

�
C!

m.nC1/=2
d

@q

�
n

m

�

q

ˇ̌
ˇ̌
qD!d

;

where in tracking down the last sign factor we have been mindful that .�1/bm D .�1/m since b jm. The

claim then follows by equating (8-9) to (8-10).

Proof of Theorem 8.1 We break up the proof of the theorem by considering each value of l separately.

� (l D 2) It suffices to prove the theorem in the case Y.D/ D dP3.1; 1/, since �d .dP3.1; 1// D

�d .dP3.0; 2// from (8-1) and the discussion of Section 6.3.1, and all other cases are then recovered

from the blowup formulas of Propositions 4.3 and 6.9. Let zd WD gcd.d0; d1; d2; d3/. We first plug (4-22)

into (8-1),

(8-11) �d .dP3.1; 1//.q/D Œ1�2q

X

kj zd
�.k/

.�1/.d1Cd2Cd3/=k

Œd0=k�qk Œ.d1C d2C d3� d0/=k�qk

‚d=k.q
k/;

D
Œ1�2q

Œd0�qŒd1C d2C d3� d0�q

X

kj zd
�.k/.�1/.d1Cd2Cd3/=k‚d=k.q

k/;

where

(8-12) ‚d .q/ WD

�
d0
d1

�

q

�
d1

d0� d2

�

q

�
d1C d2C d3� d0

d1

�

q

�
d1

d0� d3

�

q

:

It is immediate to verify that �d .dP3.1; 1//.q/ 2 q� 1
2
gdP3.1;1/.d/ZŒŒq��, with

(8-13) gdP3.1;1/.d/D 2 .d1C d2C d3� d0/ d0� d21 � d22 � d23 � d1� d2� d3C 2
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since �
n

m

�

q

2 q�m.n�m/=2ZŒq�;
1

Œn�q
2 qn=2ZŒŒq�� and Œm�q 2 q�m=2ZŒŒq��

as formal Laurent series at qD 0 with truncating principal part for any positive integers n;m. Furthermore,

away from q D 0;1, �d .dP3.1; 1//.q/ 2 Q.q1=2/ is a rational function of q1=2 with at worst double

poles possibly at the zeroes of Œd0�qŒd1 C d2 C d3 � d0�q , namely q D !
j

d0
for j D 1; : : : ; d0 � 1, and

q D !
j

d1Cd2Cd3�d0
for j D 1; : : : ; d1Cd2Cd3�d0� 1. We shall now prove that �d .dP3.1; 1//.q/ is

in fact regular on the unit circle.

First off, upon expanding all q–analogues in (8-11) in cyclotomic polynomials,

(8-14) Œn�q D
Y

d jn
ˆd .q/;

it is straightforward to check that [59, Lemma 5.2]

(8-15)
Œgcd.n;m/�q
ŒnCm�q

�
nCm

m

�

q

2 q
1
2
.nCm�nm�gcd.n;m//ZŒq�;

which implies that �d .dP3.1; 1//.q/ is regular on the unit circle outside of f!jzd g
zd
jD0, where we recall

that zd WD gcd.d0; d1; d2; d3/. Let now

z�d .dP3.1; 1//.q/ WD
Œd0�qŒd1C d2C d3� d0�q

Œ1�2q
�d

and zdi D di= zd . From Lemma 8.2, we have

(8-16) ‚d=k.!
kj

zd /

D .�1/.d1Cd2Cd3/j=k

� zd1�k;j
zd2�k;j

�� zd1�k;j
. zd0� zd2/�k;j

��
. zd1C zd2C zd3� zd0/�k;j

zd1�k;j

�� zd1�k;j
. zd0� zd3/�k;j

�
;

where �k;j D gcd. zd=k; j /. Then

(8-17) z� zd .dP3.1; 1//.!
j

zd /

D
X

kj zd
�
� zd
k

�
.�1/.

zd1C zd2C zd3/k.jC1/
� zd1� zd=k;j

zd2� zd=k;j

�� zd1� zd=k;j
. zd0� zd2/� zd=k;j

�

�

�
. zd1C zd2C zd3� zd0/� zd=k;j

zd1� zd=k;j

�� zd1� zd=k;j
. zd0� zd3/� zd=k;j

�
:

Consider first zd ¤ 1 and write �p.n/ and rad.n/ for the p–adic valuation and the radical of n 2 ZC,

respectively. Let k j zd and suppose without loss of generality that zd=k has no repeated prime factors,
zd=k D rad. zd=k/. Then, for ! zd ¤ 1, the following trichotomy holds:
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(I) zd=k−j and there exists p0 prime with p0 j zd=k and p0 −j .

Let k0 WD kp0. Then k0 j zd , gcd.k0; j / D gcd.k; j /, �. zd=k0/ D ��. zd=k/. Moreover .�1/k
0.jC1/ D

.�1/k.jC1/, which is obvious when p0 is odd, and it also holds when p0 D 2 since in that case j must be

odd. Then the contributions from k0 and k to the sum (8-17) cancel each other.

(II) zd=k jj and there exists p0 < zd such that p0 jd and p0 −j .

In this case we have p0 − zd=k, p0 jk. Let k0 WDk=p0. Then as before�. zd=k/D��. zd=k0/, .�1/k
0.jC1/D

.�1/k
0.jC1/ and gcd.k0; j /D gcd.k; j /, and the summand corresponding to k0 has opposite sign to the

one corresponding to k in (8-17).

(III) zd=k jj and zd has no prime factor p0 −j .

Suppose for simplicity that rad.j /=rad. zd/ is odd, the even case being essentially identical. Then (8-17) is

unchanged upon replacing j DW
Q
pjj p

�p.j / with
Q
pjj;pj zd p

�p.j /, so we may assume rad.j /D rad. zd/.

Let p0 be such that �p0. zd/ > �p0.j / and let k0 WD k=p0. Then once again the contributions of k and k0 to

(8-17) cancel each other.

All in all, the above shows that z�d .dP3.1; 1// vanishes at !jzd for all zd > 1 and j D 1; : : : ; zd � 1. But

by Lemma 8.3 these are all double zeroes, and therefore �d .dP3.1; 1// is regular therein. Moreover,

�d .dP3.1; 1// is regular by construction at qD1, where its value is given by replacing all q–expressions in

(8-11) by their classical counterparts. Hence �d .dP3.1; 1// 2 QŒq˙1=2� is a rational Laurent polynomial;

but we also know that �.dP3.1; 1//d 2 q� 1
2
gdP3.1;1/.d/ZŒŒq�� is an integral Laurent series, which thus

truncates at O.q
1
2
gdP3.1;1/.d//. The statement of the theorem follows.

� (l D 3) As before, we prove the statement for Y.D/D dP3.0; 0; 0/ and recover all 3–component pairs

by restriction in the degrees. Let

zd WD gcd.d0; d1; d2; d3/ and yd WD d20 � d0.d1C d2C d3/C d1d2C d1d3C d2d3:

From (4-39),

(8-18) �d .dP3.0; 0; 0//.q/D Œ1�2q

X

kj zd
�.k/k

.�1/.d0Cd1Cd2/=kC1Œ yd=k2�qk

Œd1=k�qŒd2=k�qŒd3=k�qk

„d=k.q
k/;

where

(8-19) „d .q/ WD

�
d1

d0� d2

�

q

�
d2

d0� d3

�

q

�
d3

d0� d1

�

q

:

Outside q D 0;1, the polynomial �d .dP3.0; 0; 0//.q/ has at worst double poles at q D !
j

d
only; also it

is verified directly that q
1
2
gdP3.0;0;0/.d/�d has a Taylor expansion at q D 0 with integer coefficients, where

(8-20) gdP3.0;0;0/.d/D gdP3.1;1/.d/:
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For q D 1, the ratios of q–numbers in (8-18) limits to the corresponding classical counterparts, so

�d .dP3.0; 0; 0//.1/ is well-defined. Suppose then q D !
j

zd ¤ 1. We have that

(8-21)
Œ yd=k2�qk

Œd1=k�qk Œd2=k�qk Œd3=k�qk

D
bd

kd1d2d3

� !
2j

zd�
q�!jzd

�2 C
1

q�!jzd
CO.1/

�
:

This is nearly k–independent, save for the factor of k that cancels the one present in the summand of

(8-18). By the same arguments of the previous point, the resulting divisor sum
X

kj zd
�.k/.�1/.d0Cd1Cd2/=kC1„d=k.qk/

vanishes quadratically at !jzd , and therefore �d .dP3.0; 0; 0//.q/ is regular on the unit circle, concluding

the proof.

� (l D 4) This consists of the single case Y.D/D F0.0; 0; 0; 0/. Let zd WD gcd.d1; d2/. We have, from

(6-35), that

(8-22) �d .F0.0; 0; 0; 0//.q/D
Œ1�2q

Œd1�2qŒd2�
2
q

X

kj zd
�.k/k2Œd1d2=k

2�2
qk :

In this case we have

(8-23) gF0.0;0;0;0/.d/D 2.d1d2� d1� d2C 1/:

As before, �d .F0.0; 0; 0; 0//.q/ is a rational function with an integral Taylor–Laurent expansion at qD 0,

order gF0.0;0;0;0/.d/=2 singularities at q D 0;1 and possibly double poles at q D !
j

zd . Expanding (8-22)

at !jzd yields

(8-24) �d .F0.0; 0; 0; 0//.q/D
X

kjd
�.k/

�!jzd .!
j

zd � 1/2

.q�!jzd /
2

C
2!

j

zd .!
j

zd � 1/

q�!jzd

�
CO.1/;

which vanishes up to O.1/ since
P
kjd �.k/D 0, hence�d .F0.0; 0; 0; 0//.q/2 q� 1

2
gF0.0;0;0;0/.d/ZŒq�.

9 Orbifolds

In [18], we proposed in the context of toric pairs that the log-local principle should extend to Y a possibly

singular Q–factorial projective variety. We expect that this should also hold for nef Looijenga pairs, at

least as long as the orbifold singularities are at the intersection of the divisors: the log GW theory is then

well-defined since Y.D/ is log smooth, and the local GW theory makes sense by viewing Y and EY.D/
as smooth Deligne–Mumford stacks. In particular, introducing singularities gives new infinite lists of

examples of nef/quasi-tame/tame Looijenga pairs.
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We propose that also Theorems 6.7, 7.3 and 8.1 may extend to the orbifold setting. We present the

simplest instance here, and defer a more in-depth discussion, including criteria for the validity of the

orbifold versions of Theorems 6.7, 7.3 and 8.1 to [17].

Example 9.1 Let Y D P.1;1;n/ be the weighted projective plane with weights .1; 1; n/, andDDD1CD2

with D1 a toric line passing through the orbifold point and D2 a smooth member of the linear system

given by the sum of the two other toric divisors. Since D1 �H=n, D2 � .nC 1/=nH and H 2 D n, we

have D21 D 1=n and D22 D .nC1/2=n. Therefore P.1;1;n/.1=n; .nC1/2=n/ is a tame orbifold Looijenga

pair.

Local Gromov–Witten invariants of Y.D/ can be computed by the orbifold quantum Riemann–Roch

theorem of [113]: when restricted to point insertions, it gives (3-8) specialised to the case at hand, and

we get

(9-1) N loc
0;d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

.�1/nd

.nC 1/d2

�
.nC 1/d

d

�
:

A toric model and a quantised scattering diagram for Y.D/ can be constructed as follows. The fan

of P.1;1;n/ has 1–skeleton given by rays generated by .�1; 0/, .0;�1/ and .1; n/. We may choose

D1 D D.1;n/. Denote by zY the toric blowup obtained by adding a ray in the direction .�1; 1/, and

denote by E the corresponding divisor. Choose zD DD1CD2CE, where we identify D1 and D2 with

their proper transforms. Then zY . zD/! Y.D/ is a corner blowup. The proper transform of D.�1;0/ is a

.�1/–curve, which we contract zY . zD/! Y .D/. Then Y nD has Euler characteristic 0, hence is .C�/2,

and therefore Y .D/ is toric, ie zY . zD/!Y .D/ is a toric model and we are in the setting of Proposition 2.4.

Identifying proper transforms, we have that D DD1CD2CE, with D1 corresponding to the ray .1; n/,

D2 to the ray .0;�1/ and E to the ray .�1; 1/. Applying the SL.2;Z/ transformation

(9-2)

�
1 0

1 1

�
;

we obtain the toric model depicted at left of Figure 17, for which the broken line calculation is straight-

forward. The result is

N
log
0;d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

�
.nC 1/d

d

�
;(9-3)

N
log
d

�
P.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

�
.nC 1/d

d

�

q

:(9-4)

To construct

P
op
.1;1;n/

�
1

n
;
.nC 1/2

n

�
;

we delete the line D1. Then O.�D2/ is trivial on P.1;1;n/ nD1 D C2, and Tot.KP.1;1;n/nD1
/ D C3,

with an outer toric Lagrangian at framing shifted by n. A topological vertex calculation of higher-genus
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x
y

D2

D1

E
�

.1; nC1/

1C tx�1

y�.nC1/d

xdy.nC1/d

� .nC1/d

d

�
tdx�dy�.nC1/d

�p

Figure 17: Left: Scatt P.1;1;n/. Right: The quiver for Y.D/D P .1; 1; 3/
�
1
3
; 16
3

�
.

1–holed open Gromov–Witten invariants as in Section 6.3.1 shows that

(9-5) Od

�
P

op
.1;1;n/

�
1

n
;
.nC 1/2

n

��
D

.�1/nd

dŒ.nC 1/d �q

�
.nC 1/d

d

�

q

:

Equations (9-1), (9-3), (9-4) and (9-5) together imply that Theorems 5.1 and 6.7 extend to this case as well.

The arguments in the proof of Theorem 7.3 also apply verbatim, with Q.P.1;1;n/.1=n; .nC 1/2=n// the

.nC1/–loop quiver. An interesting consequence is that the integrality statement of Conjecture 7.1 appears

to persist in the orbifold world too. The proof of the higher-genus open BPS property in Theorem 8.1

also carries through to this setting with no substantial modification.

Appendix A Proof of Theorem 3.3

Let Y be the toric surface given by the fan of Figure 18. It is described by the exact sequence

(A-1) 0! Z6

0
BBBBBBBBBBBBBB@

1 1 0 0 0 �2
0 0 1 0 0 1

1 0 0 1 0 0

0 0 0 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1
CCCCCCCCCCCCCCA

�������������! Z8

 
1 1 0 �1 �1 �1 0 1

0 1 1 1 0 �1 �1 �1

!

�����������������������! Z2 ! 0

showing that Y is a GIT quotient

C8==.C?/6 D .C8 n fxixj D 0g.i;j /¤.1;8/; j¤iC1/=.C?/6;
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T6 T8

T1

T2

T7

T4

T5

T3

Figure 18: The fan of Bl4 ptsP
1 � P1.

with .�1; : : : ; �6/ 2 .C?/6 acting as

(A-2)

0
BBBBBBBBBBB@

x1
x2
x3
x4
x5
x6
x7
x8

1
CCCCCCCCCCCA

�!

0
BBBBBBBBBBB@

�1�2�
�2
6 x1

�3�6x2
�1�4x3
�5x4
�2�4x5
�1�3x6
�4x7
�5�6x8

1
CCCCCCCCCCCA

:

There are dominant birational morphisms Y
�1�! P2 and Y

�2�! P1 � P1, obtained by deleting the loci

fxi D 0gi2f2;4;6;7;8g and fx2i D 0g, respectively. Therefore Y ' Bl4ptsP
1 � P1, or equivalently, Y is a

five-point toric blowup of P2, and deforms to dP5 upon taking the points in general position. From (A-1)

and Figure 18, in terms of the hyperplane H and exceptional classes Ei 2 Pic.dP5/, the toric divisors

Ti WD fxi D 0g read

(A-3)
T1 DH �E1�E2�E4; T3 DH �E1�E3�E5; T5 DE2�E4; T7 DE3�E5;

T2 DE1; T4 DE4; T6 DH �E2�E3; T8 DE5:

Under this identification the �2–curve classes T2kC1 do not belong to NE.dP5/ (see the discussion of

Section 2.3); however they do have, by construction, effective representatives in A1.Y /, since they are

prime toric divisors.

To write the I–function, we fix the following set of 1
2
Z–generators of A1.Y /:

(A-4) Ci D

�
T2i for i D 1; : : : ; 4;

DiC4 for i D 1; 2;

where D1 DH �E1 D T1CT3C 2T6 and D2 D 2H �E2�E3�E4�E5 D T2CT4CT5CT7�T8.

We will write 'i with .'i ; Cj /D ıij for their dual basis in cohomology, and denote curve classes in this
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basis as d D
P
i
1
2
�iıiCi with ıi 2 Z, and �i D �1 for 1 � i � 4 and �i D 1 otherwise. To write the

twisted I–function IEY.D/ , we need to expand �a D c1.O.Ta// and �i D c1.O.Di // in (3-11), yielding

(A-5) IEY.D/.y; z/D

X

ıi 2Z

"
y

� 1
2
ı1

1 y
� 1

2
ı2

2 y
� 1

2
ı3

3 y
� 1

2
ı4

4 y
1
2
ı5

5 y
1
2
ı6

6 .�1/ı5Cı6

�
1�
2'1

z

�

ı1

�
1�
2'2

z

�

ı2

�
1�
2'3

z

�

ı3

�
1�
2'4

z

�

ı4

�
zC'1C'2C'5

z

�

1
2
.�ı1�ı2Cı5/

.2'6��1/.2'5��2/

�
zC2'6��1

z

�

ı6�1

�
zC2'5��2

z

�

ı5�1

z

�
zC'3C'4C'5

z

�

1
2
.�ı3�ı4Cı5/

�
zC'1C'3C'6

z

�

1
2
.�ı1�ı3Cı6/

�
zC'2C'4C'6

z

�

1
2
.�ı2�ı4Cı6/

#
;

where

(A-6) .a/n D a.aC 1/ � � � .aCn� 1/

is the Pochhammer symbol. By (3-12), the mirror map is extracted as the formal O.z0/ Taylor coefficient

around z D 1. We find that the sole contributions to the mirror map arise from multiple covers of our

chosen generators Ci , that is when ıi D 2�in for some n 2 NC,

(A-7) zt i .y/D

1X

ıi D1

.2ıi � 1/Š

.ıi Š/2
yıi ;

which is closed-form inverted as

(A-8) yi .t/D
exp t i

.1� exp t i /2
:

Then14

J
EY.D/

small D IEY.D/.y.t/; z/;

and from (3-10) and (A-5) we find that whenever d ¤ 2�in for n 2 NC,

(A-9) N
loc; 
ı1;:::;ı6

.Y.D//D
1

�1�2
Œz�1e

P
ti'i=z1HT .EY.D//�I

EY.D/.y.t/; z/

D Œe
P

i ıi ti �

1X

ı 0
i

S
Œ0�

ı 0
1;:::;ı

0
6

6Y

iD1
yi .t/

1
2
�iı

0
i ;

14To obtain the small J –function, we should include a string-equation induced shift by multiplying the I–function by an overall
factor of e�1zt5.y/C�2zt6.y/=z , in order to guarantee that the small J –function satisfies its defining property to be the unique
family of Lagrangian cone elements with a Laurent expansion of the form zC t CO.1=z/ at z D 1. These would result in a
correction of the foregoing discussion for degrees ıi D 0 when i D 1; : : : ; 4. It is justified to ignore this for our purposes: since
d �Di D 0 and O.�Di / is not a concave line bundle, the corresponding invariants are nonequivariantly ill-defined; and any
sensible nonequivariant definition would satisfy automatically the log-local correspondence of Section 5, as the corresponding
log invariants are trivially zero.
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where

(A-10) S
Œ0�

ı 0
1;:::;ı

0
6

WD
.�1/ı

0
5Cı 0

6.ı0
5� 1/Š.ı0

6� 1/Š

ı0
1Šı

0
2Šı

0
3Šı

0
4Š
�
1
2
.ı0
5� ı0

1� ı0
2/
�
Š
�
1
2
.ı0
5� ı0

3� ı0
4/
�
Š
�
1
2
.ı0
6� ı0

1� ı0
3/
�
Š
�
1
2
.ı0
6� ı0

2� ı0
4/
�
Š
:

The arguments of the factorials in the denominator constrain the range of summation to extend over ıi ¤ 0

alone; in particular the right-hand side is a Taylor series in .y�1=2
1 ; y

�1=2
2 ; y

�1=2
3 ; y

�1=2
4 ; y

1=2
5 ; y

1=2
6 /,

convergent in a ball centred at y�i

i D 0.

We first perform the summation over ı0
6 to obtain

(A-11)
1X

ı 0
6D0

S
Œ0�

ı 0
1;:::;ı

0
6

y
1
2
ı 0

6

6

D

.�1/ı
0
2Cı 0

4Cı 0
5.ı0

2C ı0
4� 1/Š.ı0

5� 1/Š

�
et6

.et6 C 1/2

�1
2
.ı 0

2Cı 0
4/

ı0
1Šı

0
2Šı

0
3Šı

0
4Š
�
1
2
.�ı0

1C ı0
2� ı0

3C ı0
4/
�
Š
�
1
2
.�ı0

1� ı0
2C ı0

5/
�
Š
�
1
2
.�ı0

3� ı0
4C ı0

5/
�
Š

� 2F1

�
1
2
.ı0
2C ı0

4/;
1
2
.ı0
2C ı0

4C 1/I 1
2
.�ı0

1C ı0
2� ı0

3C ı0
4C 2/I

4et6

.et6 C 1/2

�
;

where

(A-12) pFr.a1; : : : ; apI b1; : : : ; br I z/ WD
X

k�0

zk

kŠ

Qp
jD1.aj /kQr
jD1.bj /k

is the generalised hypergeometric function. Applying Kummer’s quadratic transformation,

(A-13) 2F1.a; bI a� bC 1I z/D .zC 1/�a 2F1
�
a

2
;
aC 1

2
I a� bC 1I

4z

.zC 1/2

�
;

we obtain

(A-14) N
loc; 
ı1;:::;ı6

.Y.D//D Œe
P5

iD1 ıi ti �

1X

ı 0
i

S
Œ1�

ı 0
1;:::;ı

0
5;ı6

5Y

iD1
yi .t/

1
2
�iı

0
i ;

where

(A-15) S
Œ1�

ı 0
1;:::;ı

0
5;ı6

WD
.�1/ı

0
2Cı 0

4Cı 0
5.ı0

5� 1/Š
�
1
2
.ı0
1C ı0

3/C ı6� 1
�
Š
�
1
2
.ı0
2C ı0

4/C ı6� 1
�
Š

ı0
1Šı

0
2Šı

0
3Šı

0
4Š
�
1
2
.ı0
1C ı0

2C ı0
3C ı0

4� 2/
�
Š
�
1
2
.�ı0

1� ı0
2C ı0

5/
�
Š

�
1�

1
2
.�ı0

3� ı0
4C ı0

5/
�
Š
�
�1
2
ı0
1� 1

2
ı0
3C ı6

�
Š
�
�1
2
ı0
2� 1

2
ı0
4C ı6

�
Š
:

Performing the same sequence of operations on the sum over ı0
5 yields

(A-16) N
loc; 
ı1;:::;ı6

.Y.D//D Œe
P4

iD1 ıi ti �

1X

ı 0
i

S
Œ2�

ı 0
1;:::;ı

0
4;ı5;ı6

4Y

iD1
yi .t/

1
2
�iı

0
i ;
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where

(A-17) S
Œ2�

ı 0
1;:::;ı

0
4;ı5;ı6

WD
.�1/ı

0
1Cı 0

4

�
1
2
.ı0
1Cı0

2/Cı5�1
�
Š
�
1
2
.ı0
3Cı0

4/Cı5�1
�
Š
�
1
2
.ı0
1Cı0

3/Cı6�1
�
Š

ı0
1Šı

0
2Šı

0
3Šı

0
4Š
��
1
2
.ı0
1Cı0

2Cı0
3Cı0

4�2/
�
Š
�2�

�1
2
ı0
1� 1

2
ı0
2Cı5

�
Š

�

�
1
2
.ı0
2Cı0

4/Cı6�1
�
Š

�
�1
2
ı0
3� 1

2
ı0
4Cı5

�
Š
�
�1
2
ı0
1� 1

2
ı0
3Cı6

�
Š
�
�1
2
ı0
2� 1

2
ı0
4Cı6

�
Š
:

The final step is to now plug in the mirror maps (A-8) for i D 1; : : : ; 4. This gives

(A-18) N
loc; 
ı1;:::;ı6

.Y.D//D

1X

j1;:::;j4D0
S
Œ3�

ı 0
1C2j1;:::;ı

0
4C2j4;j1;:::;j4;ı5;ı6

;

where

(A-19) S
Œ3�

ı 0
1;:::;ı

0
4;j1;:::;j4;ı5;ı6

WD S
Œ2�

ı 0
1;:::;ı

0
4;ı5;ı6

4Y

iD1

�
ı0
i

ji

�
:

The change of basis fC1; : : : ; C6g ! fH �E1 � � � � �E5; E1; : : : E5g in (A-3) and the corresponding

change of variables in the curve degree parameters fı1; : : : ; ı6g ! fd0; : : : ; d5g finally leads to (3-21).

Appendix B Infinite scattering

We compute the invariants of Conjecture 4.7 for the geometries dP1.0; 4/ and F0.0; 4/. This application

of our correspondences predicts new relations for q–hypergeometric sums in Conjecture B.3. We provide

calculations by picture and leave the details to the reader.

Denote by E the exceptional divisor obtained by blowing up a point on D1 in P2.1; 4/. We write a curve

class d 2 H2.dP1.0; 4/;Z/ as d D d0.H �E/C d1E. If d0 D 0 or d1 D 0, then the moduli space of

stable log maps is empty and N
log
d
.dP1.0; 4//.„/ D 0. If d1 > d0, then there are no irreducible curve

classes and N
log
d
.dP1.0; 4//.„/ D 0. The toric model of dP1.0; 4/ is obtained from the toric model of

P2.1; 4/ by adding a focus–focus singularity in the direction of D1. The opposite primitive vectors in the

F2 and D1 directions are 
1 D .1; 0/ and 
2 D .�1;�2/. Since the absolute value of their determinant is

2 and not 1, there is infinite scattering, which is described in Section 4.2. By choosing our broken lines to

be sufficiently into the x–direction, we can restrict to walls that lie on the halfspace x > 0. Then these

walls have slope .nC 1/
1Cn
2 D .1;�2n/ for n� 0. The wallcrossing functions attached to them are

1C tnC1tn1 x
�1y2n. The broken line computation is summarised in Figure 20.

Theorem B.1 Let d0 > d1 � 1 and d D d0.H �E/C d1E. Then N
log
d
.dP1.0; 4//.„/ equals

(B-1)
d1X

mD1

X�
2d0
k1

�

q

�
2d0�2.n1�n2/k1

k2

�

q

� � �

�
2d0�2

Pm�1
jD1 .nj�nm/kj
km

�

q

�
2d1
k0

�

q

;

the second summation being over k0 � 0, k1; : : : ; km > 0 and n1 > n2 > � � � > nm > 0 satisfying

k0C
Pm
jD1 kj D d1 and

Pm
jD1 njkj D d0� d1.
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D2

F1D1

F2

�

�

Figure 19: F0.0; 4/.

For the case of F0.0; 4/, let D1 be a line of bidegree .1; 0/ and let D2 be a smooth divisor of bidegree

.1; 2/. Let d be a curve class of bidegree .d1; d2/. We have d �D1 D d2 and d �D2 D 2d1Cd2. Denote

by pt1 (resp. pt2) their intersection points and by L1 (resp. L2) the lines of bidegree .0; 1/ passing

through pt1 (resp. pt2). We blow up pt1 and pt2, leading to exceptional divisors F1 and F2, and blow

down the strict transforms of L1 and L2. The result is the Hirzebruch surface F2 with a focus–focus

singularity on each of the fibrewise toric divisors, as in Figure 19.

Let d be a curve class of bidegree .d1; d2/. The opposite primitive vectors in the F2 and F1 directions

are 
1 D .1; 0/ and 
2 D .�1;�2/. The absolute value of their determinant is 2, so there is infinite

scattering as described in Section 4.2. We choose p to be in the lower left quadrant with coordinate

.a; b/ for �1 � a < 0 and b � 0. This depends on the degree and ensures that the broken lines are

vertical at p. In particular, we can restrict to walls that lie on the halfspace x < 0. Then these walls

have slope .n� 1/
1 C n
2 D .�1;�2n/ for n � 1. The wall-crossing functions attached to them are

1C tn�1tn1 xy
2n. The broken line calculation is summarised in Figure 20.

Theorem B.2 For d1 � 1, the generating function N
log
.d1;d2/

.F0.0; 4//.„/ equals

b 1
2
.
p
1C8d1�1/cX

mD1

X

d1DPm
j D1 njkj ;

km;:::;k1>0;
nm>���>n1>0

�
d2C2d1
km

�

q

� � �

�
d2C2ni

Pm
jDi kjC2

Pi�1
jD1 njkj

ki

�

q

� � �

�
d2C2n2

Pm
jD2 kjC2n1k1
k2

�

q

�
d2C2n1

Pm
jD1 kj

k1

�

q

�
d2Pm
jD1 kj

�

q

:

Conjecture 4.4 predicts that the multivariate q–hypergeometric sums of Theorems B.1 and B.2 dramati-

cally simplify to remarkably compact q–binomial expressions. This is expressed by the following new

conjectural q–binomial identities.
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Figure 20: Scattering diagrams of dP1.0; 4/, left, and F0.0; 4/, right.

Conjecture B.3 The q–hypergeometric sums of Theorems B.1 and B.2 are equal to

N
log
d
.dP1.0; 4//.„/D

Œ2d0�q

Œd0�q

�
d0
d1

�

q

�
d0C d1� 1

d0

�

q

;(B-2)

N
log
d
.F0.0; 4//.„/D

Œ2d1C d2�q

Œd2�q

�
d1C d2� 1

d1

�2

q

;(B-3)

where q D ei„.

A proof of the identities of Conjecture B.3 was communicated to us by C Krattenthaler [71]. Note

that the genus-zero log-local correspondence of Theorem 5.1 and the deformation invariance of local

Gromov–Witten invariants give an entirely geometric proof of their classical limit at q D 1.

Appendix C Proof of Theorem 5.4

Recall the notation of Section 5 and let h W � !� be a rigid decorated parametrised tropical curve with

N
loc;h
0;d

.Y.D//¤ 0. Our goal is to prove that hD xh. This will be done by a series of Lemmas constraining

further and further the possible shape of h.

Recall that we are considering a degeneration with special fibre Ph
0 , which is a .P1/l–bundle over the

special fibre Yh0 of a degeneration of the original surface Y . For every vertex V (resp. edge E) of � , the
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corresponding component (resp. node) of a stable log map with tropicalisation h maps to the irreducible

component PV (resp. divisor PE ) of the special fibre Ph
0 . PV (resp. PE ) is a .P1/l–bundle over a

component (resp. divisor) YV (resp. YE ) of Yh0 .

We are considering stable log maps to Ph
0 with l � 1 > 0 marked points mapping to the interior of P0;Y .

So irreducible components containing these marked points map to P0;Y , and the corresponding vertices

of � are mapped to vY by h. Hence, we can choose a flow on � such that unbounded edges are incoming,

such that every vertex has at most one outgoing edge, and such that the sink V0 satisfies h.V0/D vY . For

every vertex V ¤V0, we denote by EV the edge outgoing from V. Following the flow, the maps �V define

a cohomology class ˛E 2 H�.PE / for every edge E of � . The degeneration formula can be rewritten as

(C-1) N
loc;h
0;d

.Y.D//D �V0

� Y

E2Ein.V0/

˛E

�
:

When used below, “descendant” and “ancestor” always refer to the ordering on the vertices of � induced

by the flow: a vertex V is “older” than a vertex V 0 if the flow goes from V to V 0.

The proof below consists of three steps. First, in Section C.1, we constrain the form of � near the

boundary @� of the tropicalisation. Then we study the local structure of � near the vertex vY in

Section C.2. Finally, in Section C.3, we combine together the local information obtained near the

boundary and near vY to obtain global control on � .

C.1 Study near the boundary @�

Recall from (5-8) that the boundary @� of � is the union of segments .@�/j indexed by 1� j � l .

Most of the analysis below involves the cohomology classes ˛E 2H?.PE / recursively attached by the

flow to the edges E of � . Geometrically, the class ˛E captures the constraints on the position of the node

dual to the edge E imposed by the ability to glue together the curve components corresponding to vertices

coming before E in the flow. For every edge E of � , we denote by Hj;E 2 H2.PE / the first Chern

class of the tautological line bundle OP.OY .�Dj /jYE
˚OYE

/.1/. Geometrically, to have ˛E positively

proportional to Hj;E means that the node corresponding to E is constrained to be in the preimage by the

natural projection PE ! P .OY.�Dj /jYE
˚OYE

/ of a section of P .OY.�Dj /jYE
˚OYE

/.

We will use below the following facts on the classes Hj;E . We have H 2
j;E D �c1.OY.�Dj /jYE

/Hj;E . If

h.E/ 6� .@�/j , then OY.�Dj /jYE
DOYE

and soH 2
j;E D0. If h.E/� .@�/j , then OY.�Dj /jYE

DO.�1/,

and so H 2
j;E D .��

EptE /Hj;E . If V is a vertex of � with h.V / 2 .@�/j and dV �D@j;V > 0 for some

1� j � l , then, as the line bundle OY.�Dj /jYV
D OYV

.�D@j;V / has negative degree in restriction to the

curve corresponding to V, this curve is constrained to lie in the zero section of P .OY.�Dj /jYV
˚OYV

/,

and so ˛EV
is a nonzero multiple of Hj;EV

.

Lemma C.1 Let V be a vertex of � with h.V /2 .@�/j for some 1� j � l . Then we have dV �D@j;V >0

if and only if there is an edge E of � incident to V such that h.E/ 6� .@�/j .
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Figure 21: Left: toric fan of YV for V 2 .@�/j � fvj g obtained by adding rays in the lower part
of the toric fan of P1 � P1 (in thick). Right: toric fan of YV for V D vj obtained by adding rays
in the lower part of the toric fan of F

D2
j

(in thick).

Proof First assume that h.V /¤ vj . Then YV can be described as a toric blowup of P1 � P1, where all

the added rays are contained in the lower half-plane of the fan, and where the vertical ray corresponds

to D@j;V ; see Figure 21, left. The lower part of the fan gives a local picture of �h near h.V /. By definition

of the �h, every edge E of � incident to V is mapped by h to one of the rays in the lower part of the fan.

We have h.E/ 6� .@�/j if and only if E is contained in one of the rays in the strict lower part of the fan.

The result then follows from toric homological balancing.

If h.V / D vj , the argument is similar. Recall that we have Dj ' P1. The key point is that Dj is

nef and so D2j � 0. Therefore, YV can be described as a toric blowup of the Hirzebruch surface FD2
j

,

where all the added rays are contained in the lower half-part of the fan, and where the vertical ray, with

self-intersection D2j , corresponds to D@j;V ; see Figure 21, right. The lower part of the fan gives a local

picture of �h near h.V /. By definition of the �h, every edge E of � incident to V is mapped by h to

one of the rays in the lower part of the fan. We have h.E/ 6� .@�/j if and only if h.E/ is contained in on

of the rays in the strict lower part of the fan. As D2j � 0, the lower part of the fan is convex and so the

result follows from toric homological balancing.

Lemma C.2 Let V be a vertex of � with h.V / 2 .@�/j . Assume that there exists an incoming edge E

incident to V such that ˛E is a nonzero multiple of Hj;E . Then h.EV /� .@�/j and ˛EV
is a nonzero

multiple of Hj;EV
.

Proof If h.EV / 6� .@�/j , then, by Lemma C.1, we have dV �D@j;V > 0 and so ˛EV
is proportional to

H 2
j;EV

D 0. Therefore, ˛EV
D 0, in contradiction with the assumption N loc;h

d
.Y.D//¤ 0, and so this

does not happen. Hence, we can assume that h.EV /� .@�/j . If d �D@j;V > 0, then ˛EV
is a multiple of

H 2
j;EV

D .��
EV

ptEV
/Hj;EV

. If d �D@j;V D 0, then ˛EV
is a multiple of Hj;EV

.

Lemma C.3 Let V be a vertex of � with V ¤ V0 and an incident incoming edge E with ˛E a nonzero

multiple of Hj;E . Then ˛EV
is a nonzero multiple of Hj;EV

.

Proof If h.V / 2 .@�/j , then the result follows from Lemma C.2. If h.V / … .@�/j , then the result is

clear as the line bundle OY.�Dj /jYV
is trivial.
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Lemma C.4 Let V be a vertex of � such that V 2 .@�/j and such that there exists an incoming

edge E incident to V with h.E/ 6� .@�/j . Then ˛EV
is a nonzero multiple of Hj;EV

, and we have

h.EV / 6� .@�/j .

Proof By Lemma C.1, we have dV �D@j;V > 0, and so ˛EV
is a nonzero multiple of Hj;EV

. If we had

h.EV /� .@�/j , then by iterative application of Lemma C.2, all the descendants of V would be mapped

by h to .@�/j , in contradiction with the fact that the sink V0 of � is mapped by h to vY .

We say that a vertex V of � is a source if every bounded edge incident to V is outgoing. As we are

assuming that every vertex of � has at most one outgoing edge, a source has a unique bounded incident

edge. For a vertex V of � such that h.V / 2�� @�� fvY g, the toric balancing condition holds at h.V /.

As the toric balancing condition cannot hold at a vertex with a unique incident bounded edge, we deduce

that if V is a source of � , then either h.V /D vY or h.V / 2 @�.

Lemma C.5 Let V be a vertex of � such that V is a source and h.V / 2 @�. Then there exists 1� j � l

such that ˛EV
is a nonzero multiple of Hj;EV

.

Proof We know that h.V /2 .@�/j for at least one j . Assume first that h.V /¤vp for every p2Dj\Dj 0 ,

that is, h.V /2 .@�/j for a unique j . As V is a source, there is a single edge incident to V. By homological

toric balancing (see Figure 21, left), this is possible only if h.EV / is contained in the ray opposite to the

ray corresponding to D@j;V , and in particular we then have dV �D@j;V > 0.

It remains to treat the case where h.V /D vp for some p 2Dj \Dj 0 . In this case, we have h.V /D vp 2

.@�/j \.@�/j 0 . By homological toric balancing (see Figure 21, right), we necessarily have dV �D@
k;V

>0

for some k 2 fj; j 0g.

Lemma C.6 Let V be a vertex of � such that V is a source , h.V / 2 .@�/j for some 1 � j � l ,

and h.V / ¤ vp for every p 2 Dj \Dj 0 . Then dV is a multiple of the class of a P1–fibre of YV and

h.EV / 6� .@�/j .

Proof Similar to the proof of Lemma C.5.

C.2 Study near the centre vY

Lemma C.7 Let E be a bounded edge of � such that ˛E is not a nonzero multiple of any Hj;E . Then

we have E DEV , where V is a source of � with h.V /D vY .

Proof For a source V of � , we have either h.V /D vY or h.V /2 @�. If one of the source ancestors V of

E had h.V / 2 @�, we would have, by combination of Lemma C.5 and Lemma C.3, that ˛E is a nonzero

multiple of Hj;E for some 1� j � l . Therefore, for every source V that is an ancestor of E, we have

h.V /D vY .
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Assume by contradiction that there are at least two distinct source ancestors of E. Then there exists a

vertex V which is an ancestor of E where at least two distinct source edges meet. As the source edges are

emitted by sources mapped to vY by h, they can only meet if their images by h are contained in a common

half-line in � with origin vY . If h.V / 2 .@�/j for some j , then ˛EV
, and so ˛E by Lemma C.3, would

have been a nonzero multiple of Hj;E by Lemma C.3. Therefore, h.V / 2�� @�. On the other hand,

we have h.V /¤ vY . Therefore, the toric balancing condition applies at h.V / and h.EV / is parallel to

the direction of the incoming edges. Moving h.V / along the common direction of all the edges incident

to V produces a contradiction with the assumed rigidity of h.

Therefore, E admits a unique ancestor source V. So any other vertex of � along the flow from V to E

would have to be a 2–valent vertex, in contradiction with the rigidity of h. We conclude that E DEV .

From now on, we assume that l D 2. In this case, � has a unique unbounded edge, and we choose the

flow such that V0 is the vertex V of � incident to this unbounded edge.

Lemma C.8 The set of bounded edges of � incident to V0 consists of two elements E1 and E2 with

˛E1
D �1H1;E1

and ˛E2
D �2H2;E2

, where �1; �2 2 Q � f0g.

Proof It follows from Lemma C.7 that, for every bounded edge E incident to V0, there exists a

1� j � 2 such that ˛E is a nonzero multiple of Hj;E . As the moduli space MV0
contains two P1–factors

corresponding to the two extra directions O˚2
Y , the condition N loc;h

d
.Y.D//¤ 0 implies that for every

1� j � 2, there exists at least one bounded edge E incident to V0 with ˛E a nonzero multiple of Hj;E .

As H 2
1 DH 2

2 D 0 on PV0
, for every 1 � j � 2 there is at most one bounded edge incident to V0 with

˛E a nonzero multiple of Hj;E .

Therefore, we have two cases. Either the set of bounded edges incident to V0 consists of one edge E with

˛E a nonzero multiple of H1;EH2;E , or the set of bounded edges incident to V0 consists of two edges

E1 and E2 with ˛E1
a nonzero multiple of H1;E but not of H2;E , and ˛E2

a nonzero multiple of H2;E
but not H1;E .

Let us show that the first case does not arise. If the set of bounded edges incident to V0 consists of a

single element, then the moduli space MV0
has virtual dimension 2. Indeed, the virtual dimension of MV0

is 0C 2, where 0 is the virtual dimension for rational curves in the log Calabi–Yau surface Y intersecting

the boundary divisor D in a single point, and 2 comes from the two extra trivial directions O˚2
Y . But we

need to integrate over ŒMV0
�vir the pullbacks of the class H1;EH2;E (coming from the bounded edge E

incident to V0) and the pullback of ��
V0

ptY (coming from the unbounded edge incident to V0). Therefore,

the integrand is a class of degree at least 3 > 2, and so this case does not arise if N loc;h
d

.Y.D//¤ 0.

Thus, we are in the second case, where the set of bounded edges incident to V0 consists of two edges E1
and E2 with ˛E1

a nonzero multiple of H1;E but not of H2;E , and ˛E2
a nonzero multiple of H2;E but

not H1;E . In particular, the moduli space MV0
has virtual dimension 3. Indeed, the virtual dimension

of MV0
is 1C 2, where 1 is the virtual dimension for rational curves in the log Calabi–Yau surface Y
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intersecting the boundary divisor D in two points, and 2 comes from the two extra trivial directions O˚2
Y .

As we need to integrate over ŒMV0
�vir the pullbacks of the classes ˛E1

, ˛E2
and ��

V0
ptY , with deg˛E1

� 1

and deg˛E2
� 1, the condition N loc;h

d
.Y.D//¤ 0 implies that deg˛E1

D deg˛E2
D 1 and so the classes

˛E1
and ˛E2

are scalar multiples of H1;E1
and H2;E2

, respectively.

C.3 End of the proof

It follows from Lemma C.8 that there exists a unique decomposition

� D �1[�2;

where �1 and �2 are connected subgraphs of � such that

(i) V0 is a vertex of both �1 and �2,

(ii) if V is a vertex of � distinct from V0, then V is a vertex of �1 (resp. �2) if and only if the flow

starting at V ends at V0 along the edge E1 (resp. E2).

As � is a graph of genus zero, the intersection �1\�2 consists only of the common vertex V0.

Lemma C.9 For every 1� j � 2, there exists a unique vertex Vj of � such that Vj 2 �j and Vj 2 @�.

Moreover , Vj 2 .@�/j and Vj 0 … .@�/j 0 , where fj; j 0g D f1; 2g.

Proof By symmetry, we can assume j D 1 and j 0 D 2. We first remark that if V is a vertex of �1 such

that V 2 @�, then V 2 .@�/1 and V … .@�/2. Otherwise, there would be a descendant V 0 of V1 such

that h.V 0/ … .@�/2 and h.EV 0/ 6� .@�/2, and so by Lemma C.1, ˛EV 0 would be a nonzero multiple of

H2;EV 0 , and so by Lemma C.3, ˛E1
would be a nonzero multiple of H2;E1

, a contradiction.

As ˛E1
D �1H1;E1

with �1 ¤ 0, it follows from Lemma C.1 that there exists a vertex V1 of �1 such that

V1 2 .@�/1 and h.EV1
/ 6� .@�/1. Moreover, there exists a unique vertex with these properties: else, by

Lemma C.3, ˛E1
would be proportional to H 2

1;E1
D 0, a contradiction. Our first remark applied to V1

shows that V1 … .@�/2.

It remains to show that if V is a vertex of �1 such that h.V / 2 .@�/1 n .@�/2, then V D V1. Assume

by contradiction that there exists a vertex V of �1 such that h.V / 2 @� and V ¤ V1. Up to replacing

V by one of its ancestors, we can assume that no ancestor of V is contained in @�. There are now two

cases. First, if V is a source, then, by Lemma C.6, h.EV / 6� .@�/1, and so V D V1 by the uniqueness

of V1, a contradiction. Second, if V is not a source, then there exists an edge E incident to V such

that h.E/ 6� .@�/1, and so by Lemma C.4, h.EV / 6� .@�/1, and so V D V1 by the uniqueness of V1, a

contradiction again.

We now explain how to conclude the proof of Theorem 5.4, that is, show that h D xh. We say that an

edge E of � is radial if h.E/ 6� @� and the direction of h.E/ passes through vY . We claim that all edges

of �1 are radial. Indeed, let V be a vertex of �1 such that V ¤ V1 and h.V / ¤ vY . Then h.V / … @�,

so H 2
1;V D 0, and so there exists at most one edge E incident to V such that ˛E is a nonzero multiple

Geometry & Topology, Volume 28 (2024)



488 Pierrick Bousseau, Andrea Brini and Michel van Garrel

of H1;E . On the other hand, edges E such that ˛E is not a nonzero multiple of H1;E are radial by

Lemma C.7. As h.V / … @� and h.V / ¤ vY , the toric balancing condition holds for V, and so if all

incident edges to E except possibly one are radial, then they are in fact all radial.

As all edges of �1 are radial, every vertex V of �1 satisfies either V D V1 or h.V /D vY : else, moving V

in the radial direction would contradict the assumed rigidity of h. In other words, the graph �1 has a very

simple form: a vertex V1 connected by some vertices V such as h.V /D vY . On the other hand, as all

the edges through V1 are radial, it follows from toric homological balancing that the curve class dV1
is a

multiple of the class of a P1–fibre of YV1
and that h.V1/D v1. In this context, the dimension argument of

[43, Lemma 5.4] shows that a nonzero Gromov–Witten invariant is only possible if the curve component

corresponding to the vertex V1 has maximal tangency, that is, if there is a single edge incident to V1. It

follows in particular that V0 is the single vertex of �1 whose image by h is vY . Replacing �1 by �2 in the

previous arguments, we finally obtain that hD xh.

Appendix D Symmetric functions

D.0.1 Partitions and representations of Sn A partition � ` d of a nonnegative integer d 2 N is a

monotone nonincreasing sequence � WD f�ig
r
iD1, �1 � �2 � � � � � �r � 0 such that

Pr
iD1 �i D d ; when

d D 0 we write �D ∅ for the empty partition. We will often use the shorthand notation

(D-1) f�n1

1 ; : : : ; �
nk

k
g WD f

n1 times‚ …„ ƒ
�1; : : : ; �1; : : : ;

nk times‚ …„ ƒ
�k; : : : ; �kg

for partitions with repeated entries.

With notation as in the beginning of Section 6, a partition � is bijectively associated to:

� A Young diagram Y� with mj .�/ rows of boxes of length j ; there is a natural involution in the

space of partitions, �! �t , given by transposition of the corresponding Young diagram.

� A conjugacy class C� 2 Conj.Sj�j/ of the symmetric group Sj�j with automorphism group of order

jAutC�
j D j�jŠz�, with

z� WD
Y

j

mj .�/Šj
mj .�/:

� An irreducible representation �� 2 Rep.Sd /. For � 2 Conj.Sd /, we write ��.�/ for the irreducible

character Tr��
.�/.

� By Schur–Weyl duality, an irreducible representation R� 2 Rep.GLn.C// for n� `�.

We will be concerned with two linear bases of the ring of integral symmetric polynomials in n variables,

ƒn WD ZŒx1; : : : ; xn�
Sn, labelled by partitions with `.�/ � n. Write x WD .x1; : : : ; xn/

Sn 2 Cn=Sn for

an orbit x of the adjoint action of GLn.C/ (equivalently, the Weyl group action on Cn), and gx for any

element of the orbit. We write

(D-2) p�.x/ WD
Y

i

TrCngmi .�/
x and s�.x/ WD TrR�

.gx/
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for, respectively, the symmetric power function and the Schur function determined by �; we have

ƒn D spanZfp�gf�2P;`��ng D spanZfs�gf�2P;`��ng. These two bases are related as

(D-3) s�.x/D
X

j�jDj�j

��.�/

z�
p�.x/ and p�.x/D

X

j�jDj�j
��.�/s�.x/:

For �;� a pair of partitions, the skew Schur polynomials s�=�.x/ are defined by

(D-4) s�=�.x/D
X

�2P

LR���s�.x/;

where LR��� are the Littlewood–Richardson coefficients R�˝R� DW
L
�`.j�jCj�j/ LR

�
��R�.

Let � Wƒn !ƒnC1 be the monomorphism of rings defined by �.p.i/.x1; : : : ; xn//D p.i/.x1; : : : ; xnC1/.
We define the ring of symmetric functions ƒ WD lim��!ƒn as the direct limit under these inclusions, and

denote by the same symbols p�, s� and s�=� the symmetric functions obtained as the images of the power

sums, Schur polynomials and skew Schur polynomials under the direct limit. In the next sections it will be

of importance to formally expand the infinite product
Q
i;j .1� xiyj / 2ƒ˝Zƒ around .x; y/D .0; 0/,

and it is a classical result in the theory of symmetric functions out that this expansion can be cast in

multiple ways in terms of an average over partitions of bilinear expressions of linear generators of ƒ. In

particular, we have the Cauchy identities

(D-5)
X

�2P

s�.x/s�.y/D
Y

i;j

.1� xiyj /
�1 and

X

�2P

s�.x/s�t .y/D
Y

i;j

.1C xiyj /:

A skew generalisation of these [80, Section I.5] is

(D-6)

X

�2P

s�=�.x/s�=�.y/D
Y

i;j

.1� xiyj /
�1X

�2P

s�=�.x/s�=�.y/;

X

�2P

s�t=�.x/s�=�.y/D
Y

i;j

.1C xiyj /
X

�2P

s�t=�.x/s�t=�t .y/:

Another noteworthy sum we will need is [80, Section I.5]

(D-7)
X

ı2P

s�=ı.x/sı=�.y/D s�=�.x; y/;

where s�=�.x; y/ denotes the skew Schur function in the variables .x1; x2; : : : ; xi ; : : : ; y1; y2; : : : ; yi ; : : : /.

D.0.2 Shifted symmetric functions and the principal stable specialisation From these ingredients

and � 2 P , we define a class of Laurent series of a single variable q1=2 obtained by the principal stable

specialisation

(D-8) q Wƒ! QŒŒq�1=2��; f .x1; : : : ; xi ; : : : / 7! f .x1 D q�1C1=2; : : : ; xn D q�iC1=2; : : : /:

As is customary in the topological vertex literature, and since �i C 1
2

is the component of the Weyl

vector � of An with respect to the fundamental weight !n�i , we use the shorthand notation f .q�/ WD

f .xi D q�iC1=2/. For f a power sum or Schur function, f .q�/ converges to a rational function of q1=2.
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In particular,

(D-9) p.d1;:::;dn/.q
�/D

nY

iD1

1

Œdi �q
;

and, for Schur functions, Stanley [110; 111] proved the product formula

(D-10) s�.q
�/D

q
1
4
�.�/

Q
.i;j /2�Œh.i; j /�

;

where h.i; j / is the number of squares directly below or to the right of a cell .i; j / (counting .i; j / once)

in the Young diagram of �. For example, when �D .i � j; 1j / is a hook Young diagram with i boxes

and j C 1 rows, this gives

(D-11) s.i�j;1j /.q
�/D

q
1
2..

i
2/�ij/

Œi �qŒi � j � 1�qŠŒj �qŠ
:

More generally, for � 2 P we will consider the shifted power, Schur and skew Schur functions,

(D-12)

p�.q
�C�/ WD p�.xi D q�iC�i C1=2/;

s�.q
�C�/ WD s�.xi D q�iC�i C1=2/;

s�=ı.q
�C�/ WD

X

�2P

LR�ı�s�.q
�C�/:

The identities

s�.q
�/D q�.�/=2s�t .q�/;(D-13)

s�=�.q
�C˛/D s�t=�t .�q���˛t

/(D-14)

follow easily from (D-11), (D-12) and the fact that Littlewood–Richardson coefficients are invariant under

simultaneous transposition of their arguments. Following [63], we introduce the following notation for

the Cauchy infinite products (D-5) in the principal stable specialisation:

(D-15) f˛; ˇgQ WD
Y

i;j�1
.1�Qq�i�jC1C˛i Cˇi /D

X

�2P

s�.q
�C˛/s�t .�Qq�Cˇ /

D

�X

�2P

s�.q
�C˛/s�.Qq�Cˇ /

��1
:

Finally, we will need to specialise expressions involving skew Schur functions and Cauchy products to

the case of hook Young diagrams. These can be given closed-form q–factorial expressions, as follows.

Lemma D.1 We have

(D-16) LR
.i�r;1r /

ˇ;

D

�
ıi;jCk.ır;sCt C ır;sCtC1/ if ˇ D .j � s; 1s/ and 
 D .k� t; 1t /;

0 else.
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Moreover ,

s.i�j;1j /=
 .q
�/D

8
<
:

q
1
4
.i�k�1/.i�2j�kC2l/

Œi � kC l � j �qŠŒj � l �qŠ
if 
 D .k� l; 1l/;

0 else;

(D-17)

f.i � j; 1j /;∅gQ
f∅;∅gQ

D

i�1Y

kD0
.1� qkQq�j /D .Qq�j I q/i :(D-18)

The content of the lemma follows from a straightforward application of the Littlewood–Richardson rule in

the case of hook partitions .i � r; 1r/. The product formula15 for the hook skew-Schur functions (D-17)

follows then immediately from (D-11). Finally, (D-18) follows from a straightforward calculation from

(D-15); see [63, Section 3.4] for details.
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