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SYMPLECTIC RIGIDITY OF O’GRADY’S TENFOLDS

LUCA GIOVENZANA, ANNALISA GROSSI, CLAUDIO ONORATI,
AND DAVIDE CESARE VENIANI

Abstract. We prove that any symplectic automorphism of finite order of an irreducible
holomorphic symplectic manifold of O’Grady’s 10-dimensional deformation type is
trivial.

1. Introduction

O’Grady [16] constructs an irreducible holomorphic symplectic manifold M̃ of dimen-
sion 10 and second Betti number 24 as a crepant resolution of a certain moduli space M
of coherent sheaves on a K3 surface. Any complex manifold X which is deformation

equivalent to M̃ is said to be of type OG10.
In this short note, we prove the following theorem.

Theorem 1.1. If X is a complex manifold of type OG10, and f ∈ Aut(X) is a symplectic

automorphism of finite order, then f is the identity.

Type OG10 was the only remaining known deformation type of irreducible holomorphic
symplectic manifolds that lacked a systematic treatment of symplectic automorphisms in
the literature. Theorem 1.1 fills this gap. For references to the works on the other types,
see the historical note in [6, §1.1].

A similar theorem holds for symplectic automorphisms of the other sporadic deformation
type OG6 found by O’Grady in dimension 6 (see [6, Theorem 1.1]). On the other hand,
Theorem 1.1 does not hold for birational transformations. Indeed, it is known for instance
that manifolds of type OG10 can admit symplectic birational involutions (see Remark 2.3
for a simple lattice theoretical argument, [1, §7.3] for a geometrical example, [12] for a
complete classification, and [4] for induced symplectic birational involutions).

By a result by Mongardi and Wandel [14], any automorphism of a manifold X of
type OG10 acting trivially on the second integral cohomology lattice H2(X,Z) is the
identity. Thus, the proof of Theorem 1.1 consists in showing that there is no symplectic
automorphism f of finite order acting non-trivially on H2(X,Z). The proof is divided
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into two parts, according to the action of f on the discriminant group of H2(X,Z). In
the case of trivial action, we use a trick involving the Leech lattice already employed
by Gaberdiel, Hohenegger and Volpato [5], and the classification of invariant sublattices
of the Leech lattice by Höhn and Mason [7]. In the case of non-trivial action, we take
advantage of some bounds by Rogers [19] and Leech [10] related to the sphere packing
problem.

The paper is divided into two sections. In §2, we introduce the notation and recall
some known results. In §3, we prove Theorem 1.1.

Acknowledgments. We thank the anonymous referees for their useful suggestions.

2. Preliminaries

In this section, we recall basic definitions and some known results which we will use in
the sequel.

2.1. Lattices. In this paper, we use exactly the same conventions and notation for
lattices, i.e., finitely generated free Z-modules L ∼= Zr with a non-degenerate symmetric
bilinear pairing (v, w) 7→ v · w, as in our previous paper [6, §2].

A lattice L is called even if v2 ∈ 2Z for all v ∈ L, and unimodular if |det(L)| = 1. The
dual of L is defined as L∨ := {x ∈ L⊗Q | x · y ∈ Z for all y ∈ L}. The divisibility of an
element v ∈ L is defined by (v, L) := gcd{v · w | w ∈ L}.

The discriminant group of a lattice L is the abelian group L♯ := L∨/L, which has
order |L♯| = |det(L)| and inherits from L a finite quadratic form when L is even. The
orthogonal groups of L and L♯ are denoted by O(L) and O(L♯), respectively. The natural
homomorphism O(L) → O(L♯) is denoted g 7→ g♯.

Given a subgroup G ⊂ O(L), we denote the invariant sublattice by LG := {v ∈ L |
g(v) = v for all g ∈ G}, and the coinvariant sublattice by LG := (LG)⊥. If the subgroup
G is generated by a single element g, then we write Lg := LG and Lg := LG.

A root of an even negative definite lattice L is an element v ∈ L such that v2 = −2.
The length of a finite group A is the minimal number of generators of A and it is denoted
by ℓ(A); similarly, for a prime number p, the p-length of A is the minimal number of
generators of a Sylow p-subgroup of A and it is denoted by ℓp(A).

We denote by U and E8 the unique even unimodular lattices of signature (1, 1)
and (0, 8), respectively. We denote by A2 the unique even lattice of signature (0, 2) and
determinant 3.

2.2. Torelli theorem. We define

L := 3U⊕ 2E8 ⊕A2.

By a result of Rapagnetta [18], the second integral cohomology group H2(X,Z) of
any manifold X of type OG10, together with the Beauville–Bogomolov–Fujiki form, is
isomorphic to the lattice L. We define the following subsets of L:

Wpex
OG10 := {v ∈ L | v2 = −2} ∪ {v ∈ L | v2 = −6, (v,L) = 3},

WOG10 := Wpex
OG10 ∪ {v ∈ L | v2 = −4} ∪ {v ∈ L | v2 = −24, (v,L) = 3}.

Geometrically we have the following interpretation of the two sets above. Let X be a
manifold of type OG10 and recall that the positive cone of X is the cone CX of classes
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x ∈ H1,1(X,R) such that (x, x) > 0 and (x, ω) > 0 for one (and hence all) Kähler class ω.
Once we fix a marking η : H2(X,Z) → L, the Kähler cone (resp. the birational Kähler
cone) is the chamber in

CX \D∈H1,1(X,Z)∩η−1(WOG10)
D⊥

(
resp. CX \D∈H1,1(X,Z)∩η−1(Wpex

OG10
) D

⊥

)

containing a Kähler class.
We can now state a consequence of the Torelli theorem which will be used to prove

Theorem 1.1. We say that an isometry g ∈ O(L) is induced by an automorphism
of a manifold of type OG10 if there exists a manifold X of type OG10, a marking
η : H2(X,Z) → L, and an automorphism f ∈ Aut(X) such that

g = η ◦ (f−1)∗ ◦ η−1,

where f∗ ∈ O(H2(X,Z)) is the pullback of f .

Theorem 2.1. A finite subgroup G ⊂ O(L) is induced by a group of symplectic automor-

phisms of a manifold of type OG10 if and only if LG is negative definite and

(1) LG ∩WOG10 = ∅.

Proof. The proof is analogous to [6, Theorem 2.16]. Let us sketch it here for the reader’s
convenience.

First of all, let X be a manifold of type OG10, and let us fix a marking, i.e., an isometry
H2(X,Z) ∼= L. If G ⊂ O(L) is induced by a group of symplectic automorphisms, then LG

is negative definite by [6, Lemma 2.12]. Moreover, any element of G must send the Kähler
cone into itself. The Kähler cone is described lattice-theoretically in [13, Theorem 5.5]: it
coincides with one of the chambers of the positive cone determined by the orthogonal
hyperplanes to the elements in WOG10. Condition (1) follows then from [6, Lemma 2.14].

For the reverse implication, it is enough to show the existence of one manifold of
type OG10 on which G is induced by symplectic automorphisms.

Since LG is negative definite, there exists by [6, Lemma 2.13] a Hodge structure
L⊗C = L

2,0⊕L
1,1⊕L

0,2 with the following properties: the Hodge structure is preserved
by G, L1,1 ∩ L = LG, and G acts as the identity on (L2,0 ⊕ L

0,2) ∩ L. By the surjectivity
of the period map (see [8, Theorem 8.1]), there exists a manifold X of type OG10 with
a marking H2(X,Z) ∼= L such that the Hodge structure on H2(X,C) ∼= H2(X,Z) ⊗ C

corresponds through the marking to the Hodge structure on L⊗ C.
Now, by the Hodge-theoretic Torelli theorem [11, Theorem 1.3], the group G is induced

by a group of automorphisms of X if and only if it acts via monodromy operators, it
preserves the Hodge structure, and it preserves the Kähler cone.

By [17, Theorem 5.4], the monodromy group of a manifold of type OG10 is the whole
group O+(L). Since LG is negative definite, we have by [6, Lemma 2.3] that G ⊂ O+(L),
so that the first condition of the Hodge-theoretic Torelli theorem is satisfied. Moreover, G
preserves the Hodge structure of X by construction, thus satisfying the second condition
of the Hodge-theoretic Torelli theorem.

Again by [13, Theorem 5.5], the Kähler cone is cut out inside the positive cone by
the hyperplanes which are orthogonal to the vectors in WOG10. Since L

1,1 ∩WOG10 =
LG ∩WOG10 = ∅, it follows that the Kähler cone coincides with the positive cone, which



4 LUCA GIOVENZANA, ANNALISA GROSSI, CLAUDIO ONORATI, AND DAVIDE CESARE VENIANI

is preserved by G because G ⊂ O+(L). Therefore, also the third condition of the Hodge-
theoretic Torelli theorem is satisfied. Since G acts as the identity on (L2,0 ⊕ L

0,2) ∩ L by
construction, the automorphisms inducing G are symplectic. �

For the sake of completeness, we also state the corresponding theorem for symplectic
birational transformations. The proof is analogous to the proof of Theorem 2.1, with the
difference that we consider the set Wpex

OG10 instead of WOG10 and the birational Kähler
cone instead of the Kähler cone.

Theorem 2.2. A finite subgroup G ⊂ O(L) is induced by a group of symplectic birational

transformations of a manifold of type OG10 if and only if LG is negative definite and

LG ∩Wpex
OG10 = ∅.

Remark 2.3. Manifolds of type OG10 with non-trivial symplectic birational transforma-
tions do exist. Consider for instance the involution g ∈ O(L) which consists in exchanging
the two copies of E8 and is the identity elsewhere. Then, Lg is isomorphic to E8(2). In
particular, any v ∈ Lg satisfies 4 | v2, so the group generated by g satisfies the conditions
of Theorem 2.2.

2.3. Leech lattice. The Leech lattice, which we denote by Λ24, is the unique even,
unimodular, negative definite lattice of rank 24 without roots.

Let Λ1,25 be the unique even unimodular lattice of signature (1, 25). The following
proposition was originally proved by Gaberdiel, Hohenegger and Volpato [5, §B.2]. The
same argument was reproduced by Huybrechts [9, §2.2, p. 398]. We sketch it here for the
sake of completeness.

Proposition 2.4 ([5],[9]). Let L be a lattice, and let G ⊂ O(L) be a subgroup of isometries

which acts trivially on the discriminant group L♯, such that LG is negative definite and

does not contain roots. If there exists a primitive embedding LG →֒ Λ1,25, then G is

isomorphic to a subgroup G ⊂ O(Λ24) such that LG
∼= (Λ24)G.

Proof. First of all, since G acts as the identity on the discriminant group of L, it also
acts as the identity on the discriminant group of LG. In particular, thanks to the
primitive embedding LG →֒ Λ1,25, the action of G on LG can be extended to Λ1,25 as the

identity on L⊥
G ⊂ Λ1,25. Note that Λ

G
1,25

∼= L⊥
G is a non-degenerate lattice of signature

(1, 25− rk(LG)).
Let us now fix an isometry Λ1,25

∼= Λ24 ⊕U, where U is the unimodular hyperbolic
lattice of rank 2. We also fix an isotropic generator w ∈ U and we see it as an isotropic
element of Λ1,25. A Leech root of Λ1,25 is any root δ such that (δ, w) = 1. The Weyl
group W ⊂ O(Λ1,25) is the group generated by reflections associated with Leech roots
(see [3, Chapter 27]). We denote by C0 the subset of Λ1,25 ⊗ R of positive classes x such
that (x, δ) > 0 for any Leech root δ.

Since LG contains no roots by hypothesis, it follows that there is no root δ ∈ Λ1,25 such

that Λ
G
1,25 ⊂ δ⊥. In particular, this applies to Leech roots. Therefore, up to changing the

primitive embedding LG →֒ Λ1,25 by an element of W , we can assume that C0 is fixed
by (the R-linear extension of) G, i.e., G ⊂ O(Λ1,25, C0). By [2], the group O(Λ1,25, C0) is

known to fix the isotropic vector w ∈ Λ1,25, hence w ∈ Λ
G
1,25

∼= L⊥
G. It follows that there
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Table 1. Rogers’ upper bounds on center density δ, as computed by Leech.

n 1 2 3 4 5 6 7 8
bn 0.5 0.28868 0.1847 0.13127 0.09987 0.08112 0.06981 0.06326

n 9 10 11 12 13 14 15 16
bn 0.06007 0.05953 0.06136 0.06559 0.07253 0.08278 0.09735 0.11774

n 17 18 19 20 21 22 23 24
bn 0.14624 0.18629 0.24308 0.32454 0.44289 0.61722 0.87767 1.27241

exists a primitive embedding LG →֒ Λ24 given by the composition

LG →֒ w⊥
։ w⊥/Zw ∼= Λ24.

Finally, since again G acts as the identity on the discriminant group of LG, the action of
G on LG can be extended to an action of G on Λ24 such that LG

∼= (Λ24)G as claimed. �

2.4. Sphere packings. Let L be a positive definite lattice of rank n. Its minimal norm µ
and packing radius ρ are defined as follows:

(2) µ := min{v2 | v ∈ L \ {0}} and ρ :=
1

2

√
µ.

The center density of L is defined as

(3) δ :=
ρn√
detL

.

For n ≤ 24, there exist upper bounds bn on the center density δ found by Rogers [19],
explicitly computed by Leech [10], and reproduced by Conway and Sloane in [3, Table 1.2,
p. 15]. For the reader’s convenience, we copied these bounds in Table 1.

3. Proof of Theorem 1.1

We fix an irreducible holomorphic symplectic manifold X of type OG10 and a symplectic
automorphism f ∈ Aut(X) of finite order. We claim that f acts trivially on the second
integral cohomology group H2(X,Z), and is thus the identity, by a result of Mongardi
and Wandel [14, Theorem 3.1].

Choose any marking for X, that is, an isometry η : H2(X,Z) → L, and let g :=
η ◦ (f−1)∗ ◦ η−1 ∈ O(L) be the isometry of L induced by f . Suppose that g is not the
identity. We seek a contradiction on the coinvariant lattice Lg. For the rest of this section,
we will use the fact that both L

g and Lg are primitive sublattices of L.

The discriminant group L
♯ has order |det(L)| = 3. The only non-trivial automorphism

of L♯, which we denote by −id, is the one exchanging the two non-trivial elements of L♯.
Hence, we have O(L♯) = {id,−id}. In the following, we consider the image g♯ ∈ O(L♯)
and we treat the two cases g♯ = id and g♯ = −id in §3.1 and §3.2, respectively, seeking a
contradiction.
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3.1. Trivial action on discriminant group. Suppose that g acts trivially on the
discriminant group L

♯, i.e., g♯ = id.

First of all, we claim that ℓ(L♯
g) ≤ ℓ((Lg)♯) + ℓ(L♯). In fact, applying [15, Proposi-

tion 1.15.1] to the primitive embedding of Lg in L, we see that L
♯
g is isometric to an

abelian group of the form Γ⊥/Γ, where Γ ⊂ (Lg)♯(−1) ⊕ L
♯ is an isotropic subgroup.

Therefore, we have

ℓ(L♯
g) = ℓ(Γ⊥/Γ) ≤ ℓ(Γ⊥) ≤ ℓ((Lg)♯) + ℓ(L♯),

as claimed. Now, since L
♯ = Z/3Z, and ℓ(L♯) ≤ rk(L) for any lattice L, we get the

following chain of inequalities:

ℓ(L♯
g) ≤ ℓ((Lg)♯) + ℓ(L♯) ≤ rk(Lg) + 1 = (24− rk(Lg)) + 1 < rk(Λ1,25)− rk(Lg).

It follows from [15, Corollary 1.12.3] that there exists a primitive embedding Lg →֒ Λ1,25.
Note, moreover, that Lg is negative definite and does not contain roots by Theorem 2.1.

Hence, all hypotheses of Proposition 2.4 are satisfied, and we conclude that there exists
an element g ∈ O(Λ24) of order p such that Lg

∼= (Λ24)g.
Höhn and Mason observe that all coinvariant lattices of the (positive definite) Leech

lattice have minimal norm 4 (see [7, p. 633]). Thus, (Λ24)g contains an element of
square −4, and so does Lg. Condition (1) of Theorem 2.1 is therefore not satisfied, and
we have a contradiction.

3.2. Non-trivial action on discriminant group. Suppose now that g acts non-trivially
on the discriminant group L

♯, i.e., g♯ = −id. Since −id has order 2, the order of g is
necessarily even. Up to taking powers, we can suppose that the order of g is 2r, for some
integer r ≥ 1. If r > 1, then g2 acts trivially on the discriminant group, and, therefore,
it is trivial by §3.1. Hence, from now on we can further assume that the order of g is
exactly 2. In particular, g acts as the identity on the invariant sublattice L

g, and as
multiplication by −1 on the coinvariant sublattice Lg.

By work of Nikulin [15, Proposition 1.5.1], the primitive embedding L
g →֒ L is given

by a subgroup H of (Lg)♯, a subgroup H ′ of L
♯
g, and an isometry γ : H → H ′(−1),

which is called ‘gluing isometry’ in [6, §2.2]. By Nikulin’s construction, one identifies

Ξ := L/(Lg⊕Lg) with an isotropic subgroup Ξ ⊂ (Lg)♯⊕L
♯
g. By definition, the groups H

and H ′ are the image of Ξ under the projections to (Lg)♯ and L
♯
g, respectively. Therefore,

the isometry γ is equivariant with respect to the action of g♯. Hence, for every ξ ∈ H we
have

ξ = g♯(ξ) = γ−1(γ(g♯(ξ))) = γ−1(g♯(γ(ξ))) = γ−1(−(γ(ξ)) = −ξ,

so all elements of H have order 2, that is, H is a 2-elementary abelian group, say of
length ℓ. In particular, |H| = 2ℓ. Since H and H ′ are isomorphic, also |H ′| = 2ℓ.

By [6, eq. (5)], it holds |H|2 · |det(L)| = |det(Lg) · det(Lg)|, which can be written as

3 = |det(L)| = [(Lg)♯ : H] · [L♯
g : H ′].

In particular, we have [L♯
g : H ′] ≤ 3 and, therefore,

|det(Lg)| = |L♯
g| = [L♯

g : H ′] · |H ′| ≤ 3 · 2ℓ.
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Put n := rk(Lg). Note that ℓ ≤ ℓ2((L
g)♯) ≤ rkLg = 24− n and ℓ ≤ ℓ2(L

♯
g) ≤ rkLg = n.

Thus, we obtain the following upper bound:

(4) |det(Lg)| ≤ 3 · 2min(n,24−n).

We now look for a lower bound. By Condition (1) of Theorem 2.1, Lg does not contain
elements of square −2 or −4. Since Lg(−1) is an even (positive definite) lattice, its
minimal norm µ satisfies

(5) µ ≥ 6.

We let bn be Rogers’ bound on the center density in dimension n, as in Table 1. Then,
denoting δ and ρ respectively the center density and the packing radius of Lg(−1), it
follows from (2), (3) and (5) that

(6) |det(Lg)| =
ρ2n

δ2
≥ ρ2n

b2n
=

µn

22nb2n
≥ 3n

2nb2n
.

Since Lg is negative definite by Theorem 2.1, and L has signature (3, 21), we have
n ≤ 21. By plugging in the values for bn given by Table 1, we see that

3 · 2min(n,24−n) <
3n

2nb2n
for all n ∈ {2, . . . , 21},

so the two bounds (4) and (6) contradict each other. Hence, Lg can only exist in rank
n = 1, in which case the two bounds coincide and, necessarily, Lg

∼= [−6]. Let v be a
generator of Lg and w be any other element in L. Since g is an involution, w+ g(w) ∈ L

g

and w − g(w) ∈ Lg. Therefore, given that (v,Lg) = 6, we have

(v, w) =
1

2
(v, w + g(w)) +

1

2
(v, w − g(w)) =

1

2
(v, w − g(w)) ∈ 3Z,

i.e., 3 | (v,L). Since v is a primitive vector of L, we have (v,L) | detL, hence (v,L) = 3.
In particular, Condition (1) of Theorem 2.1 is not satisfied because v ∈ Lg ∩ WOG10.
Thus, case n = 1 cannot occur either, and this finishes the proof of Theorem 1.1. �
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