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Abstract 1 

Most bacteria live attached to surfaces in densely-packed communities1,2. While new experimental 2 

and imaging techniques are beginning to provide a window on the complex processes that play out in 3 

these communities, resolving the behaviour of individual cells through time and space remains a major 4 

challenge. Although a number of different software solutions have been developed to track 5 

microorganisms3–8, these approaches typically rely on a large number of user-defined parameters that 6 

must be carefully tuned to effectively track cells. Testing a given parameter combination can take 7 

hours to days depending on the size of the dataset, making iterative optimisation impractical. To 8 

overcome these limitations, we have developed FAST, the Feature-Assisted Segmenter/Tracker, which 9 

uses unsupervised machine learning to optimise tracking while maintaining ease of use. Our approach, 10 

rooted in information theory, largely eliminates the need for users to iteratively adjust parameters 11 

manually and make qualitative assessments of the resulting cell trajectories. Instead, FAST measures 12 

multiple distinguishing "features" for each cell and then autonomously quantifies the amount of 13 

unique information each feature provides. We then use these measurements to determine how data 14 

from different features should be combined to minimize tracking errors. Comparing our algorithm 15 

with a naïve approach that uses cell position alone revealed that FAST produced 4 to 10 times fewer 16 

tracking errors. The modular design of FAST combines our novel tracking method with tools for 17 

segmentation, extensive data visualisation, lineage assignment, and manual track correction. It is also 18 

highly extensible, allowing users to extract custom information from images and seamlessly integrate 19 

it into downstream analyses. FAST therefore enables high-throughput, data-rich analyses with 20 

minimal user input. It has been released for use either in Matlab or as a compiled stand-alone 21 

application, and is available at https://bit.ly/3vovDHn, along with extensive tutorials and detailed 22 

documentation. 23 

Introduction  24 

Time-lapse microscopic imaging and automated cell tracking has led to many fundamental advances 25 

in our understanding of how microorganisms sense and respond to their environment. While many 26 

studies have focused on the movement of planktonic bacteria at relatively low densities, many 27 

behaviours – including collective movement9,10, combat11, sharing of public goods12 and genetic 28 

exchange13 – typically only occur in the closely-packed assemblages in which most microbes live. These 29 

dense communities are often studied in the laboratory using confluent monolayers of cells, which are 30 

much easier to image than three-dimensional aggregations. One method to generate such monolayers 31 

is to confine cells with a slab of agarose or polyacrylamide to form an interstitial colony9,14–16, while 32 

more advanced microfluidic techniques17 can also be used to confine cells to a single plane while 33 

allowing for more precise control over their chemical environment (Fig. 1a). Monolayers can also form 34 

in thin films of fluid, including those arising naturally during bacterial swarming motility10 and in assays 35 
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used to study mixing induced by flagellar motility18. Regardless of the origin of the monolayer 36 

however, investigators face the same technical challenges when tracking densely packed cells using 37 

phase-contrast, brightfield and/or epi-fluorescence microscopy (Fig. 1b).  38 

Tracking solitary cells at low density is relatively straightforward, and basic tracking algorithms that 39 

use cell position alone often produce excellent results. However, tracking cells that are densely packed 40 

together is notoriously difficult because the spacing between neighbouring cells becomes similar to 41 

the distance cells move between frames. These problems are exacerbated by cell motility. While some 42 

species of bacteria are non-motile at high density and spread slowly only via cell division and the 43 

secretion of surfactants15,17, emergent patterns of collective motility driven by twitching9, swarming10 44 

and gliding19 further complicate tracking by rapidly changing the positions of cells. Consequently, 45 

dense, motile communities must be imaged at high framerates for tracking to be feasible, such that a 46 

typical experiment requires a timeseries of hundreds or thousands of images. The large size of imaging 47 

datasets, combined with the large number of cells within each image, means that the computational 48 

time required for cell tracking is often one of the main bottlenecks in a researcher's workflow. This 49 

can be compounded if tracking must be repeated multiple times to optimise tracking parameters. 50 

A basic nearest-neighbour tracking algorithm compares the coordinates of cell centroids between 51 

subsequent frames and build trajectories by connecting those centroids that are closest together 52 

between subsequent time points. More advanced algorithms leverage additional cell characteristics 53 

or "features" to distinguish cells from one another, including metrics that measure cell shape, 54 

orientation, fluorescence levels and patterns of previous movement3,20–22. However, incorporating 55 

these additional feature measurements introduces a new problem, namely how to efficiently combine 56 

the information from different features to optimise tracking performance. In some software packages 57 

(e.g. MicrobeJ3), this requires the user to manually choose a large number of parameters and make 58 

qualitative judgements of the trajectories that result from each set of parameters. The combinatorial 59 

explosion in the number of possible parameters, the fact that a single parameter set can require many 60 

hours to test, and the lack of a rigorous way to compare the tracking results across different parameter 61 

sets, means that parameter optimisation in such a tracking algorithm is typically a highly iterative, 62 

time-consuming process. 63 

A related problem is the fact that properties of bacteria within collectives are highly dynamic, changing 64 

at both the individual level and population level over time. For example, fluorophores can accumulate 65 

within cells or bleach, while cell movement can speed up or slow down due to the secretion of 66 

extracellular factors or changes in gene expression23,24. In addition, the overall density of cells often 67 

increases over time as a result of cell division. This variability means that an algorithm optimised to 68 

track cells at the beginning of an experiment might struggle at later timepoints. Furthermore, 69 

experimental issues - such as changes in illumination, focus, or shifts in the field of view caused by 70 

thermal drift - can cause an abrupt deterioration of tracking accuracy. Knowing when tracking 71 

accuracy has deteriorated to an unacceptable level often lacks a rigorous basis and requires the output 72 

of tracking software to be carefully validated by eye, typically infeasible for high-throughput datasets.  73 
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In this paper, we discuss a new approach that uses unsupervised machine learning to improve the 74 

fidelity of tracking. Our system automatically measures the statistical properties of each feature over 75 

time and then uses this data to dynamically change the relative weighting of each feature based on 76 

the information it can contribute to solving the tracking problem. It also provides users with a metric 77 

of the expected accuracy of the resulting cell trajectories, alerting them to sections of datasets that 78 

may need to be omitted from subsequent analyses. This tracking algorithm is combined with robust 79 

segmentation, feature extraction, lineage analysis and visualisation routines to make up FAST, the 80 

 

Fig. 1 | Analysis of high-density datasets using FAST’s modular framework. (a) While bacteria naturally form 

monolayers in some environments, a number of different assays are used to physically confine cells to a plane in 

laboratory experiments. Among these are interstitial colonies, microfluidic devices that trap cells between two solid 

boundaries, and experimental assays that confine cells to a thin film of liquid. (b) These experiments are typically imaged 

using automated microscopy systems capable of collecting images in both transmitted light and fluorescent channels at 

specified time points. (c) FAST analyses these imaging datasets in six separate modules, each of which is used in sequence 

(see text). A complete specification of each module is provided in the Supplementary Information. 
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Feature-Assisted Segmenter/Tracker. FAST has been released as open-source software which can be 81 

run either directly within Matlab or as a stand-alone application, and has already been used in a 82 

number of publications to accurately analyse densely-packed bacterial monolayers9,16,25,26.  83 

In the following sections, we discuss the design approach and general structure of FAST, and then 84 

illustrate the utility of our novel cell tracking approach using synthetic datasets. Next, we discuss three 85 

case studies that illustrate the versatility of FAST, including: 1) tracking of twitching P. aeruginosa cells 86 

in a 2D monolayer, 2) lineage analysis of an E. coli colony, and 3) automated analysis of the Type 6 87 

Secretion System (T6SS) in a co-culture of P. aeruginosa and V. cholerae. While these case studies 88 

focus on densely packed bacteria, FAST can also be used to analyse other types of biological samples 89 

(e.g. Fig. S1g-i).  90 

Results 91 

Software overview 92 

Initially, we conducted a review of existing cell tracking software packages3–8 to establish four key 93 

design objectives for our software: modularity, rapid user feedbacks, minimisation of user-defined 94 

parameters and extensibility (see section 2 of  the Supplementary Information for further details). We 95 

built the FAST pipeline following these design principles, resulting in a set of six modules that are used 96 

in sequence (Fig. 1c). First, the Segmentation module is used to identify the boundaries of individual 97 

cells, typically using brightfield or phase-contrast images. Next, the Feature Extraction module 98 

measures a range of different cell properties such as position, size and fluorescence intensity 99 

(potentially in multiple channels) using the previously extracted segmentation as a basis. The Tracking 100 

module employs our machine learning process to quantify the information associated with each 101 

feature and then calculates the relative weighting of each feature to maximise tracking fidelity. If 102 

required, a manual validation and correction sub-module also allows the user to correct any mistakes 103 

made by the tracking algorithm. The optional Division Detection module uses a closely related 104 

machine learning process to assign daughter cells to mother cells following cell division events. Two 105 

separate modules can finally be used to visualise the output of FAST: the Overlay module plots 106 

trajectories and/or the results of analyses over the top of the original images, while the Plotting 107 

module contains a range of different options to visualise extracted data. 108 

The FAST GUI guides the user through the process of analysing a single dataset. However, many 109 

applications require a large number of imaging datasets to be analysed using consistent settings. To 110 

automate this, we have implemented a batch-processing tool called doubleFAST. Once a user has 111 

performed an analysis on a single dataset using the FAST GUI, doubleFAST can then read the settings 112 

used during this initial run and automatically apply them to any number of additional datasets. This 113 

allows data from multiple experiments to be processed with minimal amounts of additional user input 114 

and ensures each has been analysed using consistent settings. 115 

Finally, we have implemented a post-processing toolbox, which contains scripts and functions to 116 

perform a number of different tasks on FAST’s output. These allow, among other things, conversion 117 

of track data to other file formats, automated detection of different genotypes, and the annotation of 118 

events such as reversals in movement direction. Users of FAST can suggest new additions to this 119 

toolbox so they can be used by the wider community. 120 

FAST’s tracking algorithm 121 

One of FAST’s principal innovations is its new tracking algorithm, which automatically determines how 122 

to best combine data from a variety of different cell features to improve tracking fidelity. Although 123 

previous tracking software packages have had the option to incorporate cell characteristics other than 124 
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position in their tracking routines20,22, FAST uses a conceptual framework based on information theory 125 

that optimises this process, increasing both the power and convenience of this approach. In this 126 

section we provide a high-level overview of our main innovations and how they impact the tracking 127 

process. For more detailed derivations and explanations, please refer to section 3.4 of the 128 

Supplementary Information. 129 

Our approach to the tracking problem is based on measurements of the amount of information that 130 

can be used to assign links between objects in subsequent frames, a measurement we call the 131 

"trackability". This trackability score provides an integrated measure of how accurately we can follow 132 

objects from frame to frame, and due to its grounding in information theory has certain desirable 133 

properties such as the additivity of contributions from statistically independent features27,28. 134 

Measuring the trackability over time therefore provides users with a tool to predict when tracking will 135 

be stable and robust, as well as flagging portions of a dataset that might yield spurious trajectories. 136 

 

Fig. 2 | An information-theoretic framework for automated object tracking. (a) For illustrative purposes, we consider 

here a theoretical dataset in which an object is characterised using a single feature, its position along the 𝑥-axis. The 

object’s position at three successive timepoints is denoted 𝑥1, 𝑥2, 𝑥3 (red circles), while the displacements are denoted ∆𝑥1, ∆𝑥2  (blue arrows). We assume that feature displacements are drawn from a Normal distribution 𝑓(∆𝑥), while the 

instantaneous object position (independent of knowledge of other timepoints) is drawn from a separate Uniform 

distribution 𝑓(𝑥) (b). The information content 𝐼 of the feature is then calculated as the difference in the entropies of the 

two distributions, 𝐻(𝑋) and 𝐻(∆𝑋), and represents our increase in certainty about the position of the object at time 𝑡 +1 given knowledge about its position at time 𝑡. The trackability quantifies the total amount of information measured for 

each object, which increases when 𝑓(∆𝑥) exhibits less variability relative to 𝑓(𝑥). (c) Trackability decreases when the 

distribution of 𝑓(∆𝑥) is broader (i.e. the feature becomes more "noisy"). Here the different colours correspond to the 

different distributions of 𝑓(∆𝑥) shown in panel b. d,e) Illustration of the feature normalization process for two features. 

In both d and e, the central plot indicates the joint distribution of a pair of feature displacements, while the left and 

bottom plots indicate the corresponding marginal distributions. In (d), the random variables representing the 

unnormalized frame-frame displacements of the two features - ∆𝑋 and ∆𝑌 - are correlated and displaced from the origin. 

Using the joint distribution’s covariance matrix 𝛴(𝛥𝒙) and mean vector 𝝁(𝛥𝒙), the feature space is transformed such 

that the resulting joint distribution of feature displacements 𝑓(∆𝑥̂, ∆𝑦̂) is zero-centred and isotropic (e), ensuring that 

each feature exhibits an equivalent amount of stochastic variation between frames. 
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We define trackability in the following paragraphs and then illustrate how this metric is used in 137 

practice in our first case study.  138 

We begin by assuming that N different features are measured for each object. An object's features 139 

can be expressed as a vector 𝒙𝑡𝑖  with N elements, where the object index is denoted as 𝑖 and time is 140 

denoted as 𝑡. Changes in an objects' features over time – corresponding to, for example, translational 141 

movement or changes in fluorescence intensity – therefore generate a trajectory through the N-142 

dimensional feature space. The goal of our tracking algorithm is to reconstruct each object’s trajectory 143 

from the cloud of individual data points resulting from the segmentation and measurement of objects 144 

in each image. As previously noted, individuals in high-density and high-motility systems can easily 145 

move further than the typical cell-cell separation between frames, making it difficult to reconstruct 146 

their trajectories from positional information alone. By including additional features in the tracking 147 

framework, we expand the feature space from these two spatial dimensions to N feature dimensions, 148 

creating new axes along which one can potentially discriminate neighbouring individuals from each 149 

other.  150 

The trackability metric provides an estimate of how distinguishable trajectories are from each other 151 

in the feature space, and therefore how accurate tracking is likely to be. Unpredictable movement of 152 

objects tends to reduce trackability, while trackability increases if the features sample a wider range 153 

of values (i.e. if they have a larger dynamic range). To formalise this, we model an object’s 154 

instantaneous position in feature space as the random vector 𝑿𝑡 and the change in this position 155 

between subsequent images as the random vector Δ𝑿𝑡.  The distribution 𝑓(𝒙) is then the probability 156 

density function (PDF) representing the chance of finding a randomly selected object at a particular 157 

position 𝒙 in the absence of additional information (specifically, the position of the object at prior 158 

timepoints), while the distribution 𝑓(∆𝒙) represents the stochastic change in an object's position in 159 

feature space between sequential timepoints. We estimate 𝑓(∆𝒙) by assuming that the motion of an 160 

object through feature space can be modelled as a Gaussian random walk. Explicitly, we assume that 161 

the feature vector 𝒙𝑡+1𝑖  of an object at frame 𝑡 + 1 can be written in terms of its prior feature vector 162 𝒙𝑡𝑖  as: 163 𝒙𝑡+1𝑖 = 𝒙𝑡𝑖 + Δ𝑿𝑡, (1) 164 

where Δ𝑿𝑡 is modelled as a multivariate normal 𝒩(𝝁𝑡(Δ𝒙), Σ𝑡(Δ𝒙)), and 𝝁𝑡(Δ𝒙) and Σ𝑡(Δ𝒙) are 165 

respectively the mean vector and covariance matrix of the set of frame-frame feature displacements 166 {Δ𝒙𝑡}. We can similarly characterise 𝑓(𝒙) using the covariance matrix of the raw object locations, 167 Σ𝑡(𝒙). While we can estimate Σ𝑡(𝒙) directly from static snapshots as the covariance of the set of 168 

feature vectors {𝒙𝑡}, resolving {Δ𝒙𝑡} and subsequently 𝝁𝑡(Δ𝒙) and Σ𝑡(Δ𝒙) requires a putative set of 169 

cell trajectories, which in our algorithm are obtained via a preliminary round of tracking that uses a 170 

simple nearest-neighbour approach. These statistics are robust to small numbers of tracking errors, 171 

allowing us to train our model using this relatively low-fidelity tracking approach. 172 

From these measurements, we estimate the amount of information available for assigning objects 173 

between frames by calculating the difference between the entropies for the two distributions, H(𝑿) 174 

and H(∆𝑿) 28,29.The trackability 𝑟𝑡 in bits object-1 is then given as: 175 

𝑟𝑡 = 12 log2 ( |Σ𝑡(𝒙)||Σ𝑡(Δ𝒙)|) + 𝑁2 log2 ( 6𝜋𝑒) − log2(𝑛𝑜,𝑡), (2) 176 

where 𝑛𝑜,𝑡 is the total number of objects present at time 𝑡 and |∙| denotes the determinant of the 177 

contents.  178 
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To illustrate the trackability metric, we consider the case of a single object with a single feature, for 179 

example its position in space along a single axis, 𝑥 (Fig. 2a-c). This simplifies Eq. (2) to: 180 

𝑟𝑡 = 12 log2 ( 𝜎𝑡(𝑥)2𝜎𝑡(Δ𝑥)2) + 12 log2 ( 6𝜋𝑒) , (3) 181 

where 𝜎𝑡(𝑥) and 𝜎𝑡(Δ𝑥) denote the standard deviation of their respective distributions. As expected, 182 

one observes a larger trackability score when the distribution of feature displacements, 𝑓(∆𝑥), is more 183 

sharply peaked relative to the distribution of 𝑓(𝑥) (Fig. 2b,c). i.e. when the typical distance an object 184 

moves between frames is small compared to the range of values of 𝑥. If the trackability score is 185 

sufficiently large, the risk that two objects move close to one another and become difficult to 186 

distinguish is small. Intuitively, the precision of tracking will increase as (i) the size of the random 187 

fluctuations in feature space decreases, (ii) the number of objects within a frame decreases, and (iii) 188 

the total size of the feature space the objects occupy (i.e. their dynamic ranges) increases. By taking 189 

these multiple factors into account, 𝑟𝑡 represents an integrated measurement of the risk that a given 190 

object will be incorrectly linked to a different object in a subsequent frame.  191 

In addition to calculating the trackability, 𝝁𝑡(Δ𝒙) and Σ𝑡(Δ𝒙) are also used to perform what we call 192 

"feature normalization". This transformation converts the raw feature space 𝒙 to a normalized feature 193 

space 𝒙̂ with a corresponding displacement distribution 𝑓(∆𝒙̂) that is isotropic and zero-centred (Fig. 194 

2d), thus ensuring that the stochastic variation observed within each component of 𝒙̂ is equal and that 195 

any predictable motion in the feature space (e.g. a gradual increase in cell length due to growth, or a 196 

reduction in fluorescent intensity due to photobleaching) is accounted for. The metric of this 197 

transformed space is the Mahalanobis distance, a dimensionless measure of how reliably we can 198 

predict where an object will appear in the feature space at the next time point under the assumptions 199 

of our statistical framework. By providing an equitable way to combine data from different features 200 

together, this metric allows us to more accurately distinguish correct from incorrect putative links. 201 

Large distances between sequential timepoints in this space indicate a discrepancy between the 202 

predicted and observed location of an object in the next frame, and so suggest that the input data 203 

must be erroneous - for example, because an object was mis-segmented a single frame. In contrast to 204 

previous approaches where feature weightings have to be selected or measured manually20, feature 205 

normalization allows one to automatically optimise the contribution of multiple features without any 206 

additional user input. 207 

Finally, we use these statistical measurements to also calculate the adaptive tracking threshold, which 208 

automatically adjusts the stringency of the algorithm that links objects together based on how much 209 

information is available in each frame. While a larger fraction of putative links are accepted when 210 

information is relatively plentiful, only the highest certainty links are accepted when information is 211 

more limited.  This dynamic adjustment of the link threshold thus allows FAST to maximise the number 212 

trajectories in less challenging tracking conditions (e.g. slow-moving cells at low density) while 213 

minimizing the number of spurious links in more challenging conditions (e.g. fast-moving cells at high 214 

density). 215 

Validating the methodology of FAST using ground-truthed datasets 216 

To demonstrate the functionality of our tracking algorithm and to illustrate how using multiple 217 

features can enhance accuracy, we used a previously described self-propelled rod (SPR) model 9,30 to 218 

generate synthetic data sets that simulate bacteria collectively moving at high-density (Fig. 3a). In 219 

these simulations, cells are modelled as stiff, mutually repulsive rods that are propelled by a constant 220 

force (Methods). This model has been shown to closely approximate bacterial collectives that propel 221 

themselves using either flagella or type IV pili, where steric interactions between neighbouring cells 222 
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generate complex emergent collective behaviours9,30. Importantly, this approach allows us to 223 

independently control each of the different properties of the system, allowing us to test FAST on a 224 

 

Fig. 3 | Validating FAST using synthetic data from a simulation of collective bacterial motility. (a) We used a self-

propelled rod (SPR) model to generate noisy datasets with a verified ground truth. We then performed cell tracking with 

FAST using either only a single feature (the rod’s centroid at sequential timepoints; brown) or using a suite of different 
features (rod centroid, length, orientation and simulated fluorescence intensity; purple). Comparison of the reconstructed 

trajectories from FAST (b) with the ground truth data (c) allowed us to identify the errors made by the tracking algorithm 

(d). Errors were split into two categories: links made between objects that were incorrect (‘false positives’, solid magenta 
lines), and links between objects that were missed (‘false negatives’, dashed magenta lines). We also calculated the 
number of correct links made in each case (‘true positives’, solid orange lines). From these counts, we evaluated the 
performance of the tracking algorithm by calculating the F1-score (main text). (e) The value of this F1-score depends on a 

user-defined parameter, the tracking threshold. To objectively compare the results from the tracking algorithm when run 

on datasets with different properties, we calculated the tracking threshold that generated the largest F1-score for a given 

dataset and used this score in subsequent analyses. (f) Including all feature information substantially and consistently 

improved tracking performance compared to when only object positions were used (see also Extended Data Fig. 2). 

Furthermore, we found that our trackability metric was an excellent predictor of tracking accuracy for a given set of 

features, suggesting that it can be used to estimate the accuracy of the algorithm even when a ground truth is not 

available. In the different simulations we varied rod density, propulsive force, and framerate, as well the amount of noise 

in the measurement of position, length and fluorescence (Extended Data Fig. 3). The black circles in (f) correspond to the 

dataset presented in (e). 
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large number of qualitatively different datasets and to compare the results with a known ground truth. 225 

We simulated a 2D monolayer of cells constitutively expressing a fluorescent protein by initialising 226 

populations of cells whose length and fluorescence intensity were drawn from distributions obtained 227 

from experimental data (Extended Data Fig. 1). Following initialization, we simulated cell movement 228 

by numerically integrating the equations of motion for each rod. Once the system had reached steady-229 

state, we extracted measurements of rod position, orientation, fluorescence and length at evenly 230 

spaced timepoints. To simulate noisy measurements, we added Gaussian noise to each of these 231 

features, with the noise magnitude based on that observed in real experimental data (Fig. 3b, 232 

Methods). 233 

Rather than specialising on datasets with specific properties, FAST’s tracking algorithm is designed to 234 

be robust to a wide diversity of different conditions by automatically compensating via feature 235 

normalization. To test this capability, we varied the parameters of our simulation by adjusting the rod 236 

density, self-propulsion force and framerate, as well as the accuracy of feature measurement by 237 

adjusting the amount of noise in the measured cell position, length and fluorescence intensity.  We 238 

tested five different values for each of these six parameters, yielding a total of 30 datasets in total. 239 

The performance of the tracking algorithm was assessed by comparing its output to the ground truth 240 

(Fig. 3c,d). Links that were present in the ground truth but missing in the reconstructions were scored 241 

as false negatives (FN), while those that were absent in the ground truth but present in the 242 

reconstructions were scored as false positives (FP). Links that were identical in both were scored as 243 

true positives (TP). We now integrated these measurements into a single metric that quantifies 244 

tracking performance, the F1-score, defined as: 245 𝐹1 = 2 𝑇𝑃2 𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 . (4) 246 

Users of FAST specify a tracking threshold that controls the stringency of the linking process. If this 247 

threshold is too stringent, too many correct links will rejected by the algorithm, while if the threshold 248 

is not stringent enough too many incorrect links will be accepted. In practice, users need the ability to 249 

choose the tracking threshold that best suits their needs - for example, users interested in detecting 250 

very rare events will have different requirements than those interested in measuring average cell 251 

behaviour. However, for the purpose of testing the benefits of our automated tracking algorithm, we 252 

removed the tracking threshold as a factor from our analyses by using the threshold that resulted in 253 

the largest the F1-score for each dataset (Fig. 3e). This greatest F1-score is an objective measure of the 254 

performance of our tracking algorithm across datasets with different characteristics, and also allows 255 

us to robustly benchmark our tracking algorithm. 256 

The simulated datasets were tracked using two different methods (Fig. 3b). The first method only used 257 

the position of the rods – effectively a classical position-based tracking approach (‘Centroids’), while 258 

the second method used all four features – position, orientation, length and fluorescence intensity 259 

(‘All features’). We found that including all features led to a dramatic increase in tracking accuracy in 260 

all datasets, with a 4 to 10-fold reduction in the number of tracking errors (Extended Data Fig. 2). 261 

Furthermore, our groundtruthed datasets allow us to directly relate a data set's trackability to the 262 

accuracy of the resulting tracks, showing that it is an excellent predictor of the F1-score regardless of 263 

the simulation parameters or level of noise in the dataset (Fig. 3f). 264 

Taken together, these analyses validate our methodology and illustrate how FAST copes with 265 

challenging data sets. First, they demonstrate that our method of integrating additional feature 266 

information during tracking is reliable and effective, allowing FAST to substantially reduce tracking 267 
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errors compared to alternative approaches that use cell position alone. Second, these analyses 268 

demonstrate that our trackability score is able to integrate multiple aspects of the dataset into a single, 269 

robust heuristic of predicted tracking accuracy. Finally, we note the tracking algorithm used by FAST 270 

is fully automated and requires the user to choose only a single parameter (the tracking threshold) no 271 

matter the number of different features that are used in the tracking algorithm. 272 

Case studies 273 

Quantifying rapid bursts of cell movement in densely packed P. aeruginosa monolayers 274 

Many different species of bacteria generate collective motility in densely-packed communities using 275 

either flagella, Type IV pili, or via gliding10,19,30,31. Motility allows populations to rapidly expand into 276 

new territory, giving them a competitive advantage over non-motile genotypes9,32. Here we 277 

demonstrate how FAST can be used to quantify the behaviour of P. aeruginosa cells in interstitial 278 

colonies that form between agar and glass31. We focus on cells within the monolayer that forms 279 

directly behind the colony's leading edge, the dynamics of which play a crucial role in the competition 280 

between genotypes in both interstitial and more classical "surficial" colonies9.  281 

Tracking cells undergoing collective movement requires a much larger acquisition frame rate 282 

compared to non-motile cells. While expensive timing boards can be used to "trigger" cameras with a 283 

high level of precision to keep the time between frames nearly constant, most high-end research 284 

microscopes lack this capability. Instead, "camera streaming" is more widely available, which directly 285 

streams the camera’s output to a computer which saves frames as fast as possible. This maximises the 286 

frame rate, but images acquired via camera streaming can have slight variations in the time that 287 

elapses between subsequent frames.  288 

To illustrate how FAST can be used to handle a sequence of images collected via camera streaming, 289 

we collected a large dataset with 3,505 frames recorded at an average rate of 127 frames per second. 290 

The size is of this dataset is approximately 8 Gb and each frame contains approximately 1,700 tightly 291 

packed P. aeruginosa cells. Despite the large size of this dataset, processing with FAST could be 292 

completed on a standard laptop computer (Methods), requiring only 200 mins to segment and 355 293 

mins to extract the features of each of the ~6 million individual objects. 294 

Tracking consists of two separate stages: the model training stage, and the link assignment stage. After 295 

completion of the model training stage, FAST automatically generates and plots the trackability of the 296 

dataset at each timepoint (Fig. 4a). For our dataset, this plot revealed that the trackability dropped 297 

precipitously at some timepoints. We hypothesised that these decreases resulted from a reduction in 298 

the imaging framerate. To test this, we plotted the trackability score against ∆t, the elapsed time 299 

between frames as calculated from timestamps (Fig. 4a, inset). This revealed a strong negative 300 

correlation (Pearson’s correlation coefficient = -0.705), suggesting that the longer the time between 301 

frames, the lower the trackability and the less accurate the tracking results. To avoid these timepoints 302 

- and the spurious tracking results they might generate - we used the tracking module’s built-in time 303 

window selection tool to specify a subset of frames to track (Fig. 4a, green region, 750 frames). 304 

Training the tracking model for this reduced dataset took 18 minutes, while tracking and track 305 

processing took an additional 88 minutes. 306 

In this example, a relatively large timestep ∆t allows cells to move further between frames, which 307 

reduces predictability and therefore reduces the trackability score. More generally, however, the 308 

trackability depends on a combination of experimental and imaging conditions, providing a robust 309 

metric to interpret datasets. For example, the trackability score can be used to quickly identify a wide 310 
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range of problems which might arise during an experiment, including fluctuations in focus, 311 

illumination intensity, or inadvertent movement of the sample. Once problematic timepoints have 312 

been identified, the user can decide either to avoid them by using a subset of the images (as in this 313 

example) or to reject the entire dataset. 314 

Tracking the smaller subset of images that we specified resulted in over 1,600 separate trajectories, 315 

each at least 200 timepoints long. To visualise this large dataset, we used the Overlays module to 316 

colour individual cells in the phase-contrast image based on their instantaneous speed (Fig. 4b). This 317 

revealed that while most cells move at relatively slow speeds, a small number of cells undergo rapid, 318 

sporadic bursts of movement approximately 25 times faster than the average. These rapid movements 319 

are also clearly visible in measurements of the speed of individual cells over time (Fig. 4c). Our results 320 

are similar to the ‘slingshots’ previously observed in solitary P. aeruginosa cells moving at the 321 

glass/liquid interface, apparently driven by pilus detachment events33. However, the peak speeds that 322 

we record (up to 60 µm s-1) in collectives of P. aeruginosa are approximately 20 times larger than those 323 

previously observed. While we do not know the specific reason for this difference, interactions with 324 

 

Fig. 4 | Tracking single cells in an interstitial P. aeruginosa colony spreading via pili-based motility. (a) We used FAST 

to track cells within a monolayer of P. aeruginosa undergoing collective motility using position, length and width as 

features. Images were collected using high speed "camera streaming" with a mean frame rate of 127 fps, but variations 

in the elapsed time between subsequent frames, ∆t, resulted in transient reductions in trackability. (a, inset) Analysis of 

the timestamps associated with each frame revealed that the trackability score was negatively correlated with ∆t (R 

indicates Pearson’s correlation coefficient; the warmer colours denote a higher density of data points). We therefore 

restricted our subsequent analyses to a subset of the data in which the trackability score was relatively constant (green 

region) using FAST’s built-in tools. (b) We used the Overlays module to colour code cells based on their instantaneous 

speed. Although cells typically moved relatively slowly, very occasionally cells were observed to undergo a very rapid 

burst of movement (see cream coloured cell). (c) These rapid jumps can also be observed in traces of the speed of 

individual cells. Here we plot the instantaneous speed of three different cells over time, each in a different colour. The 

montages above illustrate three of these transient events, using the same colour coding shown in b.  (d) To investigate 

these movements at the population level, we calculated instantaneous cell velocities in both the x and y direction for all 

cells and plotted their combined distribution. In other active systems, this distribution is approximately Gaussian. 

However, in our system the highly transient bursts of velocity results in heavy tails, causing them deviate from a Gaussian 

distribution with the same variance (dashed black line). 
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neighbouring cells facilitated by the high cell density, the glass/agar interstitial colony environment 325 

and our higher framerate (~13 times that of 33) may each play a role. 326 

To illustrate how this large tracking dataset can be mined to elucidate the statistics of rare events, we 327 

constructed the instantaneous marginal velocity distribution from our tracks (i.e. the x- and y-328 

components of the instantaneous velocity vectors) (Fig. 4d). While previous studies have found that 329 

sperm and swimming bacterial cells undergoing collective movement generate marginal velocity 330 

distributions that are approximately Gaussian30,34, we observed that bacteria collectively moving via 331 

pili-based motility exhibit much heavier tails corresponding to their occasional rapid motions. Despite 332 

the rarity of these events – less than 0.05% of our measurements had a magnitude larger than 20 µm 333 

s-1 - the exceptional number of cell trajectories we obtained nevertheless allowed us to finely resolve 334 

their statistical distribution.  These analyses demonstrate how FAST can be used to rapidly characterise 335 

the motility of a large number of cells in densely-packed conditions, with relatively little user input 336 

and computational effort.  337 

Lineage analysis of Escherichia coli 338 

A major aim of a number previous software packages has been to automatically reconstruct cell 339 

lineages5,8. However, identifying cell division events and the resulting daughter cells is a particularly 340 

difficult challenge. Near-perfect tracking of individuals is essential for accurate lineage tracking, as a 341 

single error can propagate through multiple division events, often contaminating the remainder of the 342 

dataset. We decided to test FAST’s lineage tracking capabilities using a time lapse movie of dividing E. 343 

coli cells17 imaged using phase-contrast microscopy. Although the tracking algorithm performed well, 344 

several links were incorrectly assigned – this was particularly problematic at the beginning of the 345 

dataset, because the small number of cells provided insufficient data to adequately train the machine 346 

learning model. We therefore performed manual correction of the dataset using FAST’s built-in track 347 

validation and correction system, which required us to break 21 incorrect links and form 17 new links. 348 

These manual corrections constituted only 0.67% of the 5,698 links in the final dataset, with the 349 

remainder of links being correctly assigned automatically.  350 

Following automated division detection, we visualised the lineage structure of the colony using the 351 

Overlays module (Fig. 5a, b, Supplementary Video 1), allowing us to rapidly verify the accuracy of the 352 

lineage assignment. Visualisation of the population structure revealed that the descendants of each 353 

of the individual cells present at the beginning of the experiment formed highly elongated structures 354 

within the colony, similar to the patterns previously observed in experiments where colonies were 355 

initiated from multiple founder cells labelled with different fluorescent proteins14. We also used the 356 

feature extraction and plotting modules to reconstruct the length of individual cells and align them by 357 

the time that they last underwent division (Fig. 5c). These analyses illustrate the power and accuracy 358 
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of our tracking and lineage reconstruction approaches, and also showcase the ease with which FAST 359 

allows data-rich visualisations of the resulting datasets. 360 

Automated analysis of T6SS battles 361 

To illustrate FAST’s capabilities beyond standard cell tracking, we analysed the activity of the Type 6 362 

Secretion System (T6SS) using FAST. The T6SS is a highly dynamic organelle composed of a molecular 363 

‘spear’ tipped with a toxin known as an effector35. Bacteria that possess the T6SS can inject this 364 

effector into neighbouring cells, which kills them36. Firing events can be monitored by visualising the 365 

 

Fig. 5 | Tracking and lineage analysis of E. coli cells in a growing colony. (a) Lineage tree showing the colony at the final 

point of the timeseries. Here thicker lines show the location of division events and thinner lines show the movement of 

cells between divisions.  The trajectory colour indicates how many generations have elapsed in each lineage from the 

initial timepoint. (b) The colony at three different timepoints. Cells that share the same mother in generation 1 (‘Gen 1’) 
are shown in the same colour at each timepoint, illustrating how the spatial distribution of different lineages develops 

over time. (c) Growth curves of each cell, aligned by generation number. Tracks are shaded according to the age of the 

corresponding cell, from birth (dark blue) to division (light blue). The data visualisations of both panels a and b were 

produced using FAST’s Overlays module, while panel c was prepared with the Plotting module. 
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localisation of the protein that forms the contractile sheath of the T6SS needle, TssB in P. aeruginosa 366 

and VipA in Vibrio cholerae37,38. Here, we highlight how FAST can be used to quantify how the T6SS is 367 

regulated in co-cultures of V. cholerae and P. aeruginosa. 368 

Because of its short range, the T6SS is effective only at high cell density, which historically has made 369 

it difficult to study using automated analyses. We used FAST to analyse imaging datasets that show 370 

two different bacterial species interacting with their respective T6SS when mixed together in a densely 371 

packed monolayer37, specifically V. cholerae and P. aeruginosa cells expressing VipA-mCherry and 372 

TssB-mNeongreen, respectively (Fig. 6a, left). We distinguished the two species from one another (Fig. 373 

6a, right) using FAST’s post-processing toolbox, which compares each cell’s intensity in the mCherry 374 

and mNeonGreen channels to automatically assign them to two distinct populations (Fig. 6b). This 375 

utility allows one to rapidly compare the behaviour of different genotypes within the same sample. 376 

 

Fig. 6 | Identifying different bacterial species, quantifying cell morphologies, and investigating T6SS dynamics in a 

densely packed collective. (a) A monolayer composed of a mixture of P. aeruginosa cells expressing TssB-mNeongreen 

and V. cholerae cells expressing VipA-mCherry (left). Measurements of the average intensity of each cell in the two 

different fluorescence channels allowed us to automatically distinguish the two species (b), an approach known as image 

cytometry. By colour coding each cell (P. aeruginosa, cyan, V. cholerae, red), we were able to visually confirm the accuracy 

of the assignment process (a, right). (c) We then quantified a novel feature, cell curvature, using FAST's custom feature 

extraction framework to calculate the curvature of the segmentation backbones (inset). Splitting these measurements 

into the two previously assigned populations showed the comma shaped V. cholerae cells were substantially more curved 

than the rod-shaped P. aeruginosa cells. (d-f) We then used FAST’s plotting options to illustrate the dynamics of the T6SS. 

A P. aeruginosa cell fires its T6SS machinery (observed as the bright puncta of TssB), which can be visualised using the 

kymograph (d) and ‘cartouche’ (f) plotting options, as well as an increase in the standard deviation of the mNeongreen 

channel (e). (g) We used this latter measurement to detect when the T6SS was active in a cell, allowing us to measure 

the proportion of time that each cell in the population spends in the firing state. Our analyses confirmed that when co-

cultured with a strain of V. cholerae with an inactive T6SS (Δhcp1 Δhcp2), the T6SS activity of WT P. aeruginosa cells is 

dramatically reduced compared to when they are co-cultured with WT V. cholerae. Here the circles show results from 

individual experimental timeseries and horizontal lines show the overall mean proportion. 
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The architecture of FAST allows users to easily define and quantify novel features that are not already 377 

included in FAST. To do this, users can write a short feature measurement script that can make use of 378 

the segmentation of each object in each frame, as well as the corresponding regions in each of the 379 

imaging channels - in this case, the mNeongreen, mCherry and phase-contrast signals. The Feature 380 

Extraction module then automatically stores these custom features in the same way as the built-in 381 

features, allowing them to be integrated into downstream analyses. To illustrate this capability, we 382 

extracted cell curvature as a custom feature to see if we could detect the differences in morphology 383 

of V. cholerae cells (which are generally comma-shaped) from that of P. aeruginosa (which are 384 

generally rod-shaped). Using a skeletonization-based approach, we extracted the morphological 385 

backbone of each cell from its segmentation and measured its curvature by finding the best-fit circle 386 

to this set of points. Consistent with expectations, our automated analysis found that the cells 387 

identified as V. cholerae were substantially more curved than those identified as P. aeruginosa (Fig. 388 

6c). 389 

Our software is also capable of generating sophisticated visualisations and analyses of the behaviour 390 

of single cells. For example, FAST allows the dynamics of T6SS firing in individual cells to be easily 391 

visualised using the kymograph option of the Plotting module (Fig. 6d), as well as the ‘cartouche’ 392 

option, which extracts and aligns cropped images of the specified cells (Fig. 6f). We can also quantify 393 

the dynamics of the T6SS using the feature data associated with a given cell: the standard deviation 394 

of the mNeongreen channel substantially increases during firing (Fig. 6e), as the TssB becomes non-395 

uniformly distributed through the cell as it assembles into the sheath. 396 

It is generally accepted that P. aeruginosa only fires its T6SS when triggered by the firing of the T6SS 397 

of a neighbouring cell15,37. Although qualitative evidence for this is strong, to our knowledge this effect 398 

has never been directly quantified, likely because of the difficulties involved with tracking densely 399 

packed cells and because the T6SS firing events are themselves relatively rare. We therefore decided 400 

to use FAST to simultaneously track a large number of densely packed cells and automatically detect 401 

when each fires its T6SS. We used our batch-processing tool – doubleFAST – to automate the analysis 402 

of multiple datasets from experiments in which WT P. aeruginosa cells were either cocultured with 403 

WT V. cholerae or cocultured with a mutant V. cholerae strain that is incapable of firing their T6SS 404 

(Δhcp1 Δhcp2). Using the standard deviation of the mNeongreen channel to distinguish when P. 405 

aeruginosa is actively firing its T6SS, we calculated the proportion of time that P. aeruginosa cells 406 

spend firing their T6SS (Fig. 6g). As expected, when co-cultured with the inactivated Δhcp1 Δhcp2 V. 407 

cholerae strain, we measured that P. aeruginosa reduced the proportion of time it spent in the firing 408 

state approximately 30-fold compared to when co-cultured with WT V. cholerae. In total, these 409 

analyses were based on 1,246 tracks built from 139,849 individually segmented objects, illustrating 410 

how our automated processes can leverage quantities of data not amenable to manual approaches. 411 

In conclusion, this case study demonstrates how FAST can automatically distinguish different species, 412 

how users can specify novel features like cell curvature, and how complex bacterial behaviours can be 413 

quantified using feature data.  414 

Discussion 415 

Advances in experimental techniques and automated microscopy have transformed live cell imaging 416 

from a technique that relies largely on qualitative observation into a highly quantitative discipline that 417 

leverages huge amounts of data. Integral to this renaissance are computational tools that can 418 

automatically parse and annotate the large imaging datasets resulting from these experiments. Many 419 

tools have been developed for this purpose3–8,39–44, each optimised for a specific research question. As 420 
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we have emphasized throughout this manuscript, our own contribution is particularly well-suited for 421 

the analysis of experiments where cells are tightly packed together. 422 

We designed FAST to allow users to rapidly obtain high-quality results by minimising both the number 423 

of user-defined tracking parameters and the computational time required to process an imaging 424 

dataset containing many cells. FAST automatically determines how to combine data from different cell 425 

features, which prevents users from having to iteratively improve tracking results by sequentially 426 

adjusting a large number of parameters – typically a very slow and laborious process. Our approach 427 

also provides the user with a single, easy to interpret metric that allows them to rapidly identify and 428 

avoid sections of the dataset that are predicted to yield low-fidelity trajectories. While the basic FAST 429 

package already outputs most of the cell features that are widely used by researchers, simple 430 

modifications to the system allow users to integrate new features into the existing analytical 431 

framework. 432 

Tracking systems typically break down in one of two ways – either individual objects cannot be 433 

distinguished, or the tracking algorithm cannot accurately link individuals between frames. Machine 434 

learning is increasingly used to solve the first of these two challenges, and techniques that apply 435 

machine learning methods to segment microbes at high density are now widely available41–43,45. 436 

However, use of machine learning to perform tracking is comparatively rare. FAST fills this niche using 437 

a statistical framework that both substantially improves track quality and provides users with insight 438 

into possible problems with their data. Our software has already proven its ability to elucidate the rich 439 

and complex behaviours that individual bacteria exhibit in densely-packed conditions9,16,25,26. Future 440 

work stemming from these combined experimental and analytical approaches could ultimately shed 441 

new light on how dense bacterial communities function and help us to develop novel strategies to 442 

manipulate them. 443 
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Materials and methods 444 

Computational resources 445 

All analyses presented in this manuscript were performed with a Microsoft Surface Book 2, with an 8-446 

core Intel i7-8650U CPU and 8 Gb of RAM. FAST was run directly in Matlab, version 2018b. 447 

SPR model 448 

The 2D SPR model used in this manuscript has been described in detail elsewhere9,30. In brief, we 449 

model cells as stiff rods composed of evenly-spaced Yukawa segments, mutually repulsive point 450 

potentials. We initialise the system by filling a square domain with 𝑁𝑟  rods, evenly spaced on a lattice. 451 

Each rod 𝑖 is associated with an aspect ratio 𝑎𝑖  and a fluorescence intensity 𝐼𝑖, randomly drawn from 452 

distributions fitted to the P. aeruginosa data from the T6SS visualisation experiment15 as shown in 453 

Extended Data Fig. 1. The packing fraction of the system, 𝜌, is calculated as  454 

𝜌 =  1𝐴 ∑ [(𝑎𝑖 − 1) + 𝜋4]𝑁𝑟
𝑖=1 , 455 

where 𝐴 is the area of the simulated domain, which has doubly periodic boundary conditions. 456 

Taking the instantaneous position of a rod 𝑖 as 𝒓𝑖, its orientation as 𝜙𝑖, the unit vector denoting this 457 

orientation as 𝒖̂𝑖  and the sum of the potentials between 𝑖 and all other rods as 𝑈𝑖, we define the 458 

equations of motion for each rod as: 459 

𝒇𝑇 ∙ 𝜕𝒓𝑖𝜕𝑡 =  − 𝜕𝑈𝑖𝜕𝒓𝑖 + 𝐹𝒖̂𝑖 , (5𝑎) 460 

𝑓𝜙 𝜕𝜙𝑖𝜕𝑡 =  − 𝜕𝑈𝑖𝜕𝜙𝑖 , (5𝑏) 461 

where 𝒇𝑇 is the translational friction tensor, 𝑓𝜃 is the rotational friction constant and 𝐹 is the size of a 462 

self-propulsion force exerted by each rod along its axis. We use the formulation presented in30 to 463 

calculate 𝒇𝑇 and 𝑓𝜙, which are in turn functions of the rod aspect ratio and the Stokesian friction 464 

coefficient, 𝑓0. We simulate the dynamics of our system by numerically integrating Eq. 5a and 5b using 465 

the midpoint method. 466 

Following an initial transient, the system reaches a statistical steady-state. At this time, we begin to 467 

measure the positions, orientations, lengths and intensities of each rod at a sampling “framerate” ∆𝑇. 468 

We add simulated measurement noise to each of these measurements, which is drawn from a 469 

Gaussian distribution with a mean of zero. The standard deviation of the measurement noise for each 470 

feature is controlled by the parameters 𝜎𝑟 (positional noise), 𝜎𝜙 (orientational noise), 𝜎𝑎 (length noise) 471 

and 𝜎𝐼 (fluorescence noise). To constrain the baseline estimates of these noise parameters, we 472 

measured how each of the corresponding features fluctuated about the mean in P. aeruginosa cells 473 

in a dataset of T6SS firing15. The cells in this dataset are non-motile and the framerate is high enough 474 

that growth is negligible, meaning any apparent changes in position, orientation, length or 475 

fluorescence are wholly attributable to measurement noise. 476 

We varied the properties of our simulations by adjusting the values of the parameters 𝑁, 𝐹, ∆𝑇, 𝜎𝑟, 477 𝜎𝑎 and 𝜎𝐼 in different simulation runs. The values of these parameters, as well as the fixed system 478 

parameters, are provided in table 1. 479 
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Sample preparation 480 

The monolayer of P. aeruginosa presented in Fig. 4 was prepared using the wild-type PAO1 strain46. 481 

Cells were streaked out from freezer stocks onto LB agar plates (Lennox, 20 g/l, Fisher Scientific, 482 

solidified with 1.5% (w/v) agar, Difco brand, BD) and incubated overnight at 37°C. Single colonies were 483 

picked from the resulting plates and incubated overnight in liquid culture under continuous shaking, 484 

resulting in stationary phase cultures. These were then diluted 30-fold and returned to the shaking 485 

incubator for a further two hours, yielding cultures in exponential phase. The final culture used for 486 

inoculation was prepared by adjusting the optical density at 600 nm (OD600) of the exponential phase 487 

cultures to 0.05 using fresh LB, corresponding to an approximate concentration of 12,500 cells μl-1
. 488 

We prepared monolayers from these cultures using a similar protocol to that described in31. 1 μl of 489 

inoculation culture was spotted onto the centre of a small (2 cm x 2 cm) LB agar pad. To provide 490 

optimal conditions for observing twitching motility, the concentration of agar in these pads was 0.8%. 491 

This pad was then inverted and placed into the base of a coverslip-bottomed Petri dish (175 µm 492 

coverslip thickness, MatTek), which was then closed and incubated for 16 hr at room temperature. 493 

The ability to close the lid of the Petri dish allowed us to avoid desiccation of the sample during 494 

incubation. By the end of the incubation period, a large interstitial colony with a dense monolayer at 495 

its perimeter had formed9. 496 

Microscopy 497 

The high framerate movie used for the analysis of rapid motion (Fig. 4) was acquired using a Zeiss Axio 498 

Observer.Z1 microscope outfitted with an Axiocam 702 camera set to “camera streaming” mode and 499 

a Plan Apochromat 63x oil-immersion objective. 500 

Other datasets 501 

The datasets showing dividing E. coli cells (Fig. 5) and T6SS firing (Fig. 6) were downloaded from the 502 

Supplementary Information sections of17 and37, respectively, under a Creative Commons Attribution 503 

license. FIJI’s47 built-in AVI reader was used to extract individual frames of both movies. The E. coli 504 

movie was then stabilised using a combination of manual stabilisation (for large shifts in the field of 505 

view between timepoints) and the TurboReg plugin48. 506 
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Table 1 | Parameters of the SPR model used to generate synthetic datasets. Here we show both range of values we 

tested and baseline value that was used when we varied another parameter. Note that our simulations are non-

dimensionalised, using the width of a single rod as the characteristic lengthscale and the time taken for an isolated rod 

with 𝐹 =  1 to move a single rod width as the characteristic timescale. 

Parameter symbol Parameter name Value(s) 𝑨 Area of simulation domain 10,000 𝒇𝟎 Stokesian friction coefficient 1 𝑵 Number of rods 700 (baseline) 

[300, 500, 700, 900, 1100] (variable) 𝑭 Self-propulsion force 1 (baseline) 

[0.7, 0.85, 1, 1.15, 1.3] (variable) ∆𝑻 Time between sampled 

timepoints 

10 (baseline) 

[5, 7.5, 10, 12.5, 15] (variable) 𝝈𝒓 Standard deviation of positional 

measurement noise 

0.02 (baseline) 

[0.02, 0.1, 0.2, 0.4, 0.6] (variable) 𝝈𝝓 Standard deviation of 

orientational measurement 

noise 

0.02 radians 

𝝈𝒂 Standard deviation of length 

measurement noise 

0.1 (baseline) 

[0.05, 0.1, 0.2, 0.4, 0.6] (variable) 𝝈𝑰 Standard deviation of 

fluorescence measurement 

noise 

1 A.U. (baseline) 

[0.5, 1, 2, 4, 6] A.U. (variable) 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2021.11.26.470050doi: bioRxiv preprint 



24 

 

 

 

Extended Data Fig. 1 | Distributions used to specify initial conditions of the SPR model. The distributions of trajectory-

averaged aspect ratios (a) and GFP intensities (b) of a dataset of non-motile P. aeruginosa cells15. A gamma distribution 

(shape parameter = 15.3, scale parameter = 0.248) and a normal distribution (mean = 63.1, standard deviation = 8.83), 

respectively, were fitted to these two datasets (black dotted lines). To initialise the SPR model, rod aspect ratio, 𝑎𝛼, and 

simulated fluorescence intensity, 𝐼𝛼, were randomly drawn from these two fitted distributions, allowing us to ensure that 

these two features were modelled realistically in our simulations. 
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Extended Data Fig. 2 | Including additional feature information improves trackability and increases tracking fidelity. 

We measured the trackability (a, b) and maximum F1-scores (c, d) of synthetic high-density motility data generated using 

a range of different parameter combinations. Both ‘simulation parameters’ (parameters that change the properties of the 
SPR model we used to generate the synthetic dataset, a, c) and ‘measurement parameters’ (parameters that change the 
amount of measurement noise for each of the different features, b, d) were varied.  See Table 1 for further details.  Here 

we compare trackability and tracking fidelity when the tracking algorithm can only use positional information (‘Centroids’, 
brown) to when all feature information is available (‘All features’, purple). Arrows show the consistent increase in these 

two metrics when all features from the synthetic dataset are used, illustrating the robustness of our approach.  
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