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ABSTRACT

The study of brain vessel pathologies is critical for the ad-

vancement of neurovascular medicine, yet researchers often

face significant hurdles due to the scarcity of imaging data

for certain uncommon types of aneurysms. Generative deep

learning models have been proposed to address the lack of

high-quality labeled medical images - however, the shortage

of data also presents a unique challenge in training genera-

tive models. To address this issue, our work explores the ef-

ficacy of training latent diffusion models (LDMs) with few-

shot learning, enabling the generation of detailed vessel seg-

mentations from as few as five images per class. By incor-

porating set-based vision transformers for class embeddings

and leveraging signed distance functions (SDFs) as a novel

form of conditioning, our method reduces the need for ex-

tensive datasets for training. Comparative studies with estab-

lished generative models, including variational autoencoders

(VAEs) and generative adversarial networks (GANs), high-

light the robustness of our approach. Our model not only suc-

cessfully generates high-quality segmentations of brain ves-

sels with aneurysms but also significantly outperforms the

standard generative models.

Index Terms— Diffusion Models, Image Synthesis, Brain

Vessel Synthesis, Transformers

1. INTRODUCTION

Cerebral aneurysms pose significant neurosurgical and neu-

rological concerns and have the potential to lead to life-

threatening conditions, like subarachnoid hemorrhage (SAH).

Their prevalence in the general population underscores their

contribution to morbidity and mortality. A major challenge
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in this domain arises from the scarcity of comprehensive

data, particularly for less common aneurysm phenotypes.

This data limitation poses significant obstacles in developing

accurate and robust diagnostic models. Generative models,

particularly in medical imaging, present a promising so-

lution to this issue. They hold the potential to synthesize

high-quality, detailed images of cerebral aneurysms, even in

scarcity. However, the effectiveness of traditional generative

models is typically constrained by the availability of data, a

notable hurdle in the context of aneurysm imaging, where

extensive datasets are often lacking.

In the domain of medical imaging, generative models

such as generative adversarial networks (GANs) [1] have

emerged as a promising solution, offering the potential to

create detailed and accurate representations of anatomical

structures [2] . More recently, diffusion models (DDPM)

have shown great prowess in generating synthetic data [3]

and outperforming GANs in image synthesis [4]. Diffusion

models have also been successfully used to generate syn-

thetic brain magnetic resonance images (MRIs) [5, 6, 7] and

vascular structures [8]. However, the efficacy of these mod-

els is often limited by the requirement for extensive training

datasets, which are not always available. Even when labeled

datasets are available, medical imaging datasets suffer from

data imbalance due to certain anatomical phenotypes being

underrepresented.

The concept of few-shot learning, a technique for training

models with limited data, has become increasingly relevant in

medical imaging domains characterized by data scarcity and

class imbalance. This is especially true for rare or underrepre-

sented cerebral aneurysm types. While few-shot learning has

been explored in diffusion models in prior research [9, 10],

our work is the first to our knowledge to apply this concept to

the generation of cerebral aneurysms in brain vessel imaging.



Our study addresses this gap by introducing an innova-

tive approach using latent diffusion models (LDMs) with

few-shot learning, allowing for the generation of high-fidelity

models of brain vessels with aneurysms from a very limited

number of samples in each class. Through the integration of

transformer-based class embeddings, we reduce the reliance

on having a large number of samples from each class to con-

ditionally generate images. We also leverage signed distance

functions (SDF) as a conditioning variable to further enhance

the quality of the generated vessels and maintain vessel con-

tinuity. We compare the performance of our model against

other generative models such as a 3D GAN, 3D variational

auto-encoders (VAEs), and also against vanilla diffusion mod-

els. To assess the quality of the generated aneurysms, we use

metrics such as multi-scale structural similarity (MS-SSIM),

Fréchet inception distance (FID), and 4GR SSIM. To our

knowledge, this is the first study to use generative/diffusion

models to generate synthetic brain vessels with aneurysms.

2. METHODS

2.1. Data and Preprocessing

For training our model, we utilized the @neurIST dataset en-

compassing 225 3D Rotational Angiography (3DRA) scans

of the brain, each with at least one cerebral aneurysm. Out

of these, detailed information regarding aneurysm location

and other conditional attributes was available for 105 cases.

Within these 105 labeled cases, there were more than 15 dif-

ferent classes of aneurysms based on their location with each

class having about 7 sample cases on average. In the initial

phase of preprocessing, we extracted vessel segmentations

from the 3DRA volumes. This extraction was facilitated

by the application of VASeg, a segmentation tool designed

for vascular imaging [11]. Post-segmentation, the 3DRA

volumes underwent a process of centerline cropping, ensur-

ing a focus on the most relevant vascular structures. These

cropped segments were then resized to uniform dimensions

of 128× 128× 100, optimizing them for subsequent process-

ing and analysis. The final step involved the categorization

of aneurysms based on their location attributes and saving

them as class variables to act as a conditioning vector to the

diffusion model. In this study, we mainly focus on basi-

lar tip, medial wall carotid, and ophthalmic segment carotid

aneurysms. Each class contains around 5 samples.

2.2. Latent Diffusion Model

Diffusion models have demonstrated remarkable success in

synthesizing high-quality medical images and vascular struc-

tures. Central to the operation of diffusion models is the con-

cept of a Markov chain, which is employed to methodically

introduce Gaussian noise into the observed data through a se-

quence of diffusion steps. The crux of these models lies in

their ability to reverse this diffusion process, thereby enabling

the generation of new samples from the noise-infused data.

Despite their effectiveness, a notable challenge with con-

ventional diffusion models arises when dealing with high-

dimensional data such as the images of size 128× 128× 100
used in our study. To circumvent this computational complex-

ity, we have opted to utilize a latent diffusion model (LDM).

The architecture of LDM comprises two pivotal components:

a pre-trained autoencoder and a diffusion model. The autoen-

coder is tasked with learning a lower-dimensional latent rep-

resentation of the brain vasculature from 128× 128× 100 to

128 × 128 × 1. This reduction in dimensionality is crucial

as it allows for a more manageable and efficient manipula-

tion of data. Concurrently, the diffusion model is designed

to focus on modeling the high-level semantic representations

within this latent space. By operating in a space of reduced

dimension, the LDM alleviates the computational burden but

retains the capacity to capture and model the intricate details

and nuances of the brain vascular structures.

Like in [4], the diffusion process can be defined through

forward and reverse Markov chains, where the forward pro-

cess iteratively transforms the data x0 into a standard Gaus-

sian XT as follows:

q (x1:T |x0) =

T
∏

t=1

q (xt|xt−1) , q (xt|xt−1)

:= N
(

xt;
√

1− βtxt−1, βtI

)

where q (xt|xt−1) is the transition probability at the time step

t based on the noise schedule βt. Therefore, the noisy data xt

can be formulated as q (xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where αt := 1− βt, ᾱt :=
∏t

s=1 αs.

Consecutively, the reverse process parameterised by θ can

then be defined as:

pθ (x0|xT ) = p (xT )

T
∏

t=1

pθ (xt−1|xt) , pθ (xt−1|xt)

:= N (xt−1;µθ (xt, t) ,Σθ (xt, t))

The simplified evidence lower bound (ELBO) [4] loss can

be formulated as a score-matching task, where the neural net-

work predicts the actual noise ǫ added to the observed data:

Lθ := Ex0,t,C,ǫ∼N (0,1)

[

‖ǫ− ǫθ (xt, t, C)‖2
]

where C is the conditioning vector in conditional generation.

In our study, the conditioning vector encodes the location of

the aneurysm.

The 3D binary masks of the vessels generated from 3DRA

volumes in our dataset are passed through the encoder of the

pre-trained autoencoder to obtain a dimensionally reduced la-

tent space. This latent space serves as the input for our dif-

fusion model. Consequently, the diffusion model’s output is



also in this latent space, which is then processed through the

decoder of the pre-trained autoencoder to reconstruct the 3D

binary masks.

We first train our latent diffusion model uncondition-

ally with no additional condition features on the unlabeled

samples in the dataset so that it can learn to generalize the

structure of the vessels. After pre training on the unlabeled

data, we train the model over limited labeled cases from the

three selected classes (basilar tip, medial wall carotid and

ophthalmic segment carotid aneurysms) along with class-

wise conditioning from a transformer and signed distance

fields (SDF) based features.

2.3. Transformer based class conditioning

An inherent fault with generative models (especially diffu-

sion) is their intrinsic reliance on substantial data volumes to

train effectively and produce convincing outputs. This issue is

particularly pronounced in our study, given the limited avail-

ability of data, with some classes containing as few as five

samples. Such a sparse dataset poses significant difficulties

for generative models, as they struggle to accurately approxi-

mate the distribution of the data.

To address this challenge, we introduce an innovative ap-

proach that integrates transformer [12] -based class features

to guide the diffusion process. We employed a set based vi-

sion transformers (ViT) [13] model, designed to ingest the

entire 3D volume and function as a classifier, determining the

specific location of an aneurysm within the brain. Following

the successful training of the ViT, we removed its final clas-

sification layer. Subsequently, we processed the images from

each class through this transformer to extract class-wise en-

coded features. These features, in conjunction with the class

conditioning variables, were then incorporated into the con-

ditioning vector of the diffusion model, enhancing its ability

to generate data representative of each class.

2.4. Signed Distance Field (SDF) based Conditioning

Although diffusion models show great success in generating

medical images, generating vascular structures is challeng-

ing as vessels have structural features that need to be main-

tained, most importantly vessel continuity. Also, aneurysms

are small compared to the total size of cerebral vasculature,

which makes them hard to track and generate. Studies have

shown that adding shape based features to the generative pro-

cess can improve performance in these tasks [14, 15, 8].

To this end, we incorporate signed distance fields (SDF)

as an additional input to the diffusion process. The primary

idea behind SDFs is to associate each point in space with

a distance value, and the sign of this distance value indi-

cates whether the point is inside or outside of the shape which

makes them particularly useful for tasks like shape analysis

and 3D rendering. We first convert the segmentation masks

for each class into corresponding SDFs. These SDFs act as

an input to a 3D ResNet, which similar to the set-based ViT

described in the previous subsection is trained to act as a clas-

sifier. After successful training, the final output layer is re-

moved and the class-wise features are extracted and incorpo-

rated as conditions in the diffusion process. The introduction

of these features enhances the quality of the generated vessels

by promoting the generation of more continuous vessels as

can be seen in Panel B in Fig. 2. The overall architecture of

the model is shown below in Fig. 1

Fig. 1. Overview of the architecture of the model.

3. EXPERIMENTS AND RESULTS

3.1. Implementation Details

All models were implemented in TensorFlow 2.8 and Python

3. For the forward diffusion process we use a linear noise

schedule with 1000 time steps. The model was trained for

2000 epochs with a learning rate of 0.0005 on a Nvidia Tesla

T4 GPU and 38 Gb of RAM with Adam optimiser. The vision

transformer was trained on a Nvidia V100 GPU with 38Gb of

RAM.

3.2. Results and Discussion

The performance of our proposed model was compared

against established generative models serving as baselines.

These include a 3D convolutional variational autoencoder

(3D C-VAE)[16], a 3D-α-Wasserstein generative adversarial

network (3D-α-WGAN)[17], and a conventional diffusion

model (Vanilla DDPM). The purpose of this comparison was

to ascertain the efficacy of our approach relative to these

well-established models in generating high-quality cerebral

vascular images. To quantitatively assess the realism of

the generated vasculature by each model, we employed the

Fréchet inception distance (FID) score. The FID-score was

computed using a pre-trained InceptionV3 network as a fea-

ture extractor. It is important to note that a lower FID score

is indicative of higher perceptual image quality, reflecting



Fig. 2. Panel A compares the MIPs from the generated cases from different models. Panel B showcases the effect of adding SDF

based conditioning to the diffusion process. Panel C compares the volumetric meshes generated from generated and ground

truth cases from each class

greater realism in the generated images. Additionally, to pro-

vide a comprehensive evaluation of image quality, we utilized

the multi-scale structural similarity index (MS-SSIM) and 4-

G-R SSIM metrics, as outlined in references [18, 19]. These

metrics are extensively used in the field to assess the quality

of synthesized images. A higher score in both MS-SSIM

and 4-G-R SSIM typically signifies superior image quality,

implying a closer resemblance to the actual ground truth im-

ages. An extremely high score from MS-SSIM and 4-G-R

SSIM however could indicate very high levels of similarity

between the synthesised cases and the ground truth indicating

low variablilty. The MS-SSIM and 4-G-R SSIM scores were

calculated over six synthesized cases for each model.

Table 1 encapsulates the evaluation scores achieved by our

model, 3D C-VAE, 3D-α-WGAN, and Vanilla DDPM, based

on the aforementioned metrics. This comparative analysis en-

ables us to elucidate the strengths and limitations of our ap-

proach in the context of existing generative models.

Table 1. Quantitative evaluation of Synthetic vessels

Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 8.78 0.36 0.31
3D-α-WGAN 3.55 0.67 0.56
DDPM 4.41 0.69 0.55
Ours 2.56 0.71 0.61

Table 1 showcases that our model outperforms the other

baselines in terms of FID, indicating that the distribution of

the synthesized variants by our model more closely aligns

with the real data distribution compared to other evaluated

models. Furthermore, our approach outperforms the others in

terms of MS-SSIM and 4-G-R SSIM scores, reflecting higher

image quality and a closer resemblance of the generated ves-

sels to the real ones.

Figure 2 provides a qualitative evaluation through a vi-

sual comparison of the synthesized samples from each model.

Panels A and B employ maximum intensity projection (MIP)

to render 3D binary masks of the vessels onto a 2D plane for

analysis. In Panel A, we present the comparisons based on

the MIP of the cases generated by each respective model. The

convolutional variational autoencoder (VAE) primarily repro-

duces the fundamental structure of the vessels, achieving con-

tinuous vessel formation but lacking in variability and branch-

ing features. The generative adversarial network (GAN) in-

troduces greater variability and detail in the vessel structures;

however, it encounters challenges in maintaining vessel con-

tinuity. In contrast, our model excels in generating realistic

and continuous vascular structures, closely mirroring the in-

tricacies of actual vessels. Panel B delineates the differential

impact of employing SDF-based conditioning in our diffu-

sion model, underscoring its essential role in preserving ves-

sel continuity, a feature that is notably compromised in its

absence.

Recognizing the limitations of MIPs in accurately rep-

resenting the complex three-dimensional nature of vascular

structures, we further conducted a comparison using volumet-

ric meshes which are showcased in panel C in Figure 2. These

meshes were generated from binary masks for each class and

compared against their corresponding ground truth samples.

This analysis revealed that the cases synthesized by our model

not only bear key characteristics akin to the ground truth but

also exhibit discernible variability, demonstrating the model’s

efficacy in replicating both the fidelity and diversity of real-

world vascular formations.

While the quality of the generated vessels from our study

seems promising, it is important to acknowledge the limi-

tations posed by the lack of extensive training data. This



scarcity potentially restricts the variability of the generated

cases, as the model’s capacity to learn diverse vessel struc-

tures is directly tied to the dataset’s breadth. Additionally, it

is crucial to consider anatomical accuracy in the context of

variability. Excessive variability in the generated structures

might not accurately reflect the true anatomical complexity

of cerebral vessels. Therefore, while our model demonstrates

proficiency in replicating realistic vessel structures, the bal-

ance between variability and anatomical fidelity remains a key

consideration for the authenticity and applicability of the gen-

erated outputs.

4. CONCLUSION

This study introduced a novel approach for generating brain

vessel segmentations with aneurysms, particularly under the

constraint of having classes with limited data. By employ-

ing latent diffusion models enhanced with transformer-based

class embeddings and signed distance functions, our model

demonstrated superior performance over traditional genera-

tive models like 3D C-VAE and 3D-α-WGAN in terms of

image quality and realism.
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