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IPv6 over Low-powered Wireless Personal Area Networks (6LoWPAN) has grown in importance in recent years, 
with the Routing Protocol for Low Power and Lossy Networks (RPL) emerging as a major enabler. However, 
RPL can be subject to attack, with severe consequences. Most proposed IDSs have been limited to specific RPL 
attacks and typically assume a stationary environment. In this article, we propose the first adaptive hybrid IDS 
to efficiently detect and identify a wide range of RPL attacks (including DIO Suppression, Increase Rank, and 
Worst Parent attacks, which have been overlooked in the literature) in evolving data environments. We apply 
our framework to networks under various levels of node mobility and maliciousness. We experiment with several 
incremental machine learning (ML) approaches and various ‘concept-drift detection’ mechanisms (e.g. ADWIN, 
DDM, and EDDM) to determine the best underlying settings for the proposed scheme.

1. Introduction

Internet of Things (IoT) networks are generally Low-Power and 
Lossy Networks (LLNs) consisting of heterogeneous devices with limited 
power, memory, and processing resources. LLNs have been deployed in 
various sectors such as agriculture, control, the built environment and 
rural environment monitoring (Pasikhani et al., 2021b). For efficient 
routing in LLNs, the Internet Engineering Task Force (IETF) introduced 
the Routing Protocol for Low-Power and Lossy Networks (RPL) (Alexan-
der et al., 2012). Global connectivity, resource constraints and RPL 
vulnerabilities expose 6LoWPAN to various routing threats, internally 
(within the 6LoWPAN) and externally (through the Internet). Existing 
routing attacks (e.g. Blackhole, Grayhole, Wormhole, and DODAG In-
formational Solicitation (DIS) flooding attacks) (Pasikhani et al., 2021b) 
cause the RPL to generate suboptimal routing topologies, isolate legit-
imate nodes, and cause significant overheads over the target network 
and nodes.

To deal with the security threats in RPL, a variety of Intrusion De-
tection System (IDS) proposals have been introduced in the literature. 
A network-based IDS can identify threats by analysing sniffed pack-
ets. IDSs can be signature-based, anomaly-based, specification-based, 
or hybrid (Pasikhani et al., 2021b). Signature-based IDSs use known 
signatures of attacks to identify intrusions. They can classify known 
intrusions accurately but require huge storage space to maintain the 
database of reference signatures, which must be updated continually. 
They cannot reliably detect hitherto unseen intrusions. Anomaly detec-
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tors build a profile of normal behaviour and detect significant devi-
ations from that normal profile. Although anomaly-based IDS requires 
less storage space to identify abnormal instances (Raza et al., 2013), it is 
prone to generate many false-positive (FP) classifications (i.e., identify-
ing legitimate activity as anomalous) (Hassan et al., 2023; Maheswaran 
et al., 2023; Darabkh et al., 2022). Specification-based approaches typ-
ically detect deviational behaviour from a formalised specification, e.g. 
that provided by a protocol description. The hybrid detection strat-
egy combines existing detection strategies to incorporate their strengths 
and minimise their downsides. Various approaches to intrusion detec-
tion are found in the literature, e.g. statistical, rule-based, and machine 
learning-based. There are three major categories of ML-based IDS (ML-
IDS): supervised (having access to labelled normal and malicious data 
instances), unsupervised (without access to any labelled data), or semi-
supervised (where not all data is labelled, or else access is restricted to 
normal instances (Bhuyan et al., 2012)).

The 6LoWPAN has a streaming data environment. An IDS does not 
have access to the entire data stream and cannot afford to store all 
incoming data instances. Existing IDSs proposed for 6LoWPAN work 
only in stationary environments where the number of nodes in each 
scenario does not change. However, 6LoWPAN has an evolving data en-
vironment where node movement, inaccessibility, changes in running 
applications, and unforeseen attacks alter the data stream distribution. 
6LoWPAN nodes cannot store a large volume of data. Moreover, in 
non-stationary evolving environments, the data distribution evolves un-
predictably and so the system needs to update its model incrementally 
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or retrain it using recently observed batches of data. To address the 
aforesaid issues, “concept drift” detection approaches have been intro-
duced in different network paradigms to enable adaptivity of the IDS 
(Gama et al., 2014). A “concept” can be defined as a joint distribution 
𝑃 (𝑋|𝑌 ), where 𝑋 denotes a vector of attribute values (features) and 
𝑌 is the target value (label) (Webb et al., 2016). Concept drift is a 
shift in the data distribution 𝑃 (𝑋), where 𝑃𝑡(𝑋, 𝑌 ) ≠ 𝑃𝑡+1(𝑋, 𝑌 ). Thus, 
over time, the likelihood that observed data indicates normal system 
operation may change, e.g. if new malware has been crafted, or has 
otherwise adapted, to ‘look like’ benign software. The rate of concept 
drift is unknown to the system and can be abrupt, incremental, gradual 
or recurring (Gama et al., 2014). Concept-drift Detection (CD) methods 
can enable an IDS to adapt to unforeseen intrusions and identify shifts 
in the network data stream (Bhuyan et al., 2012). Additionally, CD ap-
proaches use storage and memory resources efficiently and facilitate 
fast classification.

Developing an adaptive IDS capable of accurately classifying the 
6LoWPAN evolving data stream is a challenging task. The classifier 
needs to update itself with each change (shift) in the environment 
to continue to detect novel attacks. Re-training a classifier using the 
entire training data is computationally expensive and generally infeasi-
ble. This article proposes the use of streaming data mining techniques 
and drift detection to provide a novel adaptive form of hybrid ensem-
ble capable of enhancing system performance. The proposed scheme 
can identify various routing attacks. Internal attacks (sourced inside 
6LoWPAN) include sinkhole, blackhole, and grayhole attacks. External 
(sourced over the Internet) attacks include wormhole and DIS flooding 
attacks.

Different ensembling techniques have been adopted and compared 
in this article. A passive decentralised monitoring technique (where 
anomaly-based IDS agents passively monitor network communications 
and send abnormal/suspicious observations to the central IDS for fur-
ther analysis) is used to collect and monitor LLN traffic from different 
locations and avoid additional computational overheads over legitimate 
nodes for intrusion detection purposes.

1.1. Desirable properties

Our proposed IDS approach aims to achieve the following Desirable 
Properties (DPs).

• DP1: the IDS should be able to identify routing attacks in an evolv-
ing data stream environment by updating its detection model when 
drift is detected.

• DP2: the IDS should not need excessive memory and computational 
resources whilst being able to identify routing attacks precisely.

• DP3: the IDS should work over 6LoWPAN networks incorporating 
mobile nodes.

• DP4: the IDS should be able to detect a wide range of RPL attacks.
• DP5: the IDS should be able to detect both known and previously 
unseen intrusions.

1.2. Motivation and contribution

The RPL is vulnerable to various routing threats (e.g. Sinkhole, 
Blackhole, and Wormhole (Mayzaud et al., 2016a; Pasikhani et al., 
2021b)). Further more, the 6LoWPAN data environment evolves on an 
unpredictable basis. Different IDSs have been proposed in the literature 
to detect existing RPL attacks in 6LoWPAN (as discussed in Section 2). 
However, none of the existing IDS satisfies all the desirable properties 
(as mentioned in Section 1.1). In 6LoWPAN, an IDS observes a con-
siderable (unbounded) volume of data as a continuous flow (Darabkh 
et al., 2022; Hassan et al., 2023); hence, it cannot explicitly store all 
observations to identify anomalous activities. To maintain detection 
performance, it is expected that the IDS modify its detection model 

on a regular basis and incrementally adapt to unforeseen data distri-
butions (Maheswaran et al., 2023). This article proposes and evaluates 
an adaptive heterogeneous ensemble hybrid IDS framework to detect 
various types of RPL attacks in 6LoWPAN. The hybrid detection strat-
egy helps the proposed framework to balance the computational cost 
of the anomaly-based intrusion detection and the storage cost of the 
signature-based intrusion detection over legitimate nodes. Besides, var-
ious incremental ML algorithms and ensemble techniques are evaluated 
to determine the most suitable combinations for the proposed system. 
The major contributions of this article are:

• The first adaptive hybrid IDS to detect internal and external RPL 
attacks.

• An efficient concept-drift-based ML-IDS, maintaining effectiveness 
in the face of environmental change.

• An effective approach to identifying a wide range of RPL attacks, 
including less researched ones, including Sinkhole (SH), Black-
hole (BH), Greyhole (GH), DIS Flooding (DA), increase Rank (IR), 
Wormhole (WH), DIO Suppression (DS), Worst Parent (WP), Ver-
sion Number (VN), and Neighbour Attack (NA).

• An IDS which is resilient against known and previously unseen RPL 
intrusions.

• A comprehensive and publicly available dataset for ML-based IDSs 
containing an extensive range of RPL attacks.

1.3. Organisation

The rest of the article is organised as follows. In Section 2, we review 
the related works and declare our contributions against each of them. 
In Section 3, we present our proposed scheme. In Section 4, we describe 
our implementation and evaluation details. Section 5 concludes the pa-
per.

2. Related work

A broad range of routing vulnerabilities in 6LoWPAN and the lack of 
effective built-in security mechanisms in RPL (Pasikhani et al., 2021b) 
have encouraged researchers to develop IDSs for detecting RPL at-
tacks. Various monitoring and detection strategies (Pasikhani et al., 
2021b) have been considered. These Kaliyar et al. (2020); Pongle and 
Chavan (2015); Mayzaud et al. (2016b); Shafique et al. (2018) typi-
cally use a specification-based IDS to detect Sinkhole (SH), Wormhole 
(WH) and DIS flooding (DA) attacks. 54% of existing IDSs employed 
a specification-based detection strategy for detecting routing attacks 
in 6LoWPAN (Pasikhani et al., 2021b). Specification-based IDSs em-
ploy a set of static rules for identifying intrusions; they cannot update 
their rules automatically. Only 21% of reported works have considered 
a hybrid detection strategy (Pasikhani et al., 2021b) but none considers 
mobility of nodes.

The shortcomings of the statistical and rule-based detection ap-
proach (Pasikhani et al., 2021b) have encouraged researchers to apply 
machine learning (ML) algorithms to enhance the performance of IDS in 
6LoWPAN. Among existing hybrid IDSs, only a few Shukla (2017); Fo-
ley et al. (2020); Bostani and Sheikhan (2017) are ML-based. Moreover, 
they Foley et al. (2020); Shukla (2017); Napiah et al. (2018); Bostani 
and Sheikhan (2017) use offline ML approaches, where the intrusion de-
tection model is constructed using a stationary batch of training data. 
The batch-trained ML-IDS degrades as the data stream environment 
evolves (Bhuyan et al., 2012). Nevertheless, legitimate 6LoWPAN nodes 
often have limited memory and cannot store extensive records of mali-
cious activities. This inevitably means that less critical records should 
be replaced with vital ones over time. To the best of our knowledge, no 
existing IDS for 6LoWPAN does this.

Various proposed monitoring techniques observe inter-node commu-
nication in the 6LoWPAN (Pasikhani et al., 2021b) (e.g. centralised and 
decentralised active or passive monitoring approaches). They Kaliyar et 
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Table 1
Related works.

Scheme Method Attacks Considered Desirable Properties

DP1 DP2 DP3 DP4 DP5

Raza et al. (2013) Active decentralised IDS SH and GH (using Cooja simulator) × × × × ✓

Kaliyar et al. (2020) Specification-based IDS WH and Sybil (using Cooja simulator) × × × × ×

Shafique et al. (2018) Specification-based active centralised IDS SH (using Cooja simulator) × × × × ×

Shukla (2017) Hybrid ML-based IDS WH × ✓ × ✓ ×

Foley et al. (2020) Ensemble Voting (MLP and RF) SA, VN, SH, and BH × × × × ×

Bostani and Sheikhan (2017) Unsupervised Optimum-Path Forest Clustering SH, WH, and SF × × × × ×

Napiah et al. (2018) Hybrid ML-IDS using passive monitoring technique SH, WH, and DA (using Cooja simulator) × × × × ×

Shreenivas et al. (2017) Active decentralised hybrid IDS SH (using Cooja simulator) × × × × ×

Farzaneh et al. (2019) Active decentralised anomaly-based IDS DA and NA × × × × ✓

Kasinathan et al. (2013) Passive decentralised signature-based IDS DA (using Cooja simulator) × × × × ×

Le et al. (2016) Active decentralised specification-based WP, DA, SH, and DF × × × ✓ ×

Kareem and Tayeb (2021) Online adaptive RF + concept drift KDDCup99 (application layer attacks) × × × × ×

Martindale et al. (2020) Online RF (Hoeffding Trees) KDDCup99 (application layer attacks) × × × × ×

Örs and Levi (2023) XGBoost and Autoencoder DA, BH, GH, SH, and Version Number × × × ✓ ✓

Przybocki and Vassilakis (2023) An Analysis into Physical and Virtual Power Draw 
Characteristics of Embedded LLN nodes

DA × × × × ×

Ioulianou et al. (2022) three supervised ML algorithms DA and BH × × × × ×

Manne and Sreekanth (2022) counter-based (specification-based) detection 
algorithm

DA × × × × ×

Raghavendra et al. (2022) Logistic Regression and KNN, RPLML-IDS SH, GH and BH × × × × ×

Li et al. (2018) Ensemble Weighted Voting, RF KDDCup99 (application layer attacks) × D/N D/N D/N D/N
Yuan et al. (2018) Concept drift (HDDM) based ensemble incremental 

learning approach in IDS
KDDCup99 (application layer attacks) ✓ D/N D/N D/N D/N

Singh et al. (2015) Online Sequential-Extreme Learning Machine 
(OS-ELM)

NSL-KDD 2009 (application layer attacks) ✓ D/N D/N D/N D/N

Our Scheme One-Class SVM, incremental OzaBaggingADWIN 
using KNN, and HalfSpace-Trees

SH, BH, GH, DA, DS, IR, WH, WP, VN, 
and NA (Netsim v13)

✓ ✓ ✓ ✓ ✓

∗D/N: Different Network-technology. ∗ In the “Attack” column, the later entries refer to available datasets that contain a variety of attacks, (but these exclude RPL 
attacks); ✓: Satisfy; ×: Not addressed; ✓∗ : Satisfy part of that desirable property; SH: Sinkhole, BH: Blackhole; GH: Grayhole; DA: DIS Flooding; IR: Increase Rank;
WH:Wormhole; DS: DIO Suppression;WP:Worst Parent; VN: Version Number; NA: Neighbour Attack; DP1: Adaptive; DP2: Lightweight; DP3: Accurate in evolving 
data environment; DP4: Detect a wide range of RPL attacks; DP5: Detect known and unknown (a.k.a unseen) intrusions.

al. (2020); Pongle and Chavan (2015); Shafique et al. (2018); Shreeni-
vas et al. (2017); Raza et al. (2013); Farzaneh et al. (2019); Foley et 
al. (2020); Shukla (2017); Bostani and Sheikhan (2017) employ an ac-
tive monitoring technique to detect RPL attacks. According to Pasikhani 
et al. (2021b), ∼77% of existing IDSs used an active monitoring tech-
nique, where legitimate nodes were required to participate in intrusion 
detection tasks with centralised or decentralised intrusion detectors. 
Active monitoring can provide more information about node configu-
ration (e.g. geographical location, energy consumption, and CPU, RAM, 
and ROM usage) and result in more accurate detection of RPL attacks. 
However, it also causes additional computational overhead on the le-
gitimate nodes. Consequently, some 6LoWPAN IDS papers employ pas-
sive centralised (Napiah et al., 2018; Viegas et al., 2018) and passive 
decentralised (Kasinathan et al., 2013; Mayzaud et al., 2016b, 2017; 
Pasikhani et al., 2021a) approaches. Passive monitoring does not cause 
any additional computation overhead for legitimate nodes Mayzaud et 
al. (2017). Nevertheless, it can provide IDS only with control packets 
that are multicasted or unicasted by monitoring nodes’ neighbours.

According to Pasikhani et al. (2021b), existing IDS mainly focus 
on detecting sinkhole (21%), grayhole (14%), blackhole (10%) and 
DIS flooding (10%) attacks, while other RPL attacks are overlooked. 
No research in the literature examines the performance of IDS against 
external routing attacks (external DA and WH), and there is no re-
search detecting DS (DIO Suppression) and IR (Increase Rank) attacks 
(Pasikhani et al., 2021b). Furthermore, only 13% of RPL IDS research 
has considered mobility (Pasikhani et al., 2021b). Table 1 shows the 
related works in the literature and the contributions that this article 
makes.

3. Proposed scheme

Our proposed scheme employs a passive decentralised monitoring 
approach (readers may refer to Mayzaud et al. (2017) for more de-
tails) using a cluster-based placement (Mitrokotsa and Karygiannis, 

2008) strategy to analyse the data stream in 6LoWPAN. Anomaly-based 
detectors are spread over the 6LoWPAN to analyse their neighbours’ 
control packets and report abnormalities to the Centralised IDS (CIDS) 
on the 6LoWPAN Border Router (6BR). The CIDS is an adaptive het-
erogeneous hybrid IDS that protects 6LoWPAN against internal and 
external intrusions. Fig. 1 illustrates the system architecture. The pro-
posed scheme has three components: an anomaly-based network IDS 
(ANIDS) (Section 3.1), an incremental ensemble of signature-based IDSs 
(Section 3.2.1), and incremental ensembles of anomaly-based IDSs (Sec-
tion 3.2.2) (described below). Algorithm 1 shows the proposed scheme.

3.1. Anomaly-based network IDS

Since the CIDS on the 6BR cannot observe network communications 
of distant nodes (since the 6BR has limited radio range and RPL may op-
erate in storing mode (Pasikhani et al., 2021b)), the proposed scheme 
distributes Anomaly-based Network IDS (ANIDS) agents to passively 
monitor multicasted and unicasted control packets of their neighbour-
ing nodes without requiring significant storage space. As shown in 
Scenario 1 (Section 4.3), a One-Class SVM (OCSVM) can provide ex-
cellent performance in detecting intrusions with negligible false-alarms 
and excellent recall value. The OCSVM is a novelty detection algorithm 
that develops a model of safe activities and classifies instances as an 
outlier (anomalous) if they deviate from its profile. The outcome of 
OCSVM is bipolar, 𝑦𝑡 = −1 for 𝑥𝑡 ∈ outliers and 𝑦𝑡 = +1 for 𝑥𝑡 ∈ inliers. 
In OCSVM, the classifier assumes that the given training dataset 𝑋 con-
tains only normal (safe) instances, 𝑋={𝑥1, 𝑥2, ..., 𝑥𝑁} 𝑥𝑖 ∈ 𝑁𝑜𝑟𝑚𝑎𝑙, and 
considers the origin of a kernel-based transformed representation as an 
outlier. OCSVM aims to discover a separating boundary (hyperplane) 
𝑤.𝜙(𝑥𝑖) that maximises the distance between normal instances (𝑥) and 
the origin (0, 0), 𝑤.𝜙(𝑥𝑖) −𝜌 = 0 (define the hyperplane) where 𝑤 and 𝜙(.)
denote weight and SVM kernel (a function that projects data into a high 
dimensional space to increase the discriminatory capability of the clas-
sifier) respectively; 𝜌 denotes the maximal margin (threshold), Eq. (1), 
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Fig. 1. System model. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Algorithm 1: Proposed algorithm.
1 Initialisation
2 A stream of pair (𝑥, 𝑦), as (𝑥0, 𝑦0), (𝑥1 , 𝑦1)...(𝑥𝑇 , 𝑦𝑇 ), arriving one-by-one over time.
3 X is an evolving data stream (X → ∞), where 𝑥𝑡 is a set of features observed at time 𝑡

(now).
4 𝑦 is the real class label and 𝑦 is the classifier prediction, where 𝑌 = {−1, 1}
5 𝐶𝐴 : 𝐶𝑂𝐶𝑆𝑉𝑀 ∪ 𝐶𝐻𝑆𝑇 // Anomaly Classifiers.
6 𝐶𝑂𝐶𝑆𝑉𝑀 : One-class SVM Classifiers ⊆ 𝐶𝐴 .
7 𝑖𝑇 𝑟𝑒𝑒: a HalfSpace-Tree.
8 𝜔: Window Size.
9 𝐴𝑆𝑐𝑜𝑟𝑒 : Anomaly Score.
10 𝐶𝐻𝑆𝑇 : HalfSpace-Trees ensemble classifier ∈ 𝐶𝐴 .
11 M is the number of models in the ensemble.
12 ℎ𝑚 is an adaptive OzaBagging ensemble model induced by learners 𝑚 ∈ {𝑚1 ...𝑚𝑛}.
13 Count ← 0.
14 r: mass profile of a node in the reference window. //mass is used as a measure to rank 

anomalies.
15 l: mass of a node in the latest window.
16 𝑘: Generate poisson (𝜆 = 1)

17 𝜓 : is the generalised Kronecker function: 𝜓(𝑎, 𝑏) is 1 if a == b, and 0 otherwise.
18 for all (𝑥) in 𝑋 do
19 𝛿← using Eq. (3) 𝑐 classifies (𝑥𝑡), where 𝑐 ∈ 𝐶𝑂𝐶𝑆𝑉𝑀

20 if 𝛿 == -1 (𝑐 has classified (𝑥𝑡) as malicious) then
21 predict 𝑦 = arg 𝑚𝑎𝑥𝑦∈𝑌

∑𝑀

𝑚=1
𝜓(ℎ𝑚(𝑥𝑡), 𝑦)

22 for all 𝑚 ∈ ℎ𝑚 do
23 𝑤̂ ← 𝑒𝑥𝑝(−1)∕𝑘!

24 Update 𝑚 with (𝑥𝑡 , 𝑦𝑡) and weight 𝑤̂
25 if 𝑦 == -1 (ℎ𝑚 detect (𝑥𝑡) as normal) then
26 𝐴𝑆𝑐𝑜𝑟𝑒 ← 0
27 for all iTree in 𝐶𝐻𝑆𝑇 do
28 𝐴𝑆𝑐𝑜𝑟𝑒 ← 𝐴𝑆𝑐𝑜𝑟𝑒+ Score(𝑥𝑡 , iTree) // accumulate scores
29 UpdateMass(𝑥𝑡 , iTree.root, false) // update mass l in iTree
30 Report 𝐴𝑆𝑐𝑜𝑟𝑒 as the anomaly score for 𝑥𝑡
31 Count++
32 if Count == 𝜔 then
33 Update model : Node.r ← Node.l for every node with non-zero mass 

r or l
34 Reset Node.l ← 0 for every node with non-zero mass l
35 Count ← 0

36 if ADWIN detects change in error of one of the models (ℎ𝑚) then
37 Replace the model with highest error with a new model

38 Output: Notify administrator if 𝑥𝑡 is anomalous

with 𝑁 instances 𝑥𝑖∈<1,𝑁>. According to Maglaras and Jiang (2014), the 
OCSVM can be solved efficiently using the quadratic Eq. (2). The 𝜈 (Nu) 
is upper bounded by the fraction of outliers and lower bounded by the 
fraction of support vectors. The 𝜈 intends to fine-tune the trade-off be-
tween over-fitting and generalisation. The conjoint usage of 𝜈 and the 

slack variable 𝜉 (𝜉 ≥ 0) enables the system to handle a dataset that con-
tains a small fraction of outliers. In other words, 𝜈 is the probability 
of finding an outlier in 𝑋, where 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ⊆ 𝑋. The 𝛾 (gamma) deter-
mines how much influence a single training example has. The larger 
the value of 𝛾 , the more closely other examples will be affected. Since 
it is expected that ANIDS generate some degree of false-positive alarms 
(wrongly classifying safe instances as intrusions), the instances that are 
classified as anomalies will be further analysed by the CIDS.

𝑤.𝜙(𝑥𝑖) ≥ 𝜌− 𝜉𝑖 ∀𝑥𝑖 ∈ X and 𝜉𝑖 ≥ 0,∀ 𝑖 ∈ {1, ...,𝑁} (1)

𝑀𝑖𝑛
𝑤,𝜉,𝜌

=

[
1

2
‖𝑤‖2 +

(
1

𝜈𝛾

𝑛∑

𝑖=1

𝜉𝑖

)
− 𝜌

]
(2)

𝑦𝑖 = 𝑠𝑖𝑔𝑛(𝑤.𝜙(𝑥𝑖) − 𝜌) (3)

where the 𝑦𝑖 in Eq. (3) is an inliner (+1) if 𝑤.𝜙(𝑥𝑖) −𝜌 ≥ 0 and an outlier 
(-1) otherwise.

In Equations (2) and (3):

• 𝑤 is the normal vector to the hyperplane.
• 𝜙(𝑥𝑖) is the mapping of an input vector 𝑥𝑖 into the feature space.
• 𝜌 is the bias term of the hyperplane.
• 𝜉𝑖 are slack variables that measure the amount of mis-classification.
• 𝜈 ∈ (0, 1] is an upper bound on the fraction of outliers and a lower 
bound on the number of support vectors.

The goal of the OCSVM is to maximize the distance 𝜙 while mini-
mizing ||𝑤||2, essentially finding the maximum-margin hyperplane that 
separates the data from the origin in the feature space.

3.2. Central IDS

The CIDS contains an incremental heterogeneous hybrid IDS and is 
responsible for analysing internal and external data streams. It analy-
ses the external network traffic coming to the 6LoWPAN and internal 
network communications among LLN nodes. Moreover, an observa-
tion that is classified as anomalous by any ANIDS will be reported 
to CIDS for more in-depth analysis. The CIDS analyses the anomalous 
observations through its incremental ensemble of signature-based IDS 
(in Section 3.2.1) and an incremental ensemble of anomaly-based IDS 
(in Section 3.2.2) to make more accurate classifications. Algorithm 1
shows the hybrid proposed scheme. The adaptivity through Concept-
drift Detection (CD) enables the framework to enhance its intrusion 
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detection performance over time by adapting to unforeseen intrusions 
and changes in data distributions.

3.2.1. Incremental ensemble of signature-based IDSs
Incremental ensemble classifiers provide better detection perfor-

mance at the cost of more computation and memory usage (Gomes 
et al., 2017). An ensemble classifier 𝑓 (𝐶1(𝑥𝑡), 𝐶2(𝑥𝑡)...𝐶𝑛(𝑥𝑡)) is a set of 
classifiers (𝐶𝑖) that make predictions over a given instance of feature 
set (𝑥𝑡). The Ozabagging classifier builds an ensemble of classifiers such 
that ∀ 𝑐𝑖 ∈ 𝐶 , 𝑐𝑖 is trained over different bootstrap instances. Since it is 
challenging to draw samples with replacement in an online streaming 
environment, the Oza bagging classifier weights the observed instances 
using a Poisson1 in bootstrap replica (Bifet and Gavalda, 2009). The OZ-
ABAGADWIN (Oza and Russell, 2001; Bifet et al., 2009) is the OzaBag-
ging with ADWIN (adaptive windowing) concept-drift detection. The 
OZABAGADWIN implements several ADWIN drift detectors to monitor 
classifier error rates. On the detection of concept drift, OZABAGWIN re-
places the worst classifier 𝑐𝑖 ∈ 𝐶 with a new classifier, described as a 
“replace the loser” strategy (Bifet and Gavalda, 2009). The classifica-
tion of the majority of individual classifiers that make up the ensemble 
is taken as the classification of the instance. Where the number of classi-
fiers is odd, there is always a majority for one class. Where the ensemble 
has an even number of classifiers, then a tie is possible. In such a case, 
the instance is judged to be malicious (Oza and Russell, 2001; Bifet et 
al., 2009).

Mathematically, OzaBagging works by simulating the effect of boot-
strap sampling in an online fashion. For each incoming instance from 
the data stream:

1. It calculates the Poisson(1) random number, which corresponds to 
the number of times the current instance appears in the bootstrap 
sample.

2. It feeds the current instance to each model in the ensemble as many 
times as this Poisson(1) random number states. In other words, if 
the Poisson(1) random number is zero, the instance is not used for 
training a specific model; if the Poisson(1) random number is one, 
the instance is used once for training, and so forth.

3. Each model updates its predictions based on the incoming instance.

The ensemble’s prediction is then, as with traditional bagging, the 
majority vote of the predictions of the individual models. By leveraging 
the properties of the Poisson distribution, OzaBagging manages to sim-
ulate the effect of bagging in an online setting, allowing for effective 
learning from data streams.

3.2.2. Incremental ensemble of anomaly-based IDSs
Although adopting adaptivity (concept-drift detection) enables a 

signature-based IDS to learn unforeseen intrusions (discussed in Sec-
tion 3.2.3), a signature-based IDS is prone to some degree of false-
negative alarms for unknown intrusions. To enable the proposed frame-
work to identify unknown intrusions, the HalfSpace-Trees (HS-Trees) 
algorithm (Tan et al., 2011) analyses observations that are classified as 
normal so far. In HS-Trees, each tree contains nodes that capture the 
number of data items (known as mass) within a subspace of streaming 
data. In this context, the mass is used to profile the degree of anomaly. 
The OzaBaggingADWIN and HS-Tree form an incremental hybrid IDS on 
the 6BR. HS-Trees algorithm starts with the selection of a random sub-
set from the incoming data stream. This subset called the ‘mass profile’, 
is used to initialize the trees. Each tree is built by randomly dividing 
the space of the mass profile into two halves, each half-space (or hy-
perplane) represented by a node in the tree. The process is recursively 

1 As 𝑁 (number of samples) → ∞ the distribution of 𝐾 (number of copies 

of each 𝑛) tends to a Poisson(1) distribution: 𝐾 ∼
exp(-1)
k!

(Wang and Pineau, 
2016).

repeated for each half-space, resulting in a binary tree structure. The 
depth of the tree is a hyperparameter and can be adjusted based on the 
complexity of the data. After initialization, each data point in the mass 
profile is passed down to each tree. When a data point reaches a node, 
the mass (the count of data points) of the corresponding half-space is 
incremented. After all data points in the mass profile have been passed 
through the trees, each node in the trees will have an associated mass 
representing the density of data points in its half-space. As new data 
points arrive from the stream, they are passed down to each tree in the 
forest.

The anomaly score for the data point is calculated based on the 
masses in the nodes it encounters. A lower mass indicates a less dense 
region of the feature space and hence a higher anomaly score. Math-
ematically, the anomaly score 𝑠(𝑥) for a data point 𝑥 is defined as 
𝑠(𝑥) = 2−𝐸(ℎ(𝑥)∕𝑐(𝑛)) where ℎ(𝑥) is the path length of data point x from 
the root to the leaf in a tree, 𝐸(ℎ(𝑥)) is the average path length over 
all trees in the forest, 𝑛 is the number of instances in the mass pro-
file, and 𝑐(𝑛) is the average path length of an unsuccessful search in a 
Binary Search Tree. Over time, the trees adapt to changes in the under-
lying data distribution. This is achieved by decrementing the mass of 
the nodes a data point passes through (making the region less dense) 
and then incrementing the mass for the new data point.

3.2.3. Adaptivity
Adaptive learning updates the predictor model to respond to concept 

drift through the predictor operations. The 6LoWPAN traffic routing 
evolves as nodes move or become unavailable (e.g. their energy re-
source may deplete), which results in the reconstruction of the DODAG 
routing graph. Data forms a stream into the IDS with a distribution 
that varies over time. To reduce memory use, concept-drift-based IDS 
trains over a small number of training data at any point in time and 
does not load the entire dataset into memory (Bhuyan et al., 2012). The 
fundamental function of any concept drift detection approach is the 
mechanism to detect the drift occurrence timestamp. Accurate identifi-
cation of the time that drifts happen plays a vital role in enhancing the 
system’s adaptivity performance. Since the model never has full access 
to the entire data in a continuous environment, this article employs the 
adaptive sliding window (ADWIN) concept (Bifet and Gavalda, 2007) 
to perform concept drift detection. A window 𝑤 is a snapshot of data; 
it gives more importance to the recently observed data and periodically 
discards the older data. ADWIN slides a window 𝑤 on the prediction 
results as they become available in order to detect drifts. The method 
examines two sub-windows of sufficient length, i.e., 𝑤0 of size 𝑛0 and 
𝑤1 of size 𝑛1 where 𝑤0 ∙𝑤1 = 𝑤. The symbol ∙ represents the concate-
nation of two windows. A significant difference between the means of 
two sub-windows indicates a concept drift, i.e., when |𝜇̂𝑤0

− 𝜇̂𝑤1
| ≥ 𝜀

where 𝜀 =
√

1

2𝑚
ln

4

𝛿′
, 𝑚 represents the harmonic mean of 𝑛0 and 𝑛1, and 

𝛿′ = 𝛿∕𝑛. Here 𝛿 is the confidence level while 𝑛 is the size of window 
𝑤. Once a drift is detected, elements are removed from the tail of the 
window until no significant difference is observed.

4. Implementation and evaluation

In this article, we use the Netsim simulator to evaluate the perfor-
mance of the proposed scheme against different RPL attacks. In this 
context, we consider different network configurations (e.g. a number 
of malicious and legitimate nodes and objective function), as described 
in Table 2. The simulated 6LoWPAN scenarios include 16 to 128 LLN 
nodes (excluding 6BR and external computers), with 10% to 30% of 
nodes assigned as malicious. In all scenarios, we consider 20% of the 
nodes, including half of the malicious nodes, to be mobile and randomly 
move around the terrain with a velocity of 5 m/s. Nodes distribute over 
terrain covering 250 m2 ∼ 800 m2 and are 25 ∼ 45 m apart, with 50 m 
transmission range. Each scenario is simulated for ∼360 minutes for per-
formance benchmarking. This article uses the interleaved test-then-train 
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Table 2
Simulation parameters.

Parameters Values

Simulator Tetcos Netsim V13
Number of nodes 16, 32, 64, 128
Number of Malicious nodes ∼10%, ∼20%, ∼30%
Number of Workstations 4, 8
Transmission Range 50 m
Number of ML detectors ∼10%
Number of Mobile nodes ∼20%
Scenario Dimension (Terrain) (250 × 250) to

(850 × 850) s.meters
Traffic Rate 250 kbps
Simulation time ∼ 21,600 seconds
Application Protocols COAP, CBR
RPL mode Storing mode
Mobility Modes Random Walk, Group Walk
Path Loss Model Log Distance, Exponent(n): 2
Distance between nodes 25 ∼ 45 m
Objective Function (OF) OF0, LQ
Receiver Sensitivity -85 dBm

approach to evaluate the proposed scheme (Bifet et al., 2009). It is as-
sumed that the packets in the streaming data 𝐷 sequentially appear in 
the target network, where 𝑥𝑡 is an unlabeled instance vector observed 
at time 𝑡, containing different attributes about the node configurations 
and the DODAG. The actual label 𝑦𝑡 of instance 𝑥𝑡 will be available to 
the system at different points in time (Bifet et al., 2009).

4.1. Data-set and feature construction

The simulations generate a dataset 𝐷, representing malicious and 
normal (safe) network communications. Each observation 𝑥 in 𝐷 de-
notes a set of 𝑛 features 𝑥 = {𝑓1, 𝑓2...𝑓𝑛}, where 𝑓𝑖 contains specific 
information about the sender and receiver. The header of each RPL con-
trol packet (e.g. DIO, DIS, DAO) contains different information about 
the sender of the packet (Alexander et al., 2012; Barthel et al., 2012) 
that can facilitate the identification of anomalous network activities. 
Engineering a set of informative features is essential to develop an IDS 
to accurately classify all types of RPL attacks in the streaming data en-
vironment. Therefore, we perform feature engineering to facilitate the 
classification of data streams for IDS. The extracted features can en-
able the anomaly-based classifiers to correctly identify all the anomalies 
through training over normal instances and make signature-based clas-
sifiers to accurately classify each type of RPL attack. The raw instances 
of 6LoWPAN simulations contain a set of features that are not applica-
ble for conducting intrusion detection tasks. For instance, features that 
represent node identities (e.g. IP address, MAC address, and node id) 
can inhibit scheme generalisation. Since this article employs a passive 
decentralised monitoring approach (Mayzaud et al., 2017), any feature 
that requires the internal configuration of legitimate nodes (e.g. power 
consumption, geographical location, CPU/RAM/ROM usages) are ex-
cluded. We simulated several pairs of networks (, ) where  contains 
only the normal nodes and  contains both the normal and malicious 
nodes. Observing the statistical difference of control and application 
packets in  and  enable us to identify the adverse impact that each 
RPL attack has in the networks in . A simulated 6LoWPAN includes le-
gitimate (safe) network communications (control and application pack-
ets) and malicious traffic. In each RPL attack scenario, malicious nodes 
cause adverse impacts inside the network by either generating mali-
cious network traffic (e.g. DIS flooding, DIO suppression, and sinkhole 
attacks) or modifying legitimate network communication of their neigh-
bouring nodes (blackhole and grayhole attacks). The abnormalities that 
each RPL attack causes inside 6LoWPAN constitute malicious observa-
tions.

We extract three types of features: basic, history-based, and connec-
tion-based features. Basic features contain general node information 
derived from ICMP v6 control packet headers (node rank, source and 

Table 3
Engineered features.

Feature Description

B
as
ic

pkt_type Type of packet (DIO, DAO, DIS, App etc)
pkt_status Packet status (Collided, Successful)
src_rank Sender rank in DODAG
adv_vn Advertised version number

H
is
to
ry
-b
as
ed

snd_dis_count No. of DIS unicasted/multicasted by sender
snd_dio_count No. of DIO advertised by sender
snd_dao_count No. of DAO unicasted by sender
snd_daoack_count No. of DAO-Ack unicasted by sender
snd_cpkt_count No. control packet issued by sender
rcvd_dis_count No. of DIS rcvd by current node in the past
rcvd_dio_count No. of DIO rcvd by current node
rcvd_dao_count No. of DAO rcvd by current node
rcvd_daoack_count No. of DAO-Ack rcvd by receiver
rcvd_cpkt_count No. of control packets rcvd by receiver
avg_intpkt_time Average delay between pkts issued by snd
rnk_alt_count No. rank alteration by sender
vn_alt_count No. version number alteration by sender
trans_app_count No. of application trans by sender
pkt_e2e_delay Packet end-to-end delay

C
on
ne
ct
io
n-
ba
se
d

cpkt_loss Control packet loss ratio
pkt_loss Application packet loss ratio
avg_hopcount Average No. of hopcount (global view)
neighbour_count No. of neighbouring node
child_count No. of children
same_parent Sender and the detector have same parent
rx_sen Average receiver sensitivity
tx_pwr Average transmission power
rssi Received signal strength indicator of sender
cmp_snd_prt_lq LQ of sender > LQ of parent
prt_bst_lq Current parent provide best link quality

destination addresses, flags etc.). In contrast, the time-based features 
provide information about the number of times the current node sends 
or receives a specific application or control packet. Connection-based 
features carry salient information about the sender’s routing configu-
ration (RSSI, link quality etc.) and the number of collided control and 
application packets perceived by an IDS detector. Table 3 depicts the set 
of features engineered in this article. Here we apply the Mean Decrease 
in Impurity (MDI) importance metric to illustrate the importance of en-
gineered features in identifying RPL attacks, as shown in Fig. 2. The 
connection- and history-based features play vital roles in detecting the 
routing attacks in 6LoWPAN.

4.2. Evaluating using emulators vs real test-bed

Emulators like the Tetcos NetSim offer an exceptional environment 
for evaluating IDS in 6LoWPAN, particularly when considering variable 
network sizes and diverse mobility patterns. This is because this em-
ulator can seamlessly scale from small to large networks, effectively 
mimicking different network dynamics and node mobilities, something 
that real-world implementations find challenging to replicate due to 
time and logistical constraints. Furthermore, real-world testing requires 
substantial resources and requires rigorous ethical approvals, particu-
larly when user data and potentially sensitive network operations are 
involved. These practical and ethical complexities can make the setup 
exceedingly time-consuming and costly.

Conversely, emulators bypass these hurdles, providing a cost-
effective and efficient platform where IDS can be put to the test across 
multiple parameters without compromising ethical norms or spending 
excess time in setup. This flexibility allows researchers to thoroughly 
investigate IDS efficacy across numerous scenarios, thereby producing 
robust and comprehensive evaluations. In addition, using the emulation 
feature of Tetcos NetSim provides an avenue for hybrid simulation-real-
world implementation approaches by enabling the attachment of actual 
IoT hardware to represent network nodes. This strategy combines the 
controlled environment of a simulator with the tangible characteristics 
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Fig. 2. Feature importance.

of real-world hardware, further enhancing the realism and applicability 
of the tests. Thus, it blends the best of both worlds, ensuring com-
prehensive IDS evaluation and validation that extends beyond purely 
theoretical or simulated conditions.

Nevertheless, it’s important to acknowledge that despite the realism 
introduced by emulation, there are still distinct differences between this 
approach and a full-scale, real-world test-bed implementation. This in-
cludes the impact of hardware compatibility and performance issues, 
real-time network fluctuations, user behaviour, and a variety of po-
tential external disruptions. These factors can significantly impact the 
performance of an Intrusion Detection System, and understanding this 
behaviour in a real environment provides invaluable insights that go be-
yond the limitations of any simulated scenario. Thus, while emulation 
serves as a powerful tool in the early stages of development and test-
ing, a real-world test-bed implementation is essential to fully validate 
and optimise the IDS in realistic conditions.

4.3. Results and analysis

As discussed in Section 3.1, the novelty of anomaly detectors of the 
proposed scheme work by observing the control packets of their neigh-
bours; if the current observation is identified as anomalous, it will be 
further analysed by the heterogeneous hybrid ensemble IDS on the 6BR. 
Below, different outlier detection, incremental ensembling, and concept 
drift detection algorithms are evaluated. We seek the best combina-
tion to gain the optimal F1, accuracy, recall, precision (Pasikhani et al., 
2021b) and kappa (Gomes et al., 2017; Gama et al., 2014) with the least 
False Negative Rate (FNR) and False Positive Rate (FPR) (Pasikhani et 
al., 2021b). Below, we conduct six scenarios utilising the underlying 
features of the Netsim emulator to execute the proposed framework 
over several Raspberry Pi 4 (model B, 4GB RAM) micro-controllers to 
measure the execution time and the model power consumption using a 
UM25C digital multimeter. Table 2 depicts the network configurations 
that we implemented to conduct our simulations. In all of our simula-

tions, ∼ 20% of nodes are mobile and randomly move around the terrain 
with a velocity of 5 m/s.
Scenario 1. The anomaly-based detector (also known as novelty 

detector) plays a crucial role in identifying outliers in the proposed 
scheme. Here we measure the performance of OCSVM in detecting RPL 
attacks. We have evaluated OCSVMs with different parameter values for 
Nu 𝜈 ∈ (0, 1] and Gamma 𝛾 ∈ (0, 1] for finding the optimal configura-
tion; Fig. 3(a) shows that the OCSVM with 𝜈 ∈ (0.01, 0.25) and 𝛾 ∈ (0.6, 1]
can maximise recall. However, since the aim of the ANIDS is to iden-
tify all the intrusions and maximise TPR, here we assign the OCSVM 
with 𝜈 = 0.2 and 𝛾 = 0.9 to achieve 99.74% TPR with 89.39% recall 
(weighted average). Our simulations outcomes suggest that an OCSVM 
outperforms other existing anomaly detection algorithms, a majority-
voting ensemble of Local Outlier Factor and Isolation Forest, as shown 
in Fig. 4.
Scenario 2. Scenario 1 showed that although the OCSVM algorithm 

can accurately identify outliers it also incurs 20.25% FPR. To address 
this issue, we conduct our second scenario to measure the performance 
of different incremental ensemble algorithms and rectify ANIDS mis-
classifications. Here, we have compared the performance of OzaBagging 
(Oza and Russell, 2001), LearnPPNSE (Elwell and Polikar, 2011), Online 
Boosting (Wang and Pineau, 2016), Online AdaC2 (Wang and Pineau, 
2016), Accuracy Weighted Ensemble (Wang et al., 2003), and Online 
SMOTE Bagging (Wang and Pineau, 2016) algorithms in detecting RPL 
attacks. The outcome of our simulations (as shown in Fig. 5 and Fig. 6) 
shows that the combination of OzaBagging using KNNADWIN can pro-
vide the best possible outcome to identify known intrusions. In this 
context, as shown in Fig. 6, the OzaBaggingADWIN outperform all other 
incremental classifiers by ∼5% in terms of F1, and ∼10% in terms of 
accuracy and Kappa. However, OlineAdaC2 slightly (less than ∼2%) 
outperform OzabaggingADWIN in terms of recall. OzaBagging using 
KNNADWIN with n_estimators (number of estimators) as 4 and n_neigh-
bours (number of neighbours) as 6 receives 91.5% F1 and 7.8% FPR 
and with n_estimators as 8 and n_neighbours as 6 receives 92.2% F1 
and 7.3% FPR, as depicted in Fig. 5.
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Fig. 3. One-Class SVM (OCSVM).

Fig. 4. Performance of different outlier detection algorithms.

Fig. 5. OzaBagging ADWIN (KNN) F1.

Scenario 3. Above, we showed how an incremental ensemble ap-
proach could identify known intrusions efficiently. Our proposed hy-
brid IDS targets both known and unknown intrusions. Accordingly, 
we now investigate an incremental ensemble of anomaly-based clas-
sifiers which can rectify false-negative alarms of the signature-based 
IDS. False-negative alarms are very costly and indicate the IDS is failing 
in its primary task. In this scenario, we show how the inclusion of an 
incremental HalfSpace-Trees (HS-Trees) classifier can enhance the over-
all performance of the system. Fig. 6 shows that the HS-Trees algorithm 

forms a better hybrid IDS when it combines with the OzaBaggingAD-
WIN compared to other incremental algorithms by around 6 to 10%. 
Fig. 6 gives the current and moving mean (also referred to as moving 
average) F1, recall, kappa, and accuracy of the incremental ML algo-
rithms.
Scenario 4. Here, we investigate to what extent concept drift detec-

tion can provide system adaptivity. We evaluate different drift detec-
tion algorithms to select one that can ensure adaptivity in the system 
and also enhance the framework performance over time. We consider 
the following (seven) adaptive Windowing methods for concept drift 
detection: (ADWIN), Drift Detection Method (DDM), Early Drift Detec-
tion Method (EDDM), Kolmogorov-Smirnov Windowing (KSWIN), Page-
Hinkley, Drift Detection Method based on Hoeffding’s bounds (HDDM) 
with moving weighted average-test (HDDM-W) or moving average-test 
(HDDM-A) concept drift detection methods (Yuan et al., 2018; Gama et 
al., 2014). Results are presented in Fig. 7(a) and Fig. 7(b). From Fig. 7, 
we can see that ADWIN gives the best accuracy than of the concept-drift 
detection methods in the shortest time interval. Outcomes of Scenarios 
1, 2, 3, and 4 show that our proposed scheme so far addresses DP1
(adaptive and robust intrusion detection, which were discussed in Sec-
tion 1.1) (Table 4).
Scenario 5. Here, we measure the time complexity of each compo-

nent in the proposed framework. We consider 64 LLN nodes in 6LoW-
PAN, with 20% assumed malicious. Fig. 3(b) shows the results over 
1500 network packets, where 50% of instances are assumed normal 
and the remaining 50% include each RPL attack type equally. We mea-
sure the time complexity for each ANIDS and CIDS separately. Fig. 3(b) 
shows the time complexity that the OCSVM with 𝜈 = 0.2 and 𝛾 = 0.8

causes the least time complexity in the system. On the other hand, the 
adaptive heterogeneous hybrid IDS, developed in our Scenarios 2 and 3, 
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Fig. 6. Performance of the proposed scheme in detecting RPL attacks, moving mean and current.

Fig. 7. Comparison of Concept-drift Detection methods.

using 4 learners and 8 neighbours (KNN) causes 𝑂(𝑙𝑜𝑔(𝑛)) time complex-
ity in the system. Table 6 shows that ANIDS has linear and logarithmic 
time complexity in training and testing, while CIDS has polynomial time 
complexity in the proposed scheme. To measure the power consumption 
of each component, we use the Netsim Emulator feature to connect the 
physical microcontrollers with the simulation environment and connect 
digital ammeters to the microcontrollers. We run our simulations for 10 
minutes, disabling all unnecessary background tasks and applications. 
The power consumption of an ANIDS and the CIDS in an LLN with 64 
nodes was 3.505 J/s and 3.754 J/s, respectively, whilst a legitimate 
node without any ANIDS or CIDS consumed 3.17 J/s. In this way, we 
have satisfied DP2 (lightweight IDS).
Scenario 6. Here, we first evaluate how well the proposed scheme 

detects each RPL attack in LLNs with different proportions of legitimate 

and adversarial nodes, while 20% of nodes, including 50% the malicious 
nodes, were mobile and moving, as shown in Table 7.

From Table 7, we can see that the performance of the proposed 
scheme is plausible in terms of the accuracy and false-negative rate 
(FNR) for detecting various RPL attacks. The proposed scheme can de-
tect IR attack with high accuracy (up to ∼97.9%); and the SH, BH, DS, 
and GH attacks with up to ∼98.7%; WH with up to ∼99.7%; WP with 
up to ∼99.6%; and DA with up to ∼100% accuracy. Our outcomes show 
that our proposed scheme satisfies DP3 (accurate in evolving data envi-
ronment) and DP4 (detect a wide range of RPL attacks).

In Table 8, we conducted an additional experiment utilizing 128 
nodes, with 1%, 2%, and 5% of these nodes assigned as malicious. Our 
initial assumption was that decreasing the number of malicious nodes 
would lead to less malicious traffic and, as a consequence, a decline in 
detection performance. However, our findings contradict this, showing 
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Table 4
Performance bench-marking with offline IDS in 6LoWPAN.

Paper No. 
Nodes

No. 
Malicious

Duration 
minutes

Mobility RPL Attacks

SH BH GH IR DA DS WH WP VN NA

Bostani and Sheikhan (2017) 5∼50 1∼5 20 No 100% - 85.36% - - - 96% - - -
∼92.68% ∼97.53%

Farzaneh et al. (2019) 20∼40 1∼30% 30 No - - - - 100% - - -
Foley et al. (2020) 11 1 30 No 93.14% 93.14% - - - - - - - -
Kasinathan et al. (2013) 10 1 - No - - - - - - - - - -
Mayzaud et al. (2016b) 2∼10 1 480 No - - - - - - - -
Napiah et al. (2018) 8 1∼3 ∼30 No 100% - - - 100% - 100% - - -
Pongle and Chavan (2015) 8∼24 1∼2 30 No - - - - - - 94% - - -
Raza et al. (2013) 8∼64 1∼4 ∼30 No 79% - 81% - - - - - - -
Shreenivas et al. (2017) 4∼8 2 - No 90% - - - - - - - - -

∼100%
Shukla (2017) 10∼200 ∼2 - No - - - - - - 71% - - -

∼75%
Proposed 16∼128 10∼30% 360 Yes 91.5% 91.8% 90.6% 94.1% 99.8% 94.0% 90.1% 91.9% 97.5% 98.2%
Scheme† (20%) ∼98.7% ∼98.3% ∼98.7% ∼97.9% ∼100% ∼98.7% ∼99.7% ∼99.6% ∼98.8% ∼99.6%

∗Results indicate the accuracy of the proposed IDS in detecting each type of RPL attack; † Details are shown in Table 7.

Table 5
Unknown attack detection.

Unknown 
Attack

Performance Metrics

Accuracy Precision F1 TPR FPR

SH 90.85 91.16 90.79 86.52 5.17
BH 89.75 90.30 89.74 83.62 3.55
GH 93.9 94.07 93.88 90.97 3.31
IR 91.75 92.20 91.71 86.61 3.25
DA 98.30 98.36 98.29 96.57 0
WH 98.35 98.36 98.34 97.04 0.30
DS 93.95 94.05 93.94 91.62 3.76
WP 95.10 95.18 95.09 92.93 2.71
VN 90.5 90.52 90.48 89.25 8.33
NA 94.1 94.23 94.09 96.64 8.51

Table 6
Time complexity.

Comp Training (sec) Testing (sec)

ANIDS 𝑂(𝑁): 𝑂(𝑙𝑜𝑔(𝑛)):
0.36+ -2.4E-08*n 0.22+ -0.0021*log(n)

CIDS - 𝑂((𝑙𝑜𝑔 𝑛)𝑘):
-2.3 * 𝑥0.94

that our proposed scheme can consistently deliver high accuracy and 
F1 scores, even under stealth attack scenarios. This performance is due 
to the effectiveness of our engineered feature, which enables our pro-
posed scheme to accurately model the anomalies caused by each type of 
routing attack, regardless of the volume of malicious traffic generated 
within the LLN. Notably, some of these RPL attacks are particularly ex-
treme, making them easier to detect using our scheme (e.g. DA and WH 
attacks).

We then consider the detection of unforeseen intrusions, where each 
RPL attack was excluded from the pre-training data one-by-one and ex-
clusively covered all the adversarial activities of the evaluation data 
stream, as shown in Table 5 Outcomes of this scenario show our pro-
posed scheme can address DP5 (detect unseen/unknown intrusions).
Takeaway. As the number of nodes in an LLN expands, establishing 

a balance between security measures, the performance of an IDS, and 
computational cost becomes increasingly critical.

On the one hand, heightened security measures, such as comprehen-
sive packet inspections, can place additional strain on the IDS. These 
measures require extensive processing power, which can impede the 
IDS’s performance, leading to slower detection times and potentially 
lower accuracy rates. It’s especially relevant in real-time environments, 

where rapid intrusion detection is paramount for quick mitigation ac-
tions.

On the other hand, the escalation of security measures usually leads 
to increased computational costs. As the network becomes larger, the 
demands on the IDS to process and analyse the growing traffic also rise, 
resulting in a higher computational load. Higher security means more 
sophisticated and resource-intensive algorithms are needed; thus, the 
cost of computational resources, storage, and energy consumption can 
increase significantly.

To strike an optimal balance, it is essential to implement efficient 
and scalable security algorithms that can maintain high detection rates 
without excessively burdening the computational resources. Addressing 
these challenges, we have developed a hybrid, incremental IDS that is 
designed to optimise the balance between security, performance, and 
computational cost. By leveraging an incremental, machine-learning-
based model and a hybrid approach, our solution efficiently scales with 
an increasing number of nodes, ensuring robust security without impos-
ing unnecessary computational burdens.

5. Conclusion and future works

Routing threats in 6LoWPAN and threats against RPL are highly 
significant. In this article, we have introduced an adaptive hybrid het-
erogeneous IDS scheme that is effective and efficient and can readily 
cope with changes to the environment and detect known and unknown 
routing intrusions in the 6LoWPAN. In this context, we have conducted 
several simulations and scenarios to evaluate to what extent our pro-
posed scheme can satisfy desirable properties (adaptivity, lightweight-
ness, accuracy in evolving data environments, detecting a wide range of 
RPL attacks, and detecting both known and unknown intrusions). Our 
analysis shows the development of lightweight and distributed OCSVMs 
can enable our scheme to detect malicious activities with a 99.74% true 
positive rate. It should be noted that OCSVM and HalfSpace-Trees play 
a vital role in detecting unforeseen intrusions in our proposed scheme. 
In this regard, the outcomes of our experiments show that our proposed 
scheme has 90.8% ∼ 98.3% accuracy in detecting unforeseen attacks. 
Moreover, our scheme can identify a wide range of RPL attacks in dif-
ferent scaled evolving (containing mobile nodes) LLNs with 97.9% ∼
100% accuracy. Our experimental outcomes clearly demonstrate that 
our proposed scheme is lightweight both in terms of energy consump-
tion and time complexity. Our experimental outcomes show that the 
incremental ensemble of OZABagging with KNNADWIN learners and 
HalfSpace-Trese (HS-Trees) (Tan et al., 2011) creates a hybrid IDS that 
provides excellent performance in detecting intrusions.

Our benchmarking results give an indicative comparison between our 
scheme and the results obtained by other authors. However, it should 
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Table 7
Performance bench-marking.

N M Accuracy FNR

SH BH GH DA IR WH DS WP VN NA SH BH GH DA IR WH DS WP VN NA

16 10% 91.5 91.8 96.2 99.8 95.8 98.3 97.4 98.6 98.2 99.1 14.1 13.8 3.4 0 7.3 2.4 2.6 2.7 1.2 0.5
20% 98.7 95.4 98.4 100 97.9 96.5 98.7 97.5 98.8 99.4 1.8 5.4 3.0 0 4.0 4.4 2.3 2.9 0.3 0.4
30% 97.6 97.0 96.6 100 94.1 99.6 98.2 99.5 98.6 99.3 3.4 5.4 5.8 0 11.3 0.1 2.9 0.2 0.7 0.2

32 10% 93.3 96.3 98.5 99.8 97.8 99.7 98.5 99.6 98.4 99.2 10.0 5.4 2.0 0.3 3.8 0.2 2.2 0.5 1.1 0.6
20% 98.7 98.2 98.2 100 97.8 94.8 98.4 95.2 98.1 99.2 2.4 3.1 2.0 0 3.6 9.5 2.0 8.7 2.2 0.7
30% 98.6 98.3 98.7 100 97.0 90.1 98.7 91.9 98.0 99.0 2.3 3.2 2.4 0 5.3 16.0 2.4 13.2 1.6 0.6

64 10% 92.5 93.1 90.6 99.9 94.9 91.6 89.5 92.7 97.7 99.1 13.8 13.2 16.8 0.1 9.1 12.0 18.9 10.6 2.9 0.2
20% 93.0 93.4 96.2 100 94.9 91.0 97.0 96.3 97.9 99.2 11.0 11.4 6.7 0 8.4 10.7 4.9 6.7 2.8 0.4
30% 93.7 93.8 96.2 100 96.4 94.5 98.7 96.6 98.0 99.6 11.5 9.4 7.1 0 5.0 10.1 2.4 5.9 2.3 0.1

128 10% 97.2 93.0 91.2 99.8 95.5 93.5 94.0 92.3 98.3 99.5 5.4 13.4 16.0 0.4 8.1 9.2 8.2 11.3 2.1 0.3
20% 93.6 93.9 94.1 100 95.9 94.4 96.0 93.1 97.5 99.4 11.7 11.0 10.0 0 6.1 10.5 6.7 13.3 2.9 0.4
30% 94.3 94.9 96.9 100 96.9 95.2 96.7 95.4 98.0 99.3 10.0 8.4 5.8 0 4.7 8.5 5.8 7.8 2.7 0.3

SH: Sinkhole; BH: Blackhole; GH: Grayhole; DA: DIS Flooding; IR: Increase Rank; WH: Wormhole; DS: DIO Suppression; WP: Worst Parent; VN: Version Number;
NA: Neighbour Attack; N: Total number of nodes; M: No. Malicious nodes; No. Mobile nodes ∼20%.

Table 8
Evaluation results against a stealthy attacker, Accuracy and F1.

N M Accuracy F1

SH BH GH DA IR WH DS WP VN NA SH BH GH DA IR WH DS WP VN NA

128 1% 94.5 98.4 95.8 100 99.0 100 97.6 96.7 97.6 98.6 94.5 98.3 95.8 100 99.0 100 97.6 96.7 97.6 98.6
2% 95.2 94.2 95.5 100 98.0 100 94.6 98.6 97.5 98.8 95.2 94.2 95.5 100 97.9 100 94.6 98.6 97.4 98.8
5% 95.8 96.4 96.5 100 95.4 99.0 95.2 100 97.9 98.2 95.7 96.4 96.5 100 95.4 99.0 95.1 100 97.9 98.2

SH: Sinkhole, BH: Blackhole; GH: Grayhole; DA: DIS Flooding; IR: Increase Rank; WH: Wormhole; DS: DIO Suppression; WP: Worst Parent; VN: Version Number;
NA: Neighbour Attack; N: Total number of nodes; M: Number of Malicious nodes.

be noted that our results are obtained in a much more challenging 
environment against a wider range of RPL attacks. Although our pro-
posed scheme is capable of satisfying all desirable properties in different 
scaled evolving LLNs, the placement of our ANIDS needs to be optimised 
in the RPL networks. Furthermore, the proposed scheme is only capa-
ble of detecting intrusions, and the prevention mechanism still remains 
an open research question. Hence, in our next works, we will propose 
an AI-enabled scheme to satisfy these needs.
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