
This is a repository copy of Unsupervised transfer aided lifelong regression for learning 
new tasks without target output.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209694/

Version: Accepted Version

Article:

Liu, T., Wang, X., Yang, P. orcid.org/0000-0002-8553-7127 et al. (2 more authors) (2024) 
Unsupervised transfer aided lifelong regression for learning new tasks without target 
output. IEEE Transactions on Knowledge and Data Engineering, 36 (9). pp. 4981-4995. 
ISSN 1041-4347 

https://doi.org/10.1109/TKDE.2024.3372462

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal 
article published in IEEE Transactions on Knowledge and Data Engineering is made 
available via the University of Sheffield Research Publications and Copyright Policy under 
the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), 
which permits unrestricted use, distribution and reproduction in any medium, provided the 
original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Unsupervised Transfer Aided Lifelong
Regression For Learning New Tasks without

Target Output
Tong Liu, Member, IEEE , Xulong Wang, Po Yang, Senior Member, IEEE , Sheng Chen, Life Fellow, IEEE ,
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✦

Abstract—As an emerging learning paradigm, lifelong learning solves

multiple consecutive tasks based upon previously accumulated knowl-

edge. When facing with a new task, existing lifelong learning approaches

need both input and desired output data to construct task models before

knowledge transfer can succeed. However, labeling each task requires

extensive labors and time, which can be prohibitive for real-world lifelong

regression problems. To reduce this burden, we propose to incorporate

unsupervised feature into lifelong regression via coupled dictionary

learning, enabling to learn new tasks without target output data. Specif-

ically, the input data for each task is encoded as unsupervised feature

while both input and output data are used to construct task predictor.

The unsupervised feature is linked with task predictor through two dic-

tionaries that are coupled by a joint sparse representation. Because of

the learned coupling between the two spaces, the task predictor for the

new coming task can be recovered given only the input data. We further

incorporate active task selection into this framework, enabling actively

choosing tasks to learn in a task-efficient manner. Three case studies

are used to evaluate the effectiveness of our method, in comparison

with existing lifelong learning approaches. Results show that our method

is able to accurately predict new tasks through unsupervised transfer,

eliminating the need to label tasks before constructing the predictor.

Index Terms—Lifelong regression, unsupervised feature, coupled dic-

tionary learning, knowledge transfer, active task selection

1 INTRODUCTION

Transfer learning and multi-task learning methods reduce
the amount of experience needed to learn individual tasks
by reusing knowledge from other related tasks [1], [2]. This
knowledge transfer significantly improves learning effi-
ciency and modeling performance, as compared to learning
tasks in isolation following the traditional machine learning
paradigm. Transfer learning methods transfer knowledge
from source tasks to help learning new task [3], [4], [5], [6],
which however fail to optimize the performance over all the
tasks, while multi-task learning methods jointly learn all the
observed tasks by sharing knowledge [7], [8], [9], [10], [11],
but they cannot learn new unseen task.
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To combat both limitations of transfer learning and
multi-task learning, lifelong learning as a new research
paradigm, was proposed to learn consecutive new task
based upon previously built knowledge as well as to au-
tomatically update the past knowledge accumulated from
the past encountered tasks upon the learning of the new
task [12]. This technique is particularly suitable to solve
some scenarios with multiple consecutive tasks over long-
time scales [13], [14], [15], [16], [17], such as applications
of sentiment classification, robotic control, natural language
processing and diseases modeling [12]. It is widely under-
stood that a fundamental principle for better learning is
to incorporate available prior knowledge in the learning
process [18], [19], [20]. Anything learned from a previous
learning task can be regarded as a piece of knowledge,
and this knowledge can be reserved to help future learning.
This is the core idea of lifelong learning. More specifically,
lifelong learning maintains a knowledge base which stores
the knowledge learned in the previous learning tasks. When
learning a new task, the knowledge accumulated provides
available prior knowledge for the current learning task.
New knowledge acquired in the current learning process
is then used to update the knowledge base. For example, a
student who has never studied psychology before wants to
study it. This can be regarded as a new task. The student has
the past education of learning philosophy, literature, and
other subjects. Knowledge the student gained in these past
learning tasks are stored in the student’s knowledge base,
i.e., the student’s brain, and these ‘prior’ knowledge can
help the student in learning the new subject psychology.
New knowledge that the student will gain in studying
psychology in turn will enhance the student’s knowledge
base. It can be seen that lifelong learning imitates human
learning.

Among lifelong learning community, the efficient life-
long learning algorithm (ELLA) framework is one of the
most popular approaches [21], [22]. The ELLA factorizes
learned task models into a shared latent dictionary as the
knowledge base to facilitate knowledge transfer as tasks
arrive consecutively. When new task arrives, the ELLA
transfers knowledge through the shared dictionary to learn
new model, and refines the dictionary with the knowl-
edge learned from current task. By updating the dictionary
over time, newly acquired knowledge is incorporated into
the knowledge base, thereby improving previously learned



2

models’ performance. The ELLA framework was first cre-
ated for regression and classification, and it was later devel-
oped for policy gradient reinforcement learning (PG-ELLA)
[23], [24], [25], [26], [27]. By replacing the task model with
policy, the PG-ELLA enables to learn decision making tasks
consecutively, transferring knowledge to accelerate learn-
ing new policy. The work of [28] further extended ELLA
from a single agent to a network of agents, and proposed
the collective lifelong learning algorithm to enable sharing
knowledge in a distributed manner for multiple agents. Dif-
ferent from ELLA, another typical lifelong learning model is
deep neural network, where catastrophic forgetting is the key
issue in its continuous learning process. Inspired by synaptic
consolidation in human brains, elastic weight consolidation
(EWC) was proposed to combat the catastrophic forgetting
problem in deep networks by restricting the change of
important neural network weights of previous tasks when
learning new task [29]. The EWC has been successfully
applied to object detection [30], neural machine translation
[31], image generation [32], and so on.

One notable issue is that lifelong learning in the above
problem setting is a passive process, in which the leaner
must learn every encountering task and it also has no
control over the learning order for tasks. In some situations,
the agent may have a pool of candidate tasks to learn, and
it can intelligently choose the next task to learn in order to
maximize the overall performance. With this goal, the work
[33] incorporates active curriculum selection strategy into
ELLA, enabling the learner to choose tasks in certain order
so as to maximize future learning performance using as
few tasks as possible. The authors of [33] proposed several
active task selection mechanisms for selecting the next best
task, and demonstrated that the diversity heuristic method
(ELLA-diver) has superior efficiency to build knowledge
library over other methods. Considering a different active
task selection, the work [34] integrates outlier detection into
lifelong learning so as to selectively learn the next task based
on the tasks’ importance. By either choosing tasks in certain
order or selectively choosing important tasks to learn, both
these methods learn in a task-efficient manner, which is
particularly important when dealing with massive tasks.

While above lifelong learning methods demonstrate out-
standing performance in many applications, one important
preliminary need is to gather sufficient both input and
desired output data for the new coming task and charac-
terize task relationships. For lifelong regression problems,
desired output is also referred to as target output. When
new task arrives, the learner requires sufficient training data
of both input and target output to identify task relationships
before bootstrapping a model via transfer. This need for
desired output data imposes a serious challenge for prac-
tical lifelong regression problems, as persistent manual data
annotation for every new coming task is time-consuming
and economically costly, and often the leaner is expected to
learn new task rapidly without the delay to wait for labeling
task. To overcome this restriction, one famous early work
of [35] incorporates high-level task descriptors into lifelong
reinforcement learning (TaDeLL), and use both task descrip-
tors and training data to model inter-task relationships. The
results of [35] show that using task descriptors improves the
performance of learned policies, and moreover, it enables

predicting policy for new task without training data via
zero-shot transfer given only task descriptors. TaDeLL was
further extended for regression problem in [36], where task
model can be predicted given only descriptors for new task.
This ‘learning without training data’ seems very appealing.
But the fact is that TaDeLL requires domain-specific task
descriptors that must characterize the underlying dynamics
of data in individual tasks well. For instance, the work
[36] used the engineering system’s basic parameters, such
as length, mass, damping constant, etc., as task descrip-
tors for the engineering system considered, because these
parameters define the system’s underlying dynamics and
have a close relation to the data characteristics. However,
for most real-world tasks, seeking such appropriate and uni-
fied descriptors to identify different tasks requires in-depth
cross-domain knowledge, which is generally impossible to
achieve. Moreover, inaccurate task descriptors will lead to
wrong task model and degrade the achievable learning
performance considerably. Hence, TaDell is not generally
applicable to many applications.

Consequently, to our best knowledge, how to efficiently
utilize large amount of unlabeled data in characterizing and
learning each consecutive task with improved performance
is an important challenge for the lifelong learning commu-
nity. This motivates our current work to develop an effective
lifelong regression model that enables to learn new task
without target output data, thus reducing the burden for
labeling every coming task. We explore the use of input
data to achieve unsupervised transfer for learning new task
without desired output. Our approach to incorporate input
information into lifelong regression is general, as it does not
need domain-specific task descriptors that require human
expert. Instead, we encode input data as feature vectors that
identify each task and treat these unsupervised features as
side information to augment task predictor on the individ-
ual tasks. Similar to [35], [36], [37], we use coupled dictio-
nary learning to link the unsupervised feature space with
the task predictor’s parameter space, where the two spaces
are linked through the two dictionaries that are coupled by
the same sparse coding. Because of the learned coupling
between the two spaces, the unsupervised features act as
backup to the task predictor, enabling the learner to accu-
rately construct predictors for the unseen tasks given only
their unsupervised features. This capacity is very important
in the online setting of lifelong regression process. It enables
the agent to rapidly learn new tasks through unsupervised
transfer from the previously learned tasks, without the need
to first label the future tasks for collecting the target output
data. To make our lifelong model learns in a task-efficient
manner, we further incorporate active task selection into this
framework. Three case studies, 1) school examination score
prediction, 2) Parkinson disease symptom score prediction,
and 3) Alzheimer disease progression modeling, are used
to demonstrate the effectiveness of the proposed scheme,
in comparison with existing lifelong learning approaches.
Extensive experiments demonstrate that our method can
accurately predict the new task using only input data via
unsupervised transfer.

Notably, it should be emphasize that our proposed un-
supervised transfer aided lifelong learning differs from the
unsupervised transfer learning or domain adaptation. The



3

goal of unsupervised domain adaptation is to train a single
model for a target domain or task with unlabeled data by
transferring knowledge from a source task in which desired
output data is accessible [38], [39], [40]. These methods
usually consider only a single target task, and they fail to
learn in a lifelong setting where multiple tasks are acquired
sequentially over long-time scales. Unlike the traditional
unsupervised domain adaptation methods that are only re-
stricted to single-source single-target, the recently emerged
multi-target domain adaptation are able to deal with multi-
ple domains [41], [42], [43], [44]. But they still fail to learn
in a continual manner. Another related learning paradigm
is continual learning [45]. The continual learning aims to
address the catastrophic forgetting problem in which the
model is likely to forget the past learned tasks when encoun-
tering new tasks. Existing continual learning methods use
either model regularization or experience replay to tackle
catastrophic forgetting [29], [46]. By incorporating continual
learning mechanism into unsupervised domain adaptation,
the recent continual domain adaptation is most similar to
our problem setting. In continual domain adaptation, the
unlabeled or labeled target task data are received in stream-
ing batches, and the model is continuously adapted with
each batch of target data [47], [48], [49], [50], [51]. Note that
the continual domain adaptation aims to learn adaptively
to deal with domain shift when encountering new unseen
tasks. By contrast, our method enables to learn new task
adaptively while in the meantime optimize the performance
of overall encountered tasks by updating the accumulated
knowledge. A comparison of various learning paradigms
is tabulated in Table. 1. Moreover, the continual domain
adaptation methods only focus on object recognition or
classification, and they are not applicable for regression
learning [47], [48]. Although the existing lifelong learning
approaches, such as ELLA [22] and TaDeLL [36] can be used
for regression problem, they fail to learn and predict new
consecutive tasks using solely unannotated data.

It is worth recapping that although TaDell [36] is the
most similar to our method, its capacity of learning with-
out data heavily depends on finding an appropriate task
descriptor. As aforementioned, seeking such appropriate
task descriptors typically requires in-depth expert knowl-
edge, which are generally unavailable for most real-world
applications. By contrast, our method is immune to this
restriction, and it only requires unlabeled data that is easily
to obtain for new tasks. Our method can be considered as an
improvement over existing lifelong learning methods with
the key idea of unsupervised transfer. Specifically, this paper
provides the following contributions:

1) Based on coupled dictionary learning, we incorporate
unsupervised features into lifelong learning that use a
factorized representation of the learned knowledge to
facilitate transfer and improve predictive performance.

2) Most importantly, we show that our proposed method
is able to accurately modeling and predict new con-
secutive tasks using solely unannotated data through
unsupervised transfer.

3) The proposed scheme is integrated with active task
selection mechanism, which enables further improving
learning efficiency when encountering massive tasks.

4) We analysis the method theoretically, and use three real-
world datasets to validate its effectiveness.

The rest of this paper is organized as follows. Section 2
reviews the background on lifelong learning. Section 3
presents the proposed unsupervised transfer aided lifelong
regression framework in detail. Section 4 summarizes our
proposed algorithm with theoretical analysis. Section 5 eval-
uates the proposed method with three case studies. Section 5
concludes the paper with remarks about future works.

2 LIFELONG MACHINE LEARNING

2.1 Problem Definition

In the lifelong regression setting, the learner faces multiple
consecutive regression tasks

{
Z
(1),Z(2), · · · ,Z(Tmax)

}
, and

must rapidly learn each new task by building upon its previ-
ous knowledge. Each regression task Z

(t) =
{
f (t),x(t), y(t)

}

is specified by a function mapping f (t) : x(t) 7→ y(t)

from the input space x(t) ∈ R
d onto the output space

y(t) ∈ R. At each time step t, the agent receives a batch

of nt labeled training data
(
x
(t)
i , y

(t)
i

)nt

i=1
for learning task

t, where x
(t)
i and y

(t)
i denote the ith training input sample

and the associated desired output sample, respectively, for
task t.

Let T denote the number of tasks that the agent has
encountered so far. Its goal is to consecutively construct a

set of task models or predictors
{
f̂ (1), · · · , f̂ (T )

}
such that

each f̂ (t) approximates f (t) to make accurate prediction on

new data, and new model f̂ (t) can be acquired efficiently
when the agent encountering new task t. Ideally, knowl-
edge learned from previous tasks

{
Z
(1), . . . ,Z(T−1)

}
should

accelerate training and improve performance on new task
Z
(T ).

It can be seen that the lifelong learning is very different
from existing learning frameworks. In the traditional learn-
ing framework, the learner has multiple batches of data
generated by the same underlying process, and therefore
the learner may use the multiple models identified from the
previously encountered multiple data batches to predict the
new batch of data, using for example, selective ensemble
regression. Lifelong learning represents a much more gen-
eral learning setting. Every task can represent a different
batch of data, characterized by its own task definition and
associated underlying data generation mechanism. Hence,
it is necessary to construct a new task model for each

TABLE 1
A comparison of various learning paradigms.

Multi-task learning Continual domain adaptation Unsupervised domain adaptation Our method

Optimizing performance over All tasks Target tasks Target tasks All tasks
Learning tasks consecutively No Yes No Yes
Computational cost High Low Low Low
Labeled data for new tasks Yes Yes No No
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coming new task, and the task data can be discarded after
learning of the new model. On the other hand, all the
tasks share some common characteristics or have the shared
knowledge, which can be exploited to facilitate faster and
better learning of the new task. This is the essence of the
lifelong learning.

2.2 Efficient Lifelong Learning Algorithm

The ELLA [22] was developed to operate in this lifelong
learning setting. To be specific, the ELLA learns and main-
tains a shared knowledge library L ∈ R

d×k, which forms a
basis for all task models and facilitates knowledge transfer
between tasks. For each task t, the ELLA learns a model
f̂ (t)(x) = f̂(x;θ(t)) that is parametrized by a d-dimensional
task-specific parameter vector θ(t). This model parameter is
a linear combination of the columns of L using the sparse
coefficients s(t) ∈ R

k as θ(t) = Ls(t). The dictionary L

stores chunks of knowledge that are shared for all the tasks,
and the sparse code s(t) extracts the relevant pieces of
knowledge for a particular task t. Hence, this model pa-
rameter factorization enables effective knowledge transfer
among tasks.

Given the training data
(
x
(t)
i , y

(t)
i

)nt

i=1
for each task t, the

ELLA minimizes the following objective function:

min
L,S

1

T

T∑

t=1

(
J
(
θ(t)

)
+ µ

∥∥s(t)
∥∥
1

)
+ λ ∥L∥

2
F , (1)

where J
(
θ(t)

)
= 1

nt

∑nt

i=1 J
(
y
(t)
i − f̂

(
x
(t)
i ;Ls(t)

))
with

J (•) being a squared-loss function for regression problem

ŷ
(t)
i = f̂

(
x
(t)
i ;Ls(t)

)
, S =

[
s(1) s(2) · · · s(T )

]
is the matrix

consisting of all the sparse coefficient vectors, and the L1

norm is used to control the sparsity of s(t) with the regu-
larization parameter µ, while ∥•∥F is the Frobenius norm,
which regularizes the complexity of dictionary L with the
regularization parameter λ. This problem can be solved
in a batch learning setting for off-line multi-task learning
framework [52].

To solve it in a lifelong learning setting, the ELLA tasks
a second-order Taylor expansion to approximate the objec-

tive around an estimate θ̂(t) = argmin
θ

1
nt

∑nt

i=1 J
(
θ(t)

)
=

1
nt

∑nt

i=1 J
(
y
(t)
i − f̂

(
x
(t)
i ;Ls(t)

))
of the single-task model

parameters for each task, and updates only the coefficients
s(t) for the current task at each time step. This process
reduces the optimization (1) to the problem of sparse coding
the single-task modeling in the shared dictionary L, and en-
ables solving L and S efficiently by the following recursive
updating rules that constitute the ELLA:

s(t) =argmin
s

∥∥∥θ̂(t) −Ls
∥∥∥
2

Υ(t)
+ µ ∥s∥1 , (2)

A =A+
(
s(t)

(
s(t)

)T)
⊗Υ

(t), (3)

b =b+ vec
[
s(t) ⊗

((
θ̂(t)

)T
Υ

(t)
)]

, (4)

L = L+mat

[(
1

T
A+ λI(kd)

)−1
1

T
b

]

d×k

, (5)

where ∥v∥
2
A

= vTAv, the elements of L are initialized by

randomly taking values from (0, 1), Υ(t) = Υ
(
θ̂(t)

)
is the

Hessian matrix of the loss J
(
θ̂(t)

)
,⊗ denotes the Kronecker

product, and A ∈ R
(kd)×(kd) is initialized to the all zero-

elements matrix, while b ∈ R
kd is initialized to the all zero-

elements vector, the vector stacking operator vec[•] stacks
the columns of matrix one by one to form a vector, I(kd)
is the (kd) × (kd) identity matrix, and the matrix forming
operator mat[•]d×k converts a (dk)-dimensional vector into
a (d× k)-dimensional matrix.

Each time when new task t arrives, this method re-
quires the input-output data

(
x
(t)
i , y

(t)
i

)nt

i=1
to first estimate

the model parameters θ̂(t) before updating s(t) and L.
However, labeling data for every upcoming task is time-
consuming, and most of the time we only have unlabeled
or input data at the first glance of a new task. In order to
eliminate this need for desired output data, in this paper,
we propose to incorporate unsupervised feature into the
learning process, and hence to enable unsupervised transfer
on new tasks. Specifically, upon learning a few tasks with
complete input-output data, future task models can be con-
structed given only input information.

3 UNSUPERVISED TRANSFER AIDED LIFELONG

REGRESSION

3.1 Overview of Proposed Framework

For task t, define its training input data matrix X(t) ∈ R
d×nt

by X(t) =
[
x
(t)
1 x

(t)
2 · · ·x

(t)
nt

]
and the corresponding desired

output vector y(t) ∈ R
nt as y(t) =

[
y
(t)
1 y

(t)
2 · · · y

(t)
nt

]T
. As

depicted in Fig. 1, our proposed framework follows the
lifelong learning setting. During the agent’s lifetime, mas-
sive tasks are received consecutively. As a new task arrives,
knowledge accumulated from the previous tasks is selec-
tively transferred to learn the new task, and newly acquired
knowledge from the current task is stored in the knowl-
edge base for future use. In order to achieve unsupervised
knowledge transfer on new task, we incorporate unsuper-
vised feature into lifelong learning via sparse coding with a
coupled dictionary, enabling the unsupervised feature and
task predictor to augment each other. For each task with
complete training data, the task predictor is constructed by
input and output data, while the unsupervised feature is
encoded only by input data. In order to link two feature
spaces, we employ two dictionaries that act as knowledge
repositories for the two spaces, and they are coupled by a
joint sparse representation. Because of the learned coupling,
the predictor for a new task can be reconstructed given only
the unsupervised feature. This capacity of learning new task
predictors without desired output eliminates the need to
labeling new tasks in lifelong regression process.

The above lifelong learning framework is a passive pro-
cess, in which the learner has no control over the order
of the tasks to learn. In some situations, the learner has
knowledge of the next several tasks that it needs to learn.
Motivated by [33], we further extend this framework to
active lifelong regression by incorporating a similar active
task selection mechanism. Hence, our model can choose the
next task to learn from a pool of candidate tasks in order to
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Fig. 1. Illustration of unsupervised transfer aided lifelong regression
process.

maximize future learning performance. In the following, we
will present each component of our algorithm in details.

3.2 Task Predictor

Ideally, each task has complete training input and output
data

(
X(t),y(t)

)
that enables the construction of the task

predictor f̂(X;θ) = XTθ. We construct the task predictor
by the regularized least square (LS) estimator and the model
parameter parameter is thus computed as

θ̂(t) =
(
X(t)

(
X(t)

)T
+ βId

)−1

X(t)y(t), (6)

where β is a small positive regularization parameters, e.g.,
β = 10−6. The Hessian Υ

(t) of the squared-loss function

J (θ(t)) around the single task solution θ̂(t) is given by

Υ
(t) =

1

2nt

(
X(t)

(
X(t)

)T
+ βId

)
, (7)

For each task with complete training input and output data,

we first compute the predictor’s parameters θ̂(t) and Hes-
sian Υ

(t) before performing knowledge transfer in learning
process.

3.3 Unsupervised Feature

When new task t arrives, it is often easy to obtain unlabeled
or input data X(t) while target output data y(t) are difficult
to acquire quickly. Although input data itself cannot be used
to construct task predictor, it also contains vital information
that identifies each task. Our goal is to use the input data
to supplement the task predictor, treating it as a backup to
learn new task when output data is unavailable.

To incorporate input information into the learning pro-
cedure, the input data matrix X(t) ∈ R

d×nt needs to be
transformed into a d-dimensional feature vector that can
link with the predictor’s parameter vector θ ∈ R

d. In order
to link these two spaces, therefore, we transform the origi-
nal input data matrix X(t) into the d-dimensional feature
vector φ(X(t)), where φ(•) is an operator that encodes
a matrix as a vector. Express the i-th column of X(t) as

x
(t)
i =

[
x
(t)
1,i x

(t)
2,i · · ·x

(t)
d,i

]T
. The simplest way to achieve this

encoding is to compute the mean value of each row of X(t),
yielding

φ(X(t)) =
[
x̄
(t)
1 x̄

(t)
2 · · · x̄

(t)
d

]T
= x̄(t) ∈ R

d, (8)

where x̄
(t)
j = 1

nt

∑nt

i=1 xj,i, 1 ≤ j ≤ d. Hence, φ(X(t)) is the
unsupervised feature for task t. Our lifelong learner uses
this feature vector to represent each task, treating it as side
information to augment task predictor for individual tasks.

3.4 Coupled Dictionary Optimization

After obtaining the predictor parameter vector θ̂(t) and the
unsupervised feature x̄(t) = φ(X(t)) for each task, the
next step is to link the two feature spaces, so that each
can augment the learning of the other. Motivated by [35],
[36], we link the two feature spaces through the dual dic-
tionaries that are coupled by a joint sparse representation.
The original idea of using coupled dictionary learning is
to link the high-level task descriptions with the learned
model to achieve zero-shot transfer for new tasks. We use
the coupled dictionaries to link the task predictor’s space
with the unsupervised feature’ space, so as to make full use
of input information and achieve learning new task without
output data.

Recall that the lifelong learning approach factorizes the
predictor parameters θ(t) for each task as a sparse linear
combination of a shared dictionary by θ(t) = Ls(t), where
each column of the dictionary L represents a cohesive
chunk of knowledge. In lifelong learning, the dictionary
L is refined overtime as the model learns more tasks. The
sparse coefficient vectors S encode the task predictors in
the shared dictionary, providing an embedding of the tasks
based on how their predictors share knowledge. Similar
to this, the unsupervised feature vector x̄(t) can also be
linearly factorized using a shared dictionary K ∈ R

d×k over
the unsupervised feature’s space. Like L, this dictionary K

captures the relationships among the unsupervised features
for multiple tasks, with the coefficients that similarly embed
tasks based on the commonalities in their unsupervised
features. In order to link the two spaces, we enforce the two
dictionaries, L and K, to share the same sparse coefficient
vectors S so as to reconstruct both the predictors and the
unsupervised features. Hence, for task t,

θ(t) = Ls(t), x̄(t) = Ks(t). (9)

Because we enforce the two dictionaries with the same
sparse code s(t), the relevant pieces of information for a
task predictor are coupled with its associated unsupervised
feature. To optimize L and K, we first reformulate the
objective (1) for the coupled dictionaries as

min
L,K,S

1

T

T∑

t=1

(
J
(
θ(t)

)
+ ρ

∥∥x̄(t) −Ks(t)
∥∥2
2
+ µ

∥∥s(t)
∥∥
1

)

+ λ
(
∥L∥2F + ∥K∥2F

)
, (10)

where the parameter ρ balances the task predictor’s fit to
the unsupervised feature’s fit.

To solve the optimization (10) in a lifelong setting, we
approximate J

(
θ(t)

)
by a second-order Taylor expansion
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around the regularized LS parameter estimate θ̂(t) given in

(6). That is, we expand J
(
θ(t)

)
around θ̂(t) for each task as:

J
(
θ(t)

)
≈J

(
θ̂(t)

)
+ ▽J

(
θ̂(t)

)(
θ(t) − θ̂(t)

)

+
1

2

∥∥∥θ(t) − θ̂(t)
∥∥∥
2

Υ(t)
, (11)

where ▽ denotes the gradient operator. The first term

J
(
θ̂(t)

)
is a constant and can be omitted. Since θ(t) is the

minimizer of the objectiveJ
(
θ(t)

)
, ▽J

(
θ̂(t)

)
is zero, and the

second term can also be removed. Thus, the loss function
J
(
θ(t)

)
is approximated by the last term of (11), which

can be rewritten as
∥∥∥θ̂(t) −Ls(t)

∥∥∥
2

Υ(t)
, given θ(t) = Ls(t).

With this approximated J
(
θ(t)

)
, the optimization (10) is

simplified as

min
L,K,S

1

T

T∑

t=1

(∥∥∥θ̂(t) −Ls(t)
∥∥∥
2

Υ(t)
+ ρ

∥∥∥x̄(t) −Ks(t)
∥∥∥
2

2

+ µ
∥∥∥s(t)

∥∥∥
1

)
+ λ

(
∥L∥2F + ∥K∥2F

)
. (12)

Further defining:

Θ
(t) =

[
θ̂(t)

x̄(t)

]
, H =

[
L

K

]
, Ψ(t) =

[
Υ

(t)
0d×d

0d×d ρId

]
, (13)

where 0d×d is the d × d zero matrix, the optimization (12)
can be rewritten in a concise form as

min
H,S

1

T

T∑

t=1

(∥∥∥Θ(t) −Hs(t)
∥∥∥
2

Ψ(t)
+ µ

∥∥∥s(t)
∥∥∥
1

)
+ λ∥H∥2F.

(14)

This optimization has the identical form to (1), and it can be
solved efficiently in a lifelong setting. Specifically, similar to
the classic ELLA, we can solve the sparse vector s(t) given
H acquired at task (t − 1), and then update H , i.e., L and
K, given s(t). Obviously, given s(t), the two dictionaries L

and K can be updated independently.

When a task arrives, we perform three operations to up-
date our model, namely, compute s(t), update L and update
K. Specifically, the sparse vector s(t) is first computed using
the current basis H by solving the following L1-regularized
regression problem, which is an example of the Lasso:

s(t) =argmin
s

∥∥∥Θ(t) −Hs(t)
∥∥∥
2

Ψ(t)
+ µ

∥∥∥s(t)
∥∥∥
1
. (15)

After s(t) is obtained, the two dictionaries, L and K, can be
calculated independently by the recursive updating equa-
tions (3) to (5). In particular, to update the dictionary K, we

simply replace Υ
(t) by ρId, θ̂(t) by x̄(t) and L by K in (3)

to (5). The per-task updating rules are given in Algorithm 1.

Remark 1. Solving the sparse coding by (15) is basically
learning new task with the previously built knowledge
repository H , that is, knowledge transfer from past
learned tasks, while the adaptation of L and K is to
retain knowledge from the current task and refine the
existing knowledge base. These two operations form the
core idea of lifelong learning.

Algorithm 1 Unsupervised transfer aided lifelong regres-
sion

1: Parameters: Size of dictionaries k, regularization param-
eters µ and λ, balance coefficient ρ.

2: Initialize: Randomly initialize L and K, T = 0.
3: While some task is available do
4: Collect training input-output data

{
X(t),y(t)

}
from

task Z
(t), set T = T + 1.

5: Construct task predictor, and compute model parameter

θ̂(t) and Hessian Υ
(t) using (6) and (7), respectively.

6: Encode X(t) into feature vector x̄(t) using (8).
7: Construct matrices Θ(t), H , and Ψ

(t) of (13).
8: Solve sparse coding s(t) by Lasso of (15).

9: L← updateL(L, s(t), θ̂(t),Υ(t), λ) by (3)-(5).
10: K ← updateK(K, s(t), φ(X(t)), ρId, λ) by (3)-(5).
11: For: t ∈ {1, . . . , T} do: θ(t) = Ls(t)

12: End while

3.5 Unsupervised Transfer Learning

In a lifelong setting, multiple consecutive tasks arrive
rapidly and it may have insufficient time to labeling every
coming task, and for tasks with only input data, it is unable
to construct predictor. Incorporating unsupervised feature
however enables our approach to construct a predictor for
the new task with only input data. This ability to perform
unsupervised transfer is enabled by the coupled dictionary
learning, which allows us to use unsupervised feature to
recover task predictor through coupled dictionaries and
sparse coding. The unsupervised transfer process for learn-
ing a new task using solely unlabeled data as well as the
previously learned libraries L and K is shown in Fig. 2.
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Fig. 2. Illustration of task predictor recovery using solely unlabeled data
by unsupervised transfer.
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Given the input data X(tnew) for a new task, we first
encode X(tnew) as the feature vector x̄(tnew) = φ(X(tnew)),
and then estimate the sparse coding in the latent unsuper-
vised feature space via Lasso on the learned dictionary K

ŝ(tnew) =argmin
s

∥∥∥x̄(tnew) −Ks
∥∥∥
2

2
+ µ ∥s∥1 . (16)

Since this estimated ŝ(tnew) also serves as the sparse coding
for the latent dictionary L, it can be used to recover the task
predictor for the new task tnew as

θ̂(tnew) =Lŝ(tnew). (17)

Hence, this new task predictor’s parameter θ̂(tnew) is ob-
tained only through the task’s input data X(tnew). This elim-
inates the need to collect output data for model construction.
This unsupervised transfer learning procedure is given in
Algorithm 2.

Algorithm 2 Unsupervised knowledge transfer to a new
task

1: Inputs: input data for new task X(tnew), learned li-
braries L and K.

2: Encode X(tnew) into feature vector x̄(tnew) using (8).
3: Solve sparse coding s(tnew) by Lasso of (16).
4: Recover task predictor by computing its parameter vec-

tor θ̂(tnew) using (17).

3.6 Active Task Selection

To make our method capable of learning in a task-efficient
manner, we further incorporate an active task selection
mechanism into our approach. The problem is formulated
as follows. The agent has access to training data from a pool
of candidate unlearned tasks

{
Z
(T+1), . . . ,Z(Tpool)

}
, where

T + 1 < Tpool < Tmax. Based on training data for these
candidate tasks, the learner selects the index of the next task
to learn tnext ∈ {T +1, . . . , Tpool}, which will maximize the
learning performance. Without loss of generality, the value
of Tpool is fixed and set as Tpool =

1
2Tmax in our study.

We employ the diversity heuristic proposed in [33] for
selecting the next best task. The basic idea is to encourage
the current learned model or library to capture information
of the widest range of tasks. If the current library does not
fit well for a new task t, it means that the information on
task t has not been captured in the current library. Thus, in
order to acquire information from the widest range of tasks,
the next task should be the one that the current library is
doing the worst, that is, the loss on the training data of this
task is maximum. Although we have the dual dictionaries
L and K, we can simply use the main dictionary L that
contains both input and output information, to calculate the
heuristic as

tnext=arg max
t∈{T+1,...,Tpool}

min
s

∥∥∥θ̂(t)−Ls
∥∥∥
2

Υ(t)
+ µ ∥s∥1, (18)

where θ̂(t) and Υ
(t) are calculated by (6) and (7), respec-

tively.

Remark 2. The active task selection mechanism (18) tends
to select tasks that are encoded poorly with the cur-
rent dictionary L, and the selected tasks are likely to

be significantly different from the previously learned
tasks, thus encouraging the agent to learn diverse tasks.
However, this does not means that after the active task
selection based training of tnext tasks, the model general-
ization or test performance is necessarily better than the
model with the non-active task selection based training
of tnext tasks. Whether this is the case depends on the
underlying data generating process. Furthermore, when
all the training tasks are used, the models obtained with
and without active task selection should have the same
or similar test performance, because the both models
have seen all the training tasks and the order of all the
training tasks learned should have litter effect on the
overall generalization performance.

4 ALGORITHM SUMMARY AND ANALYSIS

Our proposed approach has two versions, namely, unsuper-
vised transfer aided lifelong regression (UTLR), in which the
agent has no control over learning order of tasks, and UTLR-
Ac, which is equipped with active task selection mechanism
presented in Subsection 3.5. The proposed framework has
two phases: training phase and evaluation phase. During
training phase, some training tasks serve as the candidate
task pool. Each time the agent actively chooses (UTLR-Ac)
or passively accepts (UTLR) one task from the task pool to
learn so as to incrementally build its libraries L and K.
After the agent has encountered all the training tasks, the
two libraries are fixed and they act as the knowledge base to
help learning future unseen tasks. During evaluation phase,
new task arrives sequentially. With the aid of L and K,
the agent performs either model prediction or unsupervised
transfer depending on whether the new task is labeled or
not. For the unlabeled new task, the agent only uses the
input data to recover the task predictor so as to predict the
new data of this task1.

Convergence analysis: In order to prove the conver-
gence of the proposed framework, we use the theoretical
results of [22], since these results can directly apply to our
framework.

The work [22] has proved that the learned dictionary be-
comes increasingly stable, i.e., converged, as more tasks are
learned. This convergence result requires two conditions:

1) The tuples
(
Υ

(t), θ̂(t)
)

are drawn from an independent
identical distribution (i.i.d.) with compact support to
bound the norms of L and s(t).

2) For all the tasks up to task t, let Lk be the subset of the
current dictionary Lt, where only the columns corre-
sponding to the non-zero elements of s(t) are included.
Then, all the eigenvalues of the matrix LT

kΥ
(t)Lk need

to be strictly positive.

The work [22] demonstrates that both these conditions are
met for the lifelong learning framework given in (2) to (5).

We incorporate unsupervised feature into this frame-

work by augmenting θ̂(t) into Θ
(t), L into H , and Υ

(t)

into Ψ
(t). Since θ̂(t) and Υ

(t) are drawn from an i.i.d.,
clearly Θ

(t) and Ψ
(t) are also drawn from an i.i.d., according

to the definition of (13). Hence condition 1) holds for our

1. Code is available at: https://github.com/neuroton42/Unsupervised-
Transfer-Aided-Lifelong-Regression-.git
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method. To verify condition 2), we note that the eigenvalue
of HT

k Ψ
(t)Hk are the eigenvalues of LT

kΥ
(t)Lk and the

positive ρ, and hence they are strictly positive. Therefore,
both the two conditions are met for our proposed method,
and the convergence result of [22] can be applied to our
proposed approach.

Computational complexity: We now analyze the online
computational complexity of learning new task by our
method. The construction of task predictor by the regu-
larized LS estimator (6) has a complexity on the order of
O(d3). The adaptation of single dictionary L ∈ R

d×k and
sparse coding s(t) ∈ R

k costs O(k2d3). Since we incorporate
unsupervised feature into lifelong learning by augmenting
L ∈ R

d×k into H ∈ R
(2d)×k, the coupled dictionary adapta-

tion costs O
(
k2(2d)3

)
. Thus, the overall complexity of per-

task adaptation is O
(
d3+k2(2d)3

)
, which is independent of

task number.

5 EXPERIMENTS

Three real-world applications, examination score prediction,
Parkinson disease symptom score prediction and Alzheimer
disease progression modeling, are included to demonstrate
the effectiveness of our proposed approach.

5.1 Experimental Setup

Our two proposed methods, UTLR and UTLR-Ac, are com-
pared with three existing lifelong learning approaches, the
ELLA [22], the ELLA-diver [33], which actively chooses
tasks to learn with diversity heuristic method, and the
ELLA-diver++ [33], which is a stochastic version of ELLA-
diver. The alternative lifelong learning approach EWC is
also chosen as a benchmark for comparison. In the original
work [29], the cross-entropy loss is used for classification
problem, and we modify the loss of EWC to the mean
square error in order to apply EWC to solve regression
problems. Additionally, the single-task learning (STL) that
learns multiple tasks independently, is used as the baseline
method. The LS regression is used to construction task
predictor for all the methods. It should be noted that either
the unsupervised domain adaptation or continual domain
adaptation methods are unsuitable to be compared with
the proposed lifelong regression method, as they address
very different problems. Also TaDell [36] cannot be used
for comparison, because it needs domain-specific task de-
scriptor, which is not available for most real-world datasets.
Basically, our method can be regarded as a generalized
version of TaDell using task input data rather than domain-
specific task descriptor.

For all the lifelong models, the dictionary size k and
the regularization parameters are independently chosen
for each dataset using grid search over the ranges of
{1, 2, · · · , 5} for k and {10−n, n = 0, · · · , 6} for the reg-
ularization parameters, respectively, to achieve their best
performance. The previous works [22], [33], [36] suggested
to select the dictionary size from k ∈ {1, 2, · · · , 10} but
the datasets used in these previous works were most
classification problems. We have experimented with k ∈
{1, 2, · · · , 10} for our three case studies but the results were
not better than with k ∈ {1, 2, · · · , 5}. The analysis on

the sensitivity of the algorithmic parameters can be found
in [22], [52]. For EWC, a two-layer MLP with ReLU non-
linearities in each layer is utilized as the training model. The
network model is trained using stochastic gradient descent
with learning rate 0.0001, and 10 independent experiments
with different random seeds are conducted for model train-
ing. For our proposed method, ρ is a key parameter that
balances the predictor’s fit to the unsupervised feature’s
fit, and we empirically investigate its impact on the model
prediction and unsupervised transfer performance.

In the experiments, we split the data 50%-50% as the
training and testing datasets for each task. The training set
is used to construct task predictor, while the testing set
is for performance evaluation. Additionally, we divide the
set of tasks into two subsets: one set of training tasks that
serve as the pool for active task selection (for UTLR-Ac,
ELLA-diver and ELLA-diver++) and are used to learn the
knowledge library, and one set of evaluation tasks on which
we measure the performance of the learned library. We set
Tpool = 1

2Tmax for all the experiments. After a model has
learned all the training tasks, its knowledge library is fixed,
and we use the learned library to measure the prediction
performance on the testing datasets of evaluation tasks. For
the evaluation of unsupervised transfer, the model has no
access to the training set’s output data for each evaluation
task, and it can only use the input data to recover the task
predictor for performance evaluation on the testing set.

The root mean squared error (RMSE) and the mean
absolute error (MAE) are used to evaluate the testing pre-
diction performance. In the lifelong learning setting, we
are also interested in the online computational complexity
for learning each task. Hence, the averaged computation
time per task (ACTpT) is utilized to quantify the online
computational complexity of a lifelong model. For all the
lifelong models, training tasks are presented sequentially
to the learner, following the corresponding online learning
setting. To mitigate the impact of task order on the algo-
rithms, the training and evaluation task orders are randomly
generated over 10 independent experiments, and we report
the mean and standard deviation (STD) of the RMSE, MAE
and ACTpT over 10 realizations.

5.2 School Examination Score Prediction

We first evaluate the algorithms on school examination
score dataset which has been widely used in multi-task and
lifelong regression investigation [7], [9], [11], [13], [21], [22].
The dataset contains examination scores of 15362 students
from 139 secondary schools, and each school is considered
as a regression task. For each task, the goal is to predict
scores for all the students in the school according to their
input features. Each student has 28 features (the task di-
mension d = 28), including student-specific features and
school-specific features, and the corresponding output is
the student’s examination score. The numbers of students
for these 139 schools vary from 25 to 251 (the number of
samples for each task nt ∼ 25 to 251). From the total of 139
tasks, we use 69 as the training tasks and the other 70 as the
evaluation tasks.

The impact of ρ on the prediction and unsupervised
transfer performance of our two models is investigated
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TABLE 2
Performance comparison of STL, ELLA, ELLA-diver, ELLA-diver++, EWC as well as proposed UFLR and UFLR-Ac for school examination score

dataset.

Method
Model prediction Unsupervised transfer

ACTpT (ms)
RMSE MAE RMSE MAE

STL 0.1697±0.0029 0.1321±0.0021 - - 0.1575±0.0360

ELLA 0.1596±0.0060 0.1245±0.0042 - - 0.9044±0.3035

ELLA-diver 0.1594±0.0066 0.1250±0.0052 - - 18.6944±0.7049
ELLA-diver++ 0.1559±0.0039 0.1219±0.0029 - - 19.0246±1.2701
EWC 0.1613±0.0046 0.1304±0.0045 - - -
UFLR 0.1517±0.0025 0.1203±0.0021 0.1561±0.0029 0.1241±0.0025 0.7987±0.2295

UFLR-Ac 0.1517±0.0026 0.1203±0.0025 0.1563±0.0037 0.1243±0.0035 15.3414±1.0405

3 2 1 0.1 0.01
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UFLR unsupervised transfer

UFLR-Ac

UFLR-Ac unsupervised transfer

Fig. 3. Impact of ρ on the model prediction and unsupervised transfer
performance of the proposed methods for school examination score
dataset.

in Fig. 3. When the value of ρ is large (ρ = 3, 2, 1), the
unsupervised feature plays the dominant role and the task
model has less impact on the algorithm’s performance.
Hence the model prediction performance are similar to the
unsupervised transfer performance. When ρ = 0.1, the
model prediction accuracy improves while maintaining an
acceptable unsupervised transfer accuracy, which indicates
that this value of ρ balances well the task model’s fit to
the unsupervised feature’s fit. When ρ decreases further to
0.01, the model prediction accuracy only decreases slightly
but the unsupervised transfer performance degrades dra-
matically. This is because when ρ becomes very small, the
unsupervised feature has little impact on the algorithm,
which makes it unable to recover the task predictor via
transfer. Hence, ρ = 0.1 is appropriate for this case study.

Table 2 presents the test performance comparison of var-
ious methods, where for the lifelong learning methods, the
models with the best and runner-up performance are em-
phasized with boldface black and blue colours, respectively.
Note that for our proposed approach, the model prediction
is carried out by both the task predictor and the unsuper-
vised feature, while the unsupervised transfer performance
is obtained only by the unsupervised feature. Our approach
is the only one that can carry out this unsupervised feature
based prediction. Since EWC is implemented on PyTorch, it
will be unfair to compare its computation time with other
models that are implemented on Matlab. So we do not

10 20 30 40 50 60 70

Number of learned tasks
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ELLA-diver

ELLA-diver++

Fig. 4. Comparison of test RMSE performance versus number of tasks
learned for school examination score dataset.

present the ACTpT of EWC. However, since EWC is based
on neural networks, its training and testing are much more
time costly than the other methods using linear base models.
Clearly, although the STL imposes the least computational
cost, it has the worst prediction performance compared with
the lifelong models. Both our UFLR and UFLR-Ac attains
the smallest model prediction RMSE and MAE, compared
with the three ELLA-based methods and EWC model. More-
over, our UFLR imposes the lowest ACTpT among all the
lifelong models. Most significantly, our proposed approach
is able to use input data only to recover the task model,
and achieves the unsupervised transfer performance that is
similar to or slightly better than the ELLA-based methods.
This clearly demonstrates the excellent unsupervised trans-
fer performance of our method.

Clearly, after all the training tasks have been learned,
the performance of an active task selection based lifelong
model should be the same or similar to that of the non-active
task selection based counterpart, and incorporating active
task selection into a lifelong model significantly increases
the algorithm’s complexity. To investigate how task selection
impacts on the model’s prediction performance, we conduct
the following experiment. After the lifelong model selects a
training task to update its knowledge library, we measure
its test performance on all the evaluation tasks using the
current library. This procedure yields a learning curve that
depicts the relationship between the prediction performance
and the number of tasks learned, which is shown in Fig. 4
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Fig. 5. Impact of ρ on the model prediction and unsupervised transfer performance of the proposed methods for (a) Parkinson-Motor, and
(b) Parkinson-Total.

for the five lifelong model. The test RMSEs of all the models
decrease as the number of tasks learned increases. This is
because the lifelong models become more knowledgeable as
their libraries capture more knowledge from more tasks. The
learning curves of our UFLR and UFLR-Ac are very similar,
and this is also the case for the ELLA and ELLA-diver. This
indicates that active task selection only has minor impact on
the lifelong model’s generalization performance for this case
study. The reason may be that the data distributions for the
tasks of school examination score dataset are similar. Note
that since the training pipeline of EWC is different from the
ELLA-based methods, we do not conduct this experiment
for EWC.

5.3 Parkinson Disease Symptom Score Prediction

This dataset is composed of a range of biomedical voice
measurements from 42 patients with early-stage Parkinson’s
disease [53], and it has been used to evaluate lifelong models
[13], [34]. The dataset contains 5875 voice recordings from
these 42 patients, with the observations for each patient
vary from nt = 101 to 168. The aim is to predict the
Motor and Total UPDRS scores from the 16 voice measures.
The symptom score prediction using d = 16 biomedical
features for a patient is considered as a regression task and
we have 42 tasks in total. Since the UPDRS scores consist
of Motor and Total, we establish two regression datasets
in our experiment: Parkinson-Motor and Parkinson-Total,
each containing 20 training tasks and 21 evaluation tasks.

TABLE 3
Performance comparison of STL, ELLA, ELLA-diver, ELLA-diver++, EWC as well as proposed UFLR and UFLR-Ac for Parkinson-Motor dataset.

Methods
Model prediction Unsupervised transfer

ACTpT (ms)
RMSE MAE RMSE MAE

STL 0.3658±0.0134 0.2874±0.0091 - - 0.1235±0.0553

ELLA 0.3125±0.0066 0.2663±0.0053 - - 1.2792±0.9694

ELLA-diver 0.3171±0.0041 0.2698±0.0040 - - 7.2818±1.7257
ELLA-diver++ 0.3148±0.0054 0.2681±0.0052 - - 8.5184±1.4950
EWC 0.3388±0.0009 0.2989±0.0007 - - -
UFLR 0.3067±0.0028 0.2602±0.0043 0.3506±0.0158 0.3039±0.0129 1.3134±1.1294

UFLR-Ac 0.3072±0.0038 0.2609±0.0046 0.3493±0.0099 0.3032±0.0097 8.2228±2.5817

TABLE 4
Performance comparison of STL, ELLA, ELLA-diver, ELLA-diver++, EWC as well as proposed UFLR and UFLR-Ac for Parkinson-Total dataset.

Methods
Model prediction Unsupervised transfer

ACTpT (ms)
RMSE MAE RMSE MAE

STL 0.3718±0.0078 0.2935±0.0064 - - 0.1525±0.0574

ELLA 0.3149±0.0057 0.2701±0.0050 - - 1.3578±1.0468

ELLA-diver 0.3168±0.0055 0.2716±0.0048 - - 9.0110±3.0789
ELLA-diver++ 0.3157±0.0058 0.2707±0.0051 - - 8.8302±2.5508
EWC 0.3487±0.0042 0.2958±0.0018 - - -
UFLR 0.3076±0.0044 0.2633±0.0021 0.3398±0.0124 0.2936±0.0089 1.3175±1.1060

UFLR-Ac 0.3066±0.0039 0.2625±0.0031 0.3377±0.0108 0.2927±0.0088 5.2056±1.6684
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Fig. 6. Comparison of test RMSE performance versus number of tasks learned for (a) Parkinson-Motor, and (b) Parkinson-Total.

Based on the results of Fig. 5, we set ρ = 0.01 for our
method, as this value best trades off the model prediction
and unsupervised transfer.

The test performance of various models for Parkinson-
Motor and Parkinson-Total datasets are compared in Ta-
bles 3 and 4, respectively. Again, our methods achieves
the best prediction performance with the smallest test RMSE
and MAE. Furthermore, our UFLR attains the second-lowest
ACTpT and the lowest ACTpT for the two datasets, respec-
tively. Also our models can recover the task model using in-
put data only. The unsupervised transfer performance of our
models, although not as accurate as the model prediction
accuracy of ELLA, are better than that of STL. Fig. 6 depicts
the test learning curves as the functions of the number of
tasks learned for various lifelong models. It can be seen that
although our models begin with the larger test RMSEs than
the ELLA-based models, their prediction errors decreases
dramatically after learning more tasks. This is because our
methods have two libraries to initialize, thus having higher
error at the beginning, and as the number of tasks learned
increases, the two libraries can capture more knowledge,
leading to higher prediction accuracy. Observe that the
RMSE learning curve of UFLR-Ac decreases more quickly
than that of UFLR. For Parkinson-Motor and Parkinson-
Total datasets, the active task selection mechanism seems
to enable the model to learn faster.

5.4 Alzheimer Disease Progression Modeling

This dataset is from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [54]. The ADNI project is a longitudinal
study, which collects various measurements repeatedly over
a 6-month or 1-year interval from patients. The first time
patients receiving screening in hospital to obtain magnetic
resonance imaging (MRI) is called baseline, and the time
point for the follow-up visits is denoted by the duration
starting from the baseline. The latest ADNI has up to 120
months’ follow-up data available for some patients, which
are divided as baseline (M00), 6-th month (M06), 12-th
month (M12), 24-th month (M24), 36-th month (M36), 48-th
month (M48), 60-th month (M60), 72-th month (M72), 84-
th month (M84), 96-th month (M96), 108-th month (M108)

and 120-th month (M120). The aim is to predict patients’
cognitive scores at multiple time points using their MRI fea-
tures. Hence, the cognitive score prediction at one time point
is considered as a regression task, and we have 12 tasks
in total. The number of samples for each task varies from
nt = 69 to 1074, and the dimension of features is d = 314.
Alzheimer disease progression prediction is a very popular
multi-task regression problem [55], [56], [57], [58], [59]. Be-
cause the patient’s data can be received at consecutive time
points over a long-time scale, for the first time we consider
it as a lifelong regression problem and use this dataset
to evaluate lifelong models. In this study, we have two
cognitive measurements, including Mini Mental State Exam-
ination (MMSE) and Alzheimer’s Disease Assessment Scale
Cognitive Subscale (ADAS-cog). Hence we establish two
regression datasets in our experiment: Alzheimer-ADAS
and Alzheimer-MMSE. Each dataset contains 6 training
tasks and 6 evaluation tasks.

The impact of ρ on the model prediction and unsuper-
vised transfer performance of our methods for Alzheimer-
ADAS dataset is shown in Fig. 7. For Alzheimer-MMSE, the
results are similar and therefore they are omitted. Unlike the
previous two case studies, the unsupervised feature plays a
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Fig. 7. Impact of ρ on the model prediction and unsupervised transfer
performance of the proposed methods for Alzheimer-ADAS dataset.
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TABLE 5
Performance comparison of STL, ELLA, ELLA-diver, ELLA-diver++, EWC as well as proposed UFLR and UFLR-Ac for Alzheimer-ADAS dataset.

Methods
Model prediction Unsupervised transfer

ACTpT (ms)
RMSE MAE RMSE MAE

STL 0.2220±0.0371 0.1648±0.0265 - - 11.6719±0.8549

ELLA 0.1376±0.0080 0.1121±0.0072 - - 25.8865±6.8074

ELLA-diver 0.1379±0.0080 0.1123±0.0072 - - 73.4803±7.7040
ELLA-diver++ 0.1378±0.0080 0.1122±0.0072 - - 71.9221±8.2020
EWC 0.1211±0.0011 0.0926±0.0013 - - -
UFLR 0.1108±0.0065 0.0816±0.0055 0.1109±0.0065 0.0816±0.0055 23.3615±4.2824

UFLR-Ac 0.1109±0.0066 0.0817±0.0056 0.1109±0.0066 0.0817±0.0056 73.7116±9.1377

TABLE 6
Performance comparison of STL, ELLA, ELLA-diver, ELLA-diver++, EWC as well as proposed UFLR and UFLR-Ac for Alzheimer-MMSE dataset.

Methods
Model prediction Unsupervised transfer

ACTpT (ms)
RMSE MAE RMSE MAE

STL 0.2773±0.0427 0.1959±0.0333 - - 12.0095±1.0083

ELLA 0.1503±0.0070 0.1056±0.0028 - - 23.1054±3.2531

ELLA-diver 0.1506±0.0069 0.1058±0.0027 - - 75.7961±4.8401
ELLA-diver++ 0.1505±0.0069 0.1057±0.0027 - - 75.2880±5.3311
EWC 0.1379±0.0021 0.1014±0.0027 - - -
UFLR 0.1301±0.0064 0.0909±0.0064 0.1307±0.0065 0.0915±0.0068 22.2767±3.1511

UFLR-Ac 0.1298±0.0064 0.0905±0.0062 0.1304±0.0064 0.0911±0.0066 76.3195±5.7989
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Fig. 8. Comparison of test RMSE performance versus number of tasks learned for (a) Alzheimer-ADAS, and (b) Alzheimer-MMSE.

more important role than the task model in this case. This
may be because the dimension of input in this case is much
larger. According to Fig. 7, we set ρ = 5 for our models to
achieve the best model prediction and unsupervised transfer
accuracy.

The test performance comparison of various models for
Alzheimer-ADAS and Alzheimer-MMSE datasets are pre-
sented in Table 5 and Table 6, respectively. It can be seen that
EWC attains the second best prediction accuracy. Again, our
methods achieve the best prediction accuracy, and our UFLR
imposes the lowest ACTpT. More significantly, the unsuper-
vised transfer accuracies of our models are similar to their
model prediction accuracies. This makes sense because in
this case prediction is mainly contributed by unsupervised
feature, and the unsupervised transfer accuracy should be
comparable to the model prediction. The test RMSE learning

curves as the functions of the number of tasks learned are
depicted in Fig. 8 for various lifelong models. Observe that
the test RMSEs of our methods decrease much more rapidly
as more tasks are learned compared with the ELLA-based
methods, which again demonstrates the superior learning
capability of our models. Also observe that the active task
selection does not seem to help to speed up learning. This is
may be because of very limited number of training tasks.

5.5 Discussion of the Algorithm

Three real-world regression datasets from different applica-
tion scenarios demonstrate the superiority of the proposed
unsupervised transfer aided lifelong regression framework.
Our proposed method not only consistently attains the best
modeling accuracy compared with existing lifelong regres-
sion methods, but also provides important capacity of learn-
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ing and prediction of new tasks with only input data. Note
that the best existing unsupervised transfer aided strategy
TaDell [36] can not be applied to our real-world regression
benchmarks datasets. TaDell relies on the zero-shot transfer
based on the so-called task descriptors. For it to work, these
domain-specific task descriptors, which must characterize
the underlying dynamics of data in individual tasks well,
need to be hand crafted first. For simple engineering sys-
tems, some basic system parameters, such as length, mass,
damping constant, etc., may be used as task descriptors
because they define the system’s underlying dynamics and
have a close relation to the data characteristics. However,
for most real-world tasks, seeking such appropriate and
unified descriptors to identify different tasks requires in-
depth cross-domain knowledge, which is generally impos-
sible to achieve. By contrast, our proposed method learns
new task and performs the unsupervised knowledge trans-
fer with only input data, which is generally applicable to
many applications. In terms of computational efficiency, the
experimental results have demonstrated that our method
has lower online time cost than the efficient ELLA. Most
importantly, the computation cost is independent with the
number of tasks, which is clearly affordable when massive
tasks are received over long-time scales.

This work mainly focus on lifelong regression prob-
lem, hence we only use regression datasets to evaluate
our algorithm. To our best knowledge, most existing life-
long/continual learning algorithms, such as the works of
[47], [48], [49], [50], [51], only focus on object recolonization
or classification, and they are not applicable to regression
learning. By contrast, our proposed UFLR algorithm is
specifically designed for regression problem, which fills a
gap in the field. It is also worth mentioning that our method
has a similar flexible structure with ELLA, and it can also be
extended to address classification problem. In this case, we
can compare the proposed framework with more state-of-
the-art lifelong learning algorithms on classification bench-
marks. However, we emphasize again that this research is
devoted specifically for lifelong regression problems with
consecutive unlabeled tasks, and for such challenging ap-
plication area, our proposed framework shows considerable
advantages over the existing state-of-the-art, as evidenced
by the experimental results.

6 CONCLUSIONS AND FUTURE WORKS

This paper has proposed an effective lifelong regression
framework capable of learning new consecutive tasks with-
out desired output data. Specifically, during training phase,
the input data for each task are encoded as feature vectors
while both the input and output data are used to construct a
single-task predictor using LS estimator. The unsupervised
features and task predictor’s parameters are factorized into
two dictionaries that are coupled by a joint sparse coding.
The leaner can also actively choose next training task to
learn based on how poorly the current dictionary encodes
the selected tasks. When new task arrives, the learner can
perform either model prediction or unsupervised trans-
fer depending on whether the task’s data are labeled or
not. Even if the new task is not labeled, the learner can
still recover the task predictor using unsupervised features

via knowledge transfer. This novel capability has ensured
that our proposed lifelong regression framework has better
generalization performance over the existing state-of-the-
art lifelong regression models., which has been validated
with applications to three real-world lifelong regression
problems.

Defining an appropriate unsupervised feature for un-
labeled task remains an open question. In our proposed
framework, we simply use the mean values of input data
as the feature vectors. In future, we will explore alternative
more advanced features provided by various unsupervised
learning methods to further improve the unsupervised
transfer accuracy. Another interesting future direction is
to extend this lifelong regression framework to nonlinear
regression, since many real-life tasks are very complex and
have strong nonlinearities. Hence, nonlinear models, such
as neural networks, can potentially be used in the proposed
scheme to replace linear regression. Note that our method
has a flexible model structure, and it can also be extended to
address classification problem by replacing the base linear
regression predictor with simple classifier. This future exten-
sion enables our framework to be applicable to wider range
of lifelong learning scenarios where labeling new tasks is
challenging.
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