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Animals determine their daily movement trajectories in response to a network of 
ecological processes, including interactions with other organisms, their memories of 
previous events, and the changing environment. These combine to cause the emer-
gent space use patterns observed over longer periods of time, such as a whole season. 
Understanding which processes cause these patterns to emerge, and how, requires a 
process-based modelling approach. Individual-based decisions can be described as a 
system of partial-differential equations (PDEs) to produce a dynamic description of 
space use built from the underlying movement process. Here we combine PDE-based 
models with step-selection analysis to investigate the combined effects of three estab-
lished ecological processes that partially shape movement and space use: 1) a hetero-
geneous environment; 2) the environmental markings of moving conspecifics; and 
3) the memory of direct interactions with conspecifics. We apply this framework to 
a large GPS-based dataset of white-tailed deer Odocoileus virginianus in the south-
eastern US. We fit models at the population level to provide predictive models, then 
tailor these to fit individual deer. We specifically incorporate relationships between 
each possible pair of deer and define each animal’s responses to their unique local 
environments using separate integrated step-selection analyses. We show how indi-
vidual movements and decisions yield emergent patterns in animal distributions, and 
we provide a full generalised description of the framework so that it may be applied to 
any species simultaneously responding to multiple potentially interacting stimuli (e.g. 
sociality, morphology, etc.). We found that the population of bucks had highly varied 
preferences for vegetation, but were shaping their space use in response to conspecific 
interactions, dependent on the individual relationships between two deer. We advocate 
for increased consideration of individual-based movement rules as determinants of 
realized animal space use, and particularly how these affect emergent distributions of 
entire species.
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Introduction

Animal space use patterns are driven by the underlying 
movement decisions of individuals (Kernohana et al. 2001, 
Nathan et al. 2008). Understanding the behavioural mecha-
nisms that guide an individual animal to move across a land-
scape is therefore an important area of ecological research 
(Miller and Holloway 2015, Allen and and Singh 2016, 
Tucker et al. 2018). Discovering the key motivations of 
an animal’s movement choices and their relationship with 
other interacting processes enables one to model how these 
behavioural mechanisms affect spatial patterns. This yields 
predictions of realized space use that can have implications 
for ecology (Merow et al. 2014). However, in lieu of identi-
fying the processes behind the animal distribution patterns, 
many tools for studying animal ranges either describe the 
pattern of locations (e.g. kernel density estimators; Worton 
1989) or correlate known locations to habitat features (e.g. 
resource-selection analysis and species-distribution models; 
Boyce et al. 2002, Elith and Leathwick 2009, respectively). 
Although useful ecological inference can be gained from these 
correlative methods of space use estimation, they neither 
explicitly account for the underlying movement mechanisms 
(although step-selection and continuous-time movement 
models have made progress in this direction; Thurfjell et al. 
2014a, Calabrese et al. 2016) nor allow for feedback processes 
such as conspecific interactions and predator–prey dynam-
ics (Kearney and Porter 2009). Furthermore, accurately 
predicting the spatial distribution of a group of animals in 
a changing landscape can positively inform conservation and 
management strategies, allowing for a better understanding of 
the habitats most in need of protection (Elith and Leathwick 
2009, Franklin and Miller 2010, Zimmermann et al. 2010, 
Martínez-Minaya et al. 2018).

As animals navigate their available landscape they make 
movement decisions based on their potential journey ahead 
and the state of the environment around them (Nathan et al. 
2008). The movement of individuals can be modelled by 
assigning probabilities to possible steps from one location 
to the next, subsequently producing a time-series of possible 
decisions. There are a number of tools available for defin-
ing probabilities of moving, such as step-selection functions 
(Thurfjell et al. 2014b) and continuous-time movement mod-
els (Calabrese et al. 2016), which essentially involve param-
eterising individual-based movement models using data. 
Step-selection analysis (SSA) provides an advantageous way 
of defining and fitting movement models, as its mathemati-
cal form means conditional logistic regression can be used to 
estimate parameters. Despite this efficient way to parameter-
ise models, current methods of SSA do not easily incorporate 
feedback processes, such as the fine-scale movements of one 
animal depending on the whereabouts of another (although 
Schlägel et al. 2019 and Potts et al. 2022b model feedback 
with dynamic space use descriptions), this suggests a need for 
new methodological advancements to streamline the param-
eterisation process of step-selection models.

However a movement model is constructed, a time 
series of movement decisions can be simulated to produce a 

description of space use in the form of a probability density 
function (Signer et al. 2017, 2023, Potts et al. 2022a), but 
often at high computational cost. An alternative to simulating 
stochastic individual-based movement models is to model the 
mechanisms using a system of partial differential equations 
(PDEs), which describe the change in the probability den-
sity function of animal locations over time (Murray 1993), 
without the need for thousands of simulations to smooth 
out stochasticity. In particular, advection-diffusion equations 
are a type of PDE that can model movement behaviours as 
advection mechanisms (Moorcroft and Lewis 2013) describ-
ing attraction (or repulsion) to parts of the landscape due to 
these behaviours. These equations can be coupled to other 
spatio-temporal processes such as conspecific interactions 
(Moorcroft et al. 2006, Bateman et al. 2015) or cognitive 
maps (Potts and Lewis 2016a), thereby permitting the inclu-
sion of ecological feedback when estimating space use.

Advection-diffusion equations can be solved numerically 
to produce an estimate of the probability density of finding 
the individual animal through time (i.e. the changing space 
use pattern), based on biases towards or away from spatial 
features (Moorcroft et al. 2006). However, due to their tech-
nical complexity, there are no easy-to-use packages available 
to input data and output results. Despite this, the predic-
tions and ecological lessons that these models produce can be 
highly valuable. For example, Moorcroft et al. (2006) used 
advection-diffusion equations to show that the main drivers 
of space use of coyotes were responses to the scent marks of 
nearby packs, Bateman et al. (2015) used similar methods 
to show that dynamic meerkat home ranges were formed in 
response to direct and indirect conspecific interactions, and 
Ellison et al. (2020) used a memory mechanism to show the 
space use patterns of flocks of birds were due to the interplay 
of memory and avoidance. Recent advancements have pro-
vided methods of quickly moving from a fitted step-selection 
function to a space use description using PDEs (Potts and 
Schlägel 2020, Potts and Börger 2023), improving the acces-
sibility of PDE models.

We advance recent studies linking step-selection analysis 
to advection-diffusion equations by presenting methods to 
model the space use of a population of interacting animals 
that move in response to multiple interacting biotic and abi-
otic conditions. As a case study, we test our approach using a 
population of 27 male white-tailed deer Odocoileus virginianus 
(hereafter, deer), known to be an important conservation spe-
cies in the USA and useful here since their ecology and biology 
are well known (Foster et al. 1997, Strickland and Demarais 
2000, McShea 2012). Prior research provides us with some 
initial hypotheses for how deer use space; for example, whilst 
searching for females, male deer in the rutting season will 
leave visual and olfactory marks on trees to display their con-
dition (Moore and Marchinton 1974), to which conspecif-
ics are likely to respond (Gassett et al. 1996). Furthermore, 
male deer establish dominance directly, by locking antlers and 
sparring with other males (Michael 1968, Hirth 1977). It is 
thought that deer in general have complex spatial memory 
processes influencing their future decisions (Gautestad et al. 
2013, Jakopak et al. 2019) and select for different vegetation 
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types (Henderson et al. 2020). Overall, this prior knowledge 
indicates that male deer are likely to be moving in relation to a 
variety of landscape layers, the environmental marks of other 
male deer (indirect interactions), and the memory of aggres-
sive displays (direct interactions) with these conspecifics, likely 
including a variety of complex feedbacks and interactions. As 
such, we implement PDE models to investigate the competing 
and interacting effects of three established ecological processes 
that can modify movement and space use: 1) a heterogeneous 
environment (Moorcroft and Barnett 2008), 2) the environ-
mental traces of other moving conspecifics (Moorcroft et al. 
2006) and 3) their memory of direct interactions with these 
conspecifics (Potts and Lewis 2016a).

Our models account for environmental effects using a 
step-selection analysis and conspecific interactions using 
a PDE formalism. We begin by defining individual-based 
movement mechanisms to describe attraction or repulsion to 
different parts of the environment for each individual, where 
the attraction or repulsion is quantified using an integrated 
step-selection analysis (iSSA, Avgar et al. 2016). We then 
define mechanisms describing the deposit and decay of scent 
marks (Moorcroft et al. 1999, 2006, Moorcroft and Lewis 
2013), and the memory of individuals interacting with other 
individuals (Potts and Lewis 2016a). From these mechanisms 
we construct a corresponding system of PDEs and fit these to 
the population of deer, producing a system of equations that 
can be used to predict broad-scale space use patterns. The 
resulting system of PDEs are then used to define a map corre-
sponding to the emergent space use patterns by each individ-
ual. This approach to space-use modeling thus incorporates 
the feedbacks between interacting individuals, while using 
step-selection analysis to inform decisions on their response 
to land cover layers.

The biological relevance of our methods is illustrated 
by generating valuable knowledge about white-tailed deer 
response to static land cover variables and providing a predic-
tive model for the population within the hunting season. We 
determine that selection of land cover layers is quite varied 
between individual deer (Stache et al. 2013, Haus et al. 2020) 
and show that their response to these layers is not sufficient to 
describe their movement ranges. Introducing mechanisms to 
describe the deers’ responses to both indirect (e.g. scent) and 
direct interactions (e.g. defense displays), alongside vegetation 
preference, model their restricted ranges. Furthermore, we 
show that by focusing on the individual relationships between 
pairs of deer, we can fine-tune spatial predictions. Our model 
selection procedure indicates that adding ecological features 
of these relationships into the description of interactions does 
create better fitting models, meaning that the deer are likely 
basing their movement responses to conspecific interactions 
and social dynamics (Taillon and Côté 2006).

Material and methods

In our model, each individual moves in response to three 
movement drivers: 1) various heterogeneous environmental 

layers, 2) memory of direct interactions with other individu-
als and 3) indirect interactions with other individuals by sens-
ing their environmental markings. Each of these processes 
are combined into a system of partial differential equations 
(PDEs). For computational efficiency, environmental param-
eters will be initially fitted using step-selection analysis. Then 
interaction parameters will be inferred by fitting the PDE’s 
steady state space use patterns to locational data, using a simi-
lar approach to Moorcroft et al. (2006).

A schematic of this modelling process is shown in 
Fig. 1. Having constructed a population-level model, we then 
accommodate individuality into the system in two ways: (a) 
by including a self attraction mechanism and (b) by vary-
ing the direct interaction mechanisms for each individual. 
We first outline our methods for a general case of interacting 
animals. We then introduce our deer population and explain 
how we fine-tune our models for the species and each indi-
vidual deer.

Step-selection analysis

Locations in space are denoted by x = (x1,x2) and each envi-
ronmental layer can be described by a function of space and 
time, Z(x,t). We model the habitat selection of each indi-
vidual i as a function of p environmental features using the 
habitat-selection function:

Yi i p i pt Z t Z t( , ) ( , ) ( , ) ,1, 1 ,x x x= + +( )exp b b…   (1)

where Z1(x,t),…,Zp(x,t) are a set of functions describ-
ing p environmental covariates at each location x at time 
t. Selection is defined by the parameters controlling each 
covariate (β1,i,…,βp,i) that are to be estimated in the analysis. 
Movement is modelled using a movement kernel, ϕ

τ,i(x|y) = λ 
exp (−λ|x − y|) where 1

l  is the mean step length calculated 
from the data. The step-selection function that defines the 
probability of moving from y at time t to x at time t + τ is thus

f t t K ti i i( , | , ) ( | ) ( , ).1
,x y x y x+ = +-t j tt Y  (2)

Here, K t di i= +ò f tt, ( | ) ( , )z y z zY
W

 ensures fi is a probabil-

ity density function, where Ω is the available spatial domain. 
We use integrated step-selection analysis (iSSA) with lasso 
penalties implemented by the R package ‘clogitL1’ to param-
eterise Eq. 2. Lasso regression uses the bias/variance tradeoff 
to identify the variables providing the greatest fit of the model 
to the data, with uninformative variables having their associ-
ated model coefficients reduced toward 0 (Tibshirani 1996).

Space use models

We form partial differential equations to estimate the utili-
sation distribution of individual i in the form of a prob-
ability density function, ui(x,t). The equation that defines 
ui(x,t) is comprised of functions that describe the change 
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in the probability density with respect to a static resource 
layer, Ψi(x,t) (characterised by a step-selection analysis, Eq. 
2), a cognitive map of past direct interactions, ki(x,t) and 
maps of environmental markings left by other individu-
als, mj(x,t). Here we note that the spatio-temporal density 
maps ki(x,t) and mj(x,t) can be derived rigorously from an 
individual-level description of interactions, as explained 
in Potts and Lewis (2016a, b) and the Supporting infor-
mation. Furthermore, we include a self attraction mecha-
nism to model some attraction for each individual to their 
utilisation distribution ui(x,t), which represents a tendency 
to return to places it has been before, controlled by the 
parameter s. The utilisation distribution for individual i is 
modelled using the a system of PDEs. The first PDE is an 
advection-diffusion equation for which the advection terms 
represent attraction towards or away from markings left 
by other individuals, the memory of past interactions, the 
resource layers and their space use, represented within the 
square brackets in the following system:

¶
¶

= Ñ + Ñ

Ñ + - - - -
é

ë

ê
ê
ê

¹
å

u

t
u

u a m bk c Z c Z su

i
i

i
j i

j i i p i p i

2

1, 1 ,

2

).

d d b b…

êê

ù

û

ú
ú
úú

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

,

 (3)

dm

dt
u mi

M i M i= -r m ,   (4)

dk

dt
u u k k ui

K i j i i i

j i

= -( ) -
¹
år a1 ,   (5)

u di x =ò 1,
W

  (6)

where

Figure 1. A schematic diagram describing the how the system shown by Eq. 3–7 work to create a space use distribution ui(x,t) for an indi-
vidual i. Under the right conditions (e.g. enough avoidance of conspecifics) the space use patterns can stabilise over time to produce a 
steady-state distribution, ui

*( )x .
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and Ñ =
¶
¶

¶
¶

æ

è
ç

ö

ø
÷

x y
, . The factor of two included in the advec-

tion term of Eq. 3 comes from the mathematical approxi-
mation of Eq. 2 into a PDE, see Potts and Schlägel (2020). 
Equation 3–7 have been re-parameterised from the individ-
ual-based formulations to reduce the amount of parameters, 
with the re-definitions shown in the Supporting information. 
Parameter a controls the avoidance of the scent marks of 
other individuals, b controls the avoidance of the cognitive 
interaction map, and c controls the attraction to the hetero-
geneous resource map. Parameter ρM describes the increase in 
scent mark density and μM describes the decay of the scent 
mark density. The parameter ρK describes the increase in den-
sity of the cognitive map and α describes the decay in density 
due to no interactions occurring. Lastly, δ describes the per-
ceptive radius of each individual, that is the distance which 
individual i is able to detect any other individual, whether by 
sight, smell or sound.

It is important to explain that the magnitude of param-
eters a and b describe the strength of attraction (if negative) 
or repulsion (if positive) to the scent marks and memory of 
interactions of conspecifics respectively. The functions mi(x,t) 
and ki(x,t) are functions that are changing through space and 
time and ui(x,t) is a description of the animals location in 
terms of probabilities. For example, if b were positive (and 
a, c = 0), spatial areas of ki(x,t) that are represented by high 
values would indicate that the animal would be less likely to 
be found in those areas, and more likely to be found in lower 
density areas of ki(x,t). Equation 5 means that ki(x,t) increases 
in density in places where interactions happen and decreases 
in density as time goes on (memory decay). As interactions 
happen, they are less likely to occur again in the same general 

area (if the parameter b is positive) but can still happen, par-
ticularly with memory decay.

The parameters a, b, c, ρM, μM, ρK, α, δ and s are estimated 
by maximising a likelihood function using a Nelder–Mead 
algorithm. The likelihood function has the following form:

L D a b c s uM M K i

i

( | , , , , , , , , ) ( ),*r m r a d =
Î
ÕÕ z
z data

  (8)

where D = {d1,…,dN} consists of the N known locations for 
allindividuals and ui

*( )x  is the steady state distribution, 
which represents the utilization distribution of individual i. 
Note that βi,1,…,βi,p are already fixed from the maximisation 
procedure of Eq. 2; Figure 1 shows a schematic diagram of 
how the equations work to estimate the utilisation distribu-
tion for individual i. To aid computational efficiency, initial 
parameter values for the Nelder–Mead algorithm are found 
by combining a linear pattern formation analysis (Supporting 
information) with some initial testing runs. Alongside finite-
difference approximations, we use array vectorisation and 
bespoke smoothing algorithms in Python 3.9 to ensure that 
the code is running as fast as possible in this language, on an 
average machine. The numerical scheme that solves Eq. 3–7 to 
produce space use is detailed in the Supporting information. 
We use a sequential approach to first model environmental 
effects (using a SSA) and then introduce conspecific effects. 
We acknowledge this as a limitation of our methods and rec-
ognise that ideally all parameters would be estimated at the 
same time. However, jointly estimating the parameters for 35 
land cover variables for the 27 deer within a similar maxi-
mum likelihood procedure (Eq. 8) would likely take years of 
computational time. Therefore, we instead use the sequential 
two-step parameterisation process to allow for more efficiency.

A case study

White tailed deer O. virginianus are capable of living in a 
variety of vegetation types and changing their behaviour 

Figure 2. Examples of the space use predicted by the step-selection analysis for four deer, chosen to be displayed for their attraction to a 
variety of resources (Table 1). The panels show the results of modelling space use without interactions, by including only crop layer prefer-
ence as a movement driver. Colours in the online version are used only to differentiate the four deer and darker areas indicate a higher 
probability density of use. Here we note that although the utilisation distributions of these four individuals are close in space, they show 
different preferences for the land cover layers. Furthermore, modelling movement in response to the land cover layers does not fully describe 
the restricted ranges shown by the data in black.
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to be more aggressive towards conspecifics in the rutting 
season each year. We study a population in the breeding 
season, where the male deer become more aggressive and 
engage in behaviours such as heavily marking the environ-
ment and directly interacting with each other (Michael 
1968), providing a well matched case study for the system 
(Eq. 3–7). The dynamics of mi(x,t), shown by Eq. 4, repre-
sent the deer marking the landscape as they move around 
their habitat and the function ki(x,t) (Eq. 5) models each 
deer’s spatial memory of directly interacting with other 
male deer.

For this study we use data collected in central Mississippi 
(Madison County), USA, from 30 September 2017 to 30 
January 2018. We use data from 27 collared males which 
have consistent 15-minute relocation intervals throughout 
the season and whose overlapping ranges (based on visual 
inspection of standard 95% KDE home ranges) suggest the 
opportunity for both direct interactions and scent mark-
ing. To estimate the preferred habitat of these deer we use 
the 2017 USDA CropScape data layer (USDA 2017), 
which in our study site yields 35 distinct landcover types 
(Supporting information). Previous studies of this deer pop-
ulation (Henderson et al. 2020) suggest that canopy cover-
age of thicket- producing, herbaceous, live woody, and dead 
woody plants are all drivers of the deer movement, and we 
include similar vegetation types in this analysis, outlined in 
the Supporting information.

To accurately model deer movement and the overall space 
use of each individual we reproject latitude/longitude coor-
dinates into coordinates on a square landscape of −12000 to 
12000 m in both the horizontal and vertical directions. When 
fitting parameters to the step-selection model, all movements 
at time intervals of 15 min are used. However, when fitting 
the PDE system we aim to maximise the likelihood func-
tion (Eq. 8) and this requires data to be independent, there-
fore we subsample the data using the procedure described 
in Benhamou et al. (2014) and Ellison et al. (2020). This 
results in subsampling one point every 12 h (Supporting 
information).

Integrated step-selection analyses are performed for each 
of the 27 deer, where their recorded movements are anal-
ysed in response to the 35 environment layers listed in the 
Supporting information, we use lasso regression penalties to 
indicate which of the resources were influencing the move-
ment of each deer and choose to use the model with the 
least number of parameters within one standard error of the 
best fitting model. We choose this to reduce the number of 
environments being used within our model. However we rec-
ognise that for some studies it could be suitable to choose 
variables based on initial ecological knowledge rather than 
a statistical procedure. The results of the analysis are used to 
create an environment map for each of the deer, which is 
equivalent to a normalised version of Eq. 1 where the rel-
evant β parameters are estimated in the analysis and multi-
plied by two (as in Moorcroft and Barnett 2008 and Potts 
and Schlägel 2020).

Individually varying model parameters

Individuality is known to be a factor in deer resource selec-
tion (Haus et al. 2020) and we include this in the models 
by fitting the step-selection functions separately for each 
deer. Furthermore, since male deer are known to respond to 
a variety of stimuli of other male deer in the rutting season 
(Michael 1968) there is likely individuality in the conspecific 
interaction processes as well. The models shown in the system 
(Eq. 3–7) are fitted by estimating a set of parameters (Eq. 8) 
for the entire population of 27 deer, where some individual-
ity is included by estimating the parameters β1,…,βp for each 
deer i. Since the computational time to parameterise these 
systems of two-dimensional PDEs is long we do not estimate 
a different set of parameters for each deer. Instead we estimate 
the main set of parameters, that is a, b, c, ρM, μM, ρK, α, δ and 
s at a population level.

We extend the models using two separate subsets of four 
deer, chosen to be adjacent in space. Fitting the same models 
to these subsets allows for more efficient parameterisation, 
thereby improving the viability of including new parameters. 
This also allows us to investigate a finer landscape because we 
focus the numerical grid on a smaller area of the true land-
scape. We expand the model to include two further mecha-
nisms of individuality, which we investigate separately: 1) 
a different avoidance strength of the interaction landscape, 
ki(x,t), for each deer and 2) a different interaction param-
eter for each pair of deer. Deer are known to show individual 
behaviour within social networks that varies in relation to 
vigilance (Lashley et al. 2014), relatedness (Hawkins and 
Klimstra 1970), previous interactions and difference in body 
mass (Taillon and Côté 2006), all suggesting that conspecific 
avoidance likely depends on the individual deer. Since the 
parameters estimated in the system (Eq. 3–7) were estimated 
at a population level, we extend the system to allow for indi-
vidual personality to affect each deer’s response to direct con-
specific interactions.

In Eq. 3, the avoidance of the interaction landscape is con-
trolled by the parameter b, and we vary this parameter for 
each deer i to model a different avoidance of previous interac-
tions, we replace b with bi in Eq. 3. This means that the sys-
tem of equations for n deer includes n − 1 more parameters. 
To parameterise models in this situation, we fix all parameters 
in the best fitting model and vary the interaction parameter 
bi, which is found using a maximum likelihood procedure. 
Avoidance may depend on the relationship between deer 
i and any other deer j. Therefore we also consider varying 
avoidance between each pair of deer and introduce an alter-
native parameter wij. Here we resort back to keeping b fixed 
for the population and include variation inside the mecha-
nism that described the interaction landscape ki. As such, Eq. 
5 becomes:

dk

dt
u w u k k ui

K i ij j i i i

j i

= -( ) -
¹
år a1 ,   (9)
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Introducing wij as a parameter to be fit increases the number 
of parameters by a factor of n − 1 for n individuals. As an 
alternative to estimating each wij using a maximum likelihood 
procedure, we use the individual characteristics of the deer to 
inform the wij parameters. For our case study, we define wij 
to be a function of the body mass, Massi, of deer i and the 
body mass Massj of deer j, which is known to be related to the 
reproductive success of rutting deer (Foley et al. 2018) and 
social dynamics (Taillon and Côté 2006):

w wij v
i

j

=
æ

è
ç

ö

ø
÷exp

Mass

Mass
.   (10)

This leaves only one parameter, wv, to be estimated. The form 
given in Eq. 10 means that when wv < 0, wij gets smaller as 
Mass

Mass
i

j

 gets larger and when wv > 0, wij gets larger as 
Mass

Mass
i

j

 

gets larger. For example, a negative wv would decrease the inter-
action density map in places where interactions are likely to 
occur, and that decrease would increase in magnitude as the rela-
tive mass of deer i and j increased. Assuming that the deer are 
attracted away from their interaction zone, a negative wv would 
describe a situation where deer are less likely to avoid interactions 
with deer that have a smaller relative mass. The relative mass 
matrix of the 27 deer is included in the Supporting information.

To investigate individual variation, we took two separate 
subsets of four of the deer. We refit Eq. 3–6 with the self 
attraction mechanism. We included individuality into the 
models by varying the interaction parameter (b in Eq. 3), first 
by varying the avoidance of the interaction map and second 
by varying the parameter based on the relative mass of each 
pair of deer. We used Eq. 9 to vary the avoidance of the inter-
action map for subsets of four deer and Eq. 10 to estimate 
the variation of avoidance as a function of the relative body 
mass of the pair (Taillon and Côté 2006, Foley et al. 2018) 
for both the full population and the subsets of deer.

Results

Step-selection analyses

Results of the analyses are shown in Table 1 for deer which 
lasso penalties indicated that one or more of the environ-
ments were important (10 deer are not shown). We note some 
similarities with the findings of Henderson et al. (2020); 
many of our animals move in response to deciduous and 
evergreen forests and away from areas of grass or pasture and 
woody wetlands. However, the population showed substan-
tial variability in responses to these tested environment lay-
ers, indicating that individuality is key when modelling deer 
movements in response to environment layers. Furthermore, 
to exemplify that selection for the environmental resources 
is not sufficient to describe the bucks movement, we show 
example space use distributions (Fig. 2) created from the fit-
ted step-selection models (Eq. 2). Ta
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Direct and indirect conspecific interactions

Results for the model fitted to all 27 deer and certain subsets 
of four deer are shown in Table 2A. Including individuality 
in the form of self-attraction improved fit, provides evidence 
that each deer is attracted towards places it has been before. 
Visualising each of the space use models (Fig. 3) revealed 
that for some individuals, models did not fit well (Fig. 3c, 

for example), reinforcing that individual variation should be 
considered in later models.

Results for fitting models with individual variation are 
shown in Fig. 3–4 and Table 2. Including the variation of the 
parameter b showed that the model was a significantly better 
fit (∆BIC = 94; group a, ∆BIC = 192; group b), where the 
b parameter varied from around 2.9–5, still indicating that 
deer were avoiding areas where interactions could happen.

Table 2. Results for fitting the system Eq. 3–7 and Eq. 9–10 to the set of 27 deer and the subsets of four deer, denoted as 4a–b. Table 2A shows 
the results for fitting the model to the 27 deer with and without the self-attraction mechanism (top row) and with the self attraction mecha-
nism (bottom row). The ∆BIC column shows the difference in BIC between the models, here we see that including some self-attraction is a 
significantly better fit than not including it. Table 2B shows the results of fitting the system (Eq. 3–6) with self-attraction to two different 
subsets of four deer. Table 2C shows the results of fixing the parameters from the second table and estimating the parameters bi for i = 1,…,4. 
Table 2D–E show the results of fitting the parameter wij (Eq. 9–10) such that corresponds to the relative mass of deer i and j. The ∆BIC column 
in Table 2C–E shows the difference in BIC values with the corresponding models where b does not vary (Table 2B) and all show an improve-
ment of fit.

A

Set a b c μm ρm ρk α δ s BIC ∆BIC

27 0.179 9.97 1.038 79.4 0.89 6.11 287 0.054 NA 121208 266
27 0.171 9.95 0.901 102 1.208 6.13 289 0.053 1.1 × 10−4 120942 0

B
Set a b c μm ρm ρk α δ S BIC
4a 0.936 4.74 0.086 98.8 1.26 15.2 32.9 0.044 8.8 × 10−5 15278
4b 0.901 3.3 1.98 9.091 1.72 21.3 46.6 0.055 8.9 × 10−5 18582

C
Set bv,1 bv,2 bv,3 bv,4 BIC ∆BIC
4a 0.456 0.124 0.132 −0.182 15184 94
4b 0.4 0.095 −0.212 − 0.411 18390 192

D
Set bv BIC ∆BIC
4a 0.063 15273 5
4b 0.219 18545 36

E
bv BIC ∆BIC

27 −0.00101 120905 37
F

Set a b c μm ρm ρk α δ s edge bv BIC
4b 1.10 2.89 1.79 23.2 3.33 19.4 29.8 0.0368 0.000105 0.0599 0.00391 17799

Figure 3. Space use estimates created by fitting the Eq. 3–7 to the data for 27 deer are shown as contour plots. (a) shows the results for the 
home range estimations of the 27 deer, where the boxes indicate the areas of (b) and (c). (b) shows a smaller section of the first panel with 
only the home ranges for deer 1, 5, 9 and 16 and their data shown. (c) shows another smaller section of the first panel with only the home 
ranges for deer 8, 10, 14 and 23 and their data shown. Here we see that the utilisation distributions in (b) fit the data slightly better than 
those in (c). We show these subsets of the 27 deer as we focus on these to model the individually-varying interaction mechanisms, shown 
in Fig. 4 and Table 2.
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Individually varying the b parameter such that the avoid-
ance of prior interactions is dependent on the relative mass of 
the deer (Table 2D–E) produced a better fitting model. For 

the subsets of four deer, we found that since wij > 0 (Eq.10), 
larger deer are avoiding smaller deer. However when consid-
ering the whole population we found wij < 0 indicating that 

Figure 4. Space use estimates for two subsets of four deer where parameter values and details of model fit are shown in Table 2C. The left 
panel shows the subset of deer 1, 5, 9 and 16 and the right panel shows deer 8, 10, 14 and 23.

Figure 5. Here we show a solution of Eq. 3 and the components that define the solution. The space use estimate for deer 14 (as estimated 
by varying the interaction parameter) is shown in the top left panel alongside the environmental marking distributions of the other deer 
included in the subset (top right panel) and the cognitive interaction map (bottom left panel). The resource-selection map as estimated by 
a step-selection analysis is shown in the bottom right panel and all panels show the recorded locations of deer 14, subsampled every 12 h. 
Darker shades indicate a higher density, for example the dark area in the top left panel indicates the space use of the deer, which is confined 
to one area.
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in general, smaller deer avoid larger deer. The result of larger 
deer avoiding smaller deer in the small population is likely an 
effect of additional relationships between the deer that poten-
tially outweigh the avoidance effects of relative body mass for 
these individuals, such as kinship.

We show an example of the space use estimate of one deer 
alongside the estimates of the three mechanisms driving the 
space use pattern in Fig. 5 (i.e. that is the conspecifics scent 
mark distribution the deer’s cognitive map and the deer’s envi-
ronment from the step-selection analysis). The panels repre-
senting the indirect interactions (mi(x,t), top right) and direct 
interactions (ki(x,t), bottom left) show ‘hot spots’ of density that 
coincide with the space use of the other three deer. The hotspots 
are places that the deer are likely to avoid due to the potential 
interactions. Since the space use (ui(x,t), top left) is a description 
of the probability density of an animal’s location, we are model-
ling potential interactions that could have occurred.

Lastly, we note that using a subset of a deer population to esti-
mate space use of interacting individuals mean the boundaries of 
the space use estimates are unrealistic (Fig. 4). This is because in 
reality, each individual is likely to be surrounded by other male 
deer that were not included in the subset or possibly the data set. 
In the Supporting information we show an improved solution 
where we introduce a conjectured population, representing an 
unobserved but hypothetically present population, surrounding 
the four deer shown in Fig. 4. We note that including the hypo-
thetical shapes the four distributions to be more distinct, but still 
does not fully capture the range overlaps.

Discussion

The movement of animals is driven by a complex network of 
behaviours that depend on multiple interacting biotic and 
abiotic factors, but these processes are often overlooked in 
favour of more simple models of space use (Moorcroft 2012, 
Miller and Holloway 2015). Our objective was to describe 
a general system for a population of moving animals that 
are interacting with each other and their environment. We 
have shown how to parametrise our model, using a com-
bination of step-selection analysis and techniques modi-
fied from mechanistic home range analysis. We tested our 
methods using a case species, white-tailed deer, for which we 
constructed a model of space use for a specific population. 
We showed that common hypotheses of deer movements 
and space use are not mutually exclusive, but interacting and 
indeed sometimes reinforcing. We introduced individuality 
into the equations for the deer population and showed that 
weaving biological traits of the deer into the system is not 
only possible but teaches ecological lessons, for example, here 
we showed that body mass affects the memory of conspecific 
interactions. We highlight in particular that interconnected 
processes in a population of animals, such as a response to 
environmental marks and the memory of conspecific interac-
tions, heavily influence each animal’s space use pattern and 
these mechanisms should have a stronger presence in models 
of animal and species movement.

Our model focuses on three drivers of space use: a het-
erogeneous environment, a cognitive map of interactions 
and the scent marks of other individuals. Movement in 
response to the memory of direct interactions is modelled 
by the use of a cognitive map that relies on animals having 
some capacity for spatial memory. However, the episodic 
memory capacity of animals is widely unstudied for many 
species. Furthermore, the mechanisms that define memory 
processes are generally quite difficult to model (Clayton et al. 
2001, Dere et al. 2006), despite evidance that animals use 
memory to forage efficiently (Fagan et al. 2013, Bracis et al. 
2015, Riotte-Lambert et al. 2015). We include a memory 
process into our spatial models by modelling movement in 
response to a dynamic cognitive map, which changes as ani-
mals remember places where interactions with other animals 
may have occurred. In our system, the amount that animals 
avoid (or are attracted to) places where previous interactions 
may have happened is indicated by the parameter b. For our 
population of deer, b is estimated to be positive (b ≈ 10; 27 
individuals and b ≈ 4; four individuals) in all fitted models, 
indicating that deer are avoiding places where previous inter-
actions occurred.

Our results show that fitting individual models to the 
deer is important, as each deer has unique preferences for 
land cover layers and varying responses to previous interac-
tions. One explanation for the groups of four deer having an 
opposite result to the population could be that there is less 
tendency to avoid each other due to the deer choosing to be 
close to each other in space. Overall, there are likely many 
further drivers of individual avoidance than relative body 
mass, but we used mass, not as a robust method of inferring 
deer behaviour, but as a way to introduce biological features 
into these interaction models. Aggressive behaviour of deer 
is driven by hormone levels competition for food and mat-
ing opportunities (Michael 1968, Grovenburg et al. 2009, 
Donohue et al. 2013), and with sufficient data these hypoth-
eses could be tested with our models. Group size and kinship 
were previously included into a similar model structure for 
small birds (Ellison et al. 2020) and could be investigated 
here with genetic knowledge of the deer.

To further incorporate individuality into the modelling 
framework we included a ‘self attraction’ mechanism into the 
estimates of space use (Eq. 3), which resulted in better fit-
ting models overall. By providing some attraction to places 
that the deer have already visited, the mechanism accounts 
for the lack of complete knowledge of environmental prefer-
ence. Furthermore, we included movement in response to a 
heterogeneous environment in the system by creating indi-
vidual environment maps using a step-selection analysis. In 
general, there was a large variation in the resource-selection 
parameter estimates across the 27 deer with few clear pat-
terns but some population level response to forested areas 
and grassland. Since understanding the resource-selection of 
deer is not the aim of this research, we do not investigate 
these patterns here but leave them for further studies and 
note the large range of individuality, which aligns with some 
prior white-tailed deer studies (Chamrad and Box 1968, 
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Spalinger et al. 1997, Mosbacher and Williams 2009) but 
not others (Dostaler et al. 2011), suggesting a possible social 
impact (Spalinger et al. 1997) and the need for incorporating 
specific forage species as in Author et al. (1991).

Applying our models to subsets of the population provided 
better fitting models than the full population, but still does not 
quite capture the overlaps of the deer’s utilisation distributions. 
Introducing a theoretical population of deer at the boundary 
both improves fit by creating more distinct utilisation distri-
butions, but still appears to be missing a feature that affects 
the overlaps. One suggestion for an extension to the models 
would be to investigate the response to conspecifics at different 
spatial scales, for example, investigating whether deer are likely 
to be repulsed by each other at short distances and attracted at 
long-distances, as with many scent marking territorial species 
(Campos et al. 2017). Introducing the theoretical population 
of deer does advance the capabilities of the model; as long as we 
can assume that the density of a species is well estimated sur-
rounding the modelled population, this technique can be used 
to estimate spatial patterns of the known interacting individu-
als, when deer density is well-known (McShea 2012).

Partial differential equation models of animal space use 
estimate the probability distribution of arbitrarily many 
simulations of animals moving in one numerical process 
(Moorcroft and Lewis 2013), but without requiring multiple 
simulations for each set of parameters. However the compu-
tational time to fit parameters is still a problem, especially 
as we increase the number of parameters and individuals, or 
solve over more detailed landscapes. There are two ways in 
which these numerical methods can be advanced: first, by 
more accurately predicting the initial values for the param-
eterisation process; and second, by using computational pro-
cesses that iterate the numerical equations faster, as discussed 
in Mazumder (2015). Here we use a maximum-likelihood 
procedure to fit the parameters based on the steady state 
space use pattern, where the number of iterations needed 
can be reduced greatly by informing the first set of param-
eters. We use linear stability analysis (Supporting informa-
tion) to find sets of parameters that produce patterns, but 
this could be further improved by using biological knowledge 
of the system being investigated. The next natural develop-
ment of these methods could be to estimate the parameters in 
the functions mi(x,t) and ki(x,t) using linear stability analysis 
and to subsequently fit the a and b parameters using step-
selection analysis (Supporting information), which takes 
advantage of conditional logistic regression. Furthermore, 
numerical differential equations are a continuously evolving 
field of research, particularly with the advancement of super 
computing. Here we used a well-known finite-difference 
algorithm to solve the equations but recognise that with the 
use of parallelisation methods we may be able to decrease the 
computational cost (Mazumder 2015).

Increasing the computational speed of solving this system 
would allow for the equations to have a finer landscape, more 
individuals and individual level parameters. However, the 
system and numerical scheme are still useful for estimating 
the interactions between small groups of animals, whether 

they be interacting individuals or populations. For example, 
the spatial dynamics of populations of predators and their 
main prey at small timescales could be investigated using this 
system, where instead of estimating the probability density 
of finding individual i we may consider the probability of 
finding the population. Many models of species distribu-
tion estimate patterns by correlating known locations with 
static environment layers without considering the behaviours 
driving the movement processes (Manly 1985, Fleming et al. 
2015). When scaling up to a species level, the methods we 
have outlined here provide a natural next step for estimat-
ing species distributions based on both habitat preference and 
interactions with other species.

The process-based models of space use outlined in this 
research provide models which could be used to predict the 
space use of animal populations in the future. For example, 
the model we developed for the deer population could be 
generalised by averaging over the step-selection parameters 
to gain a population level environmental layer and then 
solved to predict space use, as in Potts and Börger (2023). 
Alternatively, space use could be estimated by performing a 
step-selection analysis for new deer and then using the inter-
action mechanisms fitted here. Using these models to pre-
dict deer space use in the rutting season could have direct 
impacts on the management of both public and private land 
deer harvest strategies by understanding how they use the 
landscape and interact in the hunting season (Foster et al. 
1997, McShea 2012). Land managers and hunters often 
use trail cameras and bait sites to identify target individuals 
(Kilpatrick and Stober 1973, Belant et al. 2007, Soria-Díaz 
and Monroy-Vilchis 2015), producing a few known locations 
of each deer but where some characteristics and body traits 
can be estimated (Jacobson et al. 1997). Our parameterised 
models can use these low effort and non invasive methods of 
data collection to estimate each deer’s utilisation distribution 
within the rutting season, essentially providing the stakehold-
ers with a way of maximising their encounters. Although we 
do not provide specific management advice for our results 
for this particular species, we advocate for more models with 
predictive capability to be used to inform management.

Overall, we have developed a model to estimate the space 
use distributions of a group of animals that interact with each 
other and their environment. We have shown that process-
based spatial models can provide a platform to test more 
complex biological theories of movement, as exemplified here 
by including multiple stimuli and morphological character-
istics in our model of deer space use. Following this research 
we advocate for deeper consideration for how the myriad 
ecological and biological processes of movement determine 
emergent patterns animal space use and the eventual distribu-
tion of a population and species.
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