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Abstract—The Routing Protocol for low power Lossy networks
(RPL) is a critical operational component of low power wireless
personal area networks using IPv6 (6LoWPANs). In this paper
we propose a Reinforcement Learning (RL) based IDS to detect
various attacks on RPL in 6LoWPANs, including several un-
addressed by current research. The proposed scheme can also
detect previously unseen attacks and the presence of mobile
intruders. The scheme is well suited to the resource constrained
environments of our target networks.

Index Terms—IDS, Reinforcement-Learning, RPL-attack, Ma-
chine Learning, RPL, 6LoWPAN

I. INTRODUCTION

The IPv6 over low-power wireless personal area networks

(6LoWPAN) standard enables resource-constrained devices to

connect to the IPv6 network and be reachable over the Internet.

Because of massive connectivity and significant computational

constraints of Low power and Lossy Network (LLN) nodes,

a new routing protocol called the Routing Protocol for low

power Lossy networks (RPL) has been proposed to associate

routes between LLN nodes and the IPv6 Border Router (6BR).

Routing relies on the construction of suitable Destination-

Oriented Directed Acyclic Graphs (DODAGs) using node rank

values to structure the graphs. The ranking system enables

various properties such as route discovery, loop prevention,

and overhead management, but is vulnerable to several attacks

[1], [2] that can significantly degrade resource utilisation,

routing mechanisms and general network performance. Pro-

tecting against attacks on the RPL is of critical importance

but computational limitations of LLN nodes present barriers

to the adoption of highly promising leading-edge approaches

such as those based on machine learning (ML). Here we show

how an approach based on Reinforcement Learning (RL), a

particular kind of ML, can be both effective against the range

of RPL attacks and also resource efficient.

II. RELATED WORKS AND MOTIVATIONS

With the increasing number of LLN devices a significant

number of internal and external threats against 6LoWPAN

have emerged. Securing LLNs against routing attacks using

Intrusion Detection Systems (IDSs) has become a significant

research focus. Below we classify the relevant research articles

into three categories: IDS for RPL, ML-IDS for RPL, and

RL for IDS. No extant research uses an RL-based IDS to

mitigate RPL attacks. (Some studies use RL to enhance IDS

performance against threats to different network technologies.)

Researchers have investigated the detection of RPL attacks

using signature-based, anomaly-based, and specification-based

approaches, or a hybrid of those approaches. (For a survey of

IoT-related IDS systems the reader is referred to [1].) Svelte

[7] proposes a hybrid (signature-based and specification-

based) IDS designed to monitor an LLN in a distributed

manner, collecting traffic from nodes. As Svelte addressed

only grayhole and blackhole attacks, the authors of [3] were

encouraged to develop a specification-based IDS to detect

Sybil and Wormhole attacks. In [6] a different approach to

detect wormhole attacks was taken, considering nodes to be

equipped with GPS to transfer their location information to

the centralised specification-based IDS. [6] and [8] use passive

monitoring techniques to analyse LLN traffic and detect RPL

attacks using a specification-based detection strategy. The lim-

itations of specification-based detection strategies encouraged

researchers to propose ML-IDS for mitigating RPL attacks.

In [8] the use of various ML methods (Naı̈ve Bayes, MLP,

SVM, and Random Forests) was investigated to detect version

number, sinkhole, blackhole, Sybil, and decrease rank attacks

targeting RPL using the MRHOF and OF0 objective functions

(specific performance metrics the RPL routing algorithm seeks

to optimise) [1], [18]. They evaluated their proposed hybrid

IDS over a small-scaled LLN with a single malicious node.

Similarly, [9] investigates different ML methods (J48 Decision

Tree, Logistic, MLP, Naı̈ve Bayes, Random Forest, and SVM)

and proposes a hybrid ML-IDS with passive monitoring to

detect sinkhole, wormhole, and DIS flooding. The unsuper-

vised K-means and supervised Decision Tree (DT) algorithms

are used by [10] to develop a centralised hybrid ML-IDS

capable of detecting the wormhole attack. The work of [11]

uses unsupervised Optimum-Path Forest Clustering (OPF) to

develop specification-based anomaly-based decentralised ML-

IDS to mitigate wormhole, sinkhole, and grayhole attacks.

Extant research has not proposed using RL to ensure se-

curity in the 6LoWPAN network. However, there are several

studies [12]–[17] where RL is used to enhance IDS perfor-

mance in detecting application-based attacks. They employ

Q-learning [13] and a centralised hybrid IDS to perform the

detection task over the data received through cluster heads

in the WSN. The work of [14] employs Deep RL (DRL)

for developing a centralised anomaly IDS. In their proposed

model RL is used to enhance anomaly IDS detection per-

formance. Similarly, [12] investigates different RL methods,

This paper has been accepted for oral presentation at 20th IEEE International Conference 
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TABLE I
RELATED WORKS

Scheme Method Attack Desirable Imperative Features for IDS

DF1 DF2 DF3 DF4 DF5 DF6

[3] Specification-based IDS, Highest Rank Com-
mon Ancestor

Wormhole and Sybil (Cooja) × × × × × ×

[4] Specification-based IDS with a passive decen-
tralised monitoring system Threshold-based

DODAG Inconsistency (Cooja) × × × X X ×

[5] Specification-based (Threshold-based) IDS with
a passive decentralised monitoring system

DIS Flooding (Cooja) × × × × X ×

[6] Specification-based IDS (requires geographical
information of nodes)

Wormhole (Cooja) × × × × × ×

[7] Hybrid Sinkhole and Grayhole (Cooja) × × × × × ×

[8] ML-IDS using voting technique (MLP, Random
Forest)

Version, Rank, Sybil, Decrease
Rank, Blackhole (Cooja)

× × × × × ×

[9] Hybrid ML-IDS using passive monitoring tech-
nique J48 Decision Tree, Logistic, MLP, Naı̈ve
Bayse, Random Forest, and SVM

Sinkhole, Wormhole, and DIS
Flooding (Cooja)

× × × × × X

[10] Hybrid ML-IDS (Unsupervised K-means and
supervised Decision Tree)

Wormhole attack (unknown
C++ platform)

× × × × × ×

[11] Anomaly ML-IDS Unsupervised Optimum-Path
Forest Clustering (OPF)

Sinkhole, Grayhole, and worm-
hole (unknown C platform)

× D/N D/N D/N D/N D/N

[12] Anomaly-based IDS using RL in training phase.
Experiment different RL algorithms (DQN,
DDQN, Actor-Critic, and PG)

NSL-KDD and AWID X D/N D/N D/N D/N D/N

[13] Use RL Q-learning algorithm to develop cen-
tralised hybrid IDS in WSN

KDD Cup 1999 X D/N D/N D/N D/N D/N

[14] Centralised anomaly-based IDS using Deep RL
(DRL)

NSL-KDD and UNSW-NB15 X D/N D/N D/N D/N D/N

[15] RL (Q-learning) based IDS NSL-KDD X D/N D/N D/N D/N D/N

[16] Use DRL and Q-learning to enhance IDS per-
formance through the adversarial training pro-
cedures

NSL-KDD and AWID X D/N D/N D/N D/N D/N

[17] Distributed DRL for IDS NSL-KDD, UNSW-NB15 and
AWID

X D/N D/N D/N D/N D/N

Our scheme RL-based heterogeneous hybrid IDS SH,BH,GH,IR,RA,DA,WH,DS X X X X X X
∗D/N: Different Network-technology.
∗ In the ”Attack” column, the later entries refer to available datasets that contain a variety of attacks (but these exclude RPL attacks)

namely DQN, Double DQN (DDQN), Actor-Critic, and Policy

Gradient (PG), to improve the performance of a supervised

anomaly-based IDS over the training phase. Enhancement of

IDS performance using an adversarial RL training environment

has been used by [16], [17]. In [17], researchers employ

distributed DRL to boost IDS performance and prepare it

against adversarial attack. The authors of [15] investigate the

use of model-free Q-learning in intrusion detection using the

NSL-KDD dataset.

A. Desirable Characteristics

Below we identify various desirable important characteris-

tics that could be expected of a high performing IDS in our

target domain. These are based on our own views and those

of other researchers ( [1], [19], [20]).

DF1: Adaptivity. The IDS should be capable of improving

its performance over time as data and experience increases.

DF2: The IDS should be capable of securing LLNs with

mobile normal and malicious nodes. Few studies consider

mobility in RPL attacks.

DF3: The IDS should be able to detect a wide range of

RPL attacks. Published IDS schemes address only subsets of

known RPL attacks and do not evaluate outside the chosen

subsets.

DF4: The IDS must secure 6LoWPAN against both internal

and external intrusions.

DF5: The IDS should have low network traffic overheads.

The 6LoWPAN is known for its lossy environment and

low (250kbps) bandwidth. Many existing IDS approaches

incur significant network overheads, e.g., centralised decision-

making approaches such as [8], [10].

DF6: The IDS should be able to detect known and previ-

ously unseen intrusions.

B. Our Contribution

This paper introduces a new RL-based IDS (RL-IDS) that

utilises heterogenous ML-based IDSs over the 6LoWPAN. A

variety of internal (inside 6LoWPAN) and external (over the

Internet) RPL attacks (Sinkhole, Blackhole, Grayhole, DIS

flooding, Wormhole, DIO Suppression, Increase Rank, and

Replay) are handled by our proposed approach. Our paper:

• proposes an RL-IDS to enhance the strength of distributed

ML-IDS in detecting internal and external RPL intru-

sions.

• engineers a set of features and correlates its elements with

the effects each RPL attack has on an LLN.

• evaluates different supervised and unsupervised ML al-

gorithms and develops hybrid ML-IDS approach better



suited to detection of known and previously unseen

malicious activities and attacks.

• proposes for the first time an IDS to detect Increase Rank

(IR) , DIO Suppression (DS), and Replay attacks [1], [2].

• addresses for the first time attack scenarios with malicious

mobile nodes.

• addresses for the first time both individual and combina-

tions of RPL attacks.

• evaluates the performance of the proposed scheme in

various scaled LLNs with respect to different numbers

of malicious nodes.

The rest of the paper is organized as follows. In Section

III, we present brief introductions to DODAGs, RPL attacks

and reinforcement learning. In Section IV we indicate how

informative features are developed and selected. In Section V

we describe the RL-based intrusion detection scheme, ML-

based detectors, and the development of a flexible system

using RL algorithms. In Section V-C, the simulation setup

is described and the experiments are carried out and results

reported. Finally, concluding remarks and analysis of results

are given in Section VI-B.

III. PRELIMINARIES

A. DODAG

IETF has developed the RPL routing protocol [18] to

enable routing among nodes in low power and lossy net-

works. RPL is intended to work in LLNs with a low data

rate (∼250 kbps) [1], low throughput and high packet loss

rate. Moreover, there is an assumption that links would be

lossy and occasionally unreachable for an extended period;

therefore, when the preferred path is inaccessible RPL is

required to provide an alternative route. The RPL protocol

constructs a network topology through the formation of a

Destination-Oriented Directed Acyclic Graph (DODAG). It

aims to maintain wireless communication in a large-scale

wireless sensor network for various applications, including

urban, industrial, residential [1]. In a DODAG nodes need to

communicate to the 6LoWPAN border router to communicate

with another part of the network or reach the Internet. In

LLNs it is likely there is more than one path available for

each node to communicate with the border router (root);

however, the nodes are only permitted to have one parent

(the preferred parent) with regards to the DODAG Objective

Function (OF). To build and maintain a DODAG, RPL follows

the neighbour discovery procedure using three ICMPv6 control

messages [1], [18]: a DODAG Information Object (DIO),

a Destination Advertisement Object (DAO), and a DODAG

Information Solicitation (DIS). The DIO message initiates the

formation of a DODAG. It contains information about the link,

node metrics, and OF that each node uses to nominate the

preferred parent [18]. The node metrics contain values such

as the expected transmission count (ETX) and the residual

energy [1], [18]. Periodically LLN nodes multicast DIOs to

maintain the DODAG. The ranking system in RPL is intended

to facilitate the construction of routing toward the root by

determining parent and child relations between nodes.

The selection of a parent is based on the nodes’ advertised

ranks in their DIO messages. The rank reflects the node

distance to the root; the closer they are to the root, the lower

rank they obtain regarding the OF. The OF determines how the

rank should be calculated in the DODAG; several OFs already

have been proposed to perform rank calculation in the RPL,

e.g., Objective Function Zero (OF0) and the Minimum Rank

with Hysteresis Objective Function (MRHOF) [1], [18]. The

node with a lower rank is more preferred by its neighbours as

a parent. If the receiver of the DIO message is not connected

to a parent with the same or better advertised rank, it unicasts a

DAO message to the sender of the DIO message and expresses

its interest to select that node as its preferred parent. In

response, nodes respond to the sender of DIO unicast DAO

with an acknowledgement flag enabled (DAO-Ack) to accept

the DAO request. The DIS message is designed to allow new

nodes to discover a DODAG in their neighbourhood.

The RPL has two routing modes of operation, namely,

storing mode and non-storing mode. In storing mode parent

nodes create a routing table and insert all routing entries

for all descendent nodes in its sub-DODAG. While in the

non-storing mode only the root (border router) collects and

maintains routing information of the whole DODAG. In non-

storing mode all traffic goes upward to the root, and then the

root selects the routing path to transfer packets. This causes

significant network overhead for nodes around the root [18].

B. RPL Attacks

The RPL is exposed to various types of routing attacks

[1], [2]. In RPL, intruder alters DODAG control packets’

configurations (node’s rank, version number, DODAG config-

uration etc.) to manipulate the confidentiality, integrity and

availability (CIA) of data in 6loWPAN [1], [2]. In general,

the intruder may disrupt LLN by altering the DIO packet

(Sinkhole, Blackhole, Grayhole, and Increase Rank attacks),

replaying collected altered control packets (Wormhole and

Replay attacks), or flooding control packets (DIS flooding

and DIO Suppression attacks). In our previous paper [1], we

provide a comprehensive analysis of existing RPL attacks.

Additionally, they [2] provide a detailed overview of RPL

intrusions.

C. Reinforcement learning

Reinforcement learning is an important area of machine

learning that enables an agent to interact with its environment

and learn through a trial and error process by receiving

feedback from the actions it takes. Specifically, it helps an

agent/decision-maker learn the system’s dynamic through ob-

servations and interactions with the environment. The envi-

ronment is everything outside the agent. The agent receives

the observation (current state st) and the reward (rt) from

the environment at each iteration and follows its action value-

function (Q) to take the action that increases the long-term

reward. The action is the thing that agent can do in the

environment given it is in the current state. The action value-

function qπ(st, at) informs the agent how taking the action



Fig. 1. Features’ Correlations.

at is good (in terms of expected return) at the given state

st while following policy π. The reward (rt) can be positive

or negative (penalty) and indicates to the agent how well the

agent has behaved.

In RL a transition function can be formulated as a Markov

Decision Process (MDP), a mathematical framework for

modelling sequential decision-making. MDP characterises the

agent interaction with its environment in a sequential decision-

making process; the environment computes transition and

rewards, and the agent generates the policy. The policy π is

probability distribution that forms the behaviour of the agent.

Formally, π is defined as π(a|s) = P [At = a|St = s].This

is Markovian because the actions depend only on the current

state, not how the system got into that state. (Markovian means

memoryless.)

There are different approaches for computing policies and

value-functions, namely look-up tables and approximation

methods [12]. Since 6LoWPAN has a continuous environment,

using a look-up table would be a highly resource-intensive

task. Therefore this paper uses the DQN and DDQN approx-

imation method.

IV. FEATURE ENGINEERING

The data elements that feed into our decision making algo-

rithms are generally referred to as ’features’. Obtaining sets

of high performing informative features is generally referred

to as Feature Engineering (FE). We have identified a variety

of potential features and determined how correlated they are

with the effects of the various RPL attacks considered. This is

illustrated in Fig. 1, using the Pearson Correlation Coefficient’s

absolute value.

Enhancing algorithm accuracy and interpretability is the

main aim of feature selection methods [21]. Feature selec-

tion may improve accuracy and efficiency. Feature selection

reduces the memory footprint necessary for storing and exe-

cuting the models and storing the raw data to a lesser degree.



Similarly, it can reduce run-time, both during training and

prediction. This study employs feature selection methods for

constructing and selecting subsets of features to generate a

good predictor.

In roughly normally distributed and categorical data, the

predominant advice is to use Chi-Square. Mutual information

and Gini Impurity are also reasonable options to consider.

The Analysis of Variance (ANOVA) works well for categor-

ical features (independent variables) and a continuous target

(dependant variable); Pearson’s R2 works well for continuous

features and a continuous target.

Since the RPL traffic dataset contains both continuous and

categorical features and a categorical target, we use filter

method feature selection Chi-square, Gini impurity to reduce

the feature set’s size and make it less costly in terms of time

and computational resources. The Wrapper feature selection

methods are computationally expensive [21]; therefore, this

study avoids implementing such methods. Based on our ex-

periments, chi-square is fast and can avoid over-fitting while

it is computationally inexpensive compared to other feature

selection methods.

The Chi-square (X2) [22] is a statistical filter method

that measures the deviation from the expected distribution

considering the feature event is independent of the target value.

X2 measures how expected count (E) and observed count

(O) deviate from each other Eq. 1. The intuition is that if

the feature is independent of the target, it is uninformative for

classifying observations.

X2 =
∑

i,j

(Oij − Eij)
2

Eij

(1)

V. PROPOSED SCHEME

In this section, we present the proposed IDS methodology

for 6LoWPAN networks. Since LLN nodes have limitations in

terms of the computational resources, hence they cannot afford

the computational requirements of extensive ML algorithms.

This paper seeks to address the above issue by proposing

an RL-based intrusion detection scheme that uses several

lightweight ML-based detectors for analysing 6LoWPAN traf-

fics. Each ML detector trains over a subset of the training

data that includes different proportions of attacks. Therefore

each detector may have various strengths and weaknesses

in detecting the various RPL attacks. The proposed method

uses an RL algorithm to identify the appropriate detector

for analysing current network terrific. Fig. 2 illustrates the

proposed scheme design.

A. ML-based Intrusion Detection

Machine learning (ML) is an intelligent method that opti-

mises system performance using sample data. More precisely,

ML algorithms build models of a problem by applying math-

ematical techniques on sample data sets. The sheer amount

of data generated in LLN can make ML bring intelligence

to the system for various purpose, including security. ML

algorithms are mainly supervised and supervised methods. (In

supervised approaches data is labelled with its actual class. In

unsupervised approaches it isn’t.)

The number of features, training samples, and parameters of

ML algorithms play vital roles in defining classifiers’ complex-

ity over training and prediction phases. The higher number of

features and training data increase algorithm complexity sig-

nificantly and cause an adverse effect on model generalisation.

Although increasing the ML algorithms’ sensitivity (assigning

higher depth in the decision tree, C value in SVM, smaller

k in KNN etc.) may enhance model detection performance,

it increases the model’s complexity dramatically and leads

to over-fitting [19]. Table II shows the complexity (O) of

different ML classification algorithms [19].

This research employs both signature-based and anomaly-

based IDS (hybrid IDS) [1] to detect known and unknown

intrusions efficiently. The RPL attack detection ability of

various supervised and unsupervised ML algorithms is in-

vestigated, Fig. 6. Some of these ML algorithms provide

a slightly better performance, but this comes with the cost

of more computational complexity and exhaustion that many

LLN nodes cannot afford [19]. Since IoT has a heterogeneous

node with different computational resources, this research

picks various ML algorithms over the LLN to analyse RPL’s

communications.

TABLE II
ML ALGORITHMS’ COMPLEXITY

Algorithm Training Prediction

Decision Tree
(DT)

O(n2p) O(p)

Support Vector
Machine
(SVM)

O(p2n+ p3) O(nsvp)

k-Nearest
Neighbours
(KNN)

O(np) O(np)

Gradient
Boosting (GB)

O(npntrees) O(pntrees)

Q-learning - O(n3)
k-Means Clus-
tering

Zero(negligible) O(n2)

Neural
Network

- O((pnl) + (nl1)(nl2) + ..)

Random Forest
(RF)

O(n2pntrees) O(pntrees)

n = number of training samples; p = number of features; O = complexity;

B. Reinforcement Learning-based IDS

Supervised and unsupervised ML algorithms mainly focus

on data analysis problems, while RL is preferred for com-

parison and decision-making problems [12], [13], [19]. Fast

convergence, finding the action-value function Q(s, a) and

optimal policy (π∗) are the main challenges in implementing

RL algorithms in a dynamic environment like LLN. The

tabular RL methods, such as Temporal Difference, SARSA,

and Monte Carlo, are exhaustive and inefficient methods for

continuous environments that have large state space. The

6LoWPAN has a non-stationary (continuous) environment



Fig. 2. RL-IDS.

with an infinite number of states. Applying tabular methods

reduces IDS efficiency and increases its computational needs

since the agent will use a lookup table for taking action in each

state. Therefore an RL approximation method is required to

make the system generalise in the face of unforeseen states and

reduce the system complexity. This paper practises DQN and

DDQN algorithms to find an optimum policy (π∗) that result

in the maximum long-term reward (r). The aim is to yield

a policy that delivers optimal long-term returns. The policy

(π) represents a probability distribution over actions given the

current state (packet).

The DQN and DDQN are model-free off-policy value-based

RL algorithms. The model-free algorithm does not build a

model of the environment to generate policy. The model-

free algorithms are suitable options for LLN since building

the environment’s dynamics is an expensive and unnecessary

task. In off-policy learning, the agent can explore freely - its

actions need not correspond to the current policy. In the DQN

algorithm (Algorithm 1), the Deep Learning (DL) uses a Q-

function (Q(s, a)), also known as the action-value function,

to approximate the value of taking a specific action (at) in

the given state (st) to help RL in finding the optimum policy

(π∗). Since there is no relation between sequence of states in

6LoWPAN (st+1 is not the result of the action the agent has

taken at st), the discount value (γ) is assigned as 0.001 in this

paper.

The Deep Q-Network (DQN) approximates the Q function.

The DQN with probability ε selects a random a and with

probability 1−ε select optimal Q-function (Q∗), (2). Executing

selected action at the agent observes next state st+1 and

reward rt and store (s, a, r, st+1) in the replay buffer D.

Algorithm 1 shows how DQN functions.

Although there is a slight correlation between the incoming

network terrific, the experiment replay strategy [23] is em-

ployed to guarantees the data are Independent and Identically

Distributed (IID) to avoid significant oscillations or diver-

gence. The replay buffer D is a data structure including agent

experiences e1, e2, . . . , en where et = (st, at, rt+1, st+1).

Q∗(s, a) = argmax
π

(s, a) (2)

This paper implements a lightweight Neural Network (NN)

consisting of two hidden layers using the ReLU activation

function to approximate the Q-function. If the selected action

at (ML-based IDS detectors) makes a correct classification

of the current state st (packet), the reward is one and -1

otherwise. Since in this paper, the states (packets) are not

sequential (the packet that the agent receives at st+1 is not

the result of the action that the agent has taken at the previous

time step st, the γ value assigned is near to zero (0.001).



To train the NN, the loss function needs to be determined.

Since the goal of NN is to predict Q(s, a), this paper uses the

squared difference between the actual action-value function

and the prediction, (3) where θ represents the Q-function’s

parameter, i.e., the trainable weights of the network. The

model aims to decrease the error and make current policy

outcomes closer to the true Q-values. Therefore the model

performs gradient (∇) descent over loss function using (4)

where Qtarget = (r + γmax
a
′

Q(s
′

, a
′

; θ−) .

L(θ) = Eπ[(r + γmax
at+1

Q(st+1, at+1; θ)−Q(s, a; θ))2] (3)

∇θiLi(θi) = E(s,a,r,s′∼U(D))[Qtarget−Q(s, a; θi))∇θiQ(s, a; θi)]

(4)

Fig. 3. System Architecture.

DDQN adds double learning to the DQN agent by using

two Neural Networks (NNs). DDQN implementation and

hyper-parameters are identical to DQN, and both use the off-

policy Temporal Difference (TD) target [24]. However, DDQN

employs two NNs, one for action prediction and another for

action evaluation. Moreover, instead of MSE, DDQN uses

Huber loss for loss calculation. Huber loss tunes between MSE

and Mean Absolute Error (MAE) using the parameter δ as

threshold value [25].

We experiment with different epsilon (ε) values in this

research; a higher ε value leads to exploration and taking less

selected actions (detectors). This can help the model identify

undiscovered ML classifiers that are precise in analysing

particular types of network traffic and RPL attacks. Exploiting

enhances the system performance by selecting actions (detec-

tors) that have proven to be good at detecting particular types

of attacks. Balancing exploration and exploitation by tuning

the ε (0 < ε < 1) value is vital in designing an efficient

system. The agent with probability epsilon (ε) explores and

with (1− ε) exploits. The best strategy is to initialise epsilon

as a high value for more exploration and decay it over time

to select greedy actions and accumulate more rewards. This

study experiments with different exploration-exploitation, ε

association strategies (softmax, linearly decaying ε value, etc.)

and found that the exponentially decaying ε-greedy strategy

[26] provides optimal performance.

Algorithm 1 Deep Q-learning with experience replay

Initialisation

Initialise replay memory D to capacity N

Initialise action-value function Q with random weights θ

Initialise target action-value function Q̂ with weights θ− = θ
for episode=1, M do

Initialise sequence s1 ={x1} and preprocessed sequence

φ1 = φ(s1)
for t=1, T do

With probability ε select a random action at
Otherwise select at = arg maxaQ(φ(st), α; θ)
Execute action at in emulator and observe rt and

xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 =
φ(st+1)
Store transition (φ, at, rt, φt+1) in D

Sample random mini-batch of transitions

(φ, at, rt, φt+1) from D

if episode terminates sj+1 then
yj = rj

else

yj = rj + γmaxa′Q̂(φj+1, a
′; θ−)

Perform a gradient descent step on (yj−Q(φj , aj ; θ))
2

with respect to the network parameters θ Every C

steps reset Q̂ = Q

The computational complexity of Deep Q-Network (DQN)

depends on different factors: the number of hidden layers,

the number of neutrons per layer, etc. In DQN and Double

DQN (DDQN), the environment has continuous state space,

and computational complexity differs based on the algorithm

strategy. In DQN using the experience replay method, the

batch size defines the complexity [19].

TABLE III
SIMULATION PARAMETERS

Parameters Values

Simulator Tetcos Netsim V12.2

Number of nodes 16, 32, 64, 128

Number of Malicious nodes ∼ 10%,∼ 20%,∼ 30%
Number of Workstations 4, 8

Transmission Range 50m

Number of ML detectors ∼ 10%
Scenario Dimension (Terrain) (250 × 250) to (850 × 850) s.meters

Traffic Rate 250 kbps

Simulation time 1,800 ∼ 21,600 seconds

Application Protocols COAP, CBR

RPL mode Storing and Non-storing

Mobility Modes Random Walk, Group Walk

Path Loss Model Log Distance, Exponent(n): 2

Distance between LLN Neighbors 25 ∼ 45m
Objective Function (OF) OF0, MRHOF, LQ

Receiver Sensitivity -85 dBm



C. Simulation Experiments

a) Exploring Datasets: In this paper, the dataset is gen-

erated through simulations of several RPL scenarios with a

different number of malicious nodes. In each scenario, static

and mobile nodes are randomly distributed over an LLN. The

Tetcos Netsim simulator is used to simulate different RPL

attack scenarios and generate raw datasets. The imbalanced

dataset will be rectified during the pre-processing phase.

The redundant, less informative records are removed from

the dataset to make normal and malicious traffic normally

distributed in the training dataset. Some ML algorithms (SVM,

Logistic regression, etc.) are very sensitive about the scale of

data [19] ; therefore, feature normalisation (Min-Max Scalar)

and standardisation (Standard Scalar) techniques are adopted

to scale features. This prevents IDS from being over-fitted to

a particular type of traffic. The training dataset contains 48

features and 80,000 instances. The normal traffic constitutes

50 per cent of the dataset, while each attack equally has 5 per

cent of the dataset.

Algorithm 2 RL-IDS Algorithm in action

Initialisation

Spkt: Collected packet

Cpkt {DIO, DAO, DIS, DAO-Ack, Application Packet}
CIDS: Central IDS

RLalg: RL algorithm

RLagent: RL agent
IDSad collect Spkt from a LLN node

if Spkt ∈ Cpkt then
D1 ← IDSad.analyse(Spkt)
if D1 = Abnormal then

Transfer Spkt → RL Agent

Regarding RL function-approximation algorithm (DQN

or DDQN) compute a← argmaxQ∗(st, a) (select IDS

agent) given current state st (Spkt)

Take action ’a’, (Transfer Spkt → IDSi[a])
D2 ← IDSi.analyse(Spkt)

Send D2 → RL agent

if D2 = Abnormal then
Transfer the alarmed packet (Spkt) to CIDS and

notify Administrator

if CIDS.analyse(Spkt) = intrusion then
Send Reward (+1) → RLagent

Notify Administrator

else
Send Penalty (-1) → RLagent

RLagent receives feedback from CIDS and up-

dates Q-function

b) Data Preprocessing: The data pre-processing reduces

dataset complexity for ML algorithms; therefore, the ML

algorithm can be trained over the pre-processed data faster

and more efficiently than the raw data [27]. In this paper, the

data-processing constitutes data reduction, feature engineering,

normalisation, and data sampling [27].

Fig. 4. Simulation Environment.

TABLE IV
ENGINEERED FEATURES

Feature Description

pkt type Type of packet (DIO, DAO, DIS, App etc)

pkt status Packet status

dio count No. of DIO advertised by sender

avg hopcount Average No. of hopcount (global perspective)

dis count No. of DIS unicasted/multicasted by sender

dao count No. of DAO unicasted by sender

daoack count No. of DAO-Ack unicasted by sender

neighbour count No. of neighbouring node

child count No. of children

avg intpkt time Average delay between packets

rank alteration count No. rank alteration

cmp sender parent lq Compare link quality of sender with its parent

snd ctrl count No. control packet transferred by sender

cmp lq compare if sender has lower link quality than
current node but advertise better rank

rcv dao count No. of DAO received by current node

rcv dio count No. of DIO received by current node

rcv dis count No. of DIS received by current node

rcv daoack count No. of DAO-Ack received by current node

trans app count No. of application packet transferred by sender

pkt e2e delay packet end-to-end delay

pkt loss Application packet loss ratio

cpkt loss Control packet loss ratio

src rank Sender rank in DODAG

adv vn advertised version number

rx sens Average receiver sensitivity

tx power Average transmission power

rssi Received signal strength indicator of sender

same parrent sender has same parent as detector node

rcv cpkt count No. of control packets received by sender node

prt bst lq Current parent provide best link quality

c) Data Generation: This paper uses Tetcos Netsim

Simulator to simulate normal, and anomalous RPL traffics,

Fig. 4. The Netsim is an eminent paid license software known

for accurate simulation of different network technologies,

including 6LoWPAN. This paper simulates several networks

scenarios (using the scenario generator feature of simulator)

for each type of RPL attack with different static and mobile

nodes, from 8 to 128 nodes. Concerning the network’s scales

and the number of normal nodes, 10% to 30% of nodes

associate as malicious nodes in scenarios. In Wormhole and

DIS flooding attacks, half of the malicious nodes associated



Fig. 5. Evaluation results of Heterogeneous and Homogeneous ML detectors.

as external intruders. In all scenarios up to 10% of nodes

considered as IDS detectors in simulations. To generate a

sufficient amount of malicious and normal traffics, based on

the type of RPL attack each scenario is simulated for 1,800

to 21,600 seconds.

d) Feature Construction: Feature construction, also re-

ferred to as feature engineering, emphasises that engineering

salient features from the observed traffic leads to enhancement

in classification. Every observed network packet contains

different information about node configurations and identity.

Training using the identity information of nodes leads to over-

specialisation (over-fitting). Therefore such features should be

excluded from training datasets. Constructing features based

on nodes’ geographical location [6], computational resource

usage (CPU, RAM, ROM usages) [8], and power consumption

[8], [9] can exhaust LLN nodes’ resources [1]. Moreover,

this significantly increases network overhead [28] on the LLN

because nodes need to transfer such logged information to the

IDS.

The header of RPL control packets (DIO, DAO, DIS, and

DAO-Ack packets) contains information about node configu-

rations, version number, advertised rank [1], [18]. Extracting

information from these unicasted/multicasted control packets

can help in constructing several features, described in Table

IV. The engineered features play a vital role in improving the

proposed IDS performance in detecting each RPL attacks.

VI. EXPERIMENTAL METHODOLOGY

The proposed scheme employs both signature-based and

anomaly-based ML algorithms to enhance the performance of

IDS in detecting known and unknown intrusions. The pro-

posed hybrid RL-IDS uses a passive decentralised monitoring

technique [28] using a cluster-based placement [29] strategy to

analyse 6LoWPAN traffics. The intended flow of the proposed

scheme is shown in Fig.3, the algorithm itself is described

in Algorithm 2. We now evaluate the performance of the

proposed method over 6LoWPANs with respect to different

configurations and numbers of malicious nodes to affirm the

integrity of results.

To evaluate the performance of the proposed scheme in

detecting RPL attacks, four experiments (denoted as Exp1-



TABLE V
EVALUATION RESULTS, TRUE POSITIVE RATE AND FALSE NEGATIVE RATE

N M TPR FNR
SH BH GH DA IR WH DS R SH BH GH DA IR WH DS R

16
10% 99 99 100 100 93 100 92 100 1 1 0 0 7 0 8 0
20% 95 97 98 100 100 100 98 99 5 3 2 0 0 0 2 1
30% 95 94 97 100 94 99 99 100 5 6 3 0 6 1 1 0

32
10% 92 98 94 100 98 100 98 94 8 2 6 0 2 0 2 6
20% 99 98 98 100 99 100 100 100 1 2 2 0 1 0 0 0
30% 97 98 99 100 98 92 100 98 3 2 1 0 2 8 0 2

64
10% 99 98 93 100 97 95 84 100 1 2 7 0 3 5 16 0
20% 91 90 94 100 98 100 93 97 9 10 6 0 2 0 7 3
30% 92 90 93 100 95 99 99 100 8 10 7 0 5 1 1 0

128
10% 99 95 96 100 98 99 94 95 1 5 4 0 2 1 6 5
20% 100 92 99 100 97 99 92 99 0 8 1 0 3 1 8 1
30% 99 96 99 100 98 99 95 99 1 4 1 0 2 1 5 1

SH: Sinkhole, BH: Blackhole; GH: Grayhole; DA: DIF Flooding; IR: Increase Rank; WH: Wormhole;
DS: DIO Suppression; R: Replay; N: Total number of nodes; M: Number of Malicious nodes;

TABLE VI
EVALUATION RESULTS, TRUE NEGATIVE RATE AND FALSE POSITIVE RATE

N M TNR FPR
SH BH GH DA IR WH DS R SH BH GH DA IR WH DS R

16
10% 99 99 85 100 99 95 99 93 1 1 15 0 1 5 1 7
20% 100 96 99 100 100 100 98 100 0 4 1 0 0 0 2 0
30% 96 99 100 100 100 99 100 100 4 1 0 0 0 1 0 0

32
10% 91 94 85 100 99 100 90 99 9 6 15 0 1 0 10 1
20% 100 100 99 100 99 100 100 100 0 0 1 0 1 0 0 0
30% 100 100 99 100 99 97 100 99 0 0 1 0 1 3 0 1

64
10% 88 88 97 100 99 99 88 100 12 12 3 0 1 1 12 0
20% 98 100 98 100 97 100 100 98 2 0 2 0 3 0 0 2
30% 98 95 96 100 98 100 100 99 2 5 4 0 2 0 0 1

128
10% 99 100 99 100 99 98 99 100 1 0 1 0 1 2 1 0
20% 100 100 100 100 98 95 99 98 0 0 0 0 2 5 1 2
30% 100 100 100 100 99 97 99 99 0 0 0 0 1 3 1 1

SH: Sinkhole, BH: Blackhole; GH: Grayhole; DA: DIF Flooding; IR: Increase Rank; WH: Wormhole;
DS: DIO Suppression; R: Replay; N: Total number of nodes; M: Number of Malicious nodes;

Exp4) are conducted over different network configurations.

In this regard, in Exp1 we evaluate the performance of the

proposed scheme using different homogeneous algorithms.

Exp 2 evaluates the performance of the proposed RL-IDS

using various heterogeneous ML detectors for detecting RPL

attacks. Different scaled LLNs have been simulated with

10% ∼ 30% of malicious nodes. Exp 3 aims to evaluate the

performance of RL-IDS using heterogenous detectors (hybrid

detection strategy) in detecting unknown intrusions. Finally, in

Exp 4, the performance of the proposed RL-IDS is evaluated

against different types of RPL attacks using heterogeneous

detectors, while 20% of nodes, including half of the malicious

nodes, were mobile and in movement. All results are obtained

from ten executions of each experiment.

This study evaluates the performance of RL-based IDS in

terms of True Positive Rate (TPR), False Negative Rate (FNR),

True Negative Rate (TNR), False Positive Rate (FPR), Accu-

racy (Acc), Precision (Pre), and F1 measure. The performance

results are presented in Section VI-A. Here we use similar

evaluation metrics as described in [1].

A. Experimental Setup

a) RL-IDS with homogenous detectors: In the first ex-

periment, we aim to evaluate homogenous ML algorithms’

performance in detecting RPL attacks to discover the best

combination of ML-detectors for hybrid heterogeneous RL-

IDS. The parameters of each ML algorithm are configured

to produce lightweight detectors with low complexity in the

system. Each detector uses the chi-square feature selector to

obtain four features. Since each training batch includes a

different proportion of each RPL attacks and normal traffic,

the chi-square nominates a different set of features for each

ML detector. This paper evaluates RL-based (DQN [25] and

DDQN [24]) homogenous DT, KNN, K-means, SVM, and

Logistic Regression (LR). The performances of different ho-

mogeneous ML algorithms using DQN and DDQN over ten

runs are depicted in Fig. 5. In each run we consider 10%

of nodes as IDS detectors. The performance of the proposed

RL-IDS is the result of ten runs.

b) RL-IDS with heterogeneous detectors: Since each IDS

detection strategy has unique strengths and weakness [1], [20],

this paper develops RL-based IDS with hybrid heterogenous

ML detectors to incorporate the strengths of signature-based



Fig. 6. Evaluation results of Homogeneous ML detectors over all RPL attacks.

and anomaly-based IDSs. The combination of SVM, One-

class SVM, DT, K-means, KNN, and LR has developed

to identify RPL attacks. The heterogeneous hybrid ML can

provide optimum performance when we use an RL algorithm

(DQN) for action-value selection, Fig. 5. To measure the

performance of the proposed scheme against LLN’s with

different proportions of malicious nodes, we evaluate the

performance of heterogeneous RL-based IDS against LLN’s

with different configurations, Table III, Table V and Table VI

show the results of Exp 2.

c) Unknown Attack Detection: Table VII indicates how

our proposed IDS approach detects RPL attacks that were not

present in the training dataset. We select each attack type in

turn, train our system on the remaining 7 attack types, and

then evaluate how well the trained system detects the omitted

attack type (i.e. the evaluation set comprises only that attack

type). To the best of our knowledge, extant research does not

address this issue [1].

TABLE VII
UNKNOWN ATTACK DETECTION

Unknown Performance Metrics

Attack Acc Pre TPR FNR TNR FPR

SH 87.3 87.7 92 8 82 18

BH 88.8 89 85 15 93 7

GH 95.8 95.9 98 2 94 6

IR 94.8 95.2 90 10 100 0

DA 100 100 100 0 100 0

WH 98.7 98.8 97 3 100 0

DS 94.9 95 92 8 97 3

RA 87.96 88.88 96 4 80 20
∗Acc: Accuracy; Pre: Precision.

Fig. 7. Performance of hetrogenous RL-IDS in mobile scenarios.

d) LLN with mobile nodes: Only a few studies in the

literature [1], [20] consider mobility among LLN nodes while

mitigating some RPL attacks (SH, GH, DA, Sybil and Clone

Id). To the best of our knowledge, there is no research that con-

siders malicious mobile nodes on 6LoWPAN. In this paper we

take an initial step to shed light on the rationale underlying this

prominent issue. In this regard, we measure the performance

of the proposed RL-based IDS with heterogeneous detectors

against different RPL attack scenarios (SH, BH, GH, DA, DS,

IR, WH, and RA) with 20% of nodes, and half of the malicious

nodes, being mobile. Fig. 7 shows the performance of the

proposed scheme.

B. Analysing results

Both the DQN and DDQN converge to optimal policies in

the proposed scheme; however, DQN converges faster than

DDQN with lower bias and variance, as shown in Fig. 5.

The proposed scheme provides an adaptive, robust intrusion

detection solution (DF1) against RPL attacks. The adaptivity

and robustness of the deep reinforcement learning not only



helps the IDS to become flexible against various types of

known intrusions but also makes them effective in detecting

unknown intrusions, as shown in Table VII (DF6). From

the evaluation results (shown in Fig. 6 and Tables V and

VI), we can argue that the proposed RL-IDS is effective

against different RPL attacks for the networks with different

configurations. Fig. 7 shows that heterogeneous RL-IDS is

effective in detecting malicious nodes in mobile scenarios

(DF2). Although all homogeneous detectors VI-A0a converged

to the optimal policy after 20 to 40 episodes, heterogeneous

detectors using RL-based IDS converge faster with better per-

formance in the detection of known and unknown intrusions.

This is because heterogeneous detectors use a combination of

signature-based and anomaly-based ML detectors to develop

hybrid RL-IDS. Both Table VI and Table V show that the

proposed hybrid RL-IDS can provide an LLN with security

against different internal (SH, BH, GH, IR, DA, WH, DS,

and RA) and external (DA and WH) intrusions (DF3-4).

Nevertheless, to ensure low overhead over LLNs (DF5) the

proposed scheme uses the passive decentralised monitoring

with ita RL-based IDS.

VII. CONCLUSION

We have presented a new RL-based IDS that employs hybrid

heterogenous lightweight ML detectors to passively monitor

6LoWPAN traffic. Our approach has exhibited comprehensive

feature engineering and has been shown to detect a much

greater range of RPL attacks than extant research, including

several previously unaddressed attacks. The work also ad-

dresses for the first time combinations of attacks. Also, as far

as we are aware, evaluation against previously unseen RPL

attacks has never been demonstrated in the literature.
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