

This is a repository copy of *Reproductive biologies of Psammogobius knysnaensis and Caffrogobius gilchristi in a warm-temperate South African estuary*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/209551/</u>

Version: Accepted Version

Article:

Ndaleni, P.M., James, N.C., South, J. orcid.org/0000-0002-6339-4225 et al. (1 more author) (Cover date: 2nd January 2024) Reproductive biologies of Psammogobius knysnaensis and Caffrogobius gilchristi in a warm-temperate South African estuary. African Journal of Aquatic Science. ISSN 1608-5914

https://doi.org/10.2989/16085914.2024.2319062

© 2024 NISC (Pty) Ltd. This is an author produced version of an article published in African Journal of Aquatic Sciences. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Reproductive biologies of Psammogobius knysnaensis and Caffrogobius gilchristi in a
2	warm-temperate South African estuary
3	
4	PM Ndaleni ^{1,2} *, NC James ^{2,1} , J South ^{2,3} and OLF Weyl ^{1,2†}
5	
6	¹ Department of Ichthyology and Fisheries Science, Rhodes, University, Makhanda 6140, South
7	Africa
8	² South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda 6140, South Africa
9	³ School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
10	[<u>https://orcid.org/0000-0002-6339-4225]</u> [Email: j.south@leeds.ac.uk]
11	
12	[†] Deceased
13	*Correspondence: <u>ndalenimp@gmail.com</u>
14	NC. James [https://orcid.org/0000-0002-9472-5314]
15	
16	Abstract
17	Reproductive biologies (spawning period, length at maturity and fecundity) of Knysna sand goby
18	Psammogobius knysnaensis and Prison goby Caffrogobius gilchristi were investigated between
19	September 2018 and August 2019 in the warm-temperate Sundays Estuary, South Africa. The two
20	species reproduced during the same period (spring and summer), with peak reproduction occurring
21	in January. Psammogobius knysnaensis egg production was higher than C. gilchristi and was not
22	affected by fish size. Although C. gilchristi egg production increased with fish size, this was not
23	significant. Psammogobius knysnaensis reached L _{M50} at smaller sizes than C. gilchristi.
24	Reproductive periods were likely coupled with prey availability, as phytoplankton and
25	zooplankton abundances are highest in warm-temperate estuaries during this period. The ability of
26	these gobies to reproduce at small sizes (< 40 mm TL), which is an adaptive trait of many r-selected
27	species, underpins their high abundance in South African estuaries as they are well adapted to
28	stochastic environments.
29	
30	Keywords: fecundity, goby, length at maturity, spawning

1 Introduction

2 Reproductive strategies determine species persistence and vary across the r/K continuum (Pianka 3 1970). Many small fish species are r-selected, demonstrating adaptive traits for stochastic and resource limited environments such as estuaries (Teichert et al. 2017). These traits include multiple 4 spawning periods (Torricelli et al. 1985; Mofu et al. 2020), fast growth rates and short life spans, 5 promoting early maturation resulting in high brood and lifetime fecundity (Miller 1961; Arruda et 6 al. 1993; Azevedo and Simas 2000). Quantitative assessment of reproductive traits, i.e. fecundity, 7 length at maturity, and spawning period can be used to estimate species-specific relative 8 abundance and reproductive success (Sarker et al. 2002). 9

10

Gobies are small benthic fishes with generalist habitat associations, ranging from marine, brackish 11 12 to freshwater environments, although the majority of species are marine (Tutman et al. 2020). The family Gobiidae is the largest teleost family globally, with more than 2000 species worldwide 13 14 (Thacker and Roje 2011), occupying a broad range of biogeographic locations (Tutman et al. 2020). Gobiidae are abundant in the subtropical and temperate regions of southern Africa 15 16 (Whitfield 1999). In South African estuaries gobies dominate the benthic fish assemblage in terms 17 of richness and abundance, and are present in estuaries across the country (Harrison and Whitfield 18 2006; James et al. 2007). In South African estuaries, the family is represented by 24 species, with 19 the number of species decreasing from the subtropical to the warm-temperate and cool- temperate 20 regions, respectively (Whitfield 2019).

21

Within temperate estuaries, two of the most abundant gobies are the Knysna sand goby 22 23 Psammogobius knysnaensis (Smith, 1935) and Prison goby Caffrogobius gilchristi (Boulenger, 24 1898) (James et al. 2007). Psammogobius knysnaensis is endemic to southern Africa, ranging from 25 Port Nolloth to KwaZulu-Natal (Whitfield 2019) and is abundant in the sandy lower reaches of estuaries (Richardson et al. 2006; Bailey and James 2013; Nodo et al. 2018). Caffrogobius 26 gilchristi is also endemic to South Africa, occurring from the Olifants Estuary on the west coast to 27 Durban Bay on the east coast (Whitfield 2019). The species is associated with muddy habitats 28 29 located in the middle and lower reaches of estuaries (e.g. Nodo et al. 2018). Limited information on the reproductive biology of *P. knysnaensis* and *C. gilchristi* is available from the permanently 30 open Palmiet Estuary and the temporarily open/closed Kleinmond and Bot estuaries on the 31

southwestern Cape coastline (transition zone between the cool and warm-temperate regions) as
part of a larger study on the fish communities of these estuaries (Bennett 1989). There is, however,
no detailed data on the reproductive biology of these species and no comparative data from the
southeastern Cape, which is in the middle of the warm-temperate region.

5

Here we describe the reproductive biology of *P. knysnaensis* and *C. gilchristi* in the permanently
open Sundays Estuary on the southeast coast of South Africa. The purpose of the study is to fill
the current data paucity and further our understanding of how these two closely related species
coexist in high numbers in warm-temperate estuaries and determine a baseline in reproductive
traits for future monitoring purposes. In particular, we determine and contrast (1) the spawning
period, (2) length at maturity and (3) fecundity for both gobiid species.

12

13 Methods and study area

Sampling was conducted over a 12-month period between September 2018 and August 2019 in
the Sundays Estuary. This is a predominantly open estuary flowing into Algoa Bay in the Indian
Ocean at 33°43'14.5"S 25°51'10.4"E, 35 km north-east of Gqeberha, South Africa. During the
sampling period, both mean surface temperature (19.55°C – 16.83°C) and salinity (27.58‰ –
5.40‰) decreased from the mouth to the head of the estuary.

19

Sampling was conducted once a month using a small mesh (5 mm) seine net (30 m long x 2 m deep). Seine netting was conducted until a minimum of 30 individuals per species were caught each month, with sampling mainly focused in the lower reaches. After capture, fish were placed in a bucket containing water with 40 mg l^{-1} clove oil for humane euthanasia (Neiffer and Stamper 2009) and then stored on ice until preservation in 70% ethanol in the laboratory.

25

In the laboratory, all fish were measured for total length (mm TL), weighed (g) (wet weight), dissected and sexed. Monthly sex ratio, together with sex ratio per size class, was determined. A chi-square goodness of fit test was used to compare the monthly and sex ratio per size class with the expected sex ratio of 1:1. Gonadal developmental stages were classified following the procedure developed by Booth and Weyl (2000) for *Glossogobius callidus* in the Sundays River. Spawning season was determined using assessment of monthly gonad maturity stage and the gonado-somatic index (GSI) (wet gonad mass as a percentage of the eviscerated wet body mass).
 To determine the length of the spawning season, monthly GSI was calculated in Microsoft Excel
 only from individuals that were larger than mean length-at-maturity (L_m) using the equation:

4

5

$$GSI = \frac{gonad mass(g)}{Eviscerated body mass(g)} * 100$$
(1)

6

A chi-square contingency table (12 X 2) was used to detect for significant differences in size class
sex ratio and monthly (male and female) GSI among species.

9

Length at 50% maturity (L_{M50}) was calculated by fitting a logistic equation to the proportion of
 reproductively capable fish (developed, ripe or spent gonads) collected during the spawning
 season. The logistic function (fitted in Microsoft Excel) was expressed as:

13

14
$$P(L) = \frac{1}{1 + e^{-(TL - Lm50)/\delta}}$$
 (2)

15

where P(L) is the percentage of fish that were found mature at the length TL, L_{M50} is the length at which 50% of the fish in the length class are mature, and δ is the steepness of the ogive (Weyl and Booth 1999).

19

Curve fitting was performed using the Solver routine in Microsoft Excel by employing the leastsquares method. Length at first maturity was taken as the length of the smallest mature male and
female. Length at 100% maturity was the length at which all individuals in the sample were mature.
The maximum likelihood estimates of the parameters were obtained by minimizing the binomial
negative log-likelihood of the form as illustrate in the equation below:

25

$$26 \quad -LL = \sum_{i} \quad [miln\left(\mathcal{P}\right) + (ni - mi)in(1 - \mathcal{P}i)] \tag{3}$$

27

Where $\hat{P}i$ is the proportion predicted of mature fish in length class *i*, *ni* is the number of individuals sampled and *mi* is the number of these individuals that are mature. Likelihood ratio tests were used to test the null hypothesis that male and female L_{M50} values were equal between species.
 Individuals staged as developing, ripe and spent were used to calculate length at maturity.

3

Individuals (47 *P. knysnaensis* and 50 *C. gilchristi*) caught during the reproductive period
(December to February) were further analysed to calculate relative fecundity for *P. knysnaensis*and *C. gilchristi*. A Zeiss Stemi 508 dissecting microscope was used for manual counting of eggs
to determine fecundity (relative fecundity), which is the number of mature, yolked and un-ovulated
eggs of fish before spawning (Indira et al. 2013). Relative fecundity was assessed by dividing the
number of all vitellogenic oocytes by wet body mass.

10

11 Results

12 Overall, 1090 individuals of P. knysnaensis, (492 male, 598 female) and 948 individuals of C. gilchristi, (497 male, 452 female) were caught (Table 1). Monthly sex ratio significantly changed 13 in both species (*P. knysnaensis* $X^2 = 31.13$, p < 0.05; *C. gilchristi* $X^2 = 24.61$, p < 0.05) (Table 2). 14 There was a significant difference in sex ratio per size class for both species (*P. knysnaensis* $X^2 =$ 15 49.03, P < 0.05; C. gilchristi $X^2 = 80.76$, p < 0.05) (Table 2). In both species, males were observed 16 to be larger than females. Male and female P. knysnaensis ranged in size from 17.06-69.40 mm 17 18 and 18-62.19 mm respectively. Male and female C. gilchristi ranged in size from 17.26-94.00 mm and 22.58–69.28 mm respectively. Distinguishing between sexes in individuals below 37.00 mm 19 20 TL in C. gilchristi was difficult, as all appeared to have male characteristics.

21

22 In male and female *P. knysnaensis* mean GSI did not exceed 2% and 8%, respectively, indicating low gonadal investment (Figure 1a). The mean GSI of males and females was highest in summer, 23 24 reaching its peak in January (Figure 1a). For both sexes of P. knysnaensis, a sharp decrease in GSI 25 was observed in autumn (March, April, May) (Figure 1a). Male and female GSI of C. gilchristi did not exceed 2% and 14% respectively (Figure 1b). In both sexes of C. gilchristi GSI was highest 26 27 from late winter to summer (August to February), with peak spawning occurring in October, January and August (Figure 1b). There were significant monthly differences between the GSI of 28 29 males and females of both species. However, GSI of male P. knysnaensis and male C. gilchristi (p > 0.05, $X^2 = 0.25$, df = 11) did not differ, and similarly GSI of female *P. knysnaensis* and female 30 C. gilchristi (p > 0.05, $X^2 = 4.82$, df = 11) did not differ (Table 2). 31

1

The smallest mature male and female *P. knysnaensis* were 29.82 and 26.68 mm TL, respectively 2 3 (Figure 2a, b). Male P. knysnaensis reached L_{M50} at 39.00 mm TL, while in females L_{M50} occurred at 45.00 mm TL (Figure 2a, b). The smallest mature male and female C. gilchristi were 31.62 and 4 38 mm TL respectively (Figure 2c, d). Male and female C. gilchristi reached L_{M50} at 45.00 and 40 5 mm TL respectively (Figure 2c, d). All individuals over 60.00 mm TL were mature. There was no 6 7 significant difference in L_{M50} between sexes among the species (p > 0.05, X² = 0.14, df = 1) (Table 2). Female and male C. gilchristi and female P. knysnaensis reached 100% maturity at 60 mm TL. 8 Male P. knysnaensis reached L_{M100} at 50.00 mm TL. 9

10

Fecundity in *P. knysnaensis* had no relationship with fish length ($R^2 = 0.0037$). *Caffrogobius gilchristi* fecundity was weakly positively correlated to length ($R^2 = 0.2475$). *Psammogobius knysnaensis* had higher absolute fecundity (2321.6), regardless of *C. gilchristi* (1650.17) having a stronger fecundity/length relationship.

15

16 **Discussion**

Determining differences in functionally similar, sympatric species reproductive strategies may 17 18 further our understanding of their mechanisms of coexistence (Gómez-Llano et al. 2021). Both species exhibited similar temporal variations in sex ratios and had overlapping spawning seasons. 19 20 As the reproductive period of the two species overlaps, this suggests that they need to partition resources (e.g. food and space), particularly during peak spawning periods unless resources are 21 22 not limited. We determine both species share life history strategies (fast paced, r-selected) common across the gobiid family where reproductive periods are linked to resource peaks (Bennett 1989; 23 24 Froneman 2001).

25

The reproductive period of both species coincides with a period of high food availability, as phytoplankton and zooplankton abundance are highest in warm-temperate estuaries during spring and summer (e.g., Froneman 2001). Reproduction period in the present study (spring and summer) concurs with those previously reported by Bennett (1989) in the Palmiet, Kleinmond and Bot estuaries on the southwestern Cape coastline. However, in the Sundays Estuary *C. gilchristi* reached 50% maturity at smaller sizes than those reported in Bennett (1989). The majority of gobies sampled by Bennett (1989) were from the Bot Estuary, which had been closed for three
years at the time of sampling. Although competition for food can suppress the reproductive success
of fish, as they depend on energy investment for reproduction (Fraser and Gilliam 1992; Santos et
al. 2010) this is unlikely the case in the current study as reproduction occurred during periods of
high prey availability (Froneman 2001).

6

Psammogobius knysnaensis had higher fecundity with no relation to length, while *C. gilchristi* had lower fecundity, which increased with fish size. This is a type of niche separation, whereby one strategy (*C. gilchristi*) is to reproduce at larger sizes while the other (*P. knysnaensis*) is to reproduce at smaller sizes. In the lower Rhine River (Germany), three co-existing Gobiidae species partitioned their resources by reproducing at different lengths and different seasons (Gertzen et al. 2016). Reproduction can be suppressed when occurring at the same size in each species (Thresher 1983; Persson 1990).

14

15 Goby lifespan can range from under a year to over seven years (Arruda et al. 1993; Ilkyaz et al. 16 2011; Huo et al. 2014). Fish species with short life spans invest highly in reproduction with 17 characteristically early maturity, extended spawning seasons and multiple spawning (Grabowska 18 and Przybylski 2015). Although multiple spawning was not investigated specifically in this study, 19 gobies commonly exhibit a multiple spawning strategy to enhance reproductive fitness and success 20 in dynamic and unpredictable estuary environments (Mazzoldi and Rasotto 2001; Nicholson et al. 2008; Koutrakis and Tsikliras 2009; Dinh 2018). This has been documented in other species such 21 as the Padanian goby Padogobius martensi (Bonaparte 1846) and burrowing goby Trypauchen 22 23 *vagina* (Bloch and Schneider 1801), which can also spawn more than once in the same spawning 24 period (Cinquetti and Rinaldi 1987; Dinh 2018). We suspect both P. knysnaensis and C. gilchristi 25 may have multiple spawning events due to low GSI and extended reproductive period (spring and summer) (Rizzo and Bazzoli 2020). 26

27

Fast growth rate in gobies enables them to reproduce within the first year (i.e. age-0) (Bouchereau and Guelorget 1998; Azevedo and Simas 2000). Both study species matured early and start to reproduce at less than 40.00 mm TL at age-0, a trait linked to r-selected species with fast paced life history (Pianka 1970; Arruda et al. 1993). This is a trait which is common in other goby species, e.g. the Mediterranean striped goby, *Gobius vittatus* (Vinciguerra 1883), marbled goby *Pomatoschistus marmoratus* and rock goby *Gobius paganellus* (Linnaeus 1758), which are also
able to reproduce in the age-0 cohort at small sizes (Azevedo and Simas 2000; Kovačić 2007;
Koutrakis and Tsikliras 2009). Their high fecundity, rapid reproduction and fast growth rate,
promotes their typically high abundance throughout estuaries (MacInnis and Corkum 2000).

Psammogobius knysnaensis and C. gilchristi have the same reproduction period in the Sundays 7 8 Estuary, with peak reproduction occurring in January. Traits typical of the gobiid family are 9 exhibited in both species, which supports their persistence in South African estuaries. We suggest that due to goby species being so well presented in estuarine environments across the country and 10 life histories that are tightly linked to environmental pulses of resources, they are ideal species for 11 12 biomonitoring and hypothesis testing. Examples could include: early detection of phenological shifts, the effects of climate change on community abundances and composition and predicting the 13 14 winners and losers of climate change in functionally similar species.

15

16 Author Contributions

Conceptualisation: PN, NJ, OLWF; Data Acquisition and Curation: PN, NJ; Formal Analysis: PN,
 NJ; Supervision: NJ, JS, OLWF; Writing – Original draft, review and editing: PN, NJ, JS.

19

20 Acknowledgements

21 This research was funded by the National Research Foundation (Marine and coastal research UID 116042 and incentive funding) and supported (research equipment, infrastructure, and logistics) 22 23 by the Shallow Marine and Coastal Research Infrastructure (SMCRI) platform. Research ethics 24 for the project was approved by Rhodes University (ethical clearance number 2019-0543-750). W 25 Kuntz, I Malick, P Nodo, T Mkhize, J Mohale, C Edworthy, A Mgwali, P Cothiyani and P Rukuni are thanked for field assistance with fish collections. We thank L Mofu for laboratory work training 26 27 and C Hahn together with R Erasmus (NMU students) for laboratory assistance. The primary author, P Ndaleni, was supported during her doctoral studies by NRF-SAIAB and an NRF PDP 28 29 scholarship. A special thank you to the late Prof OLF Weyl for supervising the project.

30

31 **References**

- 1
- Arruda LM, Azevedo J, Neto AI. 1993. Abundance, age-structure and growth and reproduction of
 gobies (Pisces, Gobiidae) in the Ria de Aveiro Lagoon (Portugal). *Estuarine, Coastal and Shelf Science* 37: 509–523.
- Azevedo JMN, Simas AMV. 2000. Age and growth, reproduction and diet of a sublittoral
 population of the rock goby *Gobius paganellus* (Teleostei, Gobiidae). *Hydrobiologia* 440: 129–
 135.
- Bailey SE, James NC. 2013. Fish sampling in the marine-dominated Kariega Estuary, South
 Africa, using a demersal otter trawl: day/night effects. *African Journal of Aquatic Science* 38: 115–
 10 120.
- 11 Bennett BA. 1989. A comparison of the fish communities in nearby permanently open, seasonally

open and normally closed estuaries in the south-western Cape, South Africa. South African Journal
of Marine Science 8: 43–55.

- Booth AJ, Weyl OLF. 2000. Histological validation of gonadal macroscopic staging criteria for
 Labeo cylindricus (Pisces: Cyprinidae). *African Zoology* 35: 223–231.
- Bouchereau JL, Guelorget O. 1998. Comparison of three Gobiidae (Teleostei) life history
 strategies over their geographical range. *Oceanologica Acta* 21: 503–517.
- 18 Cinquetti R, Rinaldi L. 1987. Changes in the gonadal histology of *Padogobius martensi* (Pisces:
- 19 Gobiidae) during the reproductive cycle. *Italian Journal of Zoology* 54: 233–241.
- 20 Dinh QM. 2018. Aspects of reproductive biology of the red goby *Trypauchen vagina* (Gobiidae)
- from the Mekong Delta. *Journal of Applied Ichthyology* 34: 103–110.
- 22 Fraser DF, Gilliam JF. 1992. Nonlethal impacts of predator invasion: facultative suppression of
- 23 growth and reproduction. *Ecology* 73: 959–970.
- Froneman PW. 2001. Stable isotope (∂ 13C) composition of the food web of the temperate Kariega
- 25 Estuary (Eastern Cape). Southern African Journal of Aquatic Sciences 26: 49–56.

- Gertzen S, Fidler A, Kreische F, Kwabek L, Schwamborn V, Borcherding J. 2016. Reproductive
 strategies of three invasive Gobiidae co-occurring in the Lower Rhine (Germany). *Limnologica* 56: 39–48.
- Gómez-Llano M, Germain RM, Kyogoku D, McPeek MA, Siepielski AM. 2021. When ecology
 fails: how reproductive interactions promote species coexistence. *Trends in Ecology and Evolution*36: 610-622.
- Grabowska J, Przybylski M. 2015. Life-history traits of non-native freshwater fish invaders
 differentiate them from natives in the Central European bioregion. *Reviews in Fish Biology and Fisheries* 25: 165–178.
- Harrison TD, Whitfield AK. 2006. Temperature and salinity as primary determinants influencing
 the biogeography of fishes in South African estuaries. *Estuarine, Coastal and Shelf Science* 66:
 335–345.
- Huo B, Madenjian CP, Xie CX, Zhao Y, O'Brien TP, Czesny SJ. 2014. Age and growth of round
 gobies in Lake Michigan, with preliminary mortality estimation. *Journal of Great Lakes Research*40: 712–720.
- 16 İlkyaz AT, Metin G, Kinacigil HT. 2011. The use of otolith length and weight measurements in
 17 age estimations of three Gobiidae species (*Deltentosteus quadrimaculatus, Gobius niger*, and
 18 *Lesueurigobius friesii*). *Turkish Journal of Zoology* 35: 819–827.
- Indira R, Prabhu Arachi JMA, Varadharajan D. 2013. Studies on the reproductive biology of Red
 Jewel Cichlid *Hemichromis bimaculatus* (Gill, 1862). *International Journal of Environmental*
- 21 *Biology* 3: 160–172.
- James NC, Cowley PD, Whitfield AK, Lamberth SJ. 2007. Fish communities in temporarily
 open/closed estuaries from the warm-and cool-temperate regions of South Africa: a review. *Reviews in Fish Biology and Fisheries* 17: 565–580.
- Koutrakis ET, Tsikliras AC. 2009. Reproductive biology of the marbled goby, *Pomatoschistus marmoratus* (Pisces, Gobiidae), in a northern Aegean estuarine system (Greece). *Folia Zoologica* 58: 447–456.
 - 10

Kovačić M. 2007. Reproductive biology of the striped goby, *Gobius vittatus* (Gobiidae) in the
 northern Adriatic Sea. *Scientia Marina* 71: 145–151.

MacInnis AJ, Corkum LD. 2000. Fecundity and reproductive season of the round goby *Neogobius melanostomus* in the upper Detroit River. *Transactions of the American Fisheries Society* 129:
 136–144.

- Mazzoldi C, Rasotto MB. 2001. Extended breeding season in the marbled goby, *Pomatoschistus marmoratus* (Teleostei: Gobiidae), in the Venetian Lagoon. *Environmental Biology of Fishes* 61:
 175–183.
- 9 Miller PJ. 1961. Age, growth, and reproduction of the rock goby, *Gobius paganellus* L., in the Isle
- 10 of Man. Journal of the Marine Biological Association of the United Kingdom 41: 737–769.
- Mofu L, Woodford D J, Wasserman RJ, Weyl O L. 2020. Life history of the river goby
 Glossogobius callidus (Teleostei: Gobiidae). *Journal of Fish Biology* 97: 1600–1606.
- Neiffer DL, Stamper MA. 2009. Fish sedation, analgesia, anesthesia, and euthanasia:
 considerations, methods, and types of drugs. *National Research Council Institute of Laboratory Animal Resources* 50: 343–360.
- 16 Nicholson G, Jenkins GP, Sherwood J, Longmore A. 2008. Physical environmental conditions,
- spawning and early-life stages of an estuarine fish: climate change implications for recruitment in
 intermittently open estuaries. *Marine and Freshwater Research* 59: 735–749.
- 19 Nodo P, James NC, Childs AR, Nakin MD. 2018. Response of demersal fish assemblages to an
- 20 extreme flood event in a freshwater-deprived estuary in South Africa. *Marine and Freshwater*
- 21 *Research* 69: 253–266.
- 22 Persson L. 1990. A field experiment on the effects of interspecific competition from roach, *Rutilus*
- 23 rutilus (L.), on age at maturity and gonad size in perch, Perca fluviatilis L. Journal of Fish Biology
- 24 37: 899–906.
- 25 Pianka ER. 1970. On r-and K-selection. *The American Naturalist* 104: 592–597.

- Richardson N, Whitfield AK, Paterson AW. 2006. The influence of selected environmental
 parameters on the distribution of the dominant demersal fishes in the Kariega Estuary channel,
- 3 South Africa. *African Zoology* 41: 89–102.
- 4 Rizzo E, Bazzoli N. 2020. Reproduction and embryogenesis. *Biology and Physiology of*5 *Freshwater Neotropical Fish* 287–313.
- Santos RND, Amadio S, Ferreira EJ. 2010. Patterns of energy allocation to reproduction in three
 Amazonian fish species. *Neotropical Ichthyology* 8: 155–162.
- 8 Sarker PK, Pal HK, Rahman MM, Rahman MM. 2002. Observation on the fecundity and gonado-
- 9 somatic index of Mystus gulio in brackishwater of Bangladesh. Online Journal of Biological
- 10 *Science* 2: 235–237.
- 11 Teichert N, Pasquaud S, Borja A, Chust G, Uriarte A, Lepage M. 2017. Living under stressful
- conditions: Fish life history strategies across environmental gradients in estuaries. *Estuarine*, *Coastal and Shelf Science* 188: 18–26.
- Thacker CE, Roje DM. 2011. Phylogeny of Gobiidae and identification of gobiid lineages. *Systematics and Biodiversity* 9: 329–347.
- Thresher RE. 1983. Habitat effects on reproductive success in the coral reef fish, *Acanthochromis polyacanthus* (Pomacentridae). *Ecology* 64: 1184–1199.
- 18 Torricelli P, Lugli M, Gandolfi G. 1985. A quantitative analysis of the fanning activity in the male
- 19 *Padogobius martensi* (Pisces: Gobiidae). *Behaviour* 92: 288–301.
- 20 Tutman P, Zanella D, Horvatić S, Hamzić A, Adrović A, Dulčić J, Glamuzina B. 2020. Freshwater
- 21 gobies (Gobiidae) of Bosnia and Herzegovina: a review of the current status and distribution.
- *Journal of Vertebrate Biology* 69: 20046.1–15.
- Weyl OL, Booth AJ. 1999. On the life history of a cyprinid fish, *Labeo cylindricus*. *Environmental Biology of Fishes* 55: 215–225.
- 25 Whitfield AK. 1999. Ichthyofaunal assemblages in estuaries: A South African case study. *Reviews*
- *in Fish Biology and Fisheries* 9: 151–186.

- 1 Whitfield AK. 2019. Fishes of Southern African Estuaries: From Species to Systems. Smithiana
- 2 Monograph No.4, 481 p. South African Institute for Aquatic Biodiversity, Grahamstown.
- 3 Winker H, Ellender BR, Weyl OLF, Booth AJ. 2010. Validation of growth zone deposition in
- 4 otoliths of two large endemic cyprinids in Lake Gariep, South Africa. African Zoology 45: 133–
- 5 138.