
This is a repository copy of Sensor placement for data assimilation of turbulence models 
using eigenspace perturbations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209449/

Version: Published Version

Article:

Bidar, O. orcid.org/0009-0000-9889-7351, Anderson, S.R. orcid.org/0000-0002-7452-5681 
and Qin, N. orcid.org/0000-0002-6437-9027 (2024) Sensor placement for data assimilation
of turbulence models using eigenspace perturbations. Physics of Fluids, 36. 015144. ISSN
1070-6631 

https://doi.org/10.1063/5.0182080

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 




View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JANUARY 23 2024

Sensor placement for data assimilation of turbulence
models using eigenspace perturbations
O. Bidar   ; S. R. Anderson  ; N. Qin 

Physics of Fluids 36, 015144 (2024)
https://doi.org/10.1063/5.0182080

 2
0
 F

e
b
ru

a
ry

 2
0
2
4
 1

5
:0

8
:2

1

https://pubs.aip.org/aip/pof/article/36/1/015144/3061599/Sensor-placement-for-data-assimilation-of
https://pubs.aip.org/aip/pof/article/36/1/015144/3061599/Sensor-placement-for-data-assimilation-of?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/36/1/015144/3061599/Sensor-placement-for-data-assimilation-of?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0009-0000-9889-7351
javascript:;
https://orcid.org/0000-0002-7452-5681
javascript:;
https://orcid.org/0000-0002-6437-9027
javascript:;
https://doi.org/10.1063/5.0182080


Sensor placement for data assimilation
of turbulence models using eigenspace
perturbations

Cite as: Phys. Fluids 36, 015144 (2024); doi: 10.1063/5.0182080

Submitted: 18 October 2023 . Accepted: 27 December 2023 .

Published Online: 23 January 2024

O. Bidar,1,a) S. R. Anderson,2 and N. Qin3

AFFILIATIONS

1Department of Automatic Control and Systems Engineering and Department of Mechanical Engineering, University of Sheffield,

Western Bank, Sheffield S10 2TN, United Kingdom
2Department of Automatic Control and Systems Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN,

United Kingdom
3Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom

a)Author to whom correspondence should be addressed: obidar1@sheffield.ac.uk

ABSTRACT

We present an approach to sensor placement for turbulent mean flow data assimilation in the context of Reynolds-averaged Navier–Stokes
(RANS) simulations. It entails generating a spatial uncertainty map through the eigenspace perturbations (ESPs) of the baseline turbulence
model (e.g., the k� x shear stress transport model) to quantify the epistemic structural errors in the model. A novel greedy search algorithm
is proposed to place sensors targeting regions of highest uncertainty in the spatial uncertainty map generated from ESP. The algorithm is
computationally efficient (e.g., computational cost negligible compared to a RANS solution) and is both easy to implement and tune. It
involves two hyper-parameters (a constraint to avoid sensor clustering and the number of sensors) which we investigate in-depth. A varia-
tional (adjoint-based) data assimilation approach is used for flow reconstruction. The proposed strategy was tested on three two-dimensional
wall-bounded flows (Reynolds number ranging 5:6� 103–9:36� 105) involving flow separation and reattachment. For the wall-mounted
hump case, we found that data assimilation using 33 sensors with our proposed sensor placement algorithm reduced the average velocity pre-
diction error by 60% vs 38% with a simple uniform placement of sensors. Furthermore, we found that we could achieve 61% error reduction
using our algorithm with only three sensors. Notably, in all tested cases, the error reduction using our method for sensor placement was close
in accuracy to the instances where the entire flow field data were used for flow reconstruction, which involved two to three orders of magni-
tude more data points than the placed sensors.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0182080

I. INTRODUCTION

Turbulent flows are broadly investigated using physical experi-
ments and/or computational fluid dynamics (CFD). In both
approaches, the accuracy, level of fidelity, and associated costs play
competing roles. For practical CFD analyses, there is a heavy reliance
on the Reynolds-averaged Navier–Stokes (RANS) simulations due to
their relative simplicity and low computational resources requirement.
It comes at the cost of limited accuracy for complex flows primarily
due to the need for modeling all turbulent scales.1 In recent years, a
large number of data assimilation techniques have emerged that
rely on the synergy of RANS models, such as high-fidelity simulations
or experimental measurements for uncertainty quantification

(e.g., Ref. 2), turbulent flow reconstruction (e.g., Ref. 3), and data-driven

modeling and predictions (e.g., Refs. 4–8). In the context of data-driven

RANS-based models, a number of frameworks have been shown to

achieve considerable improvements using limited, experimentally mea-

surable, data (e.g., Refs. 9–12). However, most applications, thus far, have

been primarily dictated by the availability of existing data, usually gener-

ated for benchmarking and validation. The important task of sensor

placement for generating the experimental data a priori—and desirably
tailored for RANS-based data assimilation—remains less well-explored.

Sensor placement in fluid flows have been studied in the context of
model reduction, for example, using proper orthogonal decomposition
(POD),13–15 resolvent analysis,16 and deep learning.17 It has also been
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explored for flow control, for example, Refs. 18 and 19. Manohar et al.20

introduced a sparse sensor placement strategy using singular value
decomposition and QR pivoting. Callaham et al.21 proposed using
sparse representation techniques to reconstruct flow fields given sparse
measurements. Lu and Papadakis22 reconstructed flow around a
surface-mounted prism using a combination of POD and a data-driven
estimator using sparse velocity and scalar measurements. Recently,
Karnik et al.23 introduced a constrained sensor placement strategy using
a greedy algorithm for flow reconstruction in nuclear digital twins.
High-dimensional fields were reconstructed based on sparse sensor data
using reduced order models.

In the context of RANS-based turbulent flow reconstruction,
broadly, two main data assimilation classes exist: the stochastically for-
mulated ensemble-based and the variational or adjoint-based, derived
from an optimal control approach.

The ensemble Kalman filter (EnKF)24 is a popular ensemble-
based data assimilation technique. Developed from the Kalman filter
(KF), the EnKF technique uses ensemble realizations of the system
state to estimate the error covariance. This solves the computationally
expensive standard KF which needs to propagate and store a high-
rank error covariance matrix, not suitable for high dimensional prob-
lems, such as turbulent flow reconstruction. Examples of EnKF
applications include data assimilation of turbulent wall-bounded flows
with wall pressure and skin friction data;25 enhanced flow reconstruc-
tion with disparate data (combinations of sparse data for multiple
engineering quantities of interest, such as surface pressure and stream-
wise velocities) with a regularized EnKF;10 and a comparison of EnKF
with other ensemble-based techniques26 using different quantities.
Ensemble-based techniques have the advantages of allowing for incor-
porating and propagating the statistics of the assimilated flow state and
relatively easy implementation due to their non-intrusive nature.

The adjoint-based or variational data assimilation involves the
solution of a gradient-based optimization problem that minimizes the
error between the high-fidelity data and RANS output. The high
dimensions of such an inverse problem require the use of the adjoint
method for efficient derivative computations of the cost function.
Examples of applications include reconstructing flow by adjusting the
term corresponding to the divergence of the Reynolds stress tensor in
the RANS momentum equation (e.g., Refs. 27, 28) and the so-called
field inversion (FI) approach where the RANS turbulence model trans-
port equation is modified by a scalar field that is optimized using the
adjoint method (e.g., Refs. 12, 29, and 30). The latter has also been
extended for data-driven predictive RANS models using machine
learning (e.g., Refs. 9 and 31–33). Adjoint-based methods can, in prin-
ciple, assimilate finer scales of turbulent flow with limited sample sizes
compared to ensemble-based methods.10,34 The adjoint method allows
scalability and robustness in variational data assimilation, however,
due to its intrusive nature involving the governing equations (i.e.,
RANS equations with turbulence model equations), it requires a time-
consuming and laborious software development phase. In the context
of turbulent mean flow data assimilation, we have addressed this issue
through an open-source implementation.35

Sensor placement has been investigated in the context of both
ensemble-based and variational RANS-based data assimilation.
Recently, Deng et al.36 proposed a deep neural network (DNN)-based
strategy to obtain the spatial sensitivity of the velocity field with respect
to perturbations to RANS model constants. The a priori sensitivity

analysis requires running ensembles of flow simulations with modified
RANS model constants (100 CFD calculations in Ref. 36) and using a
feature importance layer in a deep neural network to map the velocity
fields to the respective modified constants. The feature importance
layer is effectively weights in the entire CFD mesh, and after DNN
training, the sensors are placed at the locations with the highest
weights. The EnKF-based data assimilation by calibrating model coeffi-
cients may not be sufficient to reconstruct turbulent flows, as RANS-
based discrepancy is thought to be mainly due to the structural forms
of the turbulence model equations (i.e., uncertainties due to the
Boussinesq hypothesis), rather than model parameters.2 In addition, it
is not clear how the bounds for model constants should be set for gen-
erating the ensemble data for DNN training.

Mons et al.37 investigated sensor placement in the context of vari-
ational data assimilation for an unsteady laminar flow past a rotation-
ally oscillating cylinder. The proposed framework involves the
maximization of the sensitivity of observations with respect to changes
in initial and boundary conditions using a first-order adjoint approach.
It is unclear how this method can be extended to turbulent flows, and
if the initial and boundary conditions are effective metrics to account
for discrepancies due to parametric, functional, and structural uncer-
tainties in turbulence models. Recently, Mons et al.38 also proposed a
more comprehensive linear and non-linear sensor placement strategies
for laminar mean-flow variational data assimilation. The data assimila-
tion is based on inferring a forcing term that corresponds to the diver-
gence of the Reynolds stress tensor in the RANS momentum equation
(as in Ref. 27). The optimization problem was formulated in two con-
texts: linear and non-linear. In the linear approach, the sensor place-
ment strategy involves identifying the forcings that results in the most
important variations in the mean velocity field and placing sensors at
the dominant locations to allow for accurate reconstruction. In order
for this approach to be most effective, the analysis needs to be per-
formed close to the true states of the flow—which is a limitation for a
priori analyses. To overcome this issue, a non-linear approach based
on the second-order adjoint method was proposed that involves the
minimization of the condition number of the Hessian of the assimi-
lated flow. While this approach was found to be considerably more
effective compared to the linear approach, the Hessian evaluation is
computationally expensive—especially when applied to high Reynolds
number three-dimensional turbulent flows—and difficult to
implement.

In this work, we propose an optimization-based approach to vari-
ational sensor placement that involves the following:

1. Initially, we generate a spatial sensitivity map of the flow by
employing the eigenspace perturbation approach for epistemic
structural uncertainty in a baseline turbulence model.39 Unlike
the examples presented from literature, here the aim is to directly
address the main source of discrepancy—the epistemic structural
errors in turbulence models2—and use it to tailor sensor place-
ment for mean turbulent flow assimilation.

2. After the uncertainty map is generated, an optimization problem
is solved where the regions of highest uncertainties are targeted.
This process is decoupled from the RANS-based solution, unlike
the variational sensor placement strategies discussed above. The
advantages are a very low computational cost, an easy implemen-
tation, and algorithm tuning, compared to the adjoint-based
analyses in Refs. 37 and 38.
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3. Once sensor locations have been identified, we then perform the
variational data assimilation using the field inversion framework.
This approach has the advantage of model-consistency,4 and the
aforementioned capacity to perform reasonably with limited
data. In addition, unlike the method in Ref. 36, this approach is
not limited to parametric adjustment of the baseline turbulence
model and addresses the functional discrepancy.

The rest of the paper is structured as follows. In Sec. II, we formu-
late the sensor placement problem, introduce the k� x SST baseline
RANS model, the eigenspace perturbation approach, the sensor place-
ment strategy, and the field inversion method. Results are presented
and analyzed in Sec. III, with the entire framework and analysis con-
solidated in Sec. IV, and final conclusions are drawn in Sec. V.

II. METHODS

We will begin by motivating the approach to sensor placement,
with a general overview of our proposed strategy, followed by the
details of components involved in the framework, described
sequentially.

A. Problem formulation and framework overview

Very broadly, the task of sensor placement can be posed as an
optimization problem as follows:

max
x

f SðxÞ½ �; or min
x

f SðxÞ½ ��1;

subject to C ðxÞ; (1)

where x represents the desired sensor locations, which we will also
denoteS henceforth, S is an operator for the desired sensor locations,
and C represents any/all the constraints (e.g., number of sensors,
regions of interest, minimum distance between sensors, other physics-
based constraints including the governing equations of the system,
etc.).

Short of a brute-force exhaustive search, the so-called “generate
and test” approach, which will have huge time and cost implications,
the goal is to have an a priori sensor placement approach, i.e., placing
sensors by approximating regions of uncertainty based on physical
and/or expert knowledge before undertaking the experiment(s). The
function f ½SðxÞ� can be based on the determinant of the Fisher infor-
mation matrix (e.g., Ref. 40) some measure from a deep neural net-
work (e.g., Refs. 17 and 36) or any other appropriate cost function
(e.g., Refs. 23, 37, and 38). We stress that the goal is for f ½SðxÞ� in Eq.
(1) to effectively capture the uncertainty in the underlying system and
target spatial sensors in the regions of high uncertainty, some of which
have been highlighted already in Sec. I.

Figure 1 illustrates the proposed framework. Starting with a
linear-eddy viscosity RANS closure, we perturb the Reynolds stress
tensor to their extremal states to generate an uncertainty map, a surro-
gate for the operator SðxÞ in Eq. (1). Specifically, five CFD simulations
are run sequentially: two simulations perturbing the eigenvectors and
three simulations perturbing the eigenvalues. All five simulations result
in as many realizations of the flow prediction, allowing us to generate
uncertainty maps—based on the variances—for various quantities of
interest, e.g., a variance map of the streamwise velocity, with a value
for each mesh cell, etc. Then, for a prescribed number of sensors and
for a given quantity of interest, an optimization problem is solved by a

greedy search to ensure sensors are placed in regions of flow field with
highest uncertainty. After identifying these locations, the turbulent
flow is reconstructed through an adjoint-based data assimilation
approach.

B. Underlying RANSmodel

In RANS-based analyses, derived from Reynolds (and time-aver-
aging) of the Navier–Stokes equations, all turbulence scales—repre-
sented by the Reynolds stress tensor, uiuj—are modeled.41 The most
commonly used model are based on the Boussinesq approximation,
and the Reynolds stress tensor can be approximated as a linear func-
tion of the mean rate of strain, Sij,

quiuj ¼
2

3
qkdij � lt Sij �

2

3

@Uk

@xkdij

 !

; (2)

where q, k, dij, and lt are the density, turbulent kinetic energy, the
Kronecker delta function, and the turbulent viscosity respectively.

A commonly employed RANS model is the two-equation k� x

shear stress transport (SST) model.42 It blends the k� x model in
regions close to walls, and k� e in the farfield. The transport equations
of the turbulent kinetic energy k and dissipation ratex are

Dpk

Dt
¼ qP � b?qkxþ

@

@xj
lþ rkltð Þ

@k

@xj

" #

; (3)

Dqx

Dt
¼

c

�t
qP � bqx2 þ

@

@xj
lþ rxltð Þ

@x

@xj

" #

þ 2q 1� F1ð Þrx2
1

x

@k

@xj

@x

@xj
; (4)

FIG. 1. Overview of the proposed framework for sensor placement and data assimi-
lation. The sensor placement and data assimilation problems are decoupled. X: spa-
tial coordinates of flow domain; Q: flow variables such as velocity and pressure; V
variance of any given quantity (q) following the five eigenspace perturbations; and
S : coordinates of optimized sensor locations. The relevant sections (§) of the
paper are highlighted in each block.
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where P is the production of turbulent kinetic energy, l is the dynamic
viscosity, b?, rk, c, b, rx; rx2 are model constants, and F1 is a blend-
ing function.

The turbulent viscosity is calculated as

lt ¼ q
a1k

maxða1x; SF2Þ
; (5)

where a1 is a model constant, S is the magnitude of the shear stress ten-
sor, and F2 is another blending function.

C. Eigenspace perturbations

The eigen-decomposition of the Reynolds stress tensor in Eq. (2)
results in

uiuj ¼ 2k
dij

3
þ �inKnl�lj

� �

; (6)

where �in is the orthornormal eigenvectors matrix and Knl is a diago-
nal matrix composed of eigenvalues, kl. The eigen-decomposition is
useful because now the shape and orientation of the Reynolds stress
tensor are directly represented by the eigenvalues and eigenvectors,
respectively.

The eigenvalues can be represented in the Barycentric map,43

shown in Fig. 2. All realizable turbulent states are encompassed by the
equilateral triangle, with the vertices representing the limiting states.
Any given turbulence state x can be represented as linear functions of
the eigenvalues, kl and the vertices of the Barycentric map, as
follows:43

x ¼ x1cðk1 � k2Þ þ x2cð2k2 � 2k3Þ þ x3cð3k3 þ 1Þ; (7)

where the three vertices x1c; x2c, and x3c represent one-component,
two-component (axisymmetric), and three-component (isotropic)
turbulence.

Uncertainty can now be introduced in the Reynolds stresses by
perturbing the eigenvalues to their limiting states, i.e., the three vertices
in the Barycentric map. The perturbed states x� can be defined as39,44,45

x
� ¼ x þ DBðx

ðtÞ � xÞ; (8)

where x is the arbitrary initial state, DB 2 ½0; 1� is the relative distance
between x, and xðtÞ is the target vertex. Thus, the perturbed eigenval-
ues, k�l can be calculated as

k�l ¼ B�1x�; (9a)

¼ ð1� DBÞB
�1
x þ DBB

�1
x
ðtÞ; (9b)

¼ ð1� DBÞkl þ DBB
�1
x
ðtÞ; (9c)

where B is a linear mapping with B�1x1c ¼ ð2=3;�1=3;�1=3Þ
T ;

B�1x2c ¼ ð1=6; 1=6;�1=3Þ
T , and B�1x3c ¼ ð0; 0; 0Þ

T .
The eigenvector perturbations modulate the turbulent kinetic

energy production, Pk ¼ �uiujð@Ui=@xjÞ, which represents the

transfer of kinetic energy from the mean flow to the fluctuating veloc-
ity field.39 This corresponds to varying the alignment of the Reynolds
stress ellipsoid. Mathematically, this modulation is achieved by varying
the Frobenius inner product hA;RiF ¼ trðARÞ, with A being repre-

senting the mean velocity gradient, and R being the Reynolds stress
tensor. As with the eigenvalue perturbations, the extremal states are
sought by considering the bounding values of the inner product to
consider all permissible dynamics. Iaccarino et al.39 show that the
bounds on the inner product are

hA;RiF 2 k1c3 þ k2c2 þ k3c1; k1c1 þ k2c2 þ k3c3½ �; (10)

with k1 � k2 � k3 representing the eigenvalues of the symmetric
components of the mean velocity gradient A, which is also the strain
rate tensor. Thus, in the coordinate system defined by the eigenvectors
of the strain rate tensor, the bounds for the Reynolds stress alignments
of the Reynolds stress eigenvectors are

�min ¼
0 0 1
0 1 0
1 0 0

2

4

3

5 and �max

1 0 0
0 1 0
0 0 1

2

4

3

5:

The eigenspace perturbation (ESP) implementation of Mishra
et al.45 in the SU2 CFD suite is used in this work. The implementation
in Ref. 45 has been tested on both two- and three-dimensional flows.

D. Sensor placement

The uncertainty map generated as described in Sec. IIC can now
be used as a surrogate for the f ½SðxÞ� operator in Eq. (1). One
approach of formulating the optimization problem for sensor place-
ment, with a prescribed number of sensors, Ns, can be

maxx J ¼
1

jjJ0jj

X

Ns

i¼1

V qðxiÞ; subject to dðxÞ � dmin; (11)

where V q represents the variance-based uncertainty map from eigen-
space perturbation for a quantity q, x 2 v represents the sensor coordi-
nates, where v � X represents the space of potential sensor locations,
and for Ns > 1; dðxÞ represents a minimum distance constraints
between any two sensors, prescribed by the user (based, for example,
on operational parameters/constraints, etc.). Additionally, the distance
constraint is essential for the problem to be well-posed in order to
avoid sensor clustering.

One approach to solving the optimization problem in Eq. (11)
can be using global search methods, such as genetic algorithms, with
many off-the-shelf implementations to choose from. However, this

FIG. 2. Barycentric triangle used to perturb eigenvalues to their three limits.
Mapping turbulence states on the Barycentric map is useful as Banerjee et al.43

showed that all realizable turbulence states are bounded and presented by the
edges and vertices of the equilateral triangle. In eigenspace perturbations an arbi-
trary Reynolds stress state x is sequentially perturbed from the initial state to the
three vertices x1c; x2c , and x3c .
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can be a computationally challenging optimization problem due to the
very large design space involved in turbulent flows, i.e., the computa-
tional budget required in high Reynolds number, three-dimensional
flows of industrial interest is not anticipated to scale well. Given this,
we propose a more computationally efficient solution based on a
greedy search, which uses the heuristic of making the locally optimal
decision at each choice of sensor location, i.e., the sensor is placed at
the next permissible location of maximal uncertainty in each iteration,
summarized in Fig. 3 and Algorithm 1.

The sensor placement procedure is as follows:

1. Given a prescribed number of sensors, Ns, the potential sensor
sites v � X, uncertainty map for a given quantity, V q, place the
first sensor in the cell with the highest variance, V q, and store
the spatial coordinates, S n. An initial radius, rinitial, must also be
prescribed for defining the circular (in two-dimensional cases)—
or spherical in three-dimensional flows—exclusion zone, Xn with
n¼ 1, to avoid subsequent sensors clustering around the sensor
placed previously. This is an important hyper-parameter which
we will return to shortly.

2. Exclude the cells in the domain Xn, for n � 1, and update v and
V q accordingly.

3. Place the next sensor at the cell with highest variance (based on
the updated V q and v), and store the coordinates S n.

4. Select the radius, rn for n > 1, for the exclusion domain Xn using
as follows:

rn ¼ 1þ V q
n�1 � V q

n

� �� �

rn�1: (12)

Using the relation in Eq. (12), we linearly increase the size of the
exclusion domain based on the change in variance between sub-
sequent sensors.

5. Repeat steps 2–4 until all sensors are placed.

There are two hyper-parameters in the proposed greedy algo-
rithm. The first one is the initial radius for the circular exclusion zone.
This determines how far the sensors are placed. For a given number of
sensors, we propose an iterative approach to guide this selection, using
the following metricM 1,

M 1 ¼

P

Nv

i

V q
i

P

Ns

n

P

Xn

m
V q xmð Þ

; (13)

where we iteratively vary the initial radius, illustrated in Fig. 4. The
numerator is the sum of variances, V q, over the entire potential sensor
sites, v, and the denominator is the sum of variances over the excluded
circular domains with the sensors locations at the centers (refer to illus-
trative exclusion domains, Xn, in Fig. 3). The initial radius can be
defined as a proportion of some characteristic length of the case under
consideration. As it increases, M 1 in Eq. (13) approaches unity. Thus,
we can select the initial radius iteratively, using some relative threshold
(i.e., with respect to unity). This will be practically demonstrated and
assessed numerically in Sec. IIIA. In addition, this approach of selecting
the initial radius parameter is a practical one, given the low computa-
tional cost of the entire sensor placement algorithm.

Algorithm 1.Greedy algorithm for sensor placement.

Inputs: Ns¼ number of sensors; v � X¼ x, y, z Cartesian coordi-
nates of mesh cell centers; V q¼ eigenspace perturbation-based vari-
ance of quantity to be measured; rinitial¼ initial radius for exclusion
domain.

Output:S ¼ sensor locations (x, y, z coordinates)

1: procedure PLACESENSORS(Ns, v, V
q; rinitial)

2: r  rinitial . radius for exclusion domain

3: for all n 2 1;…;Ns do

4: i ¼ maxðV qÞ . i¼ index of cell with max. variance

5: S ½n; :� ¼ v½i; :� . save x; y; z coordinates of sensor n

6: v̂; V̂ ¼ ½� . storage for non-excluded regions

7: M  sizeðvÞ

8: for all m 2 1;…;M do

9: x; y; z  v½m; :�

10: if x; y; z 62 Xn then . only keep cells outside Xn

11: v̂  concatenateðx; y; zÞ

12: V̂  concatenateðV q½m�Þ

13: j maxðV̂ Þ . j¼ index of cell with max. variance

14: r  ½1þ ðV q½i� � V̂ ½j�Þ� � r . update radius for Xnþ1

15: v v̂

16: V q  V̂
17: return S

The number of sensors can be considered as the second hyper-
parameter. We note that based on the experimental approach, this can
be dictated by other constraints (e.g., in the instance where only a dis-
crete given set of sensors are available). Nonetheless, as an approximate
guide to how many sensors may be considered, we propose the follow-
ing metric,M 2,

M 2 ¼
X

Ns

n

V q
n

 !�1

; (14)

FIG. 3. Sensor placement visualization using the proposed greedy algorithm, in
Algorithm 1. The contour represents the uncertainty in the streamwise velocity pre-
dictions from eigenspace perturbations, V ðUxÞ. The number of sensors Ns¼ 5 in
this example, placed sequentially. The sensors are represented by the square
markers, and the circles labeled Xn represent the exclusion domain defined by
radius rn, where the radius is calculated using the expression in Eq. (12) for n> 1,
and the initial radius r1 is selected iteratively usingM 1 in Eq. (13).
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which is the sum of variances over the sensor locations, S . As the
number of sensors increase Ns will level off, as illustrated in Fig. 5, with
detailed numerical analysis in the results section.

E. Data assimilation using field inversion

We employ the adjoint-based field inversion (FI) approach for
data assimilation. This is essentially an inverse problem, where the
transport equation for an existing turbulence model is modified by
introducing a multiplicative spatially varying scalar field (bFI) to the
production term.9,29–31,33 The scalar field is iteratively tuned (by solv-
ing an optimization problem) such that the error between RANS-
based flow predictions and high-fidelity data are minimized. For the
k� x SST, the equation for the turbulence dissipation rate [Eq. (4)],
shown in a generalized form below, is thus modified as46

Dx

Dt
¼ bFI Xð ÞPx Qð Þ þ T x Qð Þ �Dx Qð Þ; (15)

where bFIðXÞ 2 R
Nb is the spatial scalar field with Nb equivalent to

the number of mesh cells, Q represents the Reynolds-average con-
served flow variables, Px; T x, and Dx, represent the production,
transport, and destruction terms in turbulence dissipation transport
equation. The original/baseline model is recovered with bFI ¼ 1.

The inverse problem is the formulated as finding the optimum
discrepancy field, bFIðXÞ, by minimizing the following objective
function:

minbFI L ¼ jjqRANSi bFI
� �

� qdatai jj
2
2 þ kjjbFI � 1jj22; (16)

which reduces the functional errors in the baseline turbulence model,
where qdatai 2 D represents high-fidelity physical quantities of size Ns,

qRANSi represents the equivalent quantity predicted by the turbulence
model, and jj:jj2 is the L2 norm. The second term in Eq. (16) tuned by
the relaxation parameter k is to regularize the problem by avoiding
huge deviations from the baseline turbulence model and avoiding an
ill-posed optimization problem.

FIG. 5. Illustrative plot of the metric in Eq. (14) for estimating the number of sen-
sors. An appropriate number of sensors can be approximated a priori, iteratively, as
the points on the curve when the metricM 2 levels off.

FIG. 6. Flow diagram for the iterative adjoint-based method for field inversion. The
process is labeled as data assimilation in Fig. 1. The corrective scalar-field bFI per-
turbs the turbulence transport equation [the production term in Eq. (4)] and is opti-
mized such that the error between high-fidelity data and the baseline RANS
predictions are minimized.

FIG. 4. Illustrative plot of the metric in Eq. (13) for guiding the selection of the initial
radius hyper-parameter. The initial radius for the exclusion domain, required by the
greedy sensor placement algorithm, can be iteratively selected, i.e., any point in the
“target zone” whenM 1 levels off.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 015144 (2024); doi: 10.1063/5.0182080 36, 015144-6

VC Author(s) 2024

 2
0
 F

e
b
ru

a
ry

 2
0
2
4
 1

5
:0

8
:2

1



Due to the high-dimensional nature of the optimization problem,
it is essential to use the adjoint-method for efficient gradient calcula-
tions, details provided in Ref. 35, with the general process summarized
in the flow diagram in Fig. 6.

III. RESULTS AND ANALYSIS

In this section, we apply the proposed framework to three fully-
turbulent wall-bounded benchmark flows, all involving challenging flow
physics (e.g., separation and reattachment) for RANS-based simulations.
In all the cases, we use the streamwise velocity as the quantity from
high-fidelity data, since it is one of the most commonly measured (in
terms of volume data, i.e., measured quantities in the flow domain). All
flows are simulated as two-dimensional, steady, and incompressible.

A. 2D NASA wall-mounted hump

The flow over the well-established 2D wall-mounted hump, Fig. 7,
part of the NASA Turbulence Modeling Resource database,47 is selected

as the first test case. It involves flow separation as a result of adverse
pressure gradients over the smooth hump surface. The flow is com-
monly used as a benchmark case for verifying and validating turbulence
models since most linear eddy viscosity models perform poorly in pre-
dicting the separation, reattachment, and boundary recovery by over-
predicting the size of the separation bubble due to under-predicted tur-
bulent shear stress in the separation region. The chord-based Reynolds
number is 9:36� 105 with a Mach number of 0.1.

We use wall-resolved large eddy simulation (LES) data by Uzun
et al.48 as a surrogate for experimental data. These results have been
validated against experimental data and are preferred over limited pub-
licly available experimental results as it allows for benchmarking data
assimilation with sparse experimental data against the scenario when
extensive data are available, such as those generated in particle image
velocimetry (PIV) experiments.

The baseline k� x SST, LES, and eigenspace perturbation
streamwise velocity profiles are shown in Fig. 8. The SST predictions
are most erroneous near the wall, in the separated shear layer, due to a
very high flow reversal aft of the hump apex, resulting in an over-
predicted circulation zone. The eigenspace perturbation results show a
high degree of variability compared to the SST predictions in the near-
wall region. Increasing the turbulent production mechanism (e.g.,
xðtÞ ¼ x1c; � ¼ �min) reduce the flow separation, thus shifting
the results closer to the reference data, while damping the production

FIG. 7. 2D NASA smooth hump, with the dots marking cell-centers, X, in the mesh
used.47 The blue bounding box represent the region of potential sensor sites, v � X.

FIG. 8. Streamwise velocity profiles with uncertainty bounds based on eigenspace perturbations. The dashed-dotted lines represent the five ESP scenarios.

FIG. 9. The uncertainty map in streamwise velocity for the NASA hump case.
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(e.g., xðtÞ ¼ x3c) lead to higher separation. The ESP results essentially
subsume the LES references data, especially near the wall, in the sepa-
rated shear layer, and becomes negligible as we approach the free-
stream (as expected).

We can now map the uncertainty for any given physical quantity,
q � Q (in the case of vector quantities, we can look at individual scalar
components, as at the present work, or some normalized sum of differ-
ent components) as a function of the variance based on eigenspace
perturbation results. As the reference data will be the streamwise veloc-
ity, Ux, Fig. 9 shows the uncertainty map, normalized by the maximum
variance. We use a logarithmic scale to better illustrate the degree of
uncertainty in the different regions of the flow domain. The high
regions of uncertainty are in the near the hump, aft of hump apex,
increasing to the highest uncertainty in the separated shear layer—
overall, qualitatively, bearing engineering scrutiny.

Sensors are now placed using the uncertainty map, and our pro-
posed heuristic greedy algorithm. In order to benchmark the frame-
work, we will present results for the following scenarios, shown in
Fig. 10: (a) uniformly spaced, manually placed sensors, ending up with

Ns¼ 33 over the entire potential sensor sites, v � X, fixed for the sub-
sequent two scenarios, (b) randomly placed sensors, (c) sensor placed
using our algorithm with Ns¼ 33, (d) using our algorithm but reduc-
ing the number of sensors by over one order of magnitude, i.e., Ns¼ 3,
and (e) using the streamwise velocity over the entire potential sensor
sites, v � X.

We compare the turbulent mean flow reconstruction results for
the stated scenarios in Fig. 11, in terms of the change in root-mean-
square error in the baseline SST predictions of the velocity compo-
nents. As anticipated, the random sensor placement case is the least
effective (negligible improvement in the streamwise velocity despite
the use of Ux data in field inversion), highlighting the need for
informed sensor placement. The uniform sensor placement case
reduces the average error in the velocity components by 38%. For the
same number of sensors as the previous two discussed scenarios (i.e.,
Ns¼ 33), with our proposed sensor placement algorithm, the average
errors reduce by 60% (labeled “ESP I” in Fig. 11), compared to a 74%
reduction when using all the streamwise velocity data (labeled “Full” in
Fig. 11). The case with all the data shows that using very large datasets
does not necessarily results in proportionally similar data assimilation
error reduction—also observed in the other two cases in Secs. III B and
III C. Notably, the results for this flow show that with our approach
the same error reduction is achievable even if the number of sensors is
reduced by over an order of magnitude, i.e., Ns¼ 3 (labeled “ESP II” in
Fig. 11), with an average error reduction of 61%.

Next, we investigate the two hyper-parameters for the proposed
sensor placement algorithm as discussed in Sec. IID: initial radius for
the circular exclusion domain, and the number of sensors.

Figure 12 compares the initial radius against the metric M 1 in
Eq. (13) (proposed to guide selecting an appropriate rinitial a priori)

FIG. 10. Various sensor placement scenarios used for data assimilation. ESP refers
to the proposed placement algorithm, and the contour lines represent the uncer-
tainty map in Fig. 9.

FIG. 11. Comparing the root-mean-square error change in velocity predictions (left:
streamwise component, Ux; right: wall-normal component, Uy) for various sensor
placement scenarios shown in Fig. 10. ESP I and II refer to the cases with Ns¼ 33,
and Ns¼ 3, respectively, where sensors are placed using our proposed algorithm.

FIG. 12. The tuning metric M 1 [Eq. (13)] on the left axis, and the effect of initial
radius on flow reconstruction error reduction on the right axis. Number of sensors is
set to ten.
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and the subsequent error reduction through data assimilation, with
0:01 � rinitial=c � 0:20, where c is chord length for the hump (Fig. 7).
The number of sensors is fixed to Ns¼ 10. The metric, M 1 sharply
decreases in the range 0:01 � rinitial=c � 0:05, reaching � 5% of the
asymptotic value ofM 1, i.e., limrinitial!1M 1ðrinitialÞ � 1:05. The aver-
age percentage error reduction in the velocity is: 44% � DRMSEðUÞ
� 61%. (For reference, with only a third of the sensors, the lower
bound is still an improvement on the uniformly placed sensors case,
Fig. 11.) Illustrative placement scenarios are shown in Fig. 13. Near the
lower initial radius bound the sensors are clearly too clustered, while
near the upper bound, the sensors are overstretched (some placed in
regions of low uncertainty, while many regions of higher uncertainty
are not considered during the placement). The configuration in and
close to the “target zone” in Fig. 12, 0:05 � rinitial=c � 0:1, seem to be
good potential candidates. This is broadly confirmed by the similar
error reduction in the streamwise component of velocity. Admittedly,
the prescribed metricM 1 does not guarantee the optimal solution and
requires the exercises of an element of engineering judgment.

Investigations of the second hyper-parameter, the number of sen-
sors, are summarized in Figs. 14 and 15. The analysis is with reference
to the second metric, M 2 introduced in Sec. IID. For all the number
of sensors considered, the initial radius is chosen iteratively using the
previously described approach: the final rinitial is chosen before M 1

reaches an asymptotic value of 1.02 (see illustrative placement configu-
rations in Fig. 15). The value of the metricM 2 initially reduces sharply
up to 10–15 sensors, then gradually leveling from N � 35, in Fig. 14.
The average percentage error reduction in the velocity is:
53% � DRMSEðUÞ � 71%. The error reduction in the streamwise
velocity (the quantity used as reference data for field inversion, and the
dominant component in terms of contribution to velocity magnitude)
levels after around 20 sensors and is reasonably close to the scenario
when all the data are used. On the other hand, the reduction in the
wall-normal velocity component is less clear as a function of number
of sensors. Figure 14 demonstrates that the metric introduced, M 2,
can be used as a reasonable guide to approximating the number of sen-
sors a priori (i.e., by setting the number of sensors around the values
when M 2 levels off). However, there is no guarantee of optimality. In
addition, as previously mentioned, the number of sensor may also be
dictated by other constraints (e.g., operational budget, etc.).

Finally, we present some more detailed results in terms of nor-
malized streamwise velocity profiles (Fig. 16) and surface pressure dis-
tribution on the hump wall (Fig. 17). The velocity profiles show that all
field inversion scenarios are able to considerably reduce the errors in
the separated shear layer. Broadly, increasing the number of sensors
leads to an improved reconstructed quantity; however, as previously
mentioned, using a very large dataset does not mean a proportionally

FIG. 13. Some illustrative sensor configurations, for investigating the effect of the initial radius on data assimilation. The number of sensors is fixed to Ns¼ 10.
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similar error reduction. Encouragingly, Fig. 17 shows that using
relatively sparse velocity data also leads in better reconstruction of the
surface pressure distribution, notably in and around the separation
zone, 0:5� x=c� 1:5.

B. 2D converging-diverging channel flow

The second case is flow in a channel with a smooth converging-
diverging lower wall, Fig. 18, at a moderate Reynolds number of
ReH¼ 12600 based on the channel half-height, H, and the maximum
inlet velocity. Similar to the previous case, we employ high-fidelity sim-
ulation data, from direct numerical simulations in this case,50,51 as
surrogate measurement data. The flow is again characterized by an
adverse pressure gradient, resulting in a separation bubble on the
lower wall, but at a much milder Reynolds number. In addition, it is
another well-established flow for testing data-driven RANS models,
e.g., Refs. 8, 52, and 53 The aim is to highlight the limitations of the
baseline RANS model and to reinforce the applicability of the pro-
posed framework across multiple scenarios. For brevity, only the key
results will be discussed.

The eigenspace perturbation-based uncertainty map for the
streamwise velocity field is shown in Fig. 19. The regions of highest
uncertainty are aft of the channel bump apex, particularly concentrated
in the separated shear layer. We show comparison of the streamwise
velocity profiles in Fig. 20. The baseline k� x SST model significantly
over-predicts the flow separation and the recirculation zone. For data

FIG. 14. The tuning metric M 2 [Eq. (14)] on the left axis, and the effect of number
of sensors on flow reconstruction error reduction on the right axis.

FIG. 15. Some illustrative sensor configurations, for investigating the effect of number of sensors on data assimilation.
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assimilation, we prescribe Ns¼ 15 sensors and place these using
the proposed algorithm. The entire domain is assumed to be poten-
tial sites for sensors, i.e., v ¼ X 2 RNcells , with Ncells ¼ 98 700. The
initial radius is selected using the metric, M 1 [Eq. (13)] leading to

rinitial ¼ 0:53H. The resulting sensor locations are shown in Fig. 19.
Reconstructed flow result with this configuration demonstrates sig-
nificant improvements to the baseline predictions, especially in the
separation and flow recovery region near the lower wall. As
the velocity profiles demonstrate, the flow reconstruction with the
streamwise velocity data in the entire flow field leads to a margin-
ally better field inversion result, also summarized in terms of the
root-mean-square error reduction in Table I.

C. Separated periodic hill flow

The final test case is the separated periodic hill flow. The geome-
try is shown in Fig. 21. It involves two curved surfaces (hills) connected
by a flat plate. The case involves flow separation on the initial hill and
reattachment on the flat plate. The flow separation is poorly predicted
by the commonly used models (e.g., Refs. 12 and 35) making it a popu-
lar benchmarking case with extensive experimental (e.g., Refs. 54 and
55) and high-fidelity simulations (LES, e.g., Refs. 56 and 57 and DNS,
e.g., Refs. 58 and 59) data available in the literature.

We use the DNS data from Xiao et al.59 The flow has a
Reynolds number of ReH ¼ 5 600, based on the hill height H, and
the bulk velocity. Ub Cyclic boundary conditions are applied at
the inlet and outlet, and the flow is driven by a mean velocity
which is maintained by adding a source term to the momentum
equations, with the bulk velocity and Reynolds number defined as
follows:

ReH ¼
UbH

�
;Ub ¼

1

2:035H

ð3:035H

H

UxðyÞdy; (17)

where � is the kinematic viscosity.

FIG. 16. Normalized streamwise velocity profiles comparison for the 2D NASA hump case before and after data assimilation for different number of sensors.

FIG. 17. Surface pressure predictions on the 2D NASA hump wall. For the legend
refer to Fig. 16.
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The uncertainty map from eigenspace perturbations are
shown in Fig. 22. The uncertainty map is based on the combined
variances of the streamwise and wall-normal velocity components,
and the pressure. The maximum regions of uncertainty are concen-
trated near the upper and lower walls, in general, and around the
hills, in particular. Again, we place 15 sensors, with the initial
exclusion domain radius, rinitial ¼ 0:68H, which is selected itera-
tively using the metricM 1 [Eq. (13)].

We present flow reconstruction results using Ns¼ 15 sensors
placed using the proposed framework and using the entire streamwise
velocity field data (i.e., Ns 	 Ncells ¼ 14 751). The root-mean-square
errors for the velocity components in the two field inversion scenarios
are reported in Table II. We note that the flow reconstruction with just
15 sensors is marginally inferior to the case when all the streamwise
velocity data are used.

Streamwise velocity profiles are shown in Fig. 23. The baseline
SST model is inaccurate near the walls, especially in the separated
shear layer near the lower wall, as captured in the uncertainty ranges
from the eigenspace perturbations. The baseline model over-predicts
the size of the separation bubble. Both field inversion scenarios are
able to improve the predictions; however, some discrepancies remain
in the region close to the second hill. Once again, the improvements
using only 15 data points vs the entire streamwise velocity field is
noteworthy.

IV. DISCUSSION

In this section, we will consolidate the features of the proposed
framework, and the results presented above.

We presented a sensor placement strategy for the data assimi-
lation of RANS-based turbulence models. The key component is
the systematic eigenspace perturbations of the modeled Reynolds-
stress tensor to generate a spatial uncertainty map—in practice,
five RANS-based simulations, with the uncertainty map generated
as a function of the variance of a particular quantity based on the
five perturbed flow realizations. We then propose a computation-
ally efficient greedy algorithm to sensor placement. The greedy
algorithm targets sensors, sequentially, at the regions of highest
uncertainty, while avoiding the clustering of sensors in any one
particular region by using a circular (spherical in three-
dimensional space) exclusion domain after a sensor is placed. The
first hyper-parameter required is the radius for the initial exclusion
zone, with the subsequent zones extending as a function of the
change in the uncertainty [i.e., variance V ðqÞ]. We proposed a
metric to guide the tuning of this hyper-parameter iteratively [M 1

in Eq. (13)]. The second hyper-parameter is the number of sensors,
which can be estimated usingM 2 in Eq. (14).

The proposed strategy has the following advantages:

1. Through eigenspace perturbations we directly address epistemic
structural uncertainties in turbulence models (not fully cap-
tured in the perturbations to model constants in Ref. 36, for
instance).

2. The strategy is computationally cheap. The computational over-
head involves five RANS-based flow simulations for eigenspace
perturbations, plus the sensor placement using the proposed
greedy algorithm. The computational time for sensor placement
is on the order of seconds for all three test cases presented. For
comparison, in Ref. 36, parametric perturbations involving
around 100 CFD flow simulations are required, followed by deep
neural network training for sensor placement—which is easily
one or more order of magnitude more expensive. In Refs. 37 and
38, a first or second-order adjoint-based optimization problem is
solved to place sensors, which can be orders of magnitude more
expensive compared to the proposed method. We note that the
computational overhead discussed here is purely for a priori sen-
sor placement and does not include the costs for data assimila-
tion once high-fidelity data is generated.

3. The proposed algorithm is relatively easy to implement (for
example, an open-source implementation of the eigenspace per-
turbations, and the data assimilation were highlighted) and the

FIG. 18. Converging-diverging channel geometry, and mesh. The red box shows a
close-up of the mesh from Ref. 49, with the dots representing cell-centers. DNS
data are available over the entire flow field.

FIG. 19. The streamwise velocity uncertainty map for the converging-diverging channel.
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greedy sensor placement algorithm (Algorithm 1) can be imple-
mented straight-forwardly in a few dozen lines of code.

Once sensors are placed, and the data collected (synthetic high-
fidelity simulation data from direct numerical or large-eddy simula-
tions in the case studies presented), we performed data assimilation
using the variational (adjoint-based) field inversion. This involved per-
turbing the transport equation of the baseline RANS model by a spatial
scalar-field, bFI, and solving an inverse problem that optimizes the field
values such that the error between the RANS predictions and the refer-
ence data are minimized. While we used this particular data assimila-
tion approach due to its advantages (model consistency, directly
addressing functional errors in RANS-based models, and ability to
work with relatively sparse datasets) and our previous experience
with this method,12,35,60 the proposed sensor placement framework
should, in principle, be similarly applicable to other approaches (e.-
g., ensemble-based field inversion) since the sensor placement problem
is, inherently, decoupled from the data assimilation process. The
decoupled nature of the strategy may be a limitation as we do not con-
sider the sensitivity of the RANS model states with respect to the
regions of uncertainty during the sensor placement. The relative sim-
plicity and low computational cost of the strategy and the results pre-
sented demonstrate the effectiveness in spite of this.

We tested the framework on three two-dimensional wall-bounded
turbulent flows (I) NASA wall-mounted hump: Re ¼ 9:36� 105, (II)
converging-diverging channel, Re¼ 12600, and (III) periodic hill,
Re¼ 5600, all three involving flow separation and reattachment. We
showed that the baseline k� x SST model struggles to accurately
capture the flow in the separated shear layer in all three cases and
over-predicted the extent of flow separations. We placed sensors
based on the uncertainty map of the streamwise velocity for cases I
and II and a combination of velocity components and pressure for
case III. Streamwise velocity data were used for data assimilation
since it is a routinely measured quantity in experimental studies.
Regions of highest uncertainty identified through eigenspace pertur-
bations were consistently concentrated in the flow areas involving
complex turbulent structures such as boundary layer close to the
walls, points of flow separation and re-attachment, and areas of
reversed flow (such as those caused by adverse pressure gradients).
All regions of interest from a fluid dynamics standpoint and, thus,
appropriate for sensor placement.

Key findings of the results for the hump case are: an average
mean velocity error reduction of 61% was achieved with just three sen-
sors, compared to 74% when using all the available streamwise velocity
field data; data assimilation with just the streamwise velocity also
resulted in significant error reductions in the wall-normal velocity, and
a better match of the surface pressure predictions on the hump wall;
and detailed numerical investigations of proposed metrics for hyper-
parameter tuning demonstrated that these were effective measures to

FIG. 20. Velocity profiles comparison for the converging-diverging channel.

TABLE I. Data assimilation root-mean-square error reduction for the converging-
diverging channel flow.

Case Ns DRMSEðUxÞ (%) DRMSEðUyÞ (%) Average (%)

ESP 15 51.4 58.4 54.9

All Ux 98 700 57.3 59.5 58.4

FIG. 21. The periodic hill geometry and mesh cell centers.

FIG. 22. The uncertainty map for the periodic hill case. The variance is based on a
combination of the streamwise and wall normal velocity components, and the
pressure.
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guide practitioners. In the case of converging-diverging channel flow,
we demonstrated an error reduction in the mean velocity of 55% with
just 15 sensors, compared to 58% reduction when using the streamwise
velocity in the entire flow domain. Finally, for the periodic hill case, an
average velocity error reduction of 46% was achieved with 15 sensors,
compared to 49% when using the entire streamwise velocity field.

The corrective fields bFI modifying the transport equation for the
turbulence dissipation (x) were presented for all three cases in Fig. 24
(NASA hump), Fig. 25 (converging-diverging channel), and Fig. 26
(periodic hill). These demonstrate that very complex non-linear modi-
fications of the baseline model are required for effective flow
reconstruction.

All three test cases presented were two-dimensional flows, while
the methodology presented is directly applicable to three-dimensional
cases. One of the key challenges for the absence of a three-dimensional
test case in the present work is the lack of such a benchmark flow with
rich high-fidelity, well-established, publicly available data that would
allow similar benchmarking to the two-dimensional cases presented.
Future work will generate the high-fidelity data to allow testing the
framework for three-dimensional flows.

V. CONCLUSION

We presented a novel strategy to sensor placement for data
assimilation in the context of RANS-based turbulent flow reconstruc-
tion. The framework relied on generating a spatial uncertainty map
through systematic perturbations of the Reynolds stress tensor. An

optimization-based greedy search was proposed to place sensors. Data
assimilation was performed using a variational (adjoint-based)
approach.

The proposed framework was tested on three two-dimensional
wall-bounded fully turbulent flows with Reynolds numbers ranging
5:6� 103–9:36� 105. All flows involved mild to massive separation
which were over-predicted by the baseline k� x SST model. Data
assimilation was performed using streamwise velocity data. Average
root-mean-square error reduction in the velocity predictions (com-
pared to the baseline SST model) after data assimilation are summa-
rized as follows:

1. 2D NASA wall-mounted hump: the error was reduced by 61%
just using 3 sensor data using the proposed placement method.
For comparison, using 33 sensors with uniform sensor placement
led to an error reduction of 38%, while using the entire available
streamwise velocity data (30:7� 103 data points) achieved 74%
error reduction.

2. Converging-diverging channel: average error reduction of 55%
with 15 sensors using the proposed method, compared to a 58%
reduction when using all the streamwise velocity field
(98:7� 103 data points).

3. Periodic hill flow: average velocity error reduction of 47% with
15 sensors, compared to 49% when using all the data (14:7� 103

data points).

The framework was tested on relatively well-established two-
dimensional flows. In principle, it can be extended to three-
dimensional cases using the same methodology outlined in Sec. II.
Future work will investigate the framework for complex three-
dimensional flows (e.g., transonic and supersonic aerospace flows,
flows involving heat transfer, etc.). In addition we will consider sensor
placement for experimentally measurable surface data (e.g., skin fric-
tion and surface pressure), investigate the eigenspace perturbations
and data assimilation for additional turbulence models and test the
framework with other data assimilation techniques, e.g., EnKF-based
field inversion.

FIG. 24. The corrective field b for the 2D NASA hump case, modifying the SST
transport equation after data assimilation. This is for the case with Ns¼ 33.

FIG. 25. The corrective field b for the converging-diverging channel flow, using
Ns¼ 15.

FIG. 26. The corrective field b for the separated periodic hill flow.

TABLE II. Data assimilation root-mean-square error reduction for the periodic hill
flow.

Case Ns DRMSEðUxÞ (%) DRMSEðUyÞ (%) Average (%)

ESP 15 42.5 50.1 46.7

All Ux 14 751 55.6 43.3 49.4

FIG. 23. The streamwise velocity profiles comparison for the periodic hill case.
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