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Abstract 
The duration and interval of the input signal in two 
terminal memristor based reservoir systems is 
constrained by the decay time of a conventional 
memristor. Here, we demonstrate that the third 
terminal of a Solid Electrolyte ZnO/Ta2O5 Thin-film 
Transistor (SE-FET) can be used to control the decay 
time by using a variable read voltage, without any 
additional circuit elements. Using this approach, we 
have benchmarked the performance of our SE-FET 
based RC system for a task of recognition of spoken 
digits with a high accuracy of 99.4%.  
(Keywords: Reservoir computing, Solid electrolyte 
FET, Spoken-digit classification, Lyons passive ear 
model) 

Introduction 
Physical Reservoir computing systems enable the 
classification of complex timing related tasks much 
more efficiently than recurrent neural networks 
(RNNs)[1]. RNNs require backward connections to 
retain information about the input, the previous as 
well as present states of the network. They are prone 
to exploding and vanishing gradients, which makes 
the training difficult and expensive. Physical 
dynamical reservoirs are more economical as they 
dispense with hidden layers and operate by mapping 
the input signal onto a higher-dimensional 
spatiotemporal feature space that is directly read by 
the output layer. The richness of reservoir states 
requires devices with a short-term memory (or fading 
memory) that can be mapped directly to time-varying 
input data. Nevertheless, the duration and interval of 
the input signal are limited in two terminal memristor 
based reservoir systems by time range in which 
sufficient memory decay occurs which is typically in 
the range of few milliseconds [1]–[3]. This severely 
limits their adaptability for different dynamical inputs 
that vary from 10-7 seconds for static situations such 
as image processing to a few seconds for detection of 
malignancy of lesions via ultrasound or the detection 
of arrhythmia via electrocardiogram. In these studies, 
the reservoirs were constructed based on diffusive 
memristors which are a class of volatile memristors 
whose switching is governed by fast diffusive species 
(e.g., Ag) [2]. Moreover, to solve this issue, a non-
volatile memristor was combined with circuits 
elements such as a resistor and capacitor [4] which 
adds to the cost and complexity of the reservoir.  
Recently, we have demonstrated improved learning 
by increasing the dimensionality of an RC system 

based on a three terminal solid electrolyte 
ZnO/Ta2O5 TFT (SE-FET) (𝑊 × 𝐿 = 100𝜇𝑚 ×1.5𝜇𝑚) by sampling at lower rate (~1 Hz or lower) 
after each pulse rather than reading an entire 
sequence of the input [5].  
In the current work, we evaluate its performance for 
classification of isolated spoken digits. We also 
demonstrate that the third terminal can be used to 
control the temporal dynamics (decay time) of the 
device by using a variable read voltage in the off state, 
which makes this approach more adaptable in 
biomimetic system than by using external elements 
such as resistors and capacitors. 

Methodology 
The framework of our SE-FET based reservoir 
system for spoken digits is described in Fig.1. Before 
feeding the isolated spoken-digit into the reservoir, it 
is preprocessed using Lyon’s passive ear model [6] 
based on human cochlear channels. The model 
includes a number of filters to divide the input signal 
into frequency channels, half wave rectifiers (HWRs) 
to identify the actual information from the filtered 
signal, automated gain control (AGC) to compress a 
signal with a high dynamic range (which varies over 
twelve orders of magnitude) to a reasonable range (of 
about two orders of magnitude). The processed audio 
file is then converted into a pulse stream. The 
resultant pulse stream is applied to the SE-FET and 
the read current is subsequently measured and 
recorded after each pulse. The measured read current 
forming reservoir states were then used to train the 
readout network.  We trained our readout network 
using logistic regression on 450 samples from the 
standard benchmark NIST TI46 database [7] of (0-9) 
digits spoken 10 times by 5 different female speakers, 
and testing was achieved on a separate sample set of 
50, not used in training. To avoid the system from 
being overfitted to some selections of the training and 
testing data, 10-fold cross-validation was used. 

Result and Discussion 
The schematic of an SE-FET device, showing charge 
separation of oxygen ions and vacancies at respective 
opposite interfaces of the Ta2O5, upon application of 
positive gate voltage is shown in Fig. 2. The 
movement of oxygen vacancies (V2+) in the gate 
insulator Ta2O5 caused by an electric field, drives the 
operation of this device [8]-[9]. The measured 
conductance values of the SE-FET with a pulse train 
of ±1 V/ 60 ms applied at the gate terminal shows the 
gradual change in conductance which results in 
multiple conductance values as shown in Fig. 3(a). 
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The conductance was measured in the off state [8] i.e. 
when no gate pulse is applied, as shown in the inset 
of Fig. 3(a). The controllable memory decay of the 
SE-FET is demonstrated in Fig. 3(b). This shows 
three different memory time decay constants of   4s, 
6s, 25s achieved by using different read voltages 
applied at drain terminal. This temporal response of 
the SE- FET is attributed to the polarity-induced 
motion of oxygen vacancies in the gate insulator [9]. 
These results show that a negative read voltage can 
be used whose magnitude can control the retention 
time of the memory. Moreover, the processing of the 
same input using an SE-FET at different frequencies 
results in distinguishable output response as shown in 
Fig.4 (a). This shows that the SE-FET can be adapted 
to different temporal dynamics of the input data. 
Further, the response of an SE-FET to all possible 8 
temporal combinations of a 3-bit input sequence is 
shown in Fig.4(b) which shows the uniqueness of the 
output when subjected to a unique combination at the 
inputs.  
 
To demonstrate the SE-FET based RC system for 
spoken digit classification, we first digitized the pre-
processed spoken digit by converting the 
Cochleagram (where each data point represents the 
firing probability of a hair cell sensitive to a certain 
frequency at a given time point) shown in Fig. 5 by 
setting a threshold (0.3) for the firing probability. We 
find that by setting a threshold of 0.3 preserves the 
richness of input while digitizing the Cochleagram. 
(This data point represents the firing probability). The 
digitized output is shown in Fig.6(a). Theoretically, 
there may be 242 different input patterns if the entire 
channel were used as one single input pulse stream, 
which would be too challenging for one SE-FET to 
differentiate. Therefore, to enable better input 
separation and enhance the reservoir's dimensionality, 
we separated each channel into 14 sub-sections, each 
of which contained three data points. To prevent the 
influence from the previous input sequence, a small 
reset pulse of 3 V with a pulse width of 0.5 s is applied 
after each input sequence. With this consideration, 
the reservoir is fed with input voltage pulse streams, 
and the output response is recorded after each input 
pulse. Similarly, to extract features, each channel 
number (total 60 frequency channels each with 42-
time steps) of the input is fed into the reservoir by 
converting it into a pulse stream (as exemplified in 
Fig.6(b) for channel number 53). As an example, all 
reservoir states corresponding to spoken digit ‘0’ are 
shown in Fig.6(c). Through 10-fold cross-validation 
of the test set, an overall mean accuracy of 99% is 
attained for this implementation. Further 

improvement in accuracy is obtained by scanning the 
input time step-wise (vertically) rather than channel 
wise (horizontally). For this an overall mean accuracy 
of 99.4% was obtained, which is slightly better than 
the previously reported accuracy of 99.2% in 
memristor-based reservoir systems [3] in which a 
single read operation was performed at the end of the 
sequences. Our SE-FET-based RC system performs 
at par to earlier published work but do need  the 
other physical devices to control decay time or 
different input processing techniques for example 
99.6%, ~90% and 99.6% for spintronic[10], single 
magnetic domain wall[11] and memristor based RC 
system[12] respectively. 

Conclusion 
We experimentally demonstrated the SE-FET based 
reservoir system for spoken digit classification task. 
We demonstrate that the third terminal can be used to 
control the temporal dynamics decay time of the 
device by using variable read voltage in the off state. 
This is a significant advantage for applications that 
are suitable for real time monitoring of health 
conditions such as heart arrhythmia and detection of 
tumors via ultrasound. 
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Fig.1. Framework and process flow of a dynamic SE-FET-based reservoir system for spoken digit classification. The 
original spoken digit is preprocessed by Lyon’s passive ear model and digitized before feeding into the reservoir. The 
digitized input is then converted into a pulse stream and applied to the SE-FET. The subsequent read current is measured 
and recorded after each pulse and used to train the readout network using logistic regression. 
 

 

Fig.2. Schematic of a Ta2O5/ZnO 
SE-FET device, showing charge 
separation of oxygen ions and 
vacancies at respective opposite 
interfaces of the Ta2O5, upon 
application of an applied gate 
voltage. 

Fig.3. (a) Measured conductance of the SE-FET in the off-state showing gradual 
changes upon application of positive write pulses (+1 V, 60 ms) and negative erase 
pulses (−1 V, 60 ms). (b) Control of the temporal dynamics (fading memory) of the 
device is as simple as using a variable read voltage. The device is first programmed 
by single write pulses of 5 V at 0.42 Hz with 60% duty cycle and its subsequent read 
current is measured at 3 different read voltages. Showing three different memory 
time decay constants (). 

Fig.4. (a) Processing the same input using an SE-FET at different frequencies 
results in distinguishable output responses. (b) The SE-FET response when 
subjected to all possible eight combinations of temporal inputs, shows the 
uniqueness of the output.  

Fig.5. Cochleagram of the sample ‘0’ 
after being processed by Lyon’s passive 
ear model. 
 

Fig.6. Results of a dynamic SE-FET-based RC system (a) Pre-processed digitized isolated spoken-digit ‘0’. (b) The temporal 
response of the SE-FET to an input pulse stream for channel number 53 is shown as an example. (c) The heatmap shows the 
complete recorded output response of spoken digit 0. The magnitude of the read current ranging from (0- ~10 µa). 


