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Trials

The analysis of continuous data from n-of-1 
trials using paired cycles: a simple tutorial
Stephen Senn1*   

Abstract 

N-of-1 trials are defined and the popular paired cycle design is introduced, together with an explanation as to how 
suitable sequences may be constructed.

Various approaches to analysing such trials are explained and illustrated using a simulated data set. It is explained 
how choosing an appropriate analysis depends on the question one wishes to answer. It is also shown that for a 
given question, various equivalent approaches to analysis can be found, a fact which may be exploited to expand 
the possible software routines that may be used.

Sets of N-of-1 trials are analogous to sets of parallel group trials. This means that software for carrying out meta-
analysis can be used to combine results from N-of-1 trials. In doing so, it is necessary to make one important change, 
however. Because degrees of freedom for estimating variances for individual subjects will be scarce, it is advisable 
to estimate local standard errors using pooled variances. How this may be done is explained and fixed and random 
effect approaches to combining results are illustrated.

Introduction

This paper provides a simple tutorial on analysing contin-

uous data from n-of-1 trials [1] using paired cycles. This 

design (to be described below) leads to various simple 

possible analyses and is an efficient way to compare two 

treatments on a within-patient basis where the nature of 

the disease and other practical considerations make this 

possible. The general framework that will be applied is 

that in which data are treated as if sampled from some 

hyper-population with normally distributed values. This 

is the usual basis for ‘parametric analysis’, which is a com-

mon device for modelling data and is known to yield 

(usually) similar results to an alternative framework in 

which the treated units are regarded as being fixed but 

the population is that of all possible random allocations 

[2, 3]. However, this correspondence works best when the 

sample size is large, and this is often not the case when 

series of n-of-1 trials are being discussed. This reserva-

tion should be noted, and in particular if the paramet-

ric analysis yields highly significant results, it may be 

the case that a randomisation test would be incapable of 

yielding similar results [4]. This is not necessarily a rea-

son for abandoning the parametric approach. In data-

poor contexts, which often apply for the study of rare 

diseases, accepting the necessary assumptions may be the 

lesser of two evils. Nevertheless, the limitation should be 

born in mind.

The objectives of the tutorial are to provide simple jus-

tifications and instructions for various possible analyses 

of such trials and also explain for which purposes they 

are suited. Use of algebra is kept to a minimum, and 

graphical and tabular representation of data and analyses 

are stressed.

For readers who require more technical detail, a gen-

eral model for data from N-of-trials is presented and 

discussed in an appendix. It is explained how the way in 

which the overall treatment effect is regarded, either as a 
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mean effect for the subjects studied or as a mean effect 

of the hypothetical population of subjects of whom they 

might be considered to be a random sample, will affect 

the way that analysis proceeds.

The design

A common design for n-of-1 trials comparing two treat-

ments is to organise allocation in such a way that within 

any given pair of periods each treatment is used once [5–7]. 

Such pairs of periods have been referred to as cycles [8]. 

A possible scheme for a design in three cycles is given in 

Table 1. Patients would then be allocated at random to one 

of the eight possible sequences.

In general, if there are k possible cycles in which 

patients can be treated, there will be  2k possible 

sequences. A canonical set of possible sequences can be 

constructed as follows using the basic pair AB and BA. 

When moving between successive sequences in a list 

of sequences, for cycle 1, switch AB and BA after every 

sequence. For cycle 2, double the number of sequences 

before switching. For each successive cycle, double the 

sequences before switching.

This design is relatively simple to organise and efficient 

and lends itself to various simple analyses. As regards 

organisation, a simple way to implement randomisation 

to sequences is just to randomise patients independently 

for each cycle. As regards the second, the close tempo-

ral control that is offered by randomising in pairs makes 

it efficient. It could be argued that if carry-over is likely 

and one wishes to guard against it, various other designs 

might be preferable, but the solutions these offer depend 

on implausible modelling assumptions, and the best 

advice as regards carry-over is to ensure adequate wash-

out between treatments, if necessary limiting measure-

ment of the effect of each treatment towards the end of 

periods in which they are given [9]. As regards analysis, 

it is the purpose of this note to explain how this may be 

achieved. For advice on reporting n-of-1 trials, see the 

CENT statement [10].

Illustrative data for analysis

N-of-1 trials lend themselves to addressing a number 

of different questions that might arise naturally in con-

nection with studying the effects of treatments [11]. The 

questions are as follows:

Q1. Was there an effect of treatment in the trials?

Q2. What was the average effect of treatment in the tri-

als that were run?

Q3. Was the treatment effect identical for all patients in 

the trials?

Q4. What was the effect for individual patients in the 

trials?

Q5. What will be the effect of treatment when used 

more generally (in future)?

The suggested analyses will be organised in terms of 

these questions. We shall use the simple simulated data 

that were presented in Araujo et al. [8] to illustrate these 

analyses.

It is supposed that a trial in asthma has been carried out 

comparing two treatments, A and B, each given as a sin-

gle dose. Twelve patients have been randomised in pairs 

of cycles as described above. The first ten have completed 

all three planned cycles of treatment. However, patient 11 

has only completed two cycles of treatment and patient 

12 has only completed 1. This has been done to illustrate 

a complication in analysis that may arise in practice. We 

thus have data from (10 × 3) + 2 + 1 = 33 cycles and there-

fore from 2 × 33 = 66 episodes. In all the analyses that fol-

low, we shall assume that the fact that some values are 

missing is uninformative and that reasonable inferences 

may be based on the values that remain.

Table 1 Set of sequences for a design using six periods arranged in three cycles. Pairs with A followed by B are shaded yellow. Pairs 
with B followed by A are shaded blue
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The results are measurements of forced expiratory 

volume in one second,  FEV1, in mL taken 12 h after 

treatment. The data are presented in Table  2 sorted 

by treatment within cycle (that is to say A then B). 

The period in which A or B was administered is given 

within Table  2, and this reflects the randomisation 

used. The data are also available to download from 

https:// journ als. plos. org/ ploso ne/ artic le? id= 10. 1371/ 

journ al. pone. 01671 67# sec009. Note, however, that 

those data include values for cycles 3 from patients 11 

and 12 and cycle 2 from patient 12, which are assumed 

missing here.

A useful plot of the data is given in Fig.  1, which is a 

trellis plot. Each window represents the results for a 

given patient. The result for each cycle is represented by 

a blue circle plotting the value under B (Y axis) against 

that under A (X axis). The diagonal line represents equal-

ity between the two treatments. The average values over 

all cycles are represented by red asterisks. It is noticeable 

that the blue circles are generally above and to the left of 

the line of equality suggesting that B has a bigger effect 

than A.

Demonstrating that there can be a difference 

between treatments

Q1, ‘was there an effect of treatment in the trials?’, 

leads to a very simple analysis. The relevant null 

hypothesis is that there is no difference between treat-

ments for any of the patients. If that is the case, under 

the null hypothesis, it does not matter which patient 

is studied; the result may be expected to be the same. 

This renders the differences between A and B as being 

independent over patients by hypothesis. That being 

so, we can carry out a matched pair analysis on the 33 

cycles.

The data have been reduced to differences by cycle and 

patient and are presented in Table  3. These differences 

can be analysed by a one-sample t-test for which the sta-

tistics in Table 4 are produced.

Table 2 A simulated trial in asthma. Twelve patients have been randomised in three cycles to treatment A followed by B or B followed 
by A. The table gives the periods in which the patients received A or B and the  FEV1 in mL below. For example, patient 1 received 
treatment A in periods 1, 3, and 6 and treatment B in periods 2, 4, and 5

 Treatment

Patient A B A B A B

1 1 2 3 4 6 5

2394 2686 2515 2675 2583 2802

2 2 1 3 4 6 5

2746 2726 2592 2867 2743 2742

3 1 2 3 4 6 5

2668 2560 2542 2584 2491 2737

4 1 2 3 4 6 5

2397 2696 2411 2895 2499 2760

5 2 1 3 4 5 6

3179 3221 2952 3096 2600 3192

6 1 2 4 3 5 6

2643 2496 2759 2847 2651 2860

7 1 2 3 4 5 6

2678 2843 2492 2763 2801 2890

8 2 1 3 4 5 6

2887 2862 2875 3083 2689 2967

9 2 1 3 4 6 5

2490 2841 2648 3044 2688 2914

10 2 1 3 4 6 5

2268 2576 2413 2493 2344 2699

11 2 1 4 3 6 5

2617 2923 2629 2832

12 1 2 4 3 5 6

2627 2759

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167167#sec009
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167167#sec009
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Note that although independence is guaranteed 

under  H0 by hypothesis, the same is not true under 

many alternative hypotheses. For example, it might be 

the case that some subjects would show a large treat-

ment effect but some would show no effect at all. It 

might be interesting to develop a test that was power-

ful for this sort of alternative hypothesis (for a sugges-

tion for parallel group trials, see Conover and Salsburg 

[12]). However, a simple analysis that does remove the 

treatment-by-patient interaction can be constructed by 

estimating the variance patient by patient comparing 

the cycle differences to the mean for that patient. This 

is discussed in the next section.

Putting bounds on the mean effect for the patients studied

We now consider how we may answer Q2 ‘what was the 

average effect of treatment in the trials that were run?’. Note 

that if we decide that this effect is not zero, we have also 

answered Q1. This issue will be discussed subsequently. For 

the moment, we address an analysis to answer Q2.

Fig. 1 Trellis plot of the results from the simulated example
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The critical value at the 5% level two-sided for a 

t-statistic with 32 degrees of freedom is 2.037. If this 

is multiplied by the standard error, the product is 

2.037 × 28.17  mL = 57.38  mL. If this is subtracted and 

added to the mean of 194.5 mL, then we obtain a 95% 

confidence interval for the mean effect (to one decimal 

place) of (137.2 mL, 251.9 mL).

This particular calculation can be criticised. Whereas 

it is reasonable to assume by hypothesis that the treat-

ment effect is constant for all patients, when we are 

testing that this effect is zero for them all, as soon as 

we allow that the effect is not zero, it becomes plausible 

that it might vary from patient to patient, as discussed 

above. If we regard the patients as being fixed, that is 

to say that we are only making a statement about these 

patients, then we could claim that this source of vari-

ation would not contribute to the treatment estimate 

changing were we to repeat the experiment. However, it 

will contribute to the overall estimate of variation that 

we have used.

This source of variation can be eliminated by con-

structing variance estimates patient by patient. The cal-

culations are given in Table 5.

Here, the column labelled DF gives the degrees of free-

dom patient by patient and is equal to the number of 

cycles minus 1. The column labelled Variance gives the 

local estimate of the variance of the differences (B-A) 

patient by patient. For patient 12, the value is zero since 

the patient was only studied in one cycle and hence there 

is only one difference. The column headed Sum of Squares 

is obtained by multiplying the variance by the degrees of 

freedom. The overall sum of squares is 522,750.5  mL2, and 

if this is divided by the total DF, 21, we obtain 24,893  mL2, 

which is thus our estimate of the variance on the assump-

tion that variability does not vary from patient to patient.

The consequent calculations are summarised in 

Table 6.

Table 3 Differences (treatment B − treatment A) per cycle 
arranged by patient

Cycle 1 2 3

Patient

1 292.0 160.0 219.0

2 − 20.0 275.0 − 1.0

3 − 108.0 42.0 246.0

4 299.0 484.0 261.0

5 42.0 144.0 592.0

6 − 147.0 88.0 209.0

7 165.0 271.0 89.0

8 − 25.0 208.0 278.0

9 351.0 396.0 226.0

10 308.0 80.0 355.0

11 306.0 203.0 *

12 132.0 * *

Table 4 Summary statistics to perform a one-sample t-test 
based on differences per cycle

Statistic Value Explanation

n 33 Number of cycles

Mean 194.55 mL Mean of the 33 cycle differences

Variance 26188  mL2 Sample variance of the 33 cycle differences

SD 161.8 mL Standard deviation = √variance

SE 28.17 mL Standard error = SD/√n

DF 32 Degrees of freedom = n-1

t 6.91 t-statistic =194.55 mL/28.17 mL

P-value < 0.001 Probability under  H0 a t-statistic with 32 DF 
will be ≥ 6.91 or ≤ − 6.91

Table 5 Intermediate calculation to estimate the common 
within-patient variance. Note that the units of variances and 
sums of squares are  mL2 of  FEV1

Patient DF Variance Sum of squares

1 2 4372.3 8744.7

2 2 27260.3 54520.7

3 2 31572.0 63144.0

4 2 14233.0 28466.0

5 2 85601.3 171202.7

6 2 32767.0 65534.0

7 2 8356.0 16712.0

8 2 25166.3 50332.7

9 2 7758.3 15516.7

10 2 21636,3 43272.7

11 1 5304.5 5304.5

12 0 0.0 0.0

Total 21 522750.5

Table 6 Summary statistics to perform a one-sample t-test 
based on differences per cycle with the patient by treatment 
interaction removed from the variance estimate

Statistic Value Explanation

n 33 Number of cycles

Mean 194.55 mL Mean of the 33 cycles

Variance 24893  mL2 Sample variance of the 33 cycles

SD 157.8 mL Standard deviation = √variance

SE 27.47 mL Standard error = SD/√n

DF 21 Degrees of freedom = n-1-11

t 7.08 t-statistic =194.55 mL/27.47 mL

P-value < 0.001 Probability under  H0 a t-statistic 
with 21 DF will be ≥ 7.08 
or ≤ − 7.08
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Note that compared to the naïve test of the ‘Demon-

strating that there can be a difference between treat-

ments’ section, we have gained some reduction in 

variance at the expense of losing some degrees of free-

dom. The former will increase the power of the test, 

but the latter will reduce it. Thus, even if our objective 

is answering Q1, we might do better using the test for 

which the treatment-by-patient interaction has been 

removed from the error term. In general, it is not pos-

sible to say in advance of examining data which will 

be more powerful. If we can believe in the complete 

homogeneity of the treatment effect, the test of the 

‘Demonstrating that there can be a difference between 

treatments’ section will prove so. In the presence of 

considerable heterogeneity, the test of this section may 

do so.

However, there is another issue that arises. If we 

do not regard the patients as fixed, then we have not 

reflected the variation from patient to patient enough, 

since our estimate is based on using cycles as the unit 

of inference rather than patients. Furthermore, the mean 

over all cycles will not weigh the patient means equally 

because not all patients have been observed as often: 

the mean of 33 cycle differences will not be the same as 

the mean of 12-patient differences. Note that considera-

tions of this sort raise difficult issues. If we accept that 

the effect of treatment varies for different patients, then 

it would seem logical that this component of variation 

(the variation of the true effect from patient to patient) 

should contribute to our uncertainty about the true 

average effect more widely, since we accept that differ-

ent patients could have given us a different answer. The 

problem is, however, not only that we cannot regard 

patients recruited in a clinical trial as being a random 

sample of some target population we might have in mind 

but also that it is difficult to establish of what population 

they could be regarded as being a random sample. A pos-

sible strategy is to perform the analysis as if the patients 

were such a sample of such a population but to recognise 

that the attendant uncertainty will be underestimated by 

such an analysis.

We now put these concerns aside for the moment 

and consider an analysis that uses patients as the unit of 

inference.

Putting more general bounds on the treatment effect

One way of proceeding is to reduce the differences to a 

mean per patient and then perform an analysis using 

these 12-mean differences as our raw input. The data are 

presented in Table 7. We shall ignore the column labelled 

‘Standard error’ for the moment (we shall use this later). 

Instead, we just base our analysis on the 12 per patient 

estimates.

If we carry out a one-sample t analysis on these values, 

we can summarise the results as in Table 8.

The end result is very similar to that reached before. It 

is not surprising that the mean is scarcely different. The 

fact that the standard error is similar, however, reflects 

the fact that for this particular example the variation in 

effect from patient to patient over and above that to be 

expected by the random variation from cycle to cycle is 

small. Nevertheless, the analysis is conceptually differ-

ent to that previously provided as it has greater relevance 

to a different question: what can one say about the mean 

effect in general, not just for patients studied. This is a 

form of Q5 considered above, but note that the previous 

discussion in the ‘Putting bounds on the mean effect for 

the patients studied’ section highlighted some inferential 

problems and that the tentative nature of such answers 

should not be forgotten. We shall revisit this question in 

the ‘Meta-analytic approaches’ section.

There are now 11 degrees of freedom, and the critical 

value for the t-statistic is now slightly larger at 2.201. We 

thus have 2.201 × 28.72 mL = 63.21 mL as the value that 

Table 7 Summary statistics per patient that may be used for 
various analyses

Per patient estimate Standard error

223.7 91.09

84.7 91.09

60.0 91.09

348.0 91.09

259.3 91.09

50.0 91.09

175.0 91.09

153.7 91.09

324.3 91.09

247.7 91.09

254.5 111.56

132.0 157.77

Table 8 Summary statistics to perform a one-sample t-test 
based on differences per patient

Statistic Value Explanation

n 12 Number of patients

Mean 192.74 mL Mean of the 12 patient means

Variance 9895  mL2 Sample variance of the 12 patient means

SD 99.48 mL Standard deviation = √variance

SE 28.72 mL Standard error = SD/√n

DF 11 Degrees of freedom = n-1

t 6.71 t-statistic =192.7 mL/28.72 mL

P-value < 0.001 Probability under  H0 a t-statistic with 32 
DF will be ≥ 6.71 or ≤ − 6.71
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has to be subtracted from and added to the mean to get 

lower and upper 95% confidence limits. The resulting 

95% confidence interval is (129.5 mL, 255.9 mL).

Meta-analytic approaches

A set of n-of-1 trials which we have been considering is 

analogous to a collection of results from independent 

clinical trials, which might be summarised in a meta-

analysis. There is an extensive theory of how such results 

should be analysed [13–15], and software routines exist 

within many major statistical packages that may be used 

to perform a meta-analysis. This means that tools are 

available that may be simply adapted to perform the anal-

ysis of a set of n-of-I trials.

There is one important change in data-preparation 

that is, however, necessary. Standard meta-analytic 

approaches assume that the standard errors used to cal-

culate the weights are themselves calculated without 

error. This is, of course, not true. Estimated standard 

errors are random variables, not known parameters. 

However, if the associated degrees of freedom are rea-

sonably large, this assumption does not matter. For n-of-1 

trials, however, there are typically few degrees of freedom 

per patient. In our example, there are no more than two 

per patient. Naively estimating the variances indepen-

dently is unwise [16, 17]. It is better to use a pooled vari-

ance to do so.

Thus, we impose an assumption that the within-patient 

variation between estimates per cycle is constant across 

patients. We then proceed to estimate the variance.

For this purpose, we can use the approach illustrated 

in Table  5 and Table  6. For each patient, the degrees of 

freedom are calculated as the number of cycles in which 

they were treated minus one. The values are shown in 

column two of Table 5. The sample variance of the esti-

mated treatment effect for each patient is calculated and 

given in column three. The product of the values in col-

umns two and three gives the sums of squares (corrected 

by the mean), which is shown in column four (if the avail-

able statistical software package has a standard function 

available for the corrected sum of squares, it may be easier 

simply to calculate column four directly). The sum of the 

values in column four is 522,750.5  mL2. Dividing the total 

sum of squares by the total degrees of freedom, 21, yields 

an estimated variance of 24,892.9  mL2, and the square 

root of this is 157.77 mL.

Note that since patient 12 was only treated in one cycle, 

it is impossible anyway to estimate a variance for them. 

However, using the data from other patients, we assume 

that the estimated standard deviation for them is the 

same as for all patients and is thus 157. 77 mL. Since the 

estimate for this patient is only based on one cycle, the 

standard error for them is the same as the standard devi-

ation, since, trivially, 157.77 mL
√
1

= 157.77 mL . In general, if 

a patient was treated in k cycles, we have SE =
s

√
k
 , where 

s is the estimated pooled standard deviation (157.77 mL 

for this example). For patient 11, we have k = 2, and for 

patients 1 to 10, k = 3. Substituting these values of k 

yields the standard errors given in Table 7.

We can now apply standard meta-analytic approaches 

to the data in Table 7. There is a wide choice of packages 

to do this. Here, we illustrate the analysis using the meta 

package of Guido Schwarzer’s [18]. The results of using 

the metagen( ) and forest( ) functions are displayed in 

Fig. 2.

Fig. 2 Results of analysis using the meta package
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This provides both a fixed and a random effects analy-

sis. For the latter, there are a number of possible meth-

ods, and the DerSimonian and Laird [19] approach has 

been chosen. For this example, the results of fixed and 

random effects analyses are very similar. Furthermore, 

the point estimate of 194.55 mL is identical to that 

reached for the matched pairs analysis of the 33 cycles. 

This is no coincidence. Since the standard errors patient 

by patient have been calculated using the same variance, 

the difference between them merely reflects the numbers 

of cycles for which information was obtained. The meta-

gen( ) function is a generic inverse variance meta-analysis 

function. It weighs results proportionately to the inverse 

of the square of the standard error, that is to say propor-

tionately to the number of cycles.

The standard error is different however. This is based 

on 21 degrees of freedom rather than 32. The extent 

to which results vary from patient to patient has been 

removed from the estimate of the variance. The differ-

ence is 11 degrees of freedom, and these are the degrees 

of freedom that correspond to the treatment-by-patient 

interaction. As has been pointed out elsewhere, this 

point is frequently misunderstood [20]. More generally, 

both a fixed and random effect interaction fit a treat-

ment-by-trial interaction (in this case, the analogy of 

trial is patient). It is what they do with it that makes the 

difference.

The estimate of the treatment-by-trial interaction may 

be used to answer Q3: ‘Was the treatment effect identical 

for all patients in the trials?’ The relevant variance is given 

as τ2 = 1376 (to the nearest square mL) and the associated 

P-value as p = 0.32. Thus, using the conventional thresh-

old of 5% for statistical significance, the result is not ‘sig-

nificant’. However, this non-significance does not prove 

that there is no heterogeneity and, furthermore, whether 

or not there is heterogeneity is not the issue in choosing 

between fixed and random effects analyses. It is the pur-

pose which guides the choice [20].

The random effects meta-analysis estimate has a 

slightly wider confidence interval. This is because it pro-

vides an estimate of the treatment effect that would apply 

were it the case that the patients that have been studied 

were no longer fixed but could be regarded as a random 

sample from a wider but ‘similar’ population. Thus, the 

differences in effect that the interaction measures are 

no longer regarded as being fixed but as having values 

that might vary from one occasion to another. Thus, this 

uncertainty is incorporated in the confidence intervals. 

In favour of the random effects analysis is the fact that 

it addresses a more important question. Against it is the 

fact that, to answer this question, strong assumptions 

(the similarity of patients studied with those in the target 

population) have to be made.

Estimates of effects for individual patients

Q4 in our list of five questions was ‘What was the effect 

for individual patients in the trials?’ It may surprise 

some that superior estimates of the effects from indi-

vidual patients can be obtained by also using the results 

from others. However, a little reflection shows that 

using results from others is exactly what happens when 

data from parallel group trials provide predictions of 

the effect of treatments. Thus, we use often estimates of 

average effects to predict effects for individual patients. 

Therefore, a series of n-of-1 trials will provide two sorts 

of information for a given individual, namely personal 

and global, the former only using a given patient’s data 

and the latter all the data. Each of these is an unbi-

ased estimate of the effect for a patient, and they may 

be combined to produce a so-called shrunk estimate as 

follows

where w is a weight between 0 and 1. The greater the 

value of w, the more attention we pay to the informa-

tion from the given patient. The estimate is referred to as 

shrunk because the result will lie between personal and 

global and so may be regarded as having shrunk towards 

the latter compared to the former. An alternative term is 

best linear unbiased predictor (BLUP) [21].

Just as we combine information from a meta-analy-

sis by weighing the trial proportionately to the inverse 

of the variances of their estimates, we weigh these 

two sorts of information inversely according to their 

variances.

A plot of the shrunk estimates is provided in Fig.  3, 

which exhibits strong shrinkage. The reason that this 

is so is because there is little evidence of differences 

in the effect of treatment from one patient to another, 

what observed differences there are being largely due to 

within-patient variation, that is to say random variation 

of observed effects  from cycle to cycle. For patients 1 

to 10, the degree of shrinkage is the same, so that their 

points line on a straight line. Patients 11 and 12 are 

labelled because they have different (stronger) shrink-

age, since their results are based on two cycles and one 

cycle respectively rather than on three.

We do not need to go into the theory of this more 

deeply; it is covered, for example, in the paper by 

Araujo et al. [8], already cited, and also in Senn (2019) 

[22]. Fortunately, this sort of question is addressed in 

various meta-analytic packages. For example, the meta-

for package [23] within R has a blup( ) function that 

will do this. It is, of course, necessary to have prepared 

the data in the way described at the beginning of this 

section.

shrunk = w × personal + (1 − w)global,
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Linear mixed effect and non‑linear mixed effect models

Most of the analyses shown so far can be regarded as 

special cases of so called linear mixed effects models 

[21, 24, 25]. For example, an alternative if we have a 

model with treatment, patient, and cycle within patient 

as fixed effects, will produce an analysis equivalent to 

the matched pairs approach using the 33 cycles. If, in 

addition, we declare the treatment by patient interac-

tion as random, an analysis that is very similar to the 

random effects meta-analysis will be produced. Such 

models provide a powerful, flexible framework for 

analysis but do require greater statistical skill in their 

handling and are not covered in this simple tutorial. 

For more information about their application to n-of-1 

trials, see the papers by Araujo et al. [8], Zucker et al. 

(2010) [7], and Van Den Noortgate and Onghena [26].

For other outcomes, for example binary outcomes, 

non-linear mixed effect models may be used. Their appli-

cation to crossover trials is covered in Senn (2002) [9], 

Senn (2021) [27], and Jones and Kenward (2015) [28].

Analysis when there is only one patient

The techniques discussed so far are applicable when 

results can be obtained from a number of patients, which 

means that these results can be combined not only for 

the purpose of examining average effects of treatment 

but also for the purpose of producing superior shrunk 

estimates for individual patients. It is sometimes the case, 

however, that the rarity of the disease or other practical 

difficulties mean that very few patients, and in the limit 

only one, can be recruited.

Given the possibility of treating the patient for many 

cycles, a reasonable analysis could still be carried out, 

although if degrees of freedom are few, there might be an 

advantage in abandoning the idea of pairing in cycles and 

using a completely randomised design. Such a design was 

famously considered by RA Fisher [29] in testing Muriel 

Bristol’s ability to taste whether the tea she was given 

has milk in first or tea in first. Eight cups were used, and 

this gives 8!

(4!4!)
= 70 possible sequences. Using four pairs 

of cups would only yield  24 = 16 possible allocations and 

make guessing all cups less impressive. However, this 

approach would lead us beyond the theme of this paper 

and will not be considered here. For possible approaches 

to this sort of trial, see, for example, the book by Dugard 

et al. [4].

However, if a design in paired periods is used and if 

only a few cycles are available, a severe difficulty presents 

Fig. 3 Shrunk estimates for  FEV1 in mL based on a weighted combination of global and personal estimates versus the naïve estimate based 
on personal information only. The diagonal line is the line of equality
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itself. Suppose that, as was the case in our simulated 

example, only three cycles can be used. In that case, not 

only will the mean effect be estimated poorly, the vari-

ance of the effect will be estimated extremely poorly, 

since only two degrees of freedom will be available. This 

is what might be called a matter of second-order effi-

ciency [30]: the effect is on the estimate of variability not 

on the variability of the estimate. This has a catastrophic 

effect on calculating confidence intervals or significance. 

For the simulated example, by estimating the variance 

from all the patients, we had a variance estimate with 21 

degrees of freedom. The 97.5% quantile on the t-distribu-

tion with 21 degrees of freedom is 2.080. On the other 

hand, with only two degrees of freedom, it is 4.303, more 

than twice as large. Hence, other things being equal, con-

fidence intervals for treatment effects would be more 

than doubled were we to use the local (to each patient) 

values for estimating the variance.

One possibility is to try and use an external esti-

mate for the variance of the effect, even if it is accepted 

that the estimate of the effect itself must be limited 

to the patient. This is very much in the spirit of post-

hoc ANOVA tests, where variances are often pooled 

across treatments even if only two of them are being 

compared. This habit originated in agriculture where 

degrees of freedom are scarce and, not always logically, 

is often used in multi-armed parallel group trials, pool-

ing the variance from all treatments, even when only 

two are being compared, despite the fact that degrees of 

freedom are abundant [11, 31].

Even if a treatment is being trialled for the first time, it 

may be the case that the disease has been studied previ-

ously. One solution would be to use a suitable variance 

estimate from such studies to calculate the standard error 

for the n-of-1 trial. Care needs to be taken to match like 

with like. It has to be a within-patient variance, and a trap 

must be avoided. The variance of the difference between 

two observations on a given subject is twice the within-

subject variances as usually defined by statisticians. It 

might be appropriate to cap the number of degrees of 

freedom for such a historical variance at some relatively 

low number, say 10, even where many subjects have been 

studied and pool accordingly with the data from the 

n-of-1 trial.

Such an approach is illustrated in Fig. 4. It is assumed 

that only patient number 5 of those previously consid-

ered is being measured. However, information on vari-

ability of results is available from other historical patients 

Fig. 4 Illustration of technique of pooling a prior variance with the variance from a given patient (in this case patient number 5). The 95% 
confidence limits are shown. Information from the other patients is assumed to be available, and various possible weights in terms of ‘prior 
degrees of freedom’ are considered. The point estimate is unaffected, but depending on prior degrees of freedom assumed, the estimated variance 
and the critical value of the t-distribution will change



Page 11 of 14Senn  Trials          (2024) 25:128  

(here, the data from the remaining 11 patients has been 

used). These data are combined with those from patient 

5 to form a weighted variance, where the weights are the 

two degrees of freedom available for patient 5 and the 

assumed ‘prior degrees of freedom’ varying from 0 to 10 

for the remaining patients (note that this is a deliberate 

choice and is not the same as the actual degrees of free-

dom used in estimating this prior variance). The result-

ing ‘posterior degrees of freedom’ will be the sum of the 

two and thus vary from 2 to 12. The critical value of the 

t-distribution is calculated accordingly, as is the standard 

error and hence the confidence limits are obtained.

If the prior degrees of freedom are 0, then the result 

is equivalent to just using the data from patient 5. Prior 

information is not used to calculate the point esti-

mate, which thus remains unchanged. The variance will 

change, and this might increase or decrease depending 

on whether the variance for the patient under considera-

tion is smaller or larger than that from the historic data. 

Here, patient 5 had a larger than average value. Whether 

the variance and hence the standard error increases or 

reduces, the critical value of the t-distribution for calcu-

lating the 95% limits will shrink towards the asymptotic 

value of 1.96 that applies to the normal distribution. For 

two (posterior) degrees of freedom, the value is 4.30, and 

for 12, it is 2.18.

Of course, this is all very speculative, but desperate 

remedies may be needed when data are scarce.

Conclusions

N-of-1 trials encourage us to look at treatment effects at 

the lowest level, that of patients themselves. Of course, this 

is the level at which decisions are made, and so, ideally, it is 

the level at which we should like to estimate effects of treat-

ment. Nevertheless, random variability will still affect our 

estimates, and combining local and global information will 

often lead to worthwhile improvements in precision. The 

scarcity of data may make some compromise as regards 

standards inevitable, but what should not be compromised 

are the standards employed in explaining what has been 

done. Assumptions should be stated, and the aim should be 

to make it as clear as possible what choices have been made 

and how they have been implemented.

It is hoped that this tutorial has succeeded in explain-

ing how this may be done.

Software

Example programs in SAS®, R®, and Genstat® can be 

found on the DIAMOND website [32]. The 24th edition 

of Genstat® has a number of procedures for analysing 

n-of-1 trials [33]. See also Artur Araujo’s report [34] on 

analysing n-of-1 trials for useful code in R.

Appendix

A general model for outcomes from n-of-1 trials arranged 

in cycles can be expressed as follows.

where Yirs is the measured outcome for occasion s, s = 1, 

2 of cycle r, r = 1, 2…ki for patient i, i = 1, 2⋯n. Here, 

λi ∼ N(Λ, φ2)is a random effect for patient i, βir ∼ N(0, γ2) is 

a random effect for cycle rwithin patient i, εirs ∼ N(0, σ2) is 

a random error term for occasion sof cycle r for patient i, 

and τi ∼ N(Τ, ψ2) is a random treatment effect for patient i, 

with Zirs = −
1
2
,
1

2
 , depending on whether the patient was 

assigned A or B on that occasion in that cycle. All sto-

chastic terms are assumed independent of each other.

It is worth drawing attention here to a potential point 

of confusion. If we study the variation of the differ-

ence between treatments A and B for a given patient, 

the variance of these differences will be expected 

to be 2σ2 because each within cycle difference has a 

contribution from two errors, εir1, εir2. Because in a 

matched pairs analysis, 2σ2is estimated directly, but 

in a linear model, one would estimate the variance of 

the εirsterms, which is σ2, there is a danger that readers 

may misunderstand what an author means by referring 

to a within-cycle variance. If variance terms are picked 

up from a paper for planning purposes, there is a dan-

ger of miscalculation of the necessary sample size by 

either a factor of two or of one half. The moral is it is 

best to be explicit, and indeed, in an earlier version of 

this article (as noticed by a referee), both conventions 

were used.

If we reduce everything to within-cycle differences first, 

then the random patient and cycle terms are eliminated, 

and only σ 2, γ 2are relevant to calculating our estimates. 

We can have

as an estimate of T . Since Zir2 − Zir1 = 1,−1 depending 

on whether A is given on the first occasion in a cycle or 

the second, this is simply the sum of all the within-cycle 

differences for treatment B minus treatment A divided by 

the total number of cycles. If we have the same number 

of cycles, k, per patient, this simplifies to

What the appropriate variance of this estimator is 

depends on what we consider it is an estimate of, that 

is to say, what we consider Τ to be. For example, if we 

(1)Yirs = �i + βir + εirs + Zirsτi,

(2)τ̂ =

n

i=1

ki
r=1

Yir2−Yir1
Zir2−Zir1

n

i=1
ki

(3)τ̂ =

∑
n

i=1

∑
k

r=1

Yir2−Yir1
Zir2−Zir1

nk
.
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take it to be an estimate of the mean treatment effect 

for these patients, then this is fixed for the sample. We 

shall refer to this as the local purpose. We then have 

that the variance is

Note, as discussed above, the appearance of the factor 

2 because variances of within cycle differences have a 

contribution from each of two error terms.

In the balanced case where ki = k, ∀ i, then we have

On the other hand, if we take Τ to be the mean treat-

ment effect in a population of patients from whom the 

patients studied may be taken to be a random sample, 

then we have

with, in the balanced case,

We refer to this as the global purpose. Note that for 

the global purpose, (a) this estimator is only optimal in 

the unbalanced case or if ψ2 = 0, and (b) whether or not 

this is optimal, the variance for the global is only the 

same as for the local purpose if ψ2 = 0.

An alternative approach to estimation starts with the 

individual patient estimates,

For the global purpose, these have variances

where σ
2

d
= 2σ

2 , with the subscript d standing for 

difference.

These estimates may then be combined in a weighted 

sum to produce an estimate

where

(4)Var
(

τ̂

)

=
2σ

2

∑

n

i=1
ki
.

(5)Var
(

τ̂

)

=
2σ

2

nk
.

(6)Var
(

τ̂
)

=
ψ2

n
+

2σ 2

∑

n

i=1 ki
,

(7)Var
(

τ̂
)

=
ψ2

n
+

2σ 2

nk
.

(8)τ̂i =

∑ki
r=1

Yir2−Yir1
Zir2−Zir1

ki
.

(9)Var
(

τ̂i
)

= ψ2
+

σ 2
d

ki
, .

(10)T̂global =

∑n

i=1
wiτ̂i,

that is to say, with weights inversely proportional to the 

variance and summing to one. Note that (9), (10), and 

(11) define an estimate that has the same general form as 

a random effects meta-analysis estimator, the only practi-

cal difference being that σ2should be estimated globally, 

rather than individually patient by patient. The variance 

of (10) is given by

Note also that if ki = k, ∀ i, i = 1⋯n, we have from (10) 

that T̂global =

∑n
i=1

τ̂i

n  and from (12) that 

Var
(

T̂global

)

=
Var(τ̂)

n .

In the ‘Estimates of effects for individual patients’ sec-

tion, the formula for shrunk estimates was given as

If we assume that a suitably large number of patients 

have been studied, then the global estimate as a predic-

tion for the long-term average may be assumed to have 

a variance of ψ2, whereas the local estimate for patient i 

may be assumed to have a variance of 2σ
2

ki
 . These two esti-

mates should be weighed proportionately to the inverse 

of their variances, so we have

Since wis the weight for the personal element and ψ2 is 

the variation in the true treatment effect from patient to 

patient, we can see that, other things being equal, as this 

variation becomes more important, more weight is given 

to the global estimate. Similarly, since 1 − w is the weight 

for the global estimate, we can see that as the within 

patient variation σ2 gets larger, then more weight will be 

given to the global estimate, although this can be reduced 

by increasing the number of cycles ki in which the patient 

is observed.

Finally, we have as a formula for the variance of the 

shrunk estimate,

(11)
wi =

1

ψ2+
σ2
d
ki

�

n

i=1





1

ψ2+
σ2
d
ki





,

(12)Var
(

T̂global

)

=
1

∑n
i=1

1

Var(τ̂i)

.

(13)shrunk = w × personal + (1 − w)global.

(14)w =
ψ2

ψ2 +
2σ 2

ki

, 1 − w =

2σ 2

ki

ψ2 +
2σ 2

ki

.

(15)Var(shrunk) =
2ψ2σ 2

kiψ
2 + 2σ 2

.
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Note that if we have no local information on patient i so 

that ki = 0, we have that (15) is equal to ψ2, which, since we 

must rely on global information only, is to be expected. On 

the other hand, as ψ2 → ∞, we have that (15) → 2σ
2

ki
 which 

is the personal variance, which again is only to be expected, 

since the results from other patients contribute no infor-

mation. In general, however, (15) is lower than either the 

global or the personal variance. Thus, an advantage of the 

shrunk estimate is the reduction in variance that it brings.

A further point to note is that the formula does not 

allow for uncertainty in the global estimate itself. The 

uncertainty in using the global estimate as a prediction 

of the effect for a given patient reflects the variation of 

the individual patient effects from the supposed true 

average global value. In practice, this global value itself 

is subject to uncertainty and, as a referee has pointed 

out, since the values from an individual also contribute 

to the global estimate, there will also be a small correla-

tion between the two, which is also in practice ignored. 

In short, this approach works best when one has data 

from many patients. See also my paper on sample size 

determination [22] for further discussion.
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