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ABSTRACT

This paper explores the effect of three-dimensional rotations on two-qubit Bell states and proposes a Bayesian method for the estimation of
the parameters of the rotation. We use a particle filter to estimate the parameters of the rotation from a sequence of Bell state measurements,
and we demonstrate that the resultant improvement over the optimal single qubit case approaches the

ffiffiffi

2
p

factor that is consistent with the
Heisenberg limit. We also demonstrate how the accuracy of the estimation method is a function of the purity of mixed states.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0147878

I. INTRODUCTION

Metrology is one of the key areas where quantum physics could
provide significant benefits over classical systems. Metrology underpins
all sensing systems and it provides fundamental limits to the accuracy
that the parameters representing physical quantities can be measured.1

Quantum metrology as a distinct discipline goes back many years, and
Jonathan Dowling was one of its loudest and most engaging of advo-
cates:2 “Quantum metrology has been found to enable measurements
with a precision that surpass the classical limit, and has grown into an
exciting new area of research with potential applications … in gravita-
tional wave detection, quantum positioning and clock synchronization,
quantum frequency standards, quantum sensing, quantum radar and
LIDAR, quantum imaging and quantum lithography.”

The physical properties underpinning quantum metrology are
the non-classical aspects of quantum states, such as entanglement. In
its simplest form, classical estimation processes are limited by the “shot
noise limit” (SNL), where the accuracy of measurements of parameters
is limited by a factor that is proportional to 1=

ffiffiffiffi

N
p

, and where N is the
number of measurements (or “resources”). By comparison, a suitable
quantum measurement process can provide an accuracy that is pro-
portional to 1=N , which is called the “Heisenberg limit” (HL).
However, in practice, obtaining benefits using quantum metrology
requires the ability to create complex entangled states and to maintain
them in the presence of environmental influences. The benefits of

quantum metrology are limited by the level of entanglement present
and decoherence due to the environment.

Here, we consider a specific example where an entangled quantum
state can provide an accuracy benefit that approaches the Heisenberg
limit, and we present a Bayesian estimation method that could realize
this benefit. The example discussed is a theoretical model for a gyro-
scope, where the effect of a rotation is represented by the rotation of the
system’s measurement axes with respect to a prepared quantum state.
Specifically, we consider two level systems (qubits) that are spin-1/2
angular momentum states. These systems can be prepared either as
individual spin states or in pairs as Bell states. The period between prep-
aration and measurement is small, so that the systems’ angular momen-
tum is preserved and so that rotations and any mixing due to
environmental effects are relatively small. We demonstrate that
Bayesian estimation can be used to estimate the three-dimensional
Euler rotation angles (heading/yaw, pitch, and roll) using a sequence of
projective measurements and that a particle filter approach to Bayesian
estimation3–5 for a sequence of measurements on the entangled Bell
pairs can provide an improvement in accuracy that approaches a factor
of

ffiffiffi

2
p

when compared to single spin states. This is expected in that Bell
states only contain entanglement between two two-state systems.

Gyroscopes are a key element of modern inertial navigation sys-
tems.6,7 They measure angle rates, which are integrated to obtain the
Euler angles, that are used in turn to resolve the specific forces
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measured by accelerometers to obtain estimates for the translation
motion of a platform. These systems form the basis for all high band-
width navigation systems used in aerospace, maritime, and space
applications.8,9 However, the main focus of the current paper is not
the practical realization of a gyroscope. Rather, the aim is to explore
the benefits of using an entangled state and to demonstrate a practical
Bayesian approach to the estimation problem.

Quantum sensing of rotations has been the subject of a lot of
attention. With standard optical gyroscopes, such as ring laser gyro-
scopes and fiber optical gyroscopes,6 being used in modern navigation
systems, it is natural to ask whether quantum states of light could be
used to enhance their performance.10 The Sagnac effect, which forms
the basis for optical gyroscopes, can be posited as a phase measure-
ment problem, where quantum states are known to show significant
benefit in terms of accuracy. (Although it should be noted that neither
ring laser nor fiber optical gyroscopes operate using the Sagnac effect
as commonly presented.11,12) In addition, quantum sensors based on
cold atom physics are currently being developed and can show
remarkable sensitivity to rotations.13,14 Such systems currently use the
Sagnac effect for matter waves, but further benefits could arise if more
sophisticated quantum states of matter waves could be prepared.15,16

Quantum estimation methods for rotations have been studied
previously and Bayesian methods for two-level systems have been
developed, for single two-level systems and clusters of qubits forming
error correcting codes.17 In Ref. 17, the problem was formulated as a
phase estimation process, but the single qubit method can also be
applied to the problem discussed in this paper where rotation gener-
ates a phase shift of the single qubit states. More complex quantum
states have also been studied, including coherent and anti-coherent
states,18–21 Majorana constellations and “Queens of Quantum.”22–25

Other approaches to quantum rotation sensing have adopted an
approach that is motivated by quantum computation.26

The Bell pair states used in this paper are distinct from the
Majorana and more complex states based on symmetries of angular
momentum in that the restriction of the quantum states to pairs of
two-level systems means that the Majorana constellation for spin-1
states is relatively uninteresting (formed from two antipodal
points).22–24 However, as we will show, the probability distributions
for projective measurements of Bell states along rotated axes show
some interesting properties which are useful for the estimation of
three-dimensional rotations.

The measurement of a physical rotation can be achieved in a
number of ways depending on the application and implementation of
the system. Within the context of spin-measurements, a quantum
tomographic approach may be seen as a natural tool to achieve such
an estimation. Any system that experiences a physical rotation in
three-dimensional space may be described by rotations around the
Bloch sphere under the condition that the Bloch sphere describing
the quantum system in some way maps onto the physical rotations of
the system, or at the very least, relates to the Bloch sphere rotations.
Hence, all literature concerning quantum state estimation and quan-
tum tomography becomes a relevant consideration. Over the years, a
variety of popular quantum tomographic techniques in the literature
have been found to achieve different advantages and optimality crite-
ria. In single qubit tomography, Ref. 27 shows that through an adap-
tive measurement update method based on average variance
optimality, an analytical solution was found for the estimation of a

single qubit mixed state using projective measurements. Such a solu-
tion was demonstrated to result in a reduction of the complexity of
measurement updates. In Ref. 28, it was demonstrated that an adaptive
optimal experimental scheme based on Bayesian inference could dras-
tically reduce the total number of measurements required to estimate
a single qubit quantum state. Different approaches to such a task offer
different benefits, the former by reducing computational effort. By
extending the discussion to entangled systems and starting with the
simplest kind (Bell states), matters become more complex due to the
nature of Bell measurements. Distinguishing between different Bell
states and taking account of the self-connected nature relating Bell
states to each other presents both a challenge and an opportunity for
exploration.29 It may be agreeable that a stepping-stone to better
understanding the nature of these fundamental units of correlation is
to explore the nature of rotations affecting Bell states.

We start in Sec. II by first outlining the rotational properties of the
Bell states for spin-1/2 systems. In Sec. III, following Ref. 17, we outline
the optimal Bayesian estimation process for single spin-1/2 states and
show how these generalize to the case of Bell states. We also discuss the
appropriate ways to measure the resources used in the measurements
of rotation in the single spin and Bell state cases. In Sec. IV, we present
the results for a pure state, and then consider the effect of mixed states
in Sec. V, before summarizing for key elements of the paper in Sec. VI.

II. ROTATIONS OF BELL STATES

The model system considered in this paper is where a Bell state is
constructed from spin-1/2 systems in a specified basis. We assume that
the main effect of rotation is to reorient the measurement system and the
axes in which any measurement is made. We also assume that any rota-
tion is applied sufficiently rapidly that the angular momentum of the Bell
state is constant, with respect to the original axes in which it has been
prepared,30 and that any rotations are relatively small. The constraint on
the size of the rotation is not strictly necessary, but it does simplify the
presentation of the estimation method presented here. Later, we will find
that the optimal measurements of Bell states are not necessarily along the
axes in which they are prepared so we will start by discussing the proper-
ties of Bell states constructed from spin-1/2 systems defined in arbitrary
axes and their properties under the action of rotation.

The simplest form of entanglement is when two systems, A and
B each with two levels are entangled together, forming a Bell state.
Four different Bell states exist, and together they form the Bell basis.
Next, we study the properties of their rotations, either when both sub-
systems undergo the same rotation or when one subsystem undergoes
a rotation. The four Bell states are given by

jW6 i ¼ 1
ffiffiffi

2
p j01i6 j10ið Þ; (1)

jU6 i ¼ 1
ffiffiffi

2
p j00i6 j11ið Þ: (2)

When expressed in this way, it is usually implied that the Bell states
are in the z-basis, which is the conventional quantization axis. A single
qubit may be rotated by applying a rotation operator of the form31

RjðhÞ ¼ e�ihrj=2; j ¼ x; y; z; (3)

where h is the angle rotated about the x, y, or z axis, and rj is the Pauli
operator used to perform the rotation. Since a Bell state is composed
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of two systems A and B, we can use a rotation operator of this form to
construct a rotation operator RjðhÞ, which will perform a rotation on
either one or both subsystems. The form of this operator will vary
depending on what we wish to achieve. For rotations of just one sub-
system, our operator can be defined as

RjðhÞ :¼ RjðhÞA � I
B or RjðhÞ :¼ I

A � RjðhÞB (4)

depending on whether system A or B is rotating. Additionally, we can
define an operator as follows, which rotates the entire Bell state
equally:

RjðhÞ : ¼ R
A
j � R

B
j

¼ cos
h

2

� �

I � i sin
h

2

� �

r
A
j

� �

� cos
h

2

� �

I � i sin
h

2

� �

r
B
j

� �

¼ cos 2
h

2

� �

I � I

�i cos
h

2

� �

sin
h

2

� �

I � r
B
j þ r

A
j � I

h i

� sin 2 h

2

� �

r
A
j � r

B
j ; (5)

where we have used the identity

e�ihrj=2 ¼ cos
h

2

� �

I � i sin
h

2

� �

rj; (6)

which is valid for an operator of this kind. The rotation operator in (5)
describes a rotation affecting each subsystem equally; hence, it will be
the most relevant for our considerations in the study of the effect of
three-dimensional rotations on our Bell states. Substituting x, y, and z,
we can study the result of rotating each Bell state about the different
axes, shown in Table I. The rotations indicate that some Bell states are
invariant under rotations about certain axes, while the jW�i Bell state
is invariant under all rotations. The former suggests a similarity in the
mathematical structure of the relationship between the Bell state rota-
tions and an ordinary single system rotation, where we find a direc-
tional preference when it comes to state rotations about particular
axes. Further to this, we notice that for the non-invariant rotations,
axial rotations of this kind transform one Bell state into another. More
generally, if we wish to describe a rotation h of the Bell state about

some unit vector k describing the axis of rotation [h ¼ hk ¼ ðhx;
hy; hzÞ], we may use the rotation operator given by

RðhÞ :¼ RðhÞ � RðhÞ ¼ e�ihk�r=2 � e�ihk�r=2; (7)

where r is the Pauli vector. Applying the identity,

e�ihðk�rÞ=2 ¼ cos
h

2

� �

I � i sin
h

2

� �

ðk � rÞ; (8)

we obtain the following rotation formulae:

RðhÞjUþi ¼ cos h� k2y cos hþ k2y

� �

jUþi

þ �ikx sin h� ikykz þ ikykz cos h
� �jWþi

þ �ikz sin hþ ikxky � ikxky cos h
� �jU�i; (9)

RðhÞjU�i ¼ cos h� k2x cos hþ k2x
� �

jU�i
þ ky sin h� kxkz þ kxkz cos h
� �jWþi

þ �ikz sin h� ikxky þ ikxky cos h
� �jUþi; (10)

RðhÞjWþi ¼ cos h� k2z cos hþ k2z
� �

jWþi
þ �ikx sin hþ ikykz � ikykz cos h
� �jUþi

þ �ky sin h� kxkz þ kxkz cos h
� �

jU�i; (11)

RðhÞjW�i ¼ jW�i: (12)

As expected for all pure states, the four Bell states remain maximally
entangled after a rotation about any chosen axis, confirmed by com-
puting the von Neumann entropy SðqÞ, equal to 1 for all four Bell
states.

We now consider a case where we construct a Bell state using
states from the z-basis and then perform a measurement that distin-
guishes between different Bell states that can be constructed using
states from a different basis. We can define an axis using an arbitrary
unit vector lying on a sphere and construct Bell states using this basis.
Constructing an initial Bell state using the z-basis, we can perform a
Bell measurement using a basis defined by two angles, the elevation
(H ¼ 0…p) and the azimuth (K ¼ 0…2p).

Figure 1 uses colors to indicate the probability for obtaining one
of the three Bell states (jU6 i and jWþi) for the three initial (z-basis)
states affected by rotations (jU6 i and jWþi). The intensity of each
color indicates the probability for the corresponding Bell state to be
obtained—a pure color is a probability equal to one or close to one,
and darker/mixed tones correspond to lower probabilities shared
between multiple possible results (see Fig. 2 for an example of the
probability values). We do not show the results for an initial jW�i
state because the result would always be another jW�i state, since it is
not affected by rotation, and none of the three other Bell states can
result in the measurement of a jW�i state.

From Fig. 1, we can see that an initial jU6 i state can lead to any
of the three Bell States jU6 i or a jWþi after measurement, but a jWþi
state cannot lead to a jUþi. Figure 2 shows an example of the proba-
bilities of obtaining each of the Bell states given an initial jUþi state as
a function of the orientation of the measurement basis, and a plot of
these probabilities along a line at constantH and varying K.

In fact, the two U states have very similar patterns of probabili-
ties, although the jUþi pattern is rotated p=2 around the z-axis rela-
tive to the jUþi case. We also note that there are specific measurement

TABLE I. The result of applying a rotation operator R̂ jðhÞ :¼ R
A
j ðhÞ � R

B
j ðhÞ; j

¼ x; y; z to the four Bell states.

j R̂j jW�i R̂j jWþi R̂j jUþi R̂j jU�i

X jW�i cos hjWþi
�i sin hjUþi

cos hjUþi
�i sin hjWþi

jU�i

y jW�i cos hjWþi
sin hjU�i

jUþi cos hjU�i
þsin hjWþi

z jW�i jWþi cos hjUþi
�i sin hjU�i

cos hjU�i
�i sin hjUþi
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axes on these patterns where each of the three Bell states, jU6 i and
jWþi, are equally likely to be obtained from a measurement. These
points of equal probability offer the potential to maximize the infor-
mation extracted from each measurement, since the information from
each measurement is closely related to the number and the probability
of each of the possible outcomes.

Now we turn to the effect of rotation on the distributions for Bell
measurements on the spheres shown in Fig. 1. For small rotations,
characterized by a rotation h ¼ ðhx; hy; hzÞ, we can examine the effect
on the probability distributions of rotations about each axis in turn.

Figure 3 shows these effects on the probability distributions to obtain
the different Bell states for rotations of 20� about each axis—we show
20� rotations because the changes for much smaller rotations are very
subtle and would be difficult to see in the figure.

In Fig. 3, we can see that an initial jUþi state (first column) is
sensitive to rotations about the x-axis and the z-axis, but not the y-
axis. The jU�i state (second column) is sensitive to rotations about
the y-axis and the z-axis, but not the x-axis. The jWþi state (third col-
umn) is only weakly sensitive to rotations about the x-axis and the y-
axis, but not the z-axis.

Fig. 1. Regions showing the probability of
each result from a Bell measurement on
initial states—jUþi (top row), jU�i (mid-
dle row), and jWþi (bottom row)—con-
structed using the z-basis, where the Bell
measurement uses a basis aligned along
an axis defined by a vector on the sphere
(left) or in terms of elevation-azimuth
(H� K). The colors indicate the probabil-
ities to obtain each of the three Bell
States, jUþi (red), jU�i (green), and
jWþi (blue), from a measurement as a
function of the measurement basis.
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Here, we will focus on small rotations, typically less than about
10� or about 0.1745 radians, and use the points on the spheres where
the three Bell states are equally, or nearly equally, likely. Using a simi-
lar approach for larger rotations would be possible, but the approach
would become more complicated. For example, as the rotations about
the x-axis and y-axis approach 45�, the jWþi initial state becomes
more sensitive to rotations and as it approaches a 90� of rotation, the
pattern for the jWþi state swaps with one of the jUi states: for exam-
ple, at 90� of rotation around the x-axis the probability distributions
for the jWþi and the jUþi interchange. To avoid these complications,
we focus on small rotations so that each component has a standard
deviation of less than about rh ¼ 5� or approximately 0.873 radians.

III. BAYESIAN ESTIMATION OF ROTATIONS

The aim of Bayesian estimation is to provide values for the
parameters being estimated and an approximation for the probability
distribution function (pdf) associated with these estimates (the

posterior distribution, conditioned on the measurements that have
been obtained). In the case of the well-known Kalman filter, which is
used in many practical engineering systems, the (classical) state of the
system is estimated alongside the estimated covariance for the errors
in the state.4,5 For linear systems and for systems that are not very
nonlinear, the Kalman filter or adapted versions of the Kalman filter
are often a very good and very efficient method for estimating parame-
ters. With strongly nonlinear systems, other approaches based on
particle-based approximations are often used.4,5 Particle filters use a
set of candidate solutions that represent possible values that the
parameters could take; the “particles” represent points in the classical
state/parameter space that evolve according to the same model as the
underlying system. Each member of the set of possible solutions has a
weight, which is updated after each measurement to reflect how likely
it was to have been the true parameter value, given the value of the
measurement. The less likely it is that the particle could have generated
that particular measurement, the lower the weight associated with that
particle will be and, over a sequence of measurements, any particles
that conflict with the measured values will end up with very low
weights. To avoid a few particles dominating the distribution (some-
what confusingly called “degeneracy”), it is necessary to resample the
particles once the weight becomes concentrated on a subset of the par-
ticles. Resampling selects new candidate solutions preferentially from
regions of the parameter space that are “close to” the high weight par-
ticles, but it does not preclude the selection of particles in regions of
low weight. As measurements are obtained, the distribution of par-
ticles and weights should provide a robust estimate of the parameters
and the associated pdf.

In this paper, we consider measurements on the quantum states
to be projective measurements. A measurement sequence starts with a
known pure state, which is subject to a rotation defined by the three
Euler angles: heading (hx), pitch (hy), and roll (hz). The quantum state
is then measured, producing a measurement result and projecting the
state onto the eigenstate associated with the measured value.
Estimation of the three rotation parameters is done over a sequence of
measurements using a particle filter, where each particle represents a
possible value for the three Euler angles. The weights are updated
based on the probability of getting each of the measured values, given
the initial state and the rotation parameters associated with each
particle.

A. Bayesian estimation with single spins

The case of estimating rotations from measurements of single
spin-1/2 states is relatively straightforward and has been dealt with
in Ref. 17, where the probability distribution for a single rotation
angle is estimated using an iterative method and a Gaussian assump-
tion. In this case, to find one of the rotation angles, hy say, one initi-
alizes the state in an eigenstate of rz, the system undergoes a
rotation, and one measures the rx component of spin. The optimum
method for generating all three components of the rotation vector is
to cycle through a sequence for each of the axes: preparing a z spin
state and measuring x spin to estimate y rotation, preparing x spin
state and measuring y spin to estimate z rotation, etc. Cycling
through the combinations in this way means that the state after the
projective measurement will be in the desired basis for the next
sequence of operations.

Fig. 2. Example showing the probabilities to obtain each of the three Bell states—
jUþi (red), jU�i (green), and jWþi (blue)—for a Bell measurement on an initial
jUþi state as a function of the measurement basis (top) and as a function of K for
the value of H indicated by the yellow dashed line (bottom).
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For each of the components of h, we have an independent
sequence of measurements (three measurements per sequence)
and an independent estimate. For component hy, the measure-
ments of rx will either provide a þ1/2 or a �1/2 eigenvalue, for

Nx measurements of rx there will be n
ðþÞ
x measurements of þ1/2

that can be represented as Bernoulli trial, with a probability of
“successfully” obtaining a þ1/2 eigenstate for a rotation angle of
hy is given by

Fig. 3. Matrix of color plots showing the effect of individual rotations about each axis on the probability distributions for the initial Bell states: jUþi (left column), jU�i (center
column), and jWþi (right column). The colors indicate the probabilities to obtain each of the three Bell States, jUþi (red), jU�i (green), and jWþi (blue), from a measure-
ment as a function of the measurement basis.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 024402 (2023); doi: 10.1116/5.0147878 5, 024402-6

VC Author(s) 2023

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

ip
.o

rg
/a

v
s
/a

q
s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
1
6
/5

.0
1
4
7
8
7
8
/1

7
2
7
9
3
9
7
/0

2
4
4
0
2
_
1

_
5

.0
1
4
7
8
7
8
.p

d
f



pðþÞ
x ¼ 1

2
ð1þ sin ðhyÞÞ; (13)

and the estimate for the angle ~hy is given by

~hy ¼ arcsin
2n

ðþÞ
x

Nx
� 1

 !

: (14)

This estimate provides an estimated probability of a success as

~pðþÞ
x ¼ 1

2
ð1þ sin ð~hyÞÞ (15)

and estimated variances

Varð~pðþÞ
x Þ ¼

~pðþÞ
x ð1� ~pðþÞ

x Þ
Nx

(16)

and

Varð~hyÞ ¼
4~pðþÞ

x ð1� ~pðþÞ
x Þ

Nxð1� ð2~pðþÞ
x � 1Þ2Þ

¼ 1

Nx
: (17)

For large numbers of measurements, where ~pðþÞx ! p
ðþÞ
x , the accuracy

of the estimates of the angle will be proportionate to 1=
ffiffiffiffiffiffi

Nx

p
.

B. Estimation with Bell states

In comparison to the single spin case, the situation for Bell
states is more complicated. If one looks at what the single spin case
involves, one can see two key features. The preparation and the mea-
surement axes are both orthogonal to the axis of rotation, and—in
the case that there is no rotation—the probability of a—“success” in
the Bernoulli trial (obtaining the þ1/2 eigenstate) is one half in each
of the combinations in the sequences. It is possible to develop an
approach for higher spin states similar to that described for one
spin-1/2 state, with the preparation of eigenstates and orthogonal
measurements. However, the information extracted from a measure-
ment is generally maximized by having the probability shared
equally among all of the available options, so we will explore the case
with measurements of Bell states where the results are equally likely
or close to equally likely.

The probabilities of obtaining specific Bell states when making a
Bell state measurement along a particular axis are shown in Figs. 1 and
3. Ignoring the jW�i case, which is insensitive to rotations, there are
three possible states that could be distinguished by a Bell state mea-
surement, but only jUþi or a jU�i will give a result that could result
in any one of the three possible states.32 jWþi can only provide a jU�i
or a jWþi state in a measurement. Looking at the distributions indi-
cated in Figs. 1 and 3, starting in a jU6 i state in the z-basis, there are
specific points on the sphere where the probabilities are equal for
obtaining all three of the relevant Bell states (where the three colors
meet). Taking into account the fact that the axis goes through the
sphere, there are four axes on each of the spheres for jUþi or a jU�i
where the probabilities are equal.

In addition we note that, looking at Table I and Fig. 3, the two
Bell states jUþi or a jU�i are sensitive to rotations around different
axes. Both states are sensitive to rotations around the z-axis (the pat-
terns in the top row of Fig. 3 shift to the right), but jUþi is sensitive to
rotations around the x-axis but not the y-axis (where the blue regions

move up on the left and down on the right). By contrast, the jU�i state
is sensitive to rotations around the y-axis but not the x-axis. This
means that to characterize all three components of a rotation requires
both jUþi and jU�i measurements, and to fulfill the requirement of
equal probabilities of obtaining each of the three states, we select axes
for the measurements to be as close as possible to the corners where
the three colors meet. It is notable that these axes are not aligned to
the basis in which the original Bell states are prepared (the z-basis in
the cases presented here).

We can calculate the equal probability points numerically, and
we only need to pick two of these, one for each of the initial states
jUþi or a jU�i. For jUþi, we select the point ðHU

þ ;KU
þÞ

¼ 0:955 316 62; 0:785 398 16Þ radians (corner point in the top left
of the first Fig. 1 image), and we select the point ðHU

� ;KU
�Þ

¼ 0:615 479 71; 0:785 398 16Þ radians (top left of the second Fig. 1
image) for the jU�i initial state. Measurements are made alternating
between an initial jUþi state (in the z-basis) state and an initial jU�i
(z-basis) state, and Bell measurements along the axes defined by
ðHU

þ ;KU
þÞ and ðHU

� ;KU
�Þ, respectively.

To generate estimates for the three rotation components, we
select an initial set of candidate rotations [particles in our particle filter,
h
ðiÞ
0 ¼ ðhðiÞx;0; h

ðiÞ
y;0; h

ðiÞ
z;0Þ, for i ¼ 1…Nh]. For the small rotations consid-

ered here, the components for the initial particles are selected from
independent Gaussian distributions with a standard deviation of
rh ¼ 0:1745 radians (¼ 10�), and they are all allocated an equal
weight w

ðiÞ
0 ¼ 1=Nh. After each measurement, m ¼ 1…Nmeas; jZmi

2 fjUþi; jU�i; jWþig, the weights are updated according to

~wðiÞ
m ¼ P jZmijjU6 i

� �

w
ðiÞ
m�1; (18)

where PðjZijjZ0iÞ is the probability of obtaining a state jZi from an
initial jZ0i state. In practice, and to simplify the assessment of the
behavior of the estimation process when the states are mixed, we cal-
culate the probabilities from the density matrices PðjZijjZ0iÞ
¼ TrðqZqZ0Þ, where qZ ¼ jZihZj. After all particles have been

reweighted, the unnormalized weights [~wðiÞ
m ] are renormalized so that

they sum to one, w
ðiÞ
m ¼ ~wðiÞ

m =
P

i ~w
ðiÞ
m .

To avoid the weights accumulating on a small number of
particles, we resample the particles whenever the effective number
of particles Neff ¼ 1=ðPi ðwðiÞÞ2Þ falls below a threshold value,4,5

Neff < Nh=2. The particles are sampled from a distribution generated
from the current particle weights—a uniform random number
between zero and one is used to select a particle by comparing the
value to the cumulative weight distribution of the current particle
weights.4,5 To reduce the risk of degeneracy, we add a small perturba-
tion to the selected particles by adding a random value selected from a
Gaussian distribution, where the covariance of the Gaussian is related
the current particle covariance, Rm. We use a defensive sampling
approach,33 where the covariance is selected to be 0:1Rm in 90% of
resampled particles and Rm in the remaining 10% of cases. This
ensures that the resampling adequately explores from the region of the
parameter space around the current particle mean location. In addi-
tion, we perturb the particles slightly between measurements by add-
ing process noise. Process noise is often used in filtering problems to
perturb the solution to stop the solution (the estimate) becoming
“stuck” in the wrong region of the solution space. We have found,
empirically, that the near optimal form for the process noise in this
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system is Gaussian noise source with a gradually reducing standard
deviation, rm ¼ 0:1m�2

3.
As the measurements are taken, the weights are updated and

periodically resampled, and the particles gradually shift toward the
true values of the rotations. The distribution of the particles and their
weights provide a mean (estimated) value and an estimated error, cal-
culated from the distribution of the particles and weights around the
mean.

C. Resource counting

In order to assess the performance of an estimation procedure,
we need to compare its mean square error to the amount of resources
we have used. Using a lot of resources in a poor estimation procedure
can yield a better mean square error than using only a few resources in
a very good estimation protocol. We, therefore, need a careful resource
count that allows us to compare different protocols meaningfully. The
complication is that two estimation procedures may be using
completely different physical systems, and it may not be obvious why
one way to count the resources is better than another.

One method of universal resource counting for metrology was
presented by Zwierz et al.,34,35 which is based on a query complexity
argument: how many times does the system sample the signal we wish
to measure. If the signal causes a unitary transformation of the probe
state, the expectation value of the interaction Hamiltonian H of shifts
in the parameter h is a physical quantity that maps directly to the
resources present in the probe system, provided we fix the energy scale
such that the minimum energy eigenvalue is zero. For example, in
order to find the resources present in a spin system to measure a sim-
ple rotation around the z axis, we consider the unitary transformation
of the rotation UðhÞ ¼ exp ð�ihSzÞ, with Sz the generator of rotations
around the z axis for the spin state. For any spin state jwi, the resour-
ces in the spin system that are used in the measurement of the rotation
around the z axis is hwjðSz þ �hsIÞjwi. For a spin state in the maxi-
mum eigenvalue state js; si in the z-direction, the amount of resources
used in the measurement is 2�hs, which scales linearly with the spin s.

How can we compare the resources present in a single large spin
system s with the resources present in two smaller systems s1 and s2?
Assuming that both spins undergo the same rotation, the interaction
Hamiltonian will have the form S

ð1Þ
z � Iþ I� S

ð2Þ
z . Fixing the energy

zero point for these spins, we find that the resource count for the sepa-
rable state js1; s1i � js2; s2i is given by 2ðs1 þ s2Þ�h. This allows us to
meaningfully compare the resources for rotation measurements using
different physical systems.

In our case, we calculate the resources (Nres) for a particular two-
spin-1/2 state jZi by summing over the traces of the density operator
for that state with the generators of the spin states. That is,

Nres ¼
X

j

TrðqZrj � rjÞ; j ¼ x; y; z: (19)

For a one-qubit state, the trace would only include a single Pauli
operator.

IV. RESULTS

We have used the particle filter estimation method described in
Subsec. III B to calculate the total errors in the three rotational parame-
ters (the Euler angle errors) as a function of the resource count.

For small errors, as are considered here, the total errors are simply the
root sum square of the individual components, which is then averaged
over a thousand individual realizations/runs of the particle filter. The
results are shown in Fig. 4, together with the results for the single qubit
case and dashed lines to indicate the limiting values 1=

ffiffiffiffi

N
p

(single
qubit states) and 1=

ffiffiffiffiffiffi

2N
p

(Bell states).
The mean result for the Bell states is initially low and rises slightly

as the number of resources increases. This reflects the use of a prior
distribution, which is used to initialize the particle filter and reflects
the fact that we have restricted consideration to small rotations. The
errors grow as the particles are perturbed by the initial fluctuations
caused by the first few measurements and this is due to the small sam-
ple size. As more measurements are added, the filter settles down and
provides stable estimates.

Although they are not shown in the figure, we have also calcu-
lated the errors in the individual Euler angles. Because the two initial
pure states selected are both sensitive to rotations around the z-axis,
the errors for the heading angle (hz) are lower than for the other two
components. This is simply because we have selected initial states in
the z-basis, and but it would be possible to alternate between states
defined using the three principal axes, as we have done with the single
qubit case, but it is not strictly necessary in this case. Unlike the single
qubit case, all three angles can be estimated from two states con-
structed in one basis.

V. THE EFFECT OF MIXED STATES

The results shown in Fig. 4 assume that the states are pure ini-
tially and remain pure during the subsequent time period during
which the system undergoes a rotation. This is unlikely to be realistic
since in any practical system there will be some form of noise that
causes dephasing and/or depolarization. The effect is that the mea-
sured state will be mixed rather than pure. To represent a mixed state,
we use the density operator representation for the state, qZ ¼ jZihZj,
and we form a mixture by adding a component that is a completely

Fig. 4. Mean total angular errors (sum of errors for rotations around all three axes,
1 standard deviation) as a function of the resource count for single qubit measure-
ments (blue) and Bell state measurements (red), with 1=

ffiffiffi

N
p

(blue dash) and
1=

ffiffiffiffiffiffi

2N
p

(red dash) shown for comparison.
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mixed state (i.e., a completely unknown state), which is represented by
an identity matrix of the appropriate size, In�n. So, for the two initial
states that we are using, we have,

qUþ ¼ ð1� aÞjUþihUþj þ aI4�4=4; (20)

qU� ¼ ð1� aÞjU�ihU�j þ aI4�4=4; (21)

where a is used to measure the effect of incoherent noise. We assume
the worst case scenario where noise leads to mixing with a maximally
mixed state I4�4=4. In Fig. 5, we plot the average total error in the
Euler angles close to the limit shown in Fig. 4 for different levels of a.
We see that the single qubit case is relatively insensitive to the effect of
mixed states, but the Bell state case is, as might be expected, quite sen-
sitive to the level of the mixture. There is a significant benefit in using
Bell states for a < 0:005, but the benefits disappear above about
a ’ 0:01. This type of behavior is not uncommon in quantummetrol-
ogy, where the benefits associated with the use of entangled states are
quite fragile in the presence of noise and uncertainties.

VI. CONCLUSIONS

We have presented a Bayesian approach to the estimation of
three-dimensional rotations, the Euler angles, using measurements of
Bell states formed from spin-1/2 systems. The estimation method is
based on a particle filter, which is a method taken from Bayesian infer-
ence and signal processing. Only three of the Bell states are sensitive to
rotations, jU6 i and jWþi, and we use the properties of these three
states, when constructed in arbitrary bases, to identify the axes to use
for the Bell measurements. These axes are selected to maximize the
information from the measurements, which we take to be when the
probabilities are equal to obtain each of the three states from projective
Bell state measurements. We have shown that using the method
described to process these Bell state measurements is able to provide a
ffiffiffi

2
p

improvement in accuracy over the optimal method for individual

spin-1/2 states. This improvement is in line with what is expected
from maximally entangled two-spin-1/2 states. We have also consid-
ered the effect of noise and dephasing on the performance of the esti-
mation process, using mixed rather than states. In addition, we find
that the benefits from using entangled states decreases more rapidly
than for the single spin-1/2 states, which is common with quantum
metrology protocols based on entangled states.
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