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A B S T R A C T   

This study harnessed bivariate correlational analysis, multiple linear regression analysis and tree- 
based regression analysis to examine the relationship between laser process parameters and the 
final material properties (bulk density, saturation magnetization (Ms), and coercivity (Hc)) of Fe- 
based nano-crystalline alloys fabricated via laser powder bed fusion (LPBF). A dataset comprising 
of 162 experimental data points served as the foundation for the investigation. Each data point 
encompassed five independent variables: laser power (P), laser scan speed (v), hatch spacing (h), 
layer thickness (t), and energy density (E), along with three dependent variables: bulk density, Ms, 
and Hc. The bivariate correlational analysis unveiled that bulk density exhibited a significant 
correlation with P, v, h, and E, whereas Ms and Hc displayed significant correlations exclusively 
with v and P, respectively. This divergence may stem from the strong influence of microstructure 
on magnetic properties, which can be impacted not only by the laser process parameters explored 
in this study but also by other factors such as oxygen levels within the build chamber. Further-
more, our statistical analysis revealed that bulk density increased with rising P, h, and E, while 
decreased with higher v. Regarding the magnetic properties, a high Ms was achievable through 
low v, while low Hc resulted from high P. It was concluded that P and v were considered as the 
primary laser process parameters, influencing h and t due to their control over the melt-pool size. 
The application of multiple linear regression analysis allowed the prediction of the bulk density 
by using both laser process parameters and energy density. This approach offered a valuable 
alternative to time-consuming and costly trial-and-error experiments, yielding a low error of less 
than 1 % between the mean predicted and experimental values. Although a slightly higher error 
of approximately 6 % was observed for Ms, a clear association was established between Ms and v, 
with lower v values corresponding to higher Ms values. Additionally, a further comparison was 
conducted between multiple linear regression and three tree-based regression models to explore 
the effectiveness of these approaches.   
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1. Introduction 

Laser powder bed fusion (LPBF), also referred to as selective laser melting (SLM), stands as the cornerstone within the realm of 
metal additive manufacturing (metal-AM). This primacy owes itself to its remarkable capability to build intricate shapes while 
maintaining mechanical properties that meet industry standards. LPBF distinguishes itself from other metal-AM techniques by being 
the preeminent choice across diverse sectors including automotive, energy, medical, and aviation [1–3]. 

In the LPBF procedure, a slender layer of metal powder is evenly distributed onto a building platform using a spreading tool. 
Subsequently, a laser beam is employed to scan across this layer, harnessing its thermal energy to meticulously liquefy selected 
portions of the powdered material. This sequential process is replicated layer by layer, gradually shaping the desired 3D geometry as 
the laser beam liquefies and merges successive layers (Fig. 1) [4–6]. 

The physical transformations that occur as the metal powders transition into a consolidated form encompasses several stages, 
including laser absorption, melting, vaporization, solidification, and re-heating/melting. Precise control of these physical processes 
necessitates the fine adjustment of machine process parameters to achieve the desired quality of the LPBF component [7]. 

Certainly, optimizing the LPBF process parameters is a complex endeavour that necessitates extensive trial and error experiments. 
The efficacy of process optimization in LPBF is contingent upon several factors, including the type of machinery employed, the 
characteristics of the powder material, and the specific build geometry being pursued. It’s important to note that this optimization 
process must be revisited whenever any of the variables undergoes a change. 

Moreover, it has been observed that more than 130 distinct process parameters exert a significant influence on the LPBF process. 
Among these, the major build parameters such as laser power (P), laser scan speed (v), beam spot size (d), hatch spacing (h), and layer 
thickness (t) are well-recognized for their impact on aspects like melt pool geometry, the mode of melting, vaporization, and the 
formation of physical defects [8]. 

Regarding the range of values for these parameters employed in LPBF, P typically varies between 50 and 400 W, v spans the range of 
100–2500 mm/s, and d often falls within the 50–100 μm range. The choice of h is constrained by the diameters of the laser beam spot 
and the width of the melt pool, while layer thickness (t) is contingent upon factors such as powder size and the depth of the melt pool. 
In addition, a volumetric energy input, also known as energy density (E), equation (Eqn (1)) has been utilized to combine all the major 
process parameters. 

E=
P

vht (1) 

Soft-magnetic materials play a crucial role in electronic products and exert a significant impact on human life [10,11]. While silicon 
steel dominates the soft magnetic materials market owing to its low-cost, its effective permeability (μe) remains insufficient, resulting 
in significant power generation and transmission losses. In contrast, amorphous alloys exhibit high permeability and minimal loss, 
making them an ideal substitute for silicon steel [12]. Among amorphous alloys, Fe-based alloys offer higher saturation magnetic flux 
density than FeNi-based and Co-based ones. Consequently, this competitive benefit positions Fe-based amorphous alloys as suitable 
candidates for applications in distribution transformers, intermediate frequency transformers, pulse transformers, and filter inductors 
[13,14]. 

In order to lower the low-frequency losses observed in Fe-based amorphous alloys and enhance their soft magnetic behaviour, 
researchers have introduced Fe-based nanocrystalline alloys. In 1988, Yashizawa pioneered the development of a Fe-based nano-
crystalline alloy through heat treatment of Fe-based amorphous alloys [15]. The structure of Fe-based nanocrystalline alloys consists of 
an amorphous phase combined with an α-Fe crystalline phase [16]. When the exchange interaction length exceeds the grain size of 
nanocrystalline alloys, their effective anisotropy constant becomes extremely small, reducing coercivity (Hc). Meanwhile, the 
permeability of the alloy becomes inversely proportional to its coercivity [17]. 

Based on the theory of magnetism, the soft-magnetic materials exhibit favourable stress sensitivity and maintain high magnetic 
permeability when their magnetostriction coefficient (λs) approaches zero. The distinctive structure of nanocrystalline alloys allows for 

Fig. 1. The schematic illustrations of the LPBF process showing the major build parameters [9].  
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the cancellation of positive magnetostriction in the amorphous phase and negative magnetostriction in the nanocrystalline phase. This 
intriguing property holds the promise of producing soft magnetic materials with zero magnetostriction and significantly improved 
overall soft magnetic characteristics [18]. Compared to Fe-based amorphous alloys, Fe-based nanocrystalline alloys offer advantages 
such as higher magnetic induction, greater permeability, and lower coercivity [11]. 

These materials find applications in low-frequency, high-power magnetic devices like transformers and switching power supplies, 
and are also well-suited for giant magnetoimpedance sensing devices. As a result, the advent of Fe-based nanocrystalline alloys marked 
a substantial breakthrough in the evolution of soft magnetic alloys, driving the development of amorphous alloys to new heights [19]. 
As a recent focus of research, the production of Fe-based nanocrystalline alloys without dimensional limitations and the need of 
time-consuming, several step-containing and costly processing is being studied. Laser additive manufacturing can overcome all these 
constraints. However, its laser process parameters including laser power and scan speed need to be optimized in order to obtain high 
bulk density as well as superior soft-magnetic properties (high saturation magnetization (Ms) and low coercivity (Hc)). 

In order to ascertain the most optimum processing parameters, the creation of additive manufacturing (AM) models becomes 
imperative. Chen [20] has classified AM modelling investigations into three distinct categories: empirical, analytical, and numerical 
models, as well as incorporating machine learning methodologies. Empirical models, particularly when dealing with materials like 
metal powders [21], can incur substantial costs when conducting practical experiments. This elevated cost factor contributes to the 
increased complexity of identifying the parameters that exert an impact on the quality of the final manufactured components [22]. 
Several attempts have been made to predict density [23–26], surface quality [7,27,28], mechanical properties [29–33] and melt-pool 
size and geometry [9,34–36] using statistical tools such as design of experiments (DoE). This process can be enhanced through the 
utilization of machine learning (ML). ML models, employing various algorithms, can be employed to unearth patterns within data and 
utilize this acquired knowledge to make predictions regarding specific values based on data that hasn’t been previously observed. 
Within the realm of supervised learning, regression models are constructed to predict continuous variables as responses, while clas-
sification models are exclusively tailored for categorical variables [37,38]. Among these, the regression model offers a straightforward 
and readily interpretable output analysis, although it relies on the assumption of a linear relationship between the parameters. Linear 
regression primarily examines the connection between the mean of outcome variables (final material properties) and independent 
variables (laser process parameters) [30]. Also, its error and predictability values are comparable to ML techniques [25]. For this 
reason, this study utilizes statistical tools including multiple linear regression analysis to investigate the relationship between the laser 
process parameters and final material properties (magnetic properties and bulk density) of LPBF-processed Fe-based nanocrystalline 
alloys based on the experimental data. To provide a comprehensive analysis, the study compares the performance of multiple linear 
regression with that of tree-based regression [39,40], adding further discussion to explore the effectiveness of each approach in detail. 

2. Experimental procedure 

A total of 162 experimental data points were generated using different combinations of the five process parameters. These data 
points were obtained from the three published papers [41–43]. The alloy composition is fixed as KUAMET 6B2 (Fe87.38S-
i6.85B2.54Cr2.46C0.77 (mass %)). Across the experimental data set the laser power (P) ranged between 30 and 150 W, laser scan speed (v) 
ranged between 500 and 1300 mm/s, hatch spacing (h) ranged between 0.02 and 0.06 mm, layer thickness (t) ranged between 0.03 
and 0.07 mm and energy density (E) ranged between and 31.81 and 103.17 J/mm3. The complete list of process parameters employed 
during the LPBF processing can be found in Appendix A. 

A bivariate correlational analysis was carried out to investigate the relationships between the five process parameters and the three 
outcome variables. This was followed by a multiple linear regression and tree-based analysis where the potential influence of these five 
process parameters on the final properties of Fe-based nanocrystalline alloys, particularly on bulk density, saturation magnetization 
and coercivity, was investigated. Since energy density is calculated using laser power, laser speed, hatch spacing and layer thickness 
and is not an independent parameter (at least not to degree of the other four parameters), it was determined to run two different 
multiple linear regressions; one using the four independent process parameters and another one only using the energy density. 

Table 1 
Relationship between the process parameters and outcome variables.  

Pearson’s Correlations (r)  
Bulk density (%) Ms (Am2/kg) Hc (kA/m) 

Laser power (W) 0.221b 
−0.057 −0.138a 

Laser scan speed (mm/s) −0.141a 
−0.237b 

−0.117 
Hatch spacing (mm) 0.163a 

−0.015 0.063 
Layer thickness (mm) −0.070 0.077 −0.127 
Energy density (J/mm3) 0.179a 0.042 −0.045 

Note. 
a p ≤ .05. 
b p ≤ .01 (one -tailed). 
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3. Results 

3.1. Relationship between the process parameters and the outcome variables 

The magnitude of the Pearson correlation coefficient (r) determines the strength of the correlation. To assess the strength of as-
sociation some general guidelines have been provided by Cohen [44] which suggest that if 0.1 < |r | < 0.3 the strength of association is 
small, if 0.3 < |r | < 0.5 the strength of association is medium and if |r | > 0.5 the strength of association is strong. Table 1 shows the 
relationship between the five process parameters and the three material properties. A significant small correlation has been observed 
between bulk density and four of the process parameters; laser power (r = 0.22), laser scan speed (r = 0.14), hatch spacing (r = 0.16) 
and energy density (r = 0.18). The relationship between the bulk density and laser power, hatch speed and energy density was a 
positive one meaning that when one of these process parameters increased, the bulk density also increased whereas the relationship 
between bulk density and laser scan speed was a negative one meaning that when laser scan speed increased, the bulk density 
decreased. When it comes to the relationship between the five process parameters and saturation magnetization a significant small 
correlation was observed only between the saturation magnetization and laser scan speed (r = 0.24). This relationship was a negative 
one meaning that when laser scan speed increased, the saturation magnetization (Ms) decreased and vice versa. Finally, a significant 
small correlation was observed between the coercivity (Hc) and laser power (r = 0.14). This relationship was negative in nature 
meaning that when laser power increased, the coercivity decreased and vice versa. There was not a significant correlation between the 
remaining four process parameters and coercivity. 

3.2. Prediction modelling 

3.2.1. Prediction modelling using process parameters 
Multiple regression analyses were carried out to verify and further investigate the predictive relationships between the four in-

dependent variables (laser speed (P), laser scan speed (v), hatch spacing (h), layer thickness (t)) and the three outcome variables (bulk 
density, saturation magnetization, coercivity). The four process parameters statistically significantly predicted the bulk density and 
saturation magnetization but not the coercivity. Hence, only bulk density and saturation magnetization will be discussed in more 
detail. 

The model for bulk density was highly significant, F(4,157) = 6.685, p < 0.001, the process parameters explaining 15 % of the 
overall variance in bulk density. Significant predictors in the order of their relative contributions are laser power (β = 0.477), laser scan 
speed (β = −0.344) and layer thickness (β = −0.281) (Table 2). Hatch spacing was not a unique predictor of bulk density. Since the 
unstandardised coefficient (B) represents the change in the dependent variable for a one unit change in the independent variable a 
regression equation predicting the bulk density based on the different values of the four process parameters can be formulated as 
follows.  
Mean bulk density (%) = 99.286 + (.021 x P) + (−.002 x v) + (−14.862 x h) + (−26.306 x t)                                                 (2) 

The above equation can be used to calculate the predicted value of bulk density, which can also be referred to as the expected bulk 
density and it is the predicted mean bulk density. However, there can be other factors such as laser spot size, gas flow rate, chamber 
pressure, scan length and direction impacting the bulk density, which in turn can result in some variation. The range of the predicted 
variation in the mean bulk density can be calculated based on the confidence intervals. This means that 95 % confidence can be 
expressed in the accuracy of the actual mean of bulk density, as determined by the four process parameters, being situated within the 
lower (minimum value) and upper bounds (maximum value), which can be calculated as below.  
Min. bulk density (%) = 97.628 + (.012 x P) + (−.003 x v) + (−36.682 x h) + (−45.489 x t)                                                  (3)  
Max. bulk density (%) = 100.943 + (.031 x P) + (−.001 x v) + (6.957 x h) + (−7.123 x t)                                                      (4) 

The model for saturation magnetization was significant, F(4,157) = 2.563, p = 0.041, the process parameters explaining 6 % of the 
overall variance in saturation magnetization. The only significant predictor was laser scan speed (β =−0.246). The other three process 
parameters were not an unique predictor of saturation magnetization. Since the unstandardised coefficient (B) represents the change in 
the dependent variable for a one unit change in the independent variable, a regression equation predicting the magnetization 

Table 2 
Multiple linear regression - Bulk density and the four process parameters.  

Predictor Unstandardised Coefficient (B) Standardised Coefficient (β) p value 95.0 % Confidence Interval for B 
Lower Bound Upper Bound 

(Model) R2 
= 0.146   <0.001   

(Constant) 99.286  <0.001 97.628 100.943 
Laser power (W) 0.021 0.477 <0.001 0.012 0.031 
Laser scan speed (mm/s) −0.002 −0.344 <0.001 −0.003 −0.001 
Hatch spacing (mm) −14.862 −0.144 0.181 −36.682 6.957 
Layer thickness (mm) −26.306 −0.281 0.008 −45.489 −7.123  
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saturation based on the different values of the four process parameters can be formulated.  
Mean Ms (Am2/kg) = 190.199 + (.015 x P) + (−.018 x v) + (−17.157 x h) + (65.318 x t)                                                        (5) 
Equation (5) can be employed for computing the anticipated saturation magnetization value, also known as the expected mean 
saturation magnetization. Like bulk density, there may be additional factors that influence saturation magnetization (Ms), leading to 
some degree of variability. By utilizing confidence intervals, the potential range of variation in the mean saturation magnetization can 
be estimated. This implies that 95 % confidence in the accuracy of the true mean saturation magnetization can be expressed based on 
the four process parameters, falling within the lower (min.) and upper (max.) bounds, as demonstrated below.  
Min. Ms (Am2/kg) = 168.565 + (−.113 x P) + (−.032 x v) + (−301.956 x h) + (−185.071 x t)                                                 (6)  
Max. Ms (Am2/kg) = 211.833 + (.144 x P) + (−.005 x v) + (267.643 x h) + (315.707 x t)                                                        (7)  

3.2.2. Prediction modelling using energy density 
Since energy density is one single parameter, instead of multiple linear regression analysis, simple linear regression was conducted 

to assess the predictability of energy density over the three outcome variables. The regression analysis showed that energy density only 
statistically significantly predicted the bulk density. Hence only this will be discussed in further detail. 

Energy density (E) statistically significantly predicted bulk density, F(4,160) = 5.287, p = 0.023, and explained 3 % of the overall 
variance in the bulk density. Given that the unstandardised coefficient (B) signifies how the dependent variable changes with a one- 
unit alteration in the independent variable, it is possible to create a regression equation that predicts bulk density by considering the 
variation in energy density.  
Mean bulk density (%) = 96.771 + (.013 x E)                                                                                                                        (8) 

Similarly, there can be additional factors that can influence energy density and its prediction power of bulk density leading to some 
variability. The predicted range of variation in the mean bulk density can be quantified using confidence intervals with the upper and 
lower bounds, as outlined below.  
Min. bulk density (%) = 96.067 + (.002 x E)                                                                                                                          (9)  
Max. bulk density (%) = 97.474 + (.024 x E)                                                                                                                       (10) 

Fig. 2 illustrates the mean predicted bulk density values quantified using equation (2) (Fig. 2(a)) and equation (8) (Fig. 2(b)) as a 
function of the experimental bulk density. Furthermore, Fig. 2(c) demonstrates the relationship between experimental Ms and mean 
predicted Ms calculated using equation (5). 

3.3. Comparative analysis of different regression methods 

Several tree-based methods were carried out to compare the effectiveness of the multiple linear regression, including decision tree 
regression, random forest regression, and XGBoost regression [39,40]. The results are shown in Table 5. 

Table 3 
Multiple linear regression - Saturation magnetization and the four process parameters.  

Predictor Unstandardised Coefficient (B) Standardised Coefficient (β) p value 95.0 % Confidence Interval for (B) 
Lower Bound Upper Bound 

(Model) R2 
= 0.061   0.041   

(Constant) 190.199  <0.001 168.565 211.833 
Laser power (W) 0.015 0.027 0.814 −0.113 0.144 
Laser scan speed (mm/s) −0.018 −0.246 0.009 −0.032 −0.005 
Hatch spacing (mm) −17.157 −0.013 0.905 −301.956 267.643 
Layer thickness (mm) 65.318 0.056 0.607 −185.071 315.707  

Table 4 
Simple linear regression - Bulk density and energy density.  

Predictor Unstandardised Coefficient (B) Standardised Coefficient (β) p value 95.0 % Confidence Interval for (B) 
Lower Bound Upper Bound 

(Model) R2 
= 0.032 

(Constant) 96.771  <0.001 96.067 97.474 
Energy density (J/mm3) 0.013 0.179 0.023 0.002 0.024  
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Fig. 2. The graphs of the mean predicted bulk density versus the experimental bulk density; the mean predicted bulk density calculated using (a) 
equation (2) and (b) equation (8); and (c) the graph showing the relationship between experimental saturation magnetization and mean predicted 
saturation magnetization quantified using equation (5). 

Table 5 
Comparison with tree-based methods using mean squared error (MSE) and mean absolute error (MAE). The best result for each row is in bold, and the 
second best is underlined. The results are the average outcomes obtained using different random seeds, ranging from 0 to 99.  

Methods Decision Tree Regression [39] Random Forest Regression [39] XGBoost Regression [40] Multiple Linear Regression 
E → B MSE 2.059 1.612 1.812 1.292 

MAE 1.079 0.968 1.001 0.875 
Pvht → B MSE 1.266 0.820 0.841 1.187 

MAE 0.712 0.621 0.584 0.817 
Pvht → Ms MSE 307.668 193.697 261.418 212.599 

MAE 12.142 10.687 11.316 11.449  
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Multiple linear regression achieves the best performance among tree-based methods on the bulk density (B) prediction using a 
single variable, i.e. energy density (E). 

Tree-based methods, especially random forest regression, demonstrated enhanced capabilities in handling multi-variable (Pvht) 
scenarios, such as laser power (P), laser scan speed (v), hatch spacing (h), and layer thickness (t). However, multiple linear regression 

Fig. 3. SHAP value distribution plots of different tasks for Multiple Linear Regression, showing the importance of different variables: (a) Using 
energy density (E) for prediction of bulk density (B), (b) using laser power (P), laser scan speed (v), hatch spacing (h), and layer thickness (t) for 
prediction of bulk density (B) and (c) using laser power (P), laser scan speed (v), hatch spacing (h), and layer thickness (t) for prediction of saturation 
magnetization (Ms). 
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Fig. 4. SHAP value distribution plots of different tasks for Random Forest Regression, showing the importance of different variables: (a) Using 
energy density (E) for prediction of bulk density (B), (b) using laser power (P), laser scan speed (v), hatch spacing (h), and layer thickness (t) for 
prediction of bulk density (B) and (c) using laser power (P), laser scan speed (v), hatch spacing (h), and layer thickness (t) for prediction of saturation 
magnetization (Ms). 
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still outperforms decision tree regression across most metrics and achieves comparable results to XGBoost in predicting saturation 
magnetization, showing its effectiveness in narrowing the search space while providing straightforward outputs. 

3.4. SHAP analysis 

SHAP (SHapley Additive exPlanations) analysis was used to interpret the contributions of individual features to the output of 
machine learning models [45]. Fig. 4 shows the SHAP analysis of each prediction conducted in the previous section. The SHAP values 
are plotted on the horizontal axis, which measures the impact of each feature, while the vertical axis labels the features being analysed. 
The colour scale, from blue to red, indicates the feature values, with blue representing lower and red representing higher values. 

As shown in Fig. 3(a), the values range from approximately −0.4 to 0.4 and an increase in energy density E positively impacts the 
model output. However, the overlap in data points suggests non-linear interactions or other feature interdependencies might influence 
the relationship. In Fig. 3(b), laser power (P) positively affects the output, while laser scan speed (v), hatch spacing (h), and layer 
thickness (t) negatively affect it. The data points for P show a symmetrical spread around zero, indicating a balanced influence on the 
predictions. In contrast, the data points for v, t, and h are more concentrated around zero, showing a moderate but less pronounced 
impact compared to P. This result aligns with Equation (1). For predicting saturation magnetization, as shown in Fig. 3(c), laser scan 
speed (v) has a high negative impact, with widespread data points indicating a strong influence on the predictions. Layer thickness (t) 
positively impacts the output, with other factors having minimal influence. 

Fig. 4 presents the SHAP analysis of Random Forest Regression, showing the non-linear relationship. As shown in Fig. 4(a), lower 
energy density (E) results in a lower output, while moderate to high values lead to a higher output. In Fig. 4(b), laser power (P), laser 
scan speed (v), and layer thickness (t) exhibit similar trends to those in Fig. 3(b), while hatch spacing (h) displays some mixed clus-
tering. Fig. 4(c) indicates that laser scan speed (v) still has a high negative impact, whereas other factors have minimal influences. The 
positive factor of layer thickness (t) shows minimal influence in non-linear relationships. 

Comparing Figs. 3 and 4, we found that most variables exhibit similar trends, highlighting the effectiveness of Multiple Linear 
Regression, but there are inconsistencies in certain variables. These inconsistencies are primarily due to the nonlinear relationships 
and interactions present in the data. Random Forest Regression captures these nonlinear relationships and complex interactions be-
tween variables, whereas Multiple Linear Regression assumes linear relationships. 

4. Discussion 

This study successfully performed the design of experiments (DoE) of final properties of LPBF-processed Fe-based nanocrystalline 
alloys with 162 data points. Firstly, the Pearson’s correlation allowed to define the relationship between the major laser process 
parameters and the final properties. It was found that the bulk density significantly depends on all the process parameters, except layer 
thickness (t). The fact that high bulk density can be obtained with increasing laser power and (P) and decreasing laser scan speed (v) 
complies with the findings in literature [41,42]. However, experimentally the high hatch spacing (h) worsened the bulk density when 
other process parameters kept constant [41]. The reason for the statistical result of increasing bulk density with increasing h can be its 
dependence on other process parameters, especially P, even though, theoretically they are independent from each other. It was 
suggested that the optimal h value is determined based on the melt-pool size, which is influenced mostly by P and slightly by v [42]. 
Similar to h, t is also affected by P and v. This may be the reason why there was no statistically significant relationship between t and the 
final properties. Furthermore, a significant negative correlation between saturation magnetization (Ms) and v was expected as high v 
causes high cooling rate, which in turn increases amorphous content, reducing Ms [42]. On the other hand, it was anticipated a sig-
nificant positive relationship between coercivity (Hc) and P instead of a negative relationship. Since the magnetic properties (Ms and 
Hc) substantially depend on the microstructure including the impurities, porosities and the presence of the phases, it may be a good 
idea to consider other process conditions such as the oxygen level of the chamber and the oxygen content in the parent powder in order 
to comprehend the change in the magnetic properties. Although this work proposed that statistically Ms is only influenced by v and Hc 
is only affected by P, the effect of the other laser process parameters cannot be ruled out. All process conditions must be taken into 
consideration together with P, v, h and t as a whole to examine the change in the microstructure and so, magnetic behaviour. Energy 
density is also taken into account as an independent variable. It only had a significant correlation with bulk density. The positive 
correlation supported the experimental results [41]. 

The predictability analysis was initially conducted using multiple linear regression analysis. According to this analysis, only hatch 
spacing was not a predictor for bulk density. Laser power has both the most and only positive contributions on bulk density, meaning 
that P possesses the most impact on the predicted bulk density and increasing P increases bulk density. Both v and t have a negative 
contribution to the predicted bulk density. These results do not contradict the literature. Moreover, as expected from the Pearson’s 
correlation, energy density predicted only the bulk density with positive contribution. 

The error between the mean predicted bulk density based on the laser process parameters and the experimental one was calculated 
as 0.84 ± 0.75 %, whereas the error of 0.9 ± 0.78 % was found when quantifying the predicted bulk density based on energy density 
(E). Although this implies that the bulk density can be predicted accurately across the reported range by utilizing equation (2) or 
equation (8), the author acknowledges that 162 data points used occupy a narrow search space in terms of bulk density range (≈2 %) 
and that the associated errors over this range are therefore not insignificant. This may be due to the relationships being non-linear over 
a more comprehensive power/bulk density range when factors such as the formation of lack of fusion pores (low power) and keyhole 
pored (high power) are considered [46]. While it is possible that the relationship over the analysed range is not entirely linear, Fig. 2(a) 
appears to show that these external factors do not significantly affect the bulk density range of the data used in this study. 
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Fig. 2(b) shows the use of energy density to predict bulk density. This yields far inferior results to laser processing parameters. 
However, this is not surprising, as energy density has previously been reported as an unreliable parameter for material production by 
the laser powder bed fusion technique [47], a statement that this study supports. 

The prediction analysis was also carried out for saturation magnetization based on the laser process parameters. As the laser scan 
speed was the only predictor for Ms, the error between the mean predicted Ms values and the experimental values is higher (6.16 ±
4.81 %) than that of bulk density. As illustrated in Fig. 2(c), saturation magnetization prediction based solely on laser process pa-
rameters (P, v, h and t) is not quite accurate as its deviation from the experimental saturation magnetization is rather high. Other 
parameters like powder characteristics and microstructural properties might need to be considered for multiple linear regression 
analysis. On the other hand, it is obvious that the laser scan speed (v) has a negative contribution to the predicted Ms, same as the 
negative Pearson’s correlation between v and Ms. This indicates that statistically, v has a definite impact on Ms and higher v brings 
about lower Ms when the other laser process parameters are constant. 

As mentioned earlier in this section, soft-magnetic behaviour strongly depends on the microstructural properties such as porosity 
levels, amorphous phase content and crystallite size. Including these data into prediction modelling may produce more accurate results 
in predicting soft-magnetic properties of LPBF-processed Fe-based nanocrystalline alloys. This is because LPBF process parameters 
influence the microstructural development [48]. There are several evidence that decreasing laser power and increasing laser scan 
speed enhances amorphous phase content in the microstructure [42,49,50]. Furthermore, relatively larger hatch spacing and layer 
thickness increases the amorphous phase fraction [42]. In other words, low energy density (E) promotes vitrification [50], decreasing 
coercivity (Hc) [49]. On the other hand, high amorphous phase content (i.e., low E) reduces saturation magnetization (Ms) [42]. 
Nanocrystallization is a solution to maximize Ms without increasing Hc. Increasing P and decreasing v increases crystallite size and 
lowers amorphous phase content, which improves Ms, but worsens Hc. Keeping the mean crystallite size below 200 nm lowers 
coercivity to 130 A/m, where Ms is around 165 Am2/kg [43]. Alternatively, high amorphous phase content (89.6 %) can result in low 
coercivity (397 A/m) [51]. As a result, soft-magnetic behaviour, especially coercivity, is quite difficult to predict based only on process 
parameters. This is likely due to the well-known dependence of coercivity on the evolution of the microstructure [52]. 

To assess the overall accuracy of the multiple regression model, the coefficient of determination (R2) values in Tables 2–4 can be 
examined. R2 indicates the proportion of variance in the outcome variable (bulk density or Ms) that can be predicted based on the 
values of the predictor variables (P, v, h, t and E). For bulk density prediction, R2 values are 0.146 and 0.032 in Tables 2 and 4, 
respectively. This means that with the laser process parameters (P, v, h, t) predictor variables, 14.6 % of the variance can be predicted, 
while only 3.2 % of the variance can be predicted with the energy density predictor variables in the measure of bulk density. The model 
based on laser process parameters explains a larger portion of the variance in the bulk density. In the case of saturation magnetization 
(Ms) prediction, R2 value is 0.061 in Table 3, implying that 6.1 % of the variance can be predicted in the measure of Ms by using the 
multiple linear regression model based on process parameters. 

Furthermore, the comparison between multiple linear regression and tree-based regression models, as presented in Table 5, un-
derscores their differing prediction capabilities and shows that multiple linear regression achieves performance comparable to other 
methods. Additionally, SHAP analysis based on multiple linear regression, as shown in Fig. 3, has a similar observation as Pearson’s 
correlation analysis, further demonstrating its reliability in providing interpretable results. Therefore, due to its ease of imple-
mentation and computational efficiency, multiple linear regression is an ideal choice in scenarios that require rapid model develop-
ment and deployment, or when computational resources are limited. Its simplicity also facilitates more straightforward assessments of 
statistical significance and confidence intervals for predictor variables. This is essential for understanding the robustness of the pre-
dictive factors and for communicating results in an interpretable manner. Therefore, although tree-based methods may excel in some 
complex scenarios, multiple linear regression remains a valuable tool for its clarity and practicality. 

5. Conclusion 

This research employed the bivariate correlational analysis and the multiple linear regression analysis and tree-based methods to 
explore the correlation between laser process parameters and the final material characteristics (bulk density, saturation magnetization 
(Ms) and coercivity (Hc)) of Fe-based nanocrystalline alloys produced through LPBF, using 162 experimental data points as the basis for 
investigation. Each experimental data point contained 5 independent variables; laser power (P), laser scan speed (v), hatch spacing (h), 
layer thickness (t) and energy density (E); and 3 dependent variables; bulk density, Ms and Hc. The bivariate correlational analysis 
showed that while bulk density has a significant correlation with P, v, h and E; Ms and Hc significantly correlate only with v and P, 
respectively. This may be because magnetic properties excessively depend on the microstructure and microstructural evolution is 
affected by not only the laser process parameters studied in this paper but also other process conditions like the oxygen level in the 
building chamber. Moreover, statistically bulk density increases with increasing P, h and E; and decreasing v. In the case of magnetic 
properties, high Ms can be achieved by low v and low Hc resulted from high P. It was concluded that P and v are the main laser process 
parameters, on which h and t depend owing to P and v controlling the melt-pool size. With the help of multiple linear regression 
analysis, the predicted bulk density can be obtained utilizing laser process parameters, replacing the time-consuming and high-cost 
trial and error experiments due to the low error (<1 %) between the mean predicted and experimental values. Despite the higher 
error for Ms was higher (6.16 %), a clear link was observed between Ms and v; the lower v the higher Ms. Further exploration with tree- 
based models and SHAP analysis further verified the effectiveness of multiple linear regression and provided guidance for future 
experiments. These findings show that machine learning was successfully implemented to enhance initial processing parameter se-
lection in LPBF optimization. 
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Merve G. Özden: Writing – review & editing, Writing – original draft, Visualization, Validation, Resources, Project administration, 
Methodology, Funding acquisition, Formal analysis, Data curation, Conceptualization. Xianyuan Liu: Writing – review & editing, 
Visualization, Validation, Supervision, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Tom 
J. Wilkinson: Writing – review & editing, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Meryem S. Üstün-Yavuz: Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal 
analysis, Data curation, Conceptualization. Nicola A. Morley: Writing – review & editing, Supervision, Resources, Project adminis-
tration, Methodology, Conceptualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal relationships which may be considered as potential competing in-
terests:Merve Gizem Ozden reports financial support was provided by Republic of Turkey Ministry of National Education. Merve Gizem 
Ozden reports was provided by The University of Sheffield. If there are other authors, they declare that they have no known competing 
financial interests or personal relationships that could have appeared to influence the work reported in this paper. 

Acknowledgment 

We gratefully thank the University of Sheffield and the Republic of TÜRKİYE Ministry of National Education for financial support. 

Appendix A 

The experimental dataset that was exploited in this research.   

Sample No P (W) v (mm/s) h (mm) t (mm) E (J/mm3) Bulk Density (%) Ms (Am2/kg) Hc (kA/m) 
1 90 1000 0.02 0.05 90 98.94 207.27 1.82 
2 90 1300 0.02 0.05 69.23076923 97.53 164.25 2.39 
3 90 700 0.03 0.05 85.71428571 99 178.86 1.88 
4 90 1000 0.03 0.05 60 98.51 206.38 2.15 
5 90 1300 0.03 0.05 46.15384615 95.64 165.15 1.78 
6 120 1000 0.03 0.05 80 98.14 176.41 1.57 
7 120 1300 0.03 0.05 61.53846154 97.98 191.71 1.16 
8 90 700 0.04 0.05 64.28571429 98.99 177.42 1.65 
9 90 1000 0.04 0.05 45 98.13 180.57 2.30 
10 120 700 0.04 0.05 85.71428571 99.25 205.13 2.46 
11 120 1000 0.04 0.05 60 98.29 191.25 2.60 
12 120 1300 0.04 0.05 46.15384615 97.76 172.33 1.92 
13 90 700 0.05 0.05 51.42857143 97.46 188.27 1.92 
14 120 700 0.05 0.05 68.57142857 98.5 191.14 2.27 
15 120 1000 0.05 0.05 48 95.7 179.24 2.07 
16 120 1300 0.05 0.05 36.92307692 92.4 161.61 1.50 
17 150 700 0.05 0.05 85.71428571 96.61 163.12 1.81 
18 150 1000 0.05 0.05 60 98.21 164.03 1.71 
19 90 700 0.06 0.05 42.85714286 97.68 167.68 1.62 
20 120 700 0.06 0.05 57.14285714 98.83 193.11 2.33 
21 120 1300 0.04 0.05 46.15384615 97.76 172.33 1.92 
22 90 1300 0.03 0.05 46.15384615 95.64 165.15 1.78 
23 120 700 0.06 0.05 57.14285714 98.83 193.11 2.33 
24 120 1000 0.03 0.07 57.14285714 98.96 175.65 1.54 
25 150 1000 0.05 0.05 60 98.21 164.03 1.71 
26 90 1000 0.05 0.03 60 98.22 180.38 2.11 
27 90 1000 0.03 0.05 60 98.51 206.38 2.15 
28 120 1000 0.04 0.05 60 98.29 191.25 2.60 
29 90 700 0.03 0.07 61.2244898 98.7 199.2 1.89 
30 120 700 0.04 0.07 61.2244898 98.93 153.74 1.81 
31 150 700 0.05 0.07 61.2244898 99.44 205.89 1.88 
32 120 1300 0.03 0.05 61.53846154 97.98 191.71 1.16 
33 120 1300 0.05 0.03 61.53846154 97.84 173.41 1.74 
34 90 700 0.04 0.05 64.28571429 98.99 177.42 1.65 
35 90 1000 0.02 0.07 64.28571429 97.69 167.69 1.40 
36 90 700 0.06 0.03 71.42857143 97.74 199.28 1.75 
37 150 1300 0.03 0.07 54.94505495 99.38 175.94 1.75 
38 120 1300 0.04 0.03 76.92307692 98.66 161.14 2.14 

(continued on next page) 
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(continued ) 
Sample No P (W) v (mm/s) h (mm) t (mm) E (J/mm3) Bulk Density (%) Ms (Am2/kg) Hc (kA/m) 
39 150 1300 0.05 0.03 76.92307692 98.46 139.2 2.30 
40 120 1000 0.05 0.03 80 97.87 169.4 1.91 
41 120 1000 0.03 0.05 80 98.14 176.41 1.57 
42 90 700 0.05 0.03 85.71428571 97.33 195.24 2.76 
43 90 700 0.03 0.05 85.71428571 99 178.86 1.88 
44 120 700 0.04 0.05 85.71428571 99.25 205.13 2.46 
45 90 1000 0.04 0.03 75 98.57 167.49 1.77 
46 90 1300 0.04 0.03 57.69230769 97.57 173.14 1.41 
47 100 1300 0.04 0.03 64.1025641 97.79 165.87 1.72 
48 120 1300 0.04 0.03 76.92307692 98.66 161.14 2.14 
49 90 700 0.05 0.03 85.71428571 97.33 195.24 2.76 
50 90 1000 0.05 0.03 60 98.22 180.38 2.11 
51 100 1000 0.05 0.03 66.66666667 97.92 150.61 1.80 
52 120 1000 0.05 0.03 80 97.87 169.4 1.91 
53 120 1300 0.05 0.03 61.53846154 97.84 173.41 1.74 
54 150 1300 0.05 0.03 76.92307692 98.46 139.2 2.30 
55 90 700 0.06 0.03 71.42857143 97.74 199.28 1.75 
56 100 700 0.06 0.03 79.36507937 97.77 167.04 1.94 
57 100 1000 0.06 0.03 55.55555556 97.84 174.8 1.74 
58 90 1000 0.02 0.07 64.28571429 97.69 167.69 1.40 
59 90 1300 0.02 0.07 49.45054945 96.64 176.65 1.31 
60 120 1300 0.02 0.07 65.93406593 99.27 206.29 1.59 
61 90 700 0.03 0.07 61.2244898 98.7 199.2 1.89 
62 120 700 0.03 0.07 81.63265306 99.23 198.38 1.65 
63 120 1000 0.03 0.07 57.14285714 98.96 175.65 1.54 
64 150 1000 0.03 0.07 71.42857143 99.32 178.79 1.79 
65 150 1300 0.03 0.07 54.94505495 99.38 175.94 1.75 
66 120 700 0.04 0.07 61.2244898 98.93 153.74 1.81 
67 150 1000 0.04 0.07 53.57142857 99.13 182.95 1.94 
68 120 700 0.05 0.07 48.97959184 98.51 161.58 2.05 
69 150 700 0.05 0.07 61.2244898 99.44 205.89 1.88 
70 70 900 0.02 0.05 77.77777778 99.38 176.35 1.75 
71 70 1000 0.02 0.05 70 97.50 180.88 2.60 
72 70 1100 0.02 0.05 63.63636364 96.43 161.53 2.38 
73 80 900 0.02 0.05 88.88888889 97.12 164.39 1.87 
74 80 1000 0.02 0.05 80 97.75 174.6 1.91 
75 80 1100 0.02 0.05 72.72727273 98.44 168.42 1.87 
76 90 900 0.02 0.05 100 96.23 167.36 1.96 
77 90 1000 0.02 0.05 90 97.19 165.13 1.70 
78 90 1100 0.02 0.05 81.81818182 98.02 192.77 1.67 
79 70 900 0.03 0.05 51.85185185 98.61 182.02 1.35 
80 70 1000 0.03 0.05 46.66666667 98.05 211.91 2.39 
81 70 1100 0.03 0.05 42.42424242 98.11 176.48 1.47 
82 80 900 0.03 0.05 59.25925926 97.06 170.9 1.65 
83 80 1000 0.03 0.05 53.33333333 97.27 181.27 2.07 
84 80 1100 0.03 0.05 48.48484848 98.50 175.93 2.34 
85 90 900 0.03 0.05 66.66666667 96.86 165.06 2.14 
86 90 1000 0.03 0.05 60 96.17 170.92 1.82 
87 90 1100 0.03 0.05 54.54545455 96.43 214.85 2.44 
88 70 900 0.04 0.05 38.88888889 98.41 175.21 1.90 
89 70 1000 0.04 0.05 35 98.13 169.78 2.10 
90 70 1100 0.04 0.05 31.81818182 97.87 161.41 2.54 
91 80 900 0.04 0.05 44.44444444 96.53 181.57 1.71 
92 80 1000 0.04 0.05 40 96.42 179.06 1.88 
93 80 1100 0.04 0.05 36.36363636 96.21 191.86 2.07 
94 90 900 0.04 0.05 50 97.79 165.83 1.55 
95 90 1000 0.04 0.05 45 97.15 166.73 2.20 
96 90 1100 0.04 0.05 40.90909091 95.40 180.61 2.47 
97 90 900 0.02 0.06 83.33333333 99.15 170.81 1.58 
98 90 1000 0.02 0.06 75 98.26 166.27 1.79 
99 90 1100 0.02 0.06 68.18181818 97.06 168.87 1.73 
100 100 900 0.02 0.06 92.59259259 98.18 167.33 1.99 
101 100 1000 0.02 0.06 83.33333333 97.96 178.47 1.78 
102 100 1100 0.02 0.06 75.75757576 97.87 166.37 1.63 
103 110 900 0.02 0.06 101.8518519 97.96 170.47 1.96 
104 110 1000 0.02 0.06 91.66666667 97.26 192.71 1.64 
105 110 1100 0.02 0.06 83.33333333 96.97 174.65 1.70 
106 90 900 0.03 0.06 55.55555556 97.42 164.72 1.67 
107 90 1000 0.03 0.06 50 97.08 203.66 1.55 
108 90 1100 0.03 0.06 45.45454545 96.94 175.19 2.39 

(continued on next page) 
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(continued ) 
Sample No P (W) v (mm/s) h (mm) t (mm) E (J/mm3) Bulk Density (%) Ms (Am2/kg) Hc (kA/m) 
109 100 900 0.03 0.06 61.72839506 97.63 184.03 1.55 
110 100 1000 0.03 0.06 55.55555556 97.42 177.6 1.80 
111 100 1100 0.03 0.06 50.50505051 96.84 170.09 1.90 
112 110 900 0.03 0.06 67.90123457 97.75 188.18 1.85 
113 110 1000 0.03 0.06 61.11111111 97.68 169.86 1.81 
114 110 1100 0.03 0.06 55.55555556 96.24 171.82 1.61 
115 90 900 0.04 0.06 41.66666667 98.35 176.62 1.87 
116 90 1000 0.04 0.06 37.5 96.50 178.81 2.72 
117 90 1100 0.04 0.06 34.09090909 94.28 185.63 2.24 
118 100 900 0.04 0.06 46.2962963 97.30 192.92 1.79 
119 100 1000 0.04 0.06 41.66666667 96.38 167.35 2.66 
120 100 1100 0.04 0.06 37.87878788 96.08 167.44 1.75 
121 110 900 0.04 0.06 50.92592593 96.49 172.6 1.75 
122 110 1000 0.04 0.06 45.83333333 97.04 173.12 1.92 
123 110 1100 0.04 0.06 41.66666667 96.47 172.41 2.24 
124 110 900 0.02 0.07 87.3015873 97.52 209.13 2.00 
125 110 1000 0.02 0.07 78.57142857 97.38 167.09 1.75 
126 110 1100 0.02 0.07 71.42857143 97.35 168.74 2.53 
127 120 900 0.02 0.07 95.23809524 96.06 186.99 1.84 
128 120 1000 0.02 0.07 85.71428571 95.05 171.65 2.17 
129 120 1100 0.02 0.07 77.92207792 94.62 175.56 1.98 
130 130 900 0.02 0.07 103.1746032 94.65 181.7 2.56 
131 130 1000 0.02 0.07 92.85714286 95.25 166.71 2.40 
132 130 1100 0.02 0.07 84.41558442 95.75 179.71 1.92 
133 110 900 0.03 0.07 58.2010582 96.16 169.21 1.91 
134 110 1000 0.03 0.07 52.38095238 97.98 200.47 1.90 
135 110 1100 0.03 0.07 47.61904762 98.20 156.72 2.43 
136 120 900 0.03 0.07 63.49206349 97.45 162.95 1.63 
137 120 1000 0.03 0.07 57.14285714 97.68 167.6 1.87 
138 120 1100 0.03 0.07 51.94805195 98.01 163.38 1.96 
139 130 900 0.03 0.07 68.78306878 96.90 190.14 1.80 
140 130 1000 0.03 0.07 61.9047619 97.52 211.39 1.92 
141 130 1100 0.03 0.07 56.27705628 97.90 183.79 1.72 
142 110 900 0.04 0.07 43.65079365 98.38 162.32 1.72 
143 110 1000 0.04 0.07 39.28571429 96.89 168.8 1.89 
144 110 1100 0.04 0.07 35.71428571 95.61 183.24 1.73 
145 120 900 0.04 0.07 47.61904762 97.87 177.4 1.98 
146 120 1000 0.04 0.07 42.85714286 97.59 173.14 2.07 
147 120 1100 0.04 0.07 38.96103896 96.65 160.99 1.87 
148 130 900 0.04 0.07 51.58730159 97.81 169.79 1.81 
149 130 1000 0.04 0.07 46.42857143 97.94 167.32 1.82 
150 130 1100 0.04 0.07 42.20779221 96.91 165.33 1.75 
151 50 500 0.02 0.05 100 98.22 161.66 1.76 
152 50 600 0.02 0.05 83.33333333 97.68 189.96 2.01 
153 50 700 0.02 0.05 71.42857143 97.07 163.94 2.02 
154 40 500 0.02 0.05 80 96.85 164.82 1.75 
155 40 600 0.02 0.05 66.66666667 96.76 188.81 1.59 
156 40 700 0.02 0.05 57.14285714 96.5 165.39 1.82 
157 30 500 0.02 0.05 60 96.36 165.16 2.14 
158 30 600 0.02 0.05 50 95.51 183.35 1.79 
159 30 700 0.02 0.05 42.85714286 94.89 186.61 5.14 
160 50 500 0.03 0.05 66.66666667 98.63 179.26 2.01 
161 50 600 0.03 0.05 55.55555556 97.43 214.08 1.47 
162 50 700 0.03 0.05 47.61904762 96.5 164.76 1.99  
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M.G. Özden et al.                                                                                                                                                                                                      

http://refhub.elsevier.com/S2405-8440(24)11078-X/sref7
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref7
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref8
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref9
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref9
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref10
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref10
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref11
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref11
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref12
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref13
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref14
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref14
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref15
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref16
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref16
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref17
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref18
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref19
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref19
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref20
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref21
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref21
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref22
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref22
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref23
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref23
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref24
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref25
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref25
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref26
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref26
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref27
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref27
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref28
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref28
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref29
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref29
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref30
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref30
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref31
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref31
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref32
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref32
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref33
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref33
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref34
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref35
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref35
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref36
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref36
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref37
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref37
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref38
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref39
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref40
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref40
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref41
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref42
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref42
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref43
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref43
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref44
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref45
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref45
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref46
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref47
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref47
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref48
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref49
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref49
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref50
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref50
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref51
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref51
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref52
http://refhub.elsevier.com/S2405-8440(24)11078-X/sref52

	Predictive modelling of laser powder bed fusion of Fe-based nanocrystalline alloys based on experimental data using multipl ...
	1 Introduction
	2 Experimental procedure
	3 Results
	3.1 Relationship between the process parameters and the outcome variables
	3.2 Prediction modelling
	3.2.1 Prediction modelling using process parameters
	3.2.2 Prediction modelling using energy density

	3.3 Comparative analysis of different regression methods
	3.4 SHAP analysis

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A Acknowledgment
	References


