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Chapter 1

Introduction

It’s a commonplace nowadays that beliefs come in degrees, though this isn’t uni-
versally accepted. There are some holdouts—those who say the recent uptick of
interest in “credences” and “subjective probabilities” is yet another philosophical
fad that will eventually run its course. But that’s hardly plausible. A very large
body of work across a wide range of disciplines developed over many decades
depends on the presumption that our beliefs—or something closely linked to our
beliefs—admit of degrees and, moreover, that it makes good sense to represent
those degrees numerically. These numerical representations of belief are far too
useful for far too much to be just a passing trend.

I expect most readers will agree with me about that. But what we’re much
less likely to agree on is what the numbers mean. What is the underlying psycho-
logical reality to which these numerical representations supposedly correspond?
Perspectives on this matter vary wildly. For some, degrees of belief are under-
stood to be explicit, on-the-fly judgements about the probability of an event,
or a conscious attempt to put a number on the weight of one’s evidence, or the
intensity of some confidence phenomenology when contemplating a possibility.
Others will, like myself, think of degrees of belief as implicit attitudes—attitudes
that may be present and playing a role in your cognitive economy even if you’re
not consciously aware of their doing so, and even if they’re not readily accessible
to conscious introspection. But there’s a substantial variety of perspectives, too,
on how these attitudes are to be understood. If I say that Ramsey believes p to
degree 0.69, does that ‘0.69’ tell us something about p’s location in Ramsey’s
subjective confidence ordering over possibilities? Does it tell us something about
Ramsey’s willingness to bet on p? About the centrality of p to Ramsey’s web of
belief, or his dispositions to revise his opinions regarding p in the face of new
evidence? All of the above? None of the above?

An intimately related (but more constrained) question concerns what’smean-
ingful in a numerical representation of belief. What, in other words, does it take
for numerically distinct representations to nevertheless represent the same sys-
tem of beliefs? Most are happy to suppose there’s no uniquely correct way to
represent degrees of belief within a numerical framework, just as there’s clearly
no uniquely correct way to numerically represent lengths, or temperatures, or
desirabilities. As Builes et al. recently put it,



. . . there’s nothing “0.69-ish” about my degree of confidence in p,
beyond the fact that 0.69 can serve as an adequate representation of
my degree of confidence within a particular representational system.
But 69, for example, or 732.6 for that matter, would work just as
well, provided the system was structured in the right way. (2022, 7)

But what it is for the representational system to be “structured in the right
way” is about as clear as mud. Here, as before, we find plentiful variation and
disagreement. The most common numerical representations of belief make use
of credence functions—mappings from propositions to real values between 0 and
1. It usually goes without saying that the relation induced over the propositions
by their numerical ordering in a credence function is intended to correspond to
relative strengths of belief regarding those propositions. But is that the extent
of the meaningful information captured in a credence function? That is, if two
credence functions are ordinally equivalent, does it follow that they are therefore
equivalent in meaning? If so, then we’d probably better get started on revising
the many theories of rational belief and decision-making that presuppose mean-
ingful differences between ordinally equivalent credence functions! On the other
hand, if there’s more to the meaning than just the numerical orderings, then
exactly what additional structure is relevant—and why?

These are questions about the measurement of belief, which is subject of this
Element. In summary: what do our numerical representations of belief actually
represent, how exactly do they represent it, and under what conditions are such
representations meaningful?1

Broadly speaking, there’s two main approaches to the measurement of belief.
According to what I’ll be calling the epistemic approach, a system of beliefs
admits of numerical representation just in case that system has a certain kind of
internal structure that can be mirrored in an appropriate numerical framework.
A rather different tack—the decision-theoretic approach—focuses not so much
on the internal structure of the belief system but instead on the relationship
between beliefs, desires, and preferences in the context of decision-making. Both
the epistemic approach and the decision-theoretic approach can be spelled out
in many different ways, but very roughly the difference between them amounts
to whether the numerical representability of a system of beliefs is (a) a matter of
those beliefs having a certain kind of internal coherence, or (b) a matter of those
beliefs relating to preferences and desires in a coherent way. These approaches
can have very different implications regarding what should and should not be
considered meaningful in our numerical representations of belief, and they can
likewise diverge significantly when it comes to what an agent must be like in
order for their beliefs to admit of such representations in the first place.

1The reader will note that these are not questions about the empirical process of measuring
beliefs—e.g., via observations of betting behaviour or survey responses. We’re talking about
measurement in the abstract sense of assigning numbers to represent quantities. The ambiguity
is unfortunate, but at this point well-entrenched in the literature. I’ll have more to say about
this in Chapter 3. For now, just think of the topic as relating primarily to meaningfulness in
numerical representations of belief.
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Cards on the table: I prefer the decision-theoretic approach. More carefully, I
think that the decision-theoretic approach generally supplies us with the best way
to interpret numerical representations of belief in the Bayesian tradition, espe-
cially in decision-theoretic contexts but also in the context of much (if not most)
traditional Bayesian epistemology.2 The basic reason for this is that standard
Bayesian theories and models, and many arguments in that tradition, routinely
make assumptions about meaningfulness that are hard to make sense of given the
most common epistemic approaches. Further, while there are some less common
epistemic approaches that can in principle support richer claims about meaning-
fulness (e.g., the multiprimitive structures discussed in §5.3), these are still very
underdeveloped and ultimately strike me as comparatively unmotivated.

But I’ll not spend a great deal of time arguing in favour of my own approach,
nor arguing against the competitors. I mean—I’ll do a little of that here and
there, and my biases will surely be apparent in parts of the discussion, but the
main purpose of this work is expositional rather than argumentative. So I’ll focus
much more on explaining what the epistemic and decision-theoretic approaches
are, highlighting some of the possible variation within those two approaches, and
the implications they have regarding what kinds of numerical representations are
possible, when they’re possible, and what ought to be considered meaningful in
those representations.

The remainder of the discussion proceeds as follows. Chapter 2 introduces
some key concepts from the representational theory of measurement, while Chap-
ter 3 provides some clarifications and general assumptions regarding a theory of
belief measurement. We then turn to the epistemic approaches: Chapter 4 covers
the simplest version of the epistemic approach, built around binary comparative
confidence relations, while Chapter 5 gives an overview of several alternatives.
Finally, Chapter 6 gives an overview of the decision-theoretic approach, discusses
one particular version (due to Frank Ramsey) in some detail, and addresses some
common misunderstandings and objections.

2The claim here is about the majority of contexts in which numerical representations of belief
actually appear, historically and today. I’m not asserting that the decision-theoretic approach
is always or necessarily the correct approach. It would be implausible to presume that there’s
only one proper way to understand the numerical representation of belief for all theoretical
contexts, and no doubt there will be many applications for which one or another epistemic
approach would be perfectly apt (cf. §2.4, on conventionality in measurement).
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Chapter 2

Representation and

Measurement

We find it abundantly useful to express many physical facts using numbers and
numerical relations. There’s no great mystery to this, even for the mathematical
Platonist who thinks that numbers and numerical relations are abstracta and
not present in the physical world in the same manner as electrons or chairs or
gravitational attraction. When I say I’ve gained at least 2 pounds thanks to all
the nice food at recent conference, which is more than twice as much as what I
gained at the last conference, I’m using those numbers and numerical relations to
refer to and reason about my ever-increasing weight. These claims aren’t made
true by virtue of any little numbers attached somewhere to my body, slowly and
inevitably going up over time. Rather, the numbers and numerical relations serve
as abstract stand-ins for physical properties and physical relations, and they do
this by virtue of some structural similarity between them.

What we call quantities are determinable properties whose determinates have
a certain salient relational structure that renders them ripe for numerical repre-
sentation. Length, for instance, is a determinable attribute, with determinates—
the specific lengths—sharing higher-order relations between them that can be
usefully represented within a numerical framework. For any two physical objects
o and o′ and a fixed orientation for each, either (a) o will be at least as long as o′,
or (b) o′ will be at least as long as o, or (c) both (i.e., they’ll be as long as each
other). Here, the at least as long relation holds between physical objects, but we
can also understand it as a second-order relation between the length attributes
directly. Say that any two objects have the same length, L, if each is at least as
long as the other. Say next that L is at least as long as L′ just in case any object
with property L is at least as long as any object with property L′. We can then
associate the lengths L and L′ with numbers x and y in such a manner that L
is at least as long as L′ just in case x ≥ y.

In this example, the lengths L,L′ and the at least as long relation between
them are said to be qualitative, whereas the numbers x, y and the ≥ relation
between them serve as their numerical representations. Think of a qualitative
property or relation as one that can be characterised without explicit reference
to numbers or numerical relations. So ‘qualitative’ here contrasts with ‘numeri-



cal’, not with ‘quantitative’—the idea being that quantities can be characterised
either in qualitative terms or in numerical terms, with the latter being possible
precisely because the abstract numerical stuff shares a structure in common with
the real-world qualitative stuff it represents.1

The purpose of this chapter is to expand on that initial idea and make it more
precise. More generally, the goal is to introduce some key concepts for discussing
the numerical representation of quantities. I start with the fundamentals of the
Representational Theory of Measurement (RTM).2

2.1 Preliminary concepts

I presume familiarity with predicate logic, and with the elementary concepts and
notation of set theory. Much of what follows will revolve around properties of
binary relations and operations, though, so the following are worth stating:

Definition 2.1 An n-ary relation on a set X is a subset of Xn. Where R ⊆
X×X, by convention, xRy iff (x, y) ∈ R and x ̸Ry iff (x, y) ̸∈ R. We say that R
is

• transitive iff xRy and yRz implies xRz, for all x, y, z ∈ X

• complete iff, xRy or yRx for all x, y ∈ X

• reflexive iff xRx, for all x ∈ X

• symmetric iff xRy implies yRx, for all x, y ∈ X

• asymmetric iff xRy implies not yRx, for all x, y ∈ X

• antisymmetric iff xRy and yRx implies x = y, for all x, y ∈ X

• a preorder iff R is transitive and reflexive
• a weak order iff R is a complete preorder
• a total order iff R is an antisymmetric weak order
• an equivalence relation iff R is transitive, reflexive and symmetric

Furthermore, where ≿ is defined on a set X, then x is said to be:

• minimal (in ≿) iff y ≿ x for all y ∈ X

• maximal (in ≿) iff x ≿ y for all y ∈ X

Preorders—especially weak orders—will be important. Throughout, I’ll use
≿ to represent a number of qualitative preorder relations, and I’ll use ∼ and ≻
for the symmetric and asymmetric parts of ≿ respectively. That is, I’ll henceforth
take it as read that:

• x ∼ y iff x ≿ y and y ≿ x

• x ≻ y iff x ≿ y and y ̸≿ x

1This usage of ‘qualitative’ is common in the literature. Some will say that a numerical
system is defined by its structure, and hence anything with the same structure instantiates
that system and should also be considered ‘numerical’ (e.g., Michell 2021). That may be right.
But what I have to say won’t hinge on whether ‘qualitative’ systems instantiate ‘numerical’
systems or are represented by them, and either way the terminological distinction is useful.

2The locus classicus for the RTM is (Krantz et al. 1971); see also (Suppes & Zinnes 1963),
(Pfanzagl 1968), (Narens 1985), and (Roberts 1985).
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Definition 2.2 An n-ary operation on a set X is a (total or partial) function
from Xn into X. Suppose • is a binary operation on X, so • : X×X 7→ X. By
convention, x • y = z iff •(x, y) = z, and x • y is defined iff •(x, y) is defined.
Furthermore, we say that • is

• total iff x • y is defined for all x, y ∈ X, otherwise partial
• commutative iff • is total and for all x, y ∈ X, x • y = y • x
• associative iff • is total and for all x, y ∈ X, x • (y • z) = (x • y) • z

Note that properties are just the special case of n-ary relations where n = 1,
and every n-ary operation can be recast as an (n+1)-ary relation. For example,
addition is a total binary operation on the set of real numbers R, since it maps
R×R back into R; it is also the ternary relation R on R such that (x, y, z) ∈ R iff
x+ y = z. As such, for what follows I’ll usually just write ‘relations’ rather than
‘properties and relations’ or ‘relations and operations’—but wherever I intend
to refer to operations in particular, this will be explicitly marked.

Next we need the generic notion of a relational system. This is a system
comprising a set, one or more distinguished relations on that set, and zero or
more distinguished binary operations:

Definition 2.3 Let I (⊃ ∅) and J (⊇ ∅) be index sets. Then ⟨X, Ri; •j⟩
i∈I
j∈J is

a relational system iff X is a non-empty set, the Ri are relations on X, and the
•j are binary operations on X.

The relations and operations used to characterise a relational system are known
as the primitives of that system. Note the semi-colon, used to explicitly separate
the primitive relations from the primitive operations.3

An example of a simple relational system is ⟨R,≥⟩, comprising the set R and
the primitive at least as great relation ≥ on R. A richer relational system would
be ⟨R,≥; +⟩, which includes also the primitive binary operation +. These are
what we’ll call numerical systems—they’re comprised of a set of numbers and
one or more relations thereupon. More generally, we take a numerical system to
be any relational system constructed from numerical stuff. (There’s no need to
be very precise here—some relational systems have a numerical feel about them,
and that’ll suffice for referring to them as numerical systems.) In contrast are
qualitative systems, or systems constructed from qualitative stuff. For example,
if L is the set of determinate length properties (as described at the beginning of
the chapter), and ≿ is the at least as long relation between them, then ⟨L,≿⟩
will count as a qualitative system. Likewise, for any two lengths L and L′, we let
their end-to-end concatenation, L ◦ L′, be the length L′′ of any object that’s as
long as what you get when you take two disjoint rigid objects of length L and L′

and attach them end-to-end. (See Figure 2.1.) Then ◦ will be a binary operation
on L, and ⟨L,≿; ◦⟩ will also be a qualitative system.

3I’ve followed Roberts (1985) rather than Krantz et al. (1971) for how I define relational
systems. Doing so allows for a distinction between weak and strong homomorphisms (Definition
2.4), which helps avoid some minor issues arising in connection to the representation of partial
operations and non-antisymmetric preorders.
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L L′

L′′

Figure 2.1: L′′ is the end-to-end concatenation of L and L′ (i.e., L ◦ L′ = L′′)

Henceforth, I’ll use N for numerical systems and Q for qualitative systems.
We need then a way of expressing when a qualitative relational system possesses
a similar structure to that of some numerical system, such that the latter might
be exploited to represent the former. For this we make use of structure-preserving
mappings, or homomorphisms:

Definition 2.4 Let Q = ⟨X, Ri; •j⟩ and N = ⟨Y, Si; ∗j⟩, where i ∈ I and j ∈ J.
Then φ : X 7→ Y is a weak homomorphism from Q into N iff

1. Ri is an n-ary relation iff Si is an n-ary relation
2. (x1, . . . , xn) ∈ Ri iff

(
φ(x1), . . . , φ(xn)

)
∈ Si

3. φ(x •j y) = φ(x) ∗j φ(y)

φ is a strong homomorphism from Q into N if, in addition,

4. x •j y = z iff φ(x) ∗j φ(y) = φ(z)

Corresponding to the distinction between weak homomorphisms and strong
homomorphisms, we can say that φ weakly maps • into ∗ whenever

x • y = z implies φ(x) ∗ φ(y) = φ(z)

and strongly maps • into ∗ whenever the converse also holds.
An example will help to make this clearer. Start first with the simple quali-

tative system ⟨L,≿⟩. A function φ : L 7→ R is a homomorphism from ⟨L,≿⟩ into
⟨R,≥⟩ when:

L ≿ L′ iff φ(L) ≥ φ(L′)

Since there are no primitive operations in ⟨L,≿⟩, conditions 3 and 4 are trivially
satisfied and so we don’t bother with the weak/strong distinction. Next, consider
the richer system ⟨L,≿; ◦⟩, this time endowed with a primitive concatenation op-
eration. This time, then, a function φ : L 7→ R counts as a weak homomorphism
from ⟨L,≿; ◦⟩ into ⟨R,≥; +⟩ whenever, in addition to the above, it weakly maps
◦ into +:

φ(L ◦ L′) = φ(L) + φ(L′)

And φ is a strong homomorphism if it strongly maps ◦ into +:

φ(L) + φ(L′) = φ(L′′) iff L ◦ L = L′′

If ◦ is a total operation and ≿ is antisymmetric, then every weak homomorphism
from ⟨L,≿; ◦⟩ into ⟨R,≥; +⟩ will be a strong homomorphism—but otherwise this
needn’t be the case.
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2.2 Representation theorems and uniqueness

A homomorphism maps the primitive relations and operations of one relational
system into the primitive relations and operations of another. When at least a
weak homomorphism from Q into N exists, we can say that N has—or otherwise
includes as a proper part—a structure similar to that of Q. A strong homomor-
phism establishes a slightly stronger similarity of structure. In either case, it’s
is this similarity that justifies representing Q using (or ‘in’) N . Because of this,
the central theoretical objects of the RTM are results that establish precise con-
ditions for when an arbitrary qualitative system Q can be represented in some
specific numerical system N . These are known as representation theorems.

Let Φ(Q,N ) denote the set of all weak homomorphisms from Q into N .
Then, for a prespecified N , a representation theorem supplies (at least) suffi-
cient conditions on Q to guarantee that some such homomorphism exists. The
conditions are usually called the axioms of that theorem. Typically, the ax-
ioms will be chosen such that (at least) most of them are individually necessary
for representability—that is, they’re direct consequences of the assumption that
Φ(Q,N ) is non-empty. Axioms that are not necessary for representability are
usually known as structural axioms.4 For example:

Theorem 2.1 (Krantz et al. 1971, 15) Let X be a set and ≿ a binary relation
on X. Then there is at least one homomorphism from ⟨X,≿⟩ into ⟨R,≥⟩ if

1. X is finite (finitude)
2. ≿ is a weak order (weak order)

The weak order axiom is necessary: since ≥ is a weak order on R, if X is to
be mapped into R then ≿ must itself be a weak order if it’s to be mapped into
≥. The finitude axiom is structural—it’s possible to represent ⟨X,≿⟩ in ⟨R,≥⟩
even if X is infinite, though in that case additional axioms are needed to ensure
representability. (See Krantz et al. 1971, 40–1, for details.)

A representation theorem will also usually include or otherwise be associated
with a uniqueness result. In the ideal case, the uniqueness result tells us about the
relationship between homomorphisms belonging to Φ(Q,N ) for all Q satisfying
the axioms of the associated representation theorem. Continuing the example,
it’s plain to see that if φ is any homomorphism from ⟨X,≿⟩ into ⟨R,≥⟩, then so
too is ψ : X 7→ R iff

ψ(x) ≥ ψ(y) iff φ(x) ≥ φ(y)

Any ψ satisfying this condition is related to φ by a strictly increasing (or order-
preserving) transformation. So the kind of uniqueness result we’d expect to find
attached to Theorem 2.1 would say that given weak order and finitude, the ho-
momorphisms in Φ

(
⟨X,≿⟩, ⟨R,≥⟩

)
are unique up to an order-preserving trans-

formation. The “unique up to” phrasing is another way to say that the homo-
morphism set is constrained by the specified transformation—hence it designates
a property shared by all and only the functions in the set.

4Be careful: an axiom may be necessary for a representation theorem, but not necessary
for representability. This is because representation theorems often do more than simply assert
sufficient conditions for representability.
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Two points of caution. First: a uniqueness result applies to all systems satis-
fying the axioms of the associated representation theorem—not necessarily to all
systems that are representable in the specified numerical system simpliciter. This
is important if the representation theorem includes structural axioms, which are
sometimes used to strengthen the uniqueness result. As a rule of thumb, the
more structural constraints imposed on Q, the more restricted the potential ho-
momorphisms from Q into N , leading to a stronger uniqueness result. Second:
many uniqueness results apply only to a proper subset of the possible homomor-
phisms in Φ(Q,N ). For example, the uniqueness result may assert that there is
only one homomorphism from ⟨X,≿⟩ into ⟨R,≥⟩ which satisfies such-and-such
properties (e.g., is a probability measure), even while there are infinitely many
homomorphisms in Φ(Q,N ) that do not. For these reasons, one must be careful
when interpreting a uniqueness result—some results that on first glance appear
rather impressive may end up only really reflecting the strength of the structural
conditions employed in the representation theorem and/or arbitrary restrictions
to a particular representational format.

Moving on—the final thing to do in this section is outline the major scale
types. (See Table 2.1.) In the example above, the φ in Φ(Q,N ) are unique up to
order-preserving transformations. In that case, the set Φ(Q,N ) is said to be an
ordinal scale of Q, and the φ in Φ(Q,N ) are also called ordinal scales of Q. (The
ambiguity is unfortunate, but context usually suffices for disambiguation.) Three
other scale types are also important. The next is an interval scale: Φ(Q,N ) is
an interval scale when the φ ∈ Φ(Q,N ) are unique up to a positive affine (or
interval-preserving) transformation—i.e., if φ ∈ Φ(Q,N ) then so is ψ, for any ψ
defined such that for some real values r and s, with r > 0,

ψ(x) = rφ(x) + s

Whereas order-preserving transformations merely preserve orderings, interval-
preserving transformations preserve ratios of differences (and thus also order-
ings). So if φ and ψ are related by an interval-preserving transformation, then

φ(x)− φ(y)

φ(z)− φ(w)
=
ψ(x)− ψ(y)

ψ(z)− ψ(w)

Next are ratio scales: Φ(Q,N ) is a ratio scale when the φ ∈ Φ(Q,N ) are unique
up to a positive similarity (or ratio-preserving) transformation—i.e., if φ is in
Φ(Q,N ) then so is ψ, for any ψ defined such that for some real value r > 0,

ψ(x) = rφ(x)

Ratio-preserving transformations preserve ratios (and thus also ratios of differ-
ences, and thus also orderings). So if φ and ψ are related by a ratio-preserving
transformation, then

φ(x)

φ(y)
=
ψ(x)

ψ(y)

Finally, there are absolute scales. This is just the case where Φ(Q,N ) contains
exactly one homomorphism.

10



scale type uniqueness condition relations preserved

ordinal strictly increasing transformations orderings
interval positive affine transformations difference ratios
ratio positive similarity transformations ratios

absolute identity everything

Table 2.1: scale types and uniqueness conditions

The foregoing classification scheme originates with (Stevens 1946). It’s the
most widely-known means of classifying scale types by a wide margin. It works
well for most purposes, and it’ll suffice for ours, though it’s not the only classifi-
cation scheme nor is it the most general. (A more general classification scheme,
though also more complicated, can be found in Narens 1981.)

2.3 Extensive and conjoint measurement

Of special interest to the theory of measurement are ‘additive’ representations.
Roughly, these are representations that make use of addition in some important
way. It can be a little hard to define precisely, though, as what it takes for a
representation to count as ‘additive’ can vary across measurement structures.
The simplest case is that of extensive measurement. Here, we can say that a
homomorphism from Q into N is weakly additive when it weakly maps one of
Q’s primitives into addition; strong additivity can then be defined in the obvious
parallel way. The qualitative operation that gets mapped into addition is usually
referred to as a concatenation operation.

Let’s discuss one example of an extensive measurement structure in more
detail—a positive concatenation structure. Since it doesn’t make sense to speak
of lengths shorter than no length at all, we conventionally measure length using
additive homomorphisms from ⟨L,≿; ◦⟩ into ⟨R≥0,≥; +⟩, where R≥0 is the set of
real numbers not smaller than zero. The meter scale is one such homomorphism.
Let Lm be the meter length, defined as the length of the path light travels in
a vacuum in one 299, 792, 458th of a second. Then the meter scale, φm, corre-
sponds to the (unique) strong homomorphism from ⟨L,≿; ◦⟩ into ⟨R≥0,≥; +⟩
that assigns the unit value to Lm. In other words,

a) φm(L) ≥ 0 and φm(Lm) = 1
b) L ≥ L′ iff φm(L) ≥ φm(L′)
c) L ◦ L′ = L′′ iff φm(L) + φm(L′) = φm(L′′)

This method of measuring length is possible precisely because the behaviour of
≿ and ◦ is mirrored by the behaviour of + and ≥ over the non-negative reals.
The most important conditions are:

1. ≿ is a weak order (weak order)
2. L ◦ (L′ ◦ L′′) = (L ◦ L′) ◦ L′′ (associativity)
3. L ◦ L′ = L′ ◦ L (commutativity)
4. L ≿ L′ iff L ◦ L′′ ≿ L′ ◦ L′′ (monotonicity)
5. L ◦ L′ ≿ L (weak positivity)
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6. L ◦ L′ ∼ L only if L′ is minimal in ≿ (identity element)

Compare, for x, y, z ∈ R
≥0:

1. ≥ is a weak order (weak order)
2. x+ (y + z) = (x+ y) + z (associativity)
3. x+ y = y + x (commutativity)
4. x ≥ y iff x+ z ≥ y + z (monotonicity)
5. x+ y ≥ x (weak positivity)
6. x+ y = x only if y = 0 (identity element)

Epistemic approaches to the measurement of belief focus on representing the
internal structure of the belief system, and typically posit systems that look a
great deal like positive concatenation structures. However, not all ‘additive’ rep-
resentations follow the same model—they do not all require a primitive concate-
nation operation that gets mapped into addition. An alternative way to gener-
ate ‘additive’ representations employs conjoint measurement structures, wherein
multiple quantities are represented simultaneously and the additive structure
of the representation is derived from the nature of their lawlike relationships.
Since conjoint measurement is important for decision-theoretic approaches to
the measurement of belief, it’s worth considering an example in a bit of detail.
The procedure is more complicated than the case of extensive measurement (see
Figure 2.2).5

≿ on C

≿ on A×B

⟨A,≿a;⊕a⟩ ⟨B,≿b;⊕b⟩

⟨R,≥; +⟩ ⟨R,≥; +⟩

(A1, B1) ≿ (A2, B2) iff f
(
φa(A1), φa(B1)

)
≥ f

(
φa(A2), φb(B2)

)

φa φb

boo

Figure 2.2: conjoint measurement structure

We start with a single weak ordering, ≿, defined for some quantity C that’s
determined by two independent factors A and B. For example, suppose C is

5The example is chosen to highlight a few key ideas; it’s far from the only conjoint measure-
ment structure and it’s different in certain respects than some decision-theoretic structures. As
with extensive measurement, there’s a wide variety of conjoint measurement structures and a
correspondingly wide variety of numerical systems within which they might be represented.
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discomfort as determined by temperature A and humidity B (Krantz et al. 1971,
17–18), momentum as determined by mass and velocity (Luce & Tukey 1964,
4–5), or overall value as determined by monetary and sentimental value.

In any case, we suppose ≿ on C is determined by these two factors A and
B, whatever they may all be. Formally we can represent this by reconstructing
≿ as an ordering not over C directly but instead over A×B. So, for example,

(A1, B1) ≿ (A2, B2)

is understood to mean that the level of C determined by the combination of A1

and B1 is at least as great as the level of C determined by A2 and B2, where
the A1, A2 and B1, B2 are levels of A and B respectively.

The next step is to extract from ≿ two extensive ‘subsystems’ for A and B

separately. We start by defining an ordering ≿a over A, by comparing the levels
of C that result from varying A factor while holding the B factor fixed. That is,

A1 ≿a A2 iff (A1, Bi) ≿ (A2, Bi) for all Bi ∈ B

So A1 is greater than A2 when A1 contributes more to C than A2 does, holding
the level of B fixed. Note, of course, that the definition alone doesn’t guarantee
≿a will be a weak order—for that we need suppose that if changing from A1 to
A2 increases the level of C while holding the level of B fixed for any particular
level of B, then the same should hold for all levels of B. Essentially this amounts
to saying that the contribution A makes to C is independent of the contribution
made by B. This is established by the independence axiom, noted below. An
exactly parallel definition gets us an ordering ≿b over B.

At this point we’ve got two very simple subsystems, ⟨A,≿a⟩ and ⟨B,≿b⟩. But
we should like to construct extensive structures so as to enable a richer numerical
representation. Thus we will need to define up a concatenation operation as well.
Assume that A and B combine in an intuitively ‘additive’ fashion. (This will be
qualitatively expressed by means of the independence and double cancellation
axioms below.) Then, it will be possible to draw meaningful correlations in size
between intervals in ≿a and in ≿b by comparing the effects on the level of C
that result from varying one factor while holding the other fixed. For suppose
there are A1, A2, B1, B2 such that

(A1, B2) ∼ (A2, B1) ≻ (A1, B1),

We can read this as saying that changing from A1 to A2 (while holding the B-
level fixed) has the same effect on C as changing from B1 to B2 (while holding
the A-level fixed). If we let Ai→Aj designate the interval between Ai and Aj

as observed in the effect on C, and likewise for Bi→Bj mutatis mutandis, then
what we’ve said is that A1→A2 is equal to B1→B2, and thus we compare the
size of intervals in one factor to intervals in the other. Given that, if there also
are minimal levels A0 and B0 of A and B, then we can define concatenation
operations ⊕a and ⊕b for each of A and B. Starting with ⊕a, we say

A1 ⊕a A2 = A3
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just in case the effect on C that results from increasing A0 to A3 while holding
the level of B fixed at B0 is equal to the effect on C that results from increasing
the level of A from A0 to A1 and increasing the level of B from B0 to some level
Bx such that the result is equal in effect on C as observed from an increase from
A0 to A2. That is, if

(A3, B0) ∼ (A1, Bx),

then A0→A3 is equal to A0→A1 plus B0→Bx, where the latter known to be equal
to A0→A2. Treating A0 and B0 as ‘zero’ points, then, the ‘size’ of the interval
A0→Ai gives the absolute ‘size’ of Ai alone, and so this essentially amounts to
saying that A3 equals A1 plus A2.

The upshot is that, with the appropriate axioms on ≿, we can extract exten-
sive subsystems ⟨A,≿a;⊕a⟩ and ⟨B,≿b;⊕a⟩ out of the initial system ⟨A×B,≿⟩,
which will admit of separate additive representations φa and φb. The final step
is to then show that there exists some numerical operation, f , that combines φa

and φb so as to represent ≿ on A×B; i.e.,

(A1, B1) ≿ (A2, B2) iff f
(
φa(A1), φb(B1)

)
≥ f

(
φa(A2), φb(B2)

)

The function f may take a wide variety of forms depending on the shape of ≿,
but one simple case is when φa and φb combine additively to determine a final
value that represents C:

(A1, B1) ≿ (A2, B2) iff φa(A1) + φa(B1) ≥ φa(A2) + φb(B2)

The result is a conjoint representation of all three quantitiesA,B andC simulta-
neously, achieved via a two-component vector homomorphism φ from ⟨A×B,≿⟩
into ⟨R× R,≥⟩ that ‘decomposes’ into φa and φb via f .

All of this obviously requires that ≿ will satisfy the axioms required for the
existence of such a representation. These axioms will together essentially assert
that ≿ behaves in the manner one would expect if levels of C were determined by
the sum of two independent factorsA and B. For instance, very typical necessary
axioms for additive conjoint measurement structures will be:

1. For all Ai, Aj , Ak, Al ∈ A and Bi, Bj , Bk, Bl ∈ B, (Ai, Bk) ≿ (Aj , Bk) iff
(Ai, Bl) ≿ (Aj , Bl), and (Ak, Bi) ≿ (Ak, Bj) iff (Al, Bi) ≿ (Al, Bj)

(independence)
2. For all Ai, Aj , Ak ∈ A and Bi, Bj , Bk ∈ B, (Ai, Bj) ≿ (Aj , Bk) and

(Aj , Bi) ≿ (Ak, Bj) implies (Ai, Bi) ≿ (Ak, Bk) (double cancellation)

Again, it’s helpful to compare the qualitative axiom with the intended numerical
representation. The independence axiom is straightforward:

x+ z ≥ y + z for some z
↓

x+ z ≥ y + z for all z

The double cancellation axiom is a little less obvious; it concerns cases in which
the common terms of two inequalities cancel out to determine a third:
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x+m ≥ y + o

y + n ≥ z +m

↓
x+ n ≥ z + o

Let’s sum up. In the example of a conjoint measurement structure§6.4I’ve
just outlined, the numerical representations of A, B, and C are a package
deal. Or, more accurately, they’re three parts of a single representational system
comprising several functions and an operation that ties them together. Note in
particular—and this will be important—that the two constructed subsystems are
defined such that they only make sense as parts of the larger system. The prim-
itives of ⟨A,≿a;⊕a⟩, for instance, are characterised in terms of how A relates
to B in the determination of C. Likewise, the operation ⊕a needn’t correspond
to any ‘natural’ concatenation operation that can be readily defined in terms
of A alone, without reference to how A interacts with B and C. To the extent
that A is represented as having an ‘additive’ structure in this manner, then, that
structure is manifest in its relationship with B and C. This is all to say that the
meaning of the representation φa in this context can only be fully grasped by
reference to its relation to φb as specified by the rule f by which they combine to
represent C. The three numerical representations are, in that sense, inseparable.

Contrast this with the extensive measurement of ⟨L,≿; ◦⟩, where the primi-
tives of that system can be characterised without any direct reference to other
quantities. One can appreciate what it is for the system of lengths to have an
‘additive’ structure just by considering how determinate length attributes relate
to other determinate length attributes. One needn’t embed the system of lengths
into a larger relational structure involving multiple quantities in order to compre-
hend what it is for one length to be twice as long as another, for example, since
one can just see it directly by placing the lengths alongside one another. An in-
tuitive way to characterise the difference between the two kinds of measurement
structure, then, is to say extensive measurement is geared towards represent-
ing the internal relational structure of a single determinable attribute, whereas
the conjoint measurement is geared more towards representing the relationships
between several attributes.

2.4 Conventionality

One of the more important lessons of the RTM concerns the extent to which our
use of numbers to represent the world is grounded in convention. (By ‘conven-
tional’, I mean unforced from a purely mathematical point of view, and so setting
aside pragmatic considerations.) It’s useful to divide it up into three distinct
grades of conventionality.

Most will be plenty familiar already with conventionality of the first grade,
choice of scale—that is, in the choice of homomorphism from Φ(Q,N ), for a
fixed choice of Q and N . This arises, for instance, when we are free to choose
between meters, inches, light-years or beard-seconds (the amount a typical beard
grows in one second) as our units for measuring length.
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A rather deeper and not as widely appreciated form of conventionality arises
in the choice of numerical system. A very simple example is the choice to use ≥ to
represent a weak order ≿, rather than ≤. Either would obviously work just as well
as the other—and just as well as any other weak order on the reals. But a more
complicated example is also worth mentioning. As I noted in the previous section,
conventional measures of length are almost always additive homomorphisms from
⟨L,≿; ◦⟩ to ⟨R,≥; +⟩. On any such measure, the value assigned to L ◦ L will
always be twice the value assigned to L. Our overwhelming familiarity with
these additive measures can lead to the sense that there’s something uniquely
correct about this representation—that the qualitative relation holding between
L and L ◦ L is an essentially twice-ish relation. As Brian Ellis (1968, 83) put
it, there’s a common sense that the ‘twice’ in ‘twice as long’ has a significance
independent of the conventions of measurement. (“Clearly, 2 meters is twice
as long as long as 1 meter—that is the natural and obvious way to describe
their relation!”) However, the axioms that justify the additive measurement of
length—associativity, commutativity, monotonicity, and so on—are consistent
with a multitude of non-additive representations whereby L ◦ L need not be
assigned a value twice that which is assigned to L.

Consider multiplicative measures, which map ⟨L,≿; ◦⟩ not into ⟨R≥0,≥; +⟩
but into ⟨R≥1,≥;×⟩ instead (see Hölder 1901; Krantz et al. 1971, 11–12, 99ff;
Narens 1985, 27–31). Let the multiplicative (base 2) version of the meter scale
be called the schmeter scale; it corresponds to a homomorphism φsch that maps
⟨L,≿; ◦⟩ onto ⟨R≥1,≥;×⟩ such that

a) φsch(L) ≥ 1 and φsch(Lm) = 2
b) L ≥ L′ iff φsch(L) ≥ φsch(L

′)
c) L ◦ L′ = L′′ iff φsch(L)× φsch(L

′) = φsch(L
′′)

On the schemeter scale, the value assigned to L ◦ L will always be equal to the
square of the value assigned to L. Since 1 meter is 2 schmeters, then, 2 meters is
4 schmeters and 4 meters is 16 schmeters. Hence, if 4 meters is twice as long as
2 meters, it follows that 16 schmeters is twice as long as 4 schmeters. The point
is not that there’s some sort of contradiction here—there isn’t. Rather, it’s that
the qualitative relation between L ◦L and L is no more a twice-ish relation than
it is a square-ish relation. Our use of ‘twice as long’ to refer to and describe the
relation between L ◦L and L reflects only a conventional preference for additive
representations over an infinite variety of alternative representational formats
that are, from a mathematical point of view, equally adequate to the task.

But the conventionality runs deeper still, for it arises also in the choice of
qualitative system. Again, length supplies a useful example. Earlier I charac-
terised ◦ on L in terms of laying objects end-to-end. However, there are other
ways of concatenating lengths that we might have employed as primitives in-
stead. One alternative (also discussed by Ellis 1968, 80–1) is right-angled con-
catenation. Say that L ⊙ L′ = L′′ just when L′′ is the length of the hypotenuse
of the right-angled triangle with catheti of lengths L and L′. (See Figure 2.3; I
did have to look that word up.) Right-angled concatenation has all the same key
properties as end-to-end concatenation which permit additive measurement. In
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an alternative history, then, we might have chosen to measure length by map-
ping ⟨L,≿;⊙⟩ into ⟨R≥0,≥; +⟩. (Or ⟨R≥1,≥;×⟩, or ⟨R,≥; ∗⟩, or. . . ) This would
have simplified how we express the relationships between sides of a right-angled
triangle, though it would also have made calculating end-to-end concatenations
of distances slightly more difficult.

L

L′L′′

Figure 2.3: L′′ is the right-angled concatenation of L and L′ (i.e., L⊙ L′ = L′′).

With that said, I don’t want to give the impression that anything goes. A
minimal constraint on the choice of qualitative system is that the primitives must
be natural. Without some such constraint, we trivialise the whole endeavour. For
instance, assuming no more than that L can be mapped into R, we know already
that there exists a binary relation R on L that maps into ≥, in the sense that

(L,L′) ∈ R iff φ(L) ≥ φ(L′)

Likewise, supposing only that ⟨L,≿⟩ maps into ⟨R,≥⟩, we know already that
there will exist at least one ternary relation R such that

(L,L′, L′′) ∈ R iff φ(L) + φ(L′) = φ(L′′)

So the fact that we can then find some relations on L corresponding to ≥ and +
is thoroughly uninteresting. We can derive such relations from any mapping of L
into R, so long as we’re permissive enough about what counts as a relation. It’s
a matter of convention what we take the primitive relations in our qualitative
systems to be, that is true, but measurement is only interesting when those
relations are natural.

2.5 Meaningfulness

A focus of the discussion to follow involves differentiating what is from what
is not meaningful in the measurement of belief. The most common strategy for
drawing such distinctions goes via invariance. Essentially, the idea is that a nu-
merical property or relation is meaningful only if it’s invariant across alternative
numerical representations; otherwise it’s a mere artefact of convention.

Compare the case of temperature. When represented in °C, water freezes at 0
and boils at 100, the hottest temperature recorded in Australia is almost exactly
half way between these values (50.7) and more than double the hottest temper-
ature recorded in Antarctica (19.8). But not all of the numerical properties and
relations just mentioned are meaningful. Measured in °F, water freezes at 32 and
boils at 212, the hottest recorded temperature in Australia (123) is less than
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twice the hottest temperature in Antarctica (68), though it’ll still be just over
half way between the freezing and boiling points of water. °C and °F are equally
legitimate interval scale measures of temperature—they’re numerically distinct
but they’re not meaningfully distinct. The particular values associated with each
temperature and the ratios between those values vary between alternative scales,
and they are therefore not meaningful. Ratios of differences are invariant, on the
other hand, and so we call them meaningful.

So far so good. But consider again the additive measures of ⟨L,≿; ◦⟩. If φ
and ψ are any two additive measures of that system, then

φ(L) = 2φ(L′) iff ψ(L) = 2ψ(L′)

But this, too, is an artefact of conventions—in the choice of numerical system.
As we’ve just discussed, the qualitative relation that holds between L and L′

whenever L′ is twice as long as L isn’t itself a ratio relation in any deep sense,
and if θ is a multiplicative measure of length then

φ(L) = 2φ(L′) iff θ(L) = θ(L′)2

In that broader sense, almost all the information in any numerical representation
of ⟨L,≿; ◦⟩ is an artefact of convention. There’s approximately nothing that’s
invariant across all numerical representations of a qualitative system, and what
is preserved is far too little to be of much interest.

The upshot is that meaningfulness needs to be understood relative to a fixed
choice of numerical system. A more precise account of meaningfulness, and one
that incorporates this lesson, originates with Pfanzagl (1968). I present it here
in lightly modified form:

Definition 2.5 Suppose that Φ(Q,N ) is non-empty, where Q = ⟨X, Ri; •j⟩ and
N = ⟨Y, Si; ∗j⟩. For any φ ∈ Φ(Q,N ) and any n-ary relation S on Y, R(S, φ)
is the relation induced on X by S and φ if and only if

(x1, . . . , xn) ∈ R(S, φ) iff
(
φ(x1), . . . , φ(xn)

)
∈ S

S is Q-meaningful relative to N when R(S, φ) doesn’t depend on the choice of
φ in Φ(Q,N ).

Where the Q and N are obvious given context, we simply say that S is mean-
ingful. Note one: if S is among the primitive relations Si of N , then R(S, φ) is
just the corresponding primitive relation Ri in Q and thus R(S, φ) is automat-
ically Q-meaningful relative to N . So we’re only interested in the case where S
isn’t among the primitives relations of N . Note two: if S is one of the primi-
tive operations of N , then it doesn’t automatically follow that S is meaningful,
except in the special case where every homomorphism in Φ(Q,N ) is a strong
homomorphism. So being a primitive relation in N suffices for being meaningful,
being a primitive operation doesn’t.

To get a grip on Definition 2.5, it’s helpful to compare cases where a numerical
relation isn’t meaningful. Observe first of all that every numerical property or
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relation S induces a corresponding property or relation R(S, φ) on the qualitative
system relative to each φ ∈ Φ(Q,N ). So, if some ordinal scale φ maps Q =
⟨L,≿⟩ into N = ⟨R,≥⟩, the 2:1 ratio relation induces a corresponding relation
on L that holds for L,L′ whenever φ(L) = 2φ(L′). But that relation isn’t Q-
meaningful relative to N , precisely because R(2:1, φ) needn’t equal R(2:1, ψ) for
every other ψ in Φ(Q,N ). By contrast, the 2:1 ratio is meaningful relative to
the additive measures of ⟨L,≿; ◦⟩, since R(2:1, φ) equals R(2:1, ψ) for any two
additive measures φ and ψ. (Why does that matter? Because if the 2:1 ratio
is meaningful with respect to the additive measurement of length, then we can
draw generalisations and formulate laws involving that ratio without worrying
it all depends on an arbitrary choice of scale.)

In general, the idea is that a numerical relation is meaningful inasmuch as
it always corresponds to the same qualitative relation regardless of what homo-
morphism we care to use, given a fixed choice of numerical system. That’s just
what ‘meaningful’ means in this context: always picks out the same thing inde-
pendent of the choice of scale. So to make some headway on the matter of what
should be considered meaningful in our numerical representations of belief, we
need to say more about the kinds of qualitative structures these representations
are supposed to be representations of.
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Chapter 3

Clarifications and Desiderata

The central questions to be addressed by an account of the measurement of belief
are, in relation to a given purported numerical representation of belief: (i) what
is the qualitative system being represented, (ii) what is the numerical system in
which it’s represented, and (iii) under what conditions are such representations
possible? Answer these, and you’ll have a complete theory of the measurement
of belief; don’t answer them, and all you’ll have are numbers.

An epistemic approach, I said, is one that explains the measurement of belief
by appeal to the internal structure of the belief system. Better: an epistemic
approach is one according to which the qualitative system being represented can
be characterised fully in terms of doxastic states and the relations between them,
where a doxastic state is any type of mental state with a belief-ish flavour. This
might include states of all-or-nothing belief, levels of confidence, judgements of
comparative probability, judgements of when one thing is evidence for another
thing or when they are independent, and so on. In sum, doxastic states are
the sorts of mental states that have a mind-to-world direction of fit, broadly
construed; or the sorts of things that reflect our opinions regarding what the
world is like and what it might be like, and that ought to be responsive to
evidence independent of our preferences. Epistemic approaches are covered in
Chapter 4 and Chapter 5.

Decision-theoretic approaches appeal instead to relations between doxastic
states and conative states (read: states with a desire-ish flavour) to explain what
the numbers mean. Roughly, a paradigmatic decision-theoretic approach is one
where the qualitative system is comprised of a conjoint system of beliefs and
basic desires (as opposed to derivative or instrumental desires), related via their
joint determination of a preference ordering over a space of actions according
to some decision rule; the numerical representation of the preference relation is
then constructed to capture the systematic relations holding between the three.
Decision-theoretic approaches are covered in Chapter 6.

But before we delve into the details, this chapter provides some background
clarifications on what a theory of belief measurement is and what it is not (§3.1
and §3.2), followed by a some simplifying assumptions (§3.3) and general desider-
ata (§3.4) that will be relevant to the discussion throughout.



3.1 Quantitation, not elicitation

In the classic presentations of the RTM, qualitative systems are understood to be
empirical relational systems. These systems are built around primitives that are
directly and publicly observable in the context of some experimental procedure.
For example, rather than characterising the length system ⟨L,≿; ◦⟩ as a set of
attributes and higher-order relations between them, if I were doing things in the
classical manner then I’d have characterised it as a set of rigid physical objects,
the observable at least as long relation between them, and a concatenation oper-
ation interpreted as the physical process of taking two rigid objects and joining
them to form a new composite object. Essentially, empirical relational systems
are systems in which nothing is hidden from view—the relations should be open
to observation, the relata should be things we can touch and see and poke and
prod, and the operations are physical procedures on or processes observed in the
entities being measured.

There are some obvious problems that arise when measurement is understood
this way. (These problems were not unknown to the founders of the representa-
tional theory; cf. Krantz et al. 1971, 27–31.) In violation of ubiquitous transitivity
axioms, for example, one might have a series of objects each longer than the pre-
ceding by an imperceptible amount, such that adjacent objects will be observed
to be of the same length even while the last is much longer than the first. Similar
problems arise for all empirical relational systems, and will be familiar from the
history of operationalism. They all point to the same basic issue: quantities can-
not be perfectly characterised in terms of the experimental procedures by which
they’re measured, since no such procedure is ever perfect. Instead, measurement
procedures are developed on the basis of what our best theories imply about the
conditions under which observable experimental outcomes will reliably (albeit
imperfectly) correlate with variations in some limited range of magnitudes of
the quantity we desire to measure.1

But it would be a mistake to dismiss the classical RTM focus on empirical
relational systems as mere offshoot of some outdated operationalism. Much more
illuminating to say that the mathematical framework of the theory was built to
play two separable explanatory roles. On the one hand, it’s there to explain how
we might use numerical properties and relations to represent and reason about
bits of the world that aren’t themselves numerical in nature. That explanation
appeals to structure-preserving mappings between qualitative and numerical sys-
tems, and matters of observability are irrelevant here. On the other hand, the
very same formalisms were supposed to help guide the design of actual measure-
ment procedures. The empirical relational system for the measurement of length,
for instance, was supposed to be formulated in such a way that it might feasibly
be implemented in some empirical procedure for measuring lengths—hence the
pervasiveness of error in all realistic measurement practices was taken to present
a serious problem for the RTM (cf. Krantz et al. 1971, 1–9, 25, 27–31).

1See (Mari et al. 2017) for relevant discussion, plus a detailed account of the theory-based
construction of one such procedure for the measurement of the mass of stars.
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We can—and should—keep these roles separate. The RTM is great for the
first, not so great for the second.2 As Kyburg once said, the ‘theory of measure-
ment is difficult enough without bringing in the theory of making measurements’
(1984, 7). Unfortunately, ambiguity in how we use the term ‘measurement’ can
obscure this point. Compare the “measurement of mass” qua abstract pairing
of determinate mass attributes with numbers, such that relations between the
latter usefully mirror relations between the former; versus the “measurement of
mass” qua empirical procedure for determining the mass of particular objects by
means of an equal-armed pan balance. The original intention was that the RTM
will be a theory of both—and the sad result has been that it’s routinely criti-
cised for being of little relevance to the actual measurement practices of working
scientists (e.g., Borsboom 2005; Mari 2005; Reiss 2016). Such criticisms lack bite
when we recognise that the RTM was always better understood as a framework
for understanding meaning and meaningfulness in our numerical representations
of systems of determinable attributes as posited by a scientific theory.

In light this, let me emphasise firmly that a theory of belief measurement as
presently understood is not in the business of explaining how we might gather
empirical evidence as to the strength of an agent’s beliefs through the observation
of their behaviour, nor how we might elicit their beliefs by any other means.
Mario Bunge (1973) once recommended avoiding the ambiguity of ‘measurement’
by referring to the abstract sense as quantitation. The terminological suggestion
never much caught on, but in those terms our topic is the quantitation of beliefs
rather than their elicitation.

Consequently, I also suggest we make no presumptions regarding the observ-
ability of the qualitative primitives posited within a theory of belief measure-
ment. These systems posit psychological relations—things like is more confident
than, is more desirable than, is indifferent between—and it would be an error to
presume that such relations will be directly observable in behaviour.3 It would
be a deeper error still to assume that these relations must to observable, if we’re
to justify theses about the structure of the qualitative systems involving them.
Quantities are posits of our scientific theories, and like any other posits they
need not be directly observable. The justification for the hypothesis that a qual-
itative system has a certain formal structure that permits a certain format of
numerical representation need not derive from any direct observations of that
structure, but can instead derive indirectly from the broader empirical and the-
oretical virtues of the theories that presuppose a system of quantities endowed
with that structure. In this respect the measurement of belief is no different in
kind than the measurement of any other quantity.

2This opinion neither new nor uncommon; similar can be found expressed in Roberts (1985),
Mundy (1987; 1994), Swoyer (1991), Narens & Luce (1993), Decoene et al. (1995), Mari et al.
(2017), and Bacelli (2020). See also (Michell 2021) for a useful overview of the history of thinking
on this matter.

3Perhaps, under special circumstances, I’d agree that a limited part of a person’s overall
preference ordering might be ‘directly revealed’ through their choice behaviour alone. Many
people have thought so. But even given all the hedging, I’m still doubtful. At best there’s a
defeasible evidential relationship between choice and preference, and the connection between
them is too loose to say that preferences are ever directly observable via choices.
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3.2 Measurement, not metaphysics

This is an work on measurement, not metaphysics. Experience teaches that these
can be hard to keep separate, but separate them we should—lest we end up
rejecting perfectly reasonable approaches to the measurement of belief by mixing
them up with hideously implausible views on the metaphysics of belief.

The core questions dealt with by a theory of belief measurement concern the
specific matter of quantitation: in relation to a purported numerical representa-
tion of some doxastic state or set of such states,

1. what is the qualitative system Q being represented,
2. what is the numerical system N in which it’s represented, and
3. under what conditions are such representations possible?

By contrast, a metaphysics of belief is concerned with much broader questions
about the kinds of ontological and/or conceptual dependence relations that hold
between doxastic states of different kinds, and between doxastic states and the
wider world.4 The core task of such a metaphysics is, in short, to explain what
kinds of doxastic state-types there are, and where they ought to be situated
relative to one another and relative to the rest of the world within some general
conceptual framework and/or global ontology of the universe.

One major division in the metaphysics of belief is between realist and anti-
realist views. Broadly speaking, the former says that the correct attribution of
a doxastic state to an agent depends on objective facts about the agent, and the
latter says that correct attribution depends somehow on who’s doing the attribut-
ing. Some versions of interpretivism fall into the anti-realist camp; such will typ-
ically say that an agent’s beliefs are just those an interpreter can usefully employ
to explain the agent’s behaviour. Among realists, a major division is between rep-
resentational and non-representational theories. The former explains what it is to
have a doxastic state with such-and-such content by hypothesising the existence
of some internal mental representation of that content. Non-representational
theories link doxastic states instead to not-necessarily-representational states of
the agent that are systematically related to the contents thereof. Among non-
representational views are behaviourist theories, which analyse doxastic states
as patterns of behaviour; dispositionalist theories, which analyse doxastic states
via a suite of associated (and not-necessarily-behavioural) dispositions; and func-
tionalist theories, which analyse doxastic states by reference to a functional role
that typically revolves around relations between beliefs over time given evidence
and between beliefs, desires and behaviour.

4It’s not easy to say precisely what dependence relations are, and any characterisation I
give will be subject to debate. Roughly, a concept C is conceptually more fundamental than
another concept C′ when C′ can be analysed in terms of C but not vice versa; and a property
(or state-type) P is ontologically more fundamental than another P ′ when the instantiation of
P ′ necessarily depends on the instantiation of P but not vice versa. Another way to distinguish
the two is via their explanatory roles: ontological dependence explains necessary connections
between properties, while conceptual dependence explains apriori connections between propo-
sitions.
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While there are some connections between measurement and metaphysics—
some ways of approaching the former will fit more or less naturally with different
ways of approaching the latter—in general one cannot read metaphysics off of
measurement. Every epistemic and decision-theoretic approach to the measure-
ment of belief that’s considered in the chapters below is compatible with a wide
range of views on the metaphysics of belief—including all of those just mentioned.
There’s nothing intrinsically realist or anti-realist, or representationalist or non-
representationalist, or behaviourist or dispositionalist or functionalist (and so
on) about any of these measurement theories.

This point is especially worth emphasising in the case of decision-theoretic
accounts of belief measurement. Historically there has been a close connection
between the decision-theoretic representation theorems that underlie those ac-
counts, and behaviourist (or behaviourist-lite) metaphysical theories which pro-
pose to reduce beliefs to preferences as revealed by choices. Since this kind of
behaviourism is nowadays treated like a bad smell, decision-theoretic approaches
to the measurement of belief seem to have been tainted by association and are
thereby often dismissed without much consideration. So I want to consider that
case in a bit more detail, as on reflection there’s not much reason to link the
decision-theoretic approaches specifically to behaviourism.

A typical decision-theoretic representation theorem establishes sufficient con-
ditions for the conjoint measurement of beliefs, desires, and preferences. The gen-
eral idea is that an agent’s preference ordering will be determined by their beliefs
and desires via some decision rule (e.g., expected utility maximisation), and so
we want to construct a numerical representation of those preferences which ‘de-
composes’ into independent representations of belief and desire via that decision
rule. (Compare the example in §2.3, with the representation of C ‘decompos-
ing’ into representations of its determinants A and B via some rule f.) These
theorems don’t tell us anything about the metaphysical relationship between
beliefs, desires, and preferences. Consider: if I describe a structure for the con-
joint measurement of momentum as determined by mass and velocity, then no
one leaps to the conclusion that mass and velocity are ontologically dependent
on momentum. Likewise, if I describe a structure for the conjoint measurement
of discomfort as determined by temperature and humidity, no one infers that
the concepts of temperature and humidity ought to be analysed in terms of dis-
comfort. Such inferences would be obviously fallacious—so why would we draw
parallel inferences from decision-theoretic representation theorems?

According to the decision-theoretic approach, the conjoint representation is
supposed to capture a systematic relation or relations between beliefs, desires,
and preferences that is explanatorily relevant to the quantitation of belief. Noth-
ing about this implies that beliefs depend conceptually or ontologically on pref-
erences. Moreover, the explanatorily relevant relations may not be dependence
relations at all. For example, the approach would be consistent with a function-
alist metaphysics according to which beliefs, desires and preferences are interre-
lated posits in a psychological theory such that none are reducible to the others,
and such that their statistically or biologically normal causal interactions can be
systematically represented within a decision-theoretic framework.
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Observe, also, that such a functionalist might say the relation between beliefs
and preferences is critical for explaining the quantitation of belief, even while
saying that the characteristic functional role of belief isn’t exhausted by those
relations. One might suppose that an important part of the functional role of
belief concerns the connection between beliefs and sensory evidence—a state
cannot rightly be said to “play the belief-role” if it isn’t appropriately sensitive
to perceived changes in the environment. Such relationships will be crucial when
providing a functionalist analysis of what beliefs are, but that doesn’t imply they
need also be mentioned in an explanation of why it makes sense to represent a
system of beliefs within a certain numerical framework. These are related issues,
to be sure, but nevertheless clearly distinct.

Compare the case of mass. Our concept of mass can be plausibly analysed
in terms of its theoretical role: mass is the property that best satisfies the total
role associated with ‘mass’ within contemporary physics. But mass does many
things. The mass of an object is proportionate to its resistance to acceleration
as measured by an observer at rest with respect to it. It’s also proportionate to
the strength of the gravitational field the object exerts on others, and its total
rest energy. Mass is tied to momentum and velocity, density and volume, and to
how fast a transverse wave travels through a string attached to a fixed point at
each end. Mass also plays a role in stellar evolution; for instance, a white dwarf
with mass exceeding about 1.4 solar masses will succumb to electron degeneracy
pressure and collapse into either a neutron star or a black hole. So if you want to
analyse mass by reference to its total theoretical role, then there’s a lot you need
to mention—but if you just want to give an explanation of why it makes sense
to measure mass on a ratio scale, then not all of that is going to be necessary or
relevant. In sum: the relations we use to analyse the concept of a quantity can
come apart from the typically narrower class of relations we use to explain the
quantitation of that quantity.

An account of the measurement of belief just isn’t in the business of explain-
ing ontological or conceptual dependence relations that hold between different
kinds of doxastic states, nor between doxastic states and non-doxastic states. It
would be wise, then, to be very careful when drawing metaphysical conclusions
from measurement-theoretic premises.

3.3 Simplifying assumptions

Having said some things about the sorts of things we shouldn’t be assuming, let
me now talk about the things I will be assuming. There are three assumptions
in total; the first two are simplifying assumptions about how we model contents:

Assumption 1. Degrees of belief have propositional contents, where proposi-
tions can be modelled as subsets of some non-empty space of possible
worlds (henceforth denoted Ω).

Assumption 2. For each agent and all propositions p, there exists an algebra of
propositions A on Ω such that the agent has some degree of belief towards
p iff p belongs to A.
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By ‘possible’, I mean at least consistent with classical logic. An algebra of propo-
sitions is defined like so:

Definition 3.1 A is an algebra of propositions on Ω iff it is a non-empty set of
subsets of Ω, and for all p, q ⊆ Ω,

1. If p is in A, then Ω \ p (henceforth ¬p) is in A
2. If p and q are in A, then p ∪ q is in A

Furthermore, an element a ∈ A is an atom of the algebra iff a ̸= ∅ and for every
p ∈ A, either a ∩ p = a or a ∩ p = ∅.

These are substantive assumptions indeed, and I’m not super confident they’re
true—but they’re also both very standard assumptions in the present context,
and each does a great deal to help simplify many matters.5

Still, I should say a bit more about these two assumptions, since they’ll play
an important role at some points of the discussion. An immediate consequence
of Assumption 1 is that the contents of belief are coarse-grained : if p and q are
logically equivalent, then p = q. But I did not call it a ‘simplifying’ assumption
due to this fact—there’s a lot to be said in favour of coarse-grained content! (e.g.,
Stalnaker 1984; Lewis 1986; Chalmers 2011.) Rather, I consider Assumption

1 to be a simplifying assumption because it (in effect) has us ignore so-called
de se content and certain common strategies for the representation thereof that
require going a little ways beyond the standard possible worlds framework (e.g.,
Lewis 1979).

Opponents of coarse-grained content often suppose we can model more fine-
grained contents using impossible worlds. Roughly, the idea is that wherever we
want to differentiate between logically equivalent contents p and q, we can include
in our space of worlds Ω one or more impossible worlds where one of these holds
but the other doesn’t; hence the set of p-worlds will come apart from the set of
q-worlds. But matters are not quite so easy. One cannot simply throw a bunch
of impossible worlds into Ω without potentially breaking something elsewhere,
especially in the presence of Assumption 2.

To explain why, it’ll help to have a specific account of what impossible worlds
are and how they’re used to model contents. For the purposes of the discussion I’ll
adopt the modal ersatz approach found in (Nolan 1997), though essentially the
same points can be made for other popular accounts of impossible worlds (e.g.,
linguistic ersatzism or extended modal realism, see Elliott 2019b for discussion).
Following Nolan’s preferred terminology, take propositions—the potential objects
of our beliefs and the meanings of our declarative sentences, whatever they may
be—to be ontological primitives. Given that, we let a world ω be any set of
propositions, and we say that p is true at a world ω just in case p ∈ ω. There is,
of course, a one-to-one correspondence between each primitive proposition p and
the set of worlds containing p (the p-worlds). We say a world is possible just in

5Also for the sake of simplicity, I will mostly focus on measurement structures involving
finite algebras. This is not because I think that agents can have degrees of belief towards only
finitely many propositions, but just because trying to cover both the finite and infinite cases
would add significant complexity with comparatively little by way of philosophical pay-off.
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case it’s complete (contains either p or its negation, for every proposition p) and
consistent (has no logically inconsistent subsets); otherwise, it’s impossible. If
Ω contains only possible worlds, then if p logically implies q then every p-world
in Ω will be a q-world. But if Ω isn’t restricted to possible worlds, then it may
be that p implies q even while there are some impossible p-worlds in Ω that
aren’t q-worlds. Much therefore depends on what kinds of worlds get to go into
Ω; the richer the space of worlds, the more distinctions we can draw between
logically-equivalent contents modelled as sets of worlds.

Impossible worlds theorists will often assume a very rich space of worlds
characterised by an unrestricted comprehension principle: for any complete set
of primitive propositions P = {p, q, . . . }, there is a world ω ∈ Ω such that
ω = P. Roughly, for any possibility or impossibility, there’s a world that verifies
it; and the principle thereby ensures there are always some p-worlds that aren’t
q-worlds even when p logically implies q. However, unrestricted comprehension
also has the consequence that many subsets of Ω are meaningless. These are sets
of worlds that correspond to no primitive proposition whatever, and so not fit
(by hypothesis) to serve as the objects of belief. There is nothing that’s true
at all and only the worlds in a meaningless set—they are just artefacts of the
construction of contents as sets of sets of primitive propositions. For example,
and as Nolan (1997, 563) points out, any set containing only possible worlds
will be meaningless in this sense given unrestricted comprehension. For any set
of possible worlds {ω1, ω2, . . . } there will be some propositions they all have in
common. Given that, let ωi be a world such that everything true at all the worlds
in {ω1, ω2, . . . } is also true at ωi, but the negation of one or more of those things
is also true at ωi. It follows that ωi is an impossible world. So, there is nothing
true at all and only a set of possible worlds—such sets are meaningless.

The existence of meaningless subsets of Ω isn’t intrinsically problematic.
However, it does not play nicely withAssumption 2. An algebra of propositions
is closed under relative complements and binary unions, and in the presence
of unrestricted comprehension two facts follow. First, the relative complement
of any meaningful proposition is meaningless: for any p and q there will be
impossible worlds where both p and q hold, hence there’s no q such that the set
of p-worlds doesn’t intersect with the set of q-worlds. Second, the union of any
two meaningful propositions is meaningless: for any p and q there can be no r
such that the set of r-worlds is the union of the p-worlds and the q-worlds, since
then every p-world would be an r-world but for any p and r there will be some
p-worlds that aren’t r-worlds. In short, then: any algebra of propositions defined
on a sufficiently rich space of possible and impossible worlds will consist mostly
of meaningless sets—and we shouldn’t want to represent agents as having beliefs
towards entities that correspond to no proper object of belief.

You might think there’s an easy response: the main premises of the foregoing
reasoning are unrestricted comprehension and Assumption 2, so we can simply
deny one or both of those and avoid the problem—right? Again, though, matters
aren’t so simple. For one thing, unrestricted comprehension or something in the
nearby vicinity is required for the most attractive results that impossible worlds
are advertised have in relation to fine-grained content and logical omniscience
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(see Nolan 2013 for an overview). But moreover, it’s a mistake to suppose that
unrestricted comprehension is necessary for the conclusion—as if the problem
would simply disappear were we to adopt a more restricted principle. As shown
in (Elliott 2019b), the real problem is that Assumption 2 imposes a Boolean
algebraic structure over meaningful subsets of Ω, which forces the worlds in Ω
to conform to a Boolean logic. Under quite minimal richness conditions on what
kinds of possible worlds go into Ω, either (a) every algebra of sets on Ω will
contain meaningless sets of worlds or (b) the worlds in Ω will be closed under
the {¬,∧}-fragment of Boolean logic (or something to the same effect).

Nor is it easy to deny Assumption 2 since—as we’ll see—many theories for
the measurement of belief make important use of that assumption. This includes
all of the epistemic approaches that I will discuss below, and a large number of
decision-theoretic approaches too. The reason why the assumption is important
ultimately boils down to the fact that representation of any quantity on anything
stronger than an ordinal scale requires a qualitative structure richer than what
can be provided by a single weak ordering over the magnitudes thereof—basically,
some additional relation will be required for the extra-ordinal structure of the
numerical representation to grock on to. Thus, in the measurement of length we
require not only the at least as long relation, but also a concatenation operation
that can be mapped into addition. Likewise for conjoint measurement, where
the additional structure is supplied by reconstructing ≿ on the single quantity
C as a quarternary relation over A×B and then using induced relations between
the factors A and B to supply the additional structure for the representation.
For theories of belief measurement, the additional structure that allows for the
possibility of more-than-merely-ordinal measurement is often characterised by
set-theoretic relations between contents (qua sets of worlds) in such a way that
presupposes the algebraic structure guaranteed by Assumption 2.

The point here is not that there’s no hope for impossible worlds, or that we
shouldn’t make use of them. Rather, the point is that incorporating impossible
worlds into contemporary theories of belief measurement will require careful
consideration about the nature of content and likely some further adjustments
to our formal models and their interpretation. The common thought among
many philosophers is that impossible worlds present an easy fix to the problems
of coarse-grained content—just throw some impossible worlds into Ω and you’re
done. But it is not so easy. In that sense, then, the conjunction of Assumption

1 and Assumption 2 can be considered a simplifying assumption as well.
One more simplifying assumption:

Assumption 3. Degrees of belief are precise.

I don’t think this assumption is realistic. Imagine, for instance, that a down-
trodden magician has just rolled into town. He has a coin, which you happen
to know is biased but you know not in what direction the bias lies nor to what
degree. He also has an old deck of cards with some unspecified number of cards
missing. The magician tosses the coin and pulls out a single card from the deck.
Let p be the proposition that the coin lands heads, and q that the card is red.
If degrees of belief are precise (represented by real values), and you have some
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positive degree of confidence in each of p and q, then there must be some precise
value n such that you’re exactly n times as confident in p as you are in q.
Plausibly, though, there is no such n, or at least there needn’t be.

Over the past few decades, something of a consensus has emerged regarding
the representation of ‘imprecise’ degrees of belief (see, e.g., Walley 1991; Kaplan
2010; Joyce 2010). Instead of the real-valued functions employed in classical
models of graded belief, we use a set of real-valued functions—a credal set, or
as it’s often known in philosophy, a representor. The rough idea is that what a
representor represents is what’s true according to all functions in the set. Thus,
for example, we say the subject has at least as much confidence in p as she does
in q just when every function in her representor assigns a value to p that’s at
least as great as the value assigned to q. Moreover, a general strategy exists for
the construction of these ‘representor’ representations that can be applied to the
different the epistemic and decision-theoretic approaches discussed below (e.g.,
Evren & Ok 2011; Alon & Lehrer 2014; Alon & Schmeidler 2014; Augustin et
al. 2014; Hawthorne 2016). The main move is to replace the common weak or-
der axiom that’s used to construct a precise real-valued representation with a
strictly weaker preorder axiom, thus allowing for incompleteness in the primi-
tive psychological relations being represented. The ‘imprecise’ representation is
then constructed from the many precise representations of the various possible
completions of that preorder.

Since this is a general strategy that works more or less the same way across
epistemic and decision-theoretic approaches, I’ve neglected to include details.
Instead, I’ll take it as read that the real-valued measures of belief considered
below are idealisations—and relatively harmless idealisations, in that we have a
good sense of how to do away with them. (See also §6.4 for a little more discussion
on this.)

3.4 Desiderata

The remainder of this chapter will outline four desiderata for a theory of be-
lief measurement. To be clear: I will not be explicitly evaluating the theories of
belief measurement by reference to these desiderata. Evaluation is left to the
reader, and you may take issue with some (or all) of what I take to be theoreti-
cally desirable. Rather, the desiderata are here offered by way of explanation for
why I’ve chosen to focus on certain topics in the chapters that follow—viz., the
meaningfulness of extra-ordinal information, probabilistic and non-probabilistic
representations, logical omniscience.

Again I’ll need to start with some terminology. We take a probability measure
to be defined as follows:

Definition 3.2 Where A is an algebra of propositions on Ω, µ : A 7→ R is a
probability measure iff, for all p, q ∈ A,

1. µ(p) ≥ 0 (non-negativity)
2. µ(Ω) = 1 (normalisation)
3. If p ∩ q = ∅, then µ(p ∪ q) = µ(p) + µ(q) (⊔-additivity)
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According to probabilism, ideally rational agents are those whose beliefs can be
accurately represented by some probability measure. Now, exactly what it is for
a system of beliefs to be represented by a probability measure is a question to
be settled by an account of the measurement of belief—so probabilism is a thesis
that only makes sense against the backdrop of some measurement theory. But
set that aside. A weaker version of the thesis, what Kaplan (2010) calls modest
probabilism, requires that an ideally rational system of beliefs can be represented
by a non-empty set of probability measures.

I want something even weaker: at least some rational systems of belief are
represented by (sets of) probability measures. Call it really modest probabilism.
While there are occasional arguments against (modest) probabilism, these usu-
ally highlight surprising exceptions to the thesis that ideally rational agents must
always be represented by (sets of) probability measures. So I take it that really
modest probabilism will be generally uncontroversial, and as such we should
desire a theory of belief measurement that’s in a position to make sense of it:

Desideratum 1. A theory of the measurement of belief should be consistent
really modest probabilism.

That is, the theory should be able to explain how a system of beliefs might be
accurately represented by some probability measure (or a set thereof).6

For the next, let’s say that a measure of belief is cardinal (as opposed to
merely ordinal) if it’s unique up to something stronger than an order-preserving
transformation. So, for example, interval-scale and ratio-scale measures will count
as cardinal measures in this sense. Given that,

Desideratum 2. Probabilistic representations of belief are (at least in some
theoretical contexts) cardinal measures of those beliefs.

One reason to accept this desideratum is intuition. Most will be happy to say
that a rational agent ought to have about 50% confidence that a fair coin will
land heads on a single toss, which should be half as much confidence as they have
regarding it landing either heads or tails, and twice as much confidence as they
ought to have regarding it landing heads twice in a row. Or, more straightfor-
wardly, it’s clearly sensible to say that a person can have much more confidence
in one thing than in another. Such claims makes sense only if beliefs are mea-
surable on something stronger than an ordinal scale.

I’m inclined to take these intuitions seriously, as indicative of how we pre-
theoretically (and post-theoretically!) tend to think about confidence. But I
wouldn’t want to rest my case on such intuitions alone. A stronger reason to
accept Desideratum 2 arises from the fact that more-than-merely-ordinal in-
formation has a theoretical role to play in our standard (and non-standard!)
theories of rational decision-making. Consider the following example. We imag-
ine first that Ramsey has to choose between two gambles:

6Given this is what the vast majority of epistemic and decision-theoretic approaches in fact
do, I don’t expect much resistance on this front. Still, Desideratum 1 plays a non-trivial
role in constraining what counts as a desirable theory of belief measurement, especially when
combined with the remaining desiderata. This will be more apparent in §4.2.
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α: receive $1 if p is true, nothing otherwise
β: receive $2 if p is false, nothing otherwise

Suppose also that Ramsey considers p less probable than Ω but more probable
than ¬p. Without loss of generality, let the algebra A be {Ω, p,¬p,∅}. A prob-
ability measure will be a merely ordinal representation of Ramsey’s confidences
just in case it assigns a value to p that’s strictly between 1 and 1

2
. As such, there’s

at least two ordinally-equivalent probability measures, µ1 and µ2, such that

1 > µ1(p) >
2

3
,

2

3
> µ2(p) >

1

2

If confidence is measured on nothing stronger than an ordinal scale, then there
should be no difference inmeaning between µ1 and µ2. But according to expected
utility theory, there is a difference: Ramsey should prefer α iff his confidence in
p is more than twice his confidence in ¬p. At that point, the higher probability
of winning with α outweighs the promise of a larger prize with β. So expected
utility theory is inconsistent with the thesis that confidence is measured on a
merely ordinal scale. (I’ll say more about this in §6.3.)

The same holds for most alternatives to expected utility theory, including
normative theories (for representing ideally rational agents) and descriptive the-
ories (for representing realistic agents). And we needn’t rest the case on decision-
theoretic examples either. Much the same holds in contemporary epistemology,
where a great deal of theory and argument presumes the more-than-merely-
ordinal measurement of belief. Two brief examples; I’m sure if you start looking
you’ll find more. First, the relation of probabilistic independence is crucially im-
portant for Bayesian theories of evidence and learning, but independence rela-
tions can vary between ordinally-equivalent numerical representations (see §5.3).
Second, epistemic utility theory appeals to numerical properties that differenti-
ate ordinally-equivalent probability measures (see Mayo-Wilson & Wheeler 2019,
p. 19). In sum: if our numerical representations of belief are to play the roles that
they are in fact generally taken to play in contemporary theories of rational belief
and rational decision-making, then they cannot be mere ordinal-scale measures.
That’s not a conclusive reason for accepting Desideratum 2, of course, but it
is a reason, and a potent one.

Together, Desideratum 1 and Desideratum 2 imply that at least some
possible agents have beliefs that are representable by a probability measure,
where that probability measure isn’t merely an ordinal scale. But for all that’s
said, it may be that cardinal measurement is only possible in the special case
of ideally rational agents—everyone else is stuck with mere ordinal measures.
The next desideratum is aimed at denying this. Say that an agent is logically
omniscient just in case, if p logically entails q, then the agent has no more
confidence in p than they do in q. In other words, their confidences are ordered
coherently with respect to logical implication. Then:

Desideratum 3. Logical omniscience is not a prerequisite for the cardinal mea-
surement of belief.
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The argument I’ll provide for Desideratum 3 is just based on intuition. I’m
not ideally rational, and neither are you. We are less-than-ideally rational, and
one likely manifestation of this fact is that we aren’t logically omniscient. But
this doesn’t prevent us from believing one proposition much more than another,
or about half as much as another, and so on. (If there are any Moorean facts in the
theory of belief measurement, this ought to be one of them.) Furthermore, given
Assumption 1, any probabilistic representation of beliefs will automatically de-
termine a logically omniscient confidence ordering. So, consequence: probabilistic
representation is not a prerequisite for cardinal representation either.

The joint effect of the three desiderata so far will be that we should want a
theory of how beliefs can be measured on something stronger than an ordinal
scale, which is consistent with really modest probabilism but isn’t limited to
representing the beliefs of the logically omniscient. We want a theory of cardinal
belief measurement for ideal and non-ideal agents. The final desideratum is an
anti-disjunctiveness condition:

Desideratum 4. A theory of belief measurement should not be fundamentally
different for ideal versus non-ideal agents.

If we’re going to say that both ideally rational and non-ideally rational agents
can have degrees of belief that are measured on something stronger than an
ordinal scale, then we should also want an explanation that makes sense in both
cases—a unifying theory is a better theory. There doesn’t appear to be any
difference in meaning when we say (e.g.) that Jules is much more confident in
one proposition over another, depending on whether Jules is ideally rational or
non-ideal like us. If that’s right, then fundamentally the same explanation of
quantitatability should apply in either case.

I intend for Desideratum 4 to be compatible with the idea that there might
be more than one adequate approach to the measurement of belief. It might be,
for example, that a decision-theoretic approach is apt for the purposes of deci-
sion theory, and that an epistemic approach is apt for certain other theoretical
contexts, with no fact of the matter as to which is the correct way of doing
things. It’s not unusual that there might be complementary ways of explaining
the quantitation of a given quantity. For example, the ratio-scale measurement
of mass can be explained as an instance of fundamental extensive measurement,
or conjoint measurement, or (given an appropriate choice of base quantities)
derived measurement—there is no fact of the matter as to which is the right
way to do it. But the key term there is complementary. The various ways to
explain the quantitation of mass are not disjunctive in the sense of giving one
explanation for how mass is measured that applies to certain subset of masses,
and a fundamentally distinct explanation for other magnitudes. That’s the kind
of disjunctiveness we should avoid.
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Chapter 4

Epistemic Approaches:

Comparative Confidence

The most straightforward and best-known of the epistemic approaches involves
the probabilistic representation of (complete) binary comparative confidence re-
lations. For ease of reference, I’ll call this the standard epistemic approach. This
chapter begins with an overview of the standard epistemic approach (§4.1), after
which we consider the problem of logical omniscience and non-probabilistic gen-
eralisations (§4.2). Several further varieties of epistemic approach are discussed
in the next chapter.

For the present chapter, we take ≿ be interpreted relative to some agent α,
and we read p ≿ q saying that α has at least as much confidence in p as she has
in q. Supposing that ≿ is a weak order, it’s then natural to interpret ≻ as more
confidence, and ∼ as equal confidence. Where p ∼ q, I’ll sometimes say that p
and q are equiprobable; this shouldn’t be understood to presuppose that ≿ has
a probabilistic representation.

4.1 Probabilistic representations

The main results in this area concern the conditions under which a system
comprised of an algebra of propositions and a comparative confidence relation,
⟨A,≿⟩, can be represented in the numerical system ⟨R≥0,≥⟩ by means of some
probability measure. Savage (1954) established sufficient conditions, based on
earlier work from de Finetti (1931). Kraft, Pratt & Seidenberg (1959) were the
first to provide necessary and sufficient conditions for the case of finite algebras,
which were presented then in simpler form by Dana Scott (1964).

For the following definition, we take pi to be the indicator function of p. The
indicator function of a proposition simply distinguishes those worlds that belong
to the proposition from those that don’t, by assigning 1 to the former and 0 to
the latter; i.e., pi is a function on Ω such that

p
i(ω) =

{

1 if ω ∈ p

0 otherwise



Definition 4.1 Let A be an algebra of propositions on Ω, and ≿ a binary
relation on A. Then ⟨A,≿⟩ is a finite system of qualitative probability iff

1. A is finite (finitude)
2. ≿ is complete (completeness)
3. p ≿ ∅ (∅-minimality)
4. Ω ≻ ∅ (non-triviality)
5. If p1, . . . , pn and q1, . . . , qn are two sequences of propositions in A, then,

for 1 ≤ j < n, if

i) pj ≿ qj , and
ii)

∑n
i=1

p
i
i(ω) =

∑n
i=1

q
i
i(ω) for all ω ∈ Ω,

then qn ≿ pn (Scott’s axiom)

Theorem 4.1 (Scott 1964) ⟨A,≿⟩ is a finite system of qualitative probability iff
at least one probability measure µ is a homomorphism from ⟨A,≿⟩ into ⟨R≥0,≥⟩.

Much of the work is done by Scott’s axiom, but what that axiom says isn’t
transparent. Roughly, it tells us that if two collections of propositions p1, . . . , pn
and q1, . . . , qn contain the same number of truths as a matter of logical necessity,
then if the agent is more confident of n − 1 propositions in the first collection
than they are of the corresponding propositions in the second, there must be
an nth proposition in the second collection of which they have more confidence
than the corresponding proposition in the first collection—they must balance
out. (Compare: for real values, if x1 + x2 + x3 = y1 + y2 + y3, and x1 ≥ y1,
x2 ≥ y2, then y3 ≥ x3.) But we needn’t worry about what Scott’s axiom says
exactly; more illuminating for present purposes is to consider what the axiom
implies in the context of the others.1

If we use ⊔ henceforth to represent the union of disjoint sets—i.e., the restric-
tion of set-theoretic union ∪ to those pairs of sets with no elements in common—
then for any finite system of qualitative probability,

1. ≿ is a weak order (weak order)
2. p ⊔ (q ⊔ r) = (p ⊔ q) ⊔ r (associativity)
3. p ⊔ q = q ⊔ p (commutativity)
4. p ≿ q iff, if r ∩ (p ∪ q) = ∅ then p ⊔ r ≿ q ⊔ r (⊔-monotonicity)
5. p ⊔ q ≿ p (weak positivity)
6. p ≿ p ⊔ q only if q ∼ ∅ (minimal identity)

These should remind you of the properties that permit the additive measurement
of length (§2.3), with ⊔ playing something similar to role played by end-to-end
concatenation in a positive concatenation structure. The weak order axiom is,
as discussed earlier, necessary for ≿ to be mapped into ≥. The associativity
and commutativity axioms fall out of the associativity and commutativity of ∪.
Finally, weak positivity and minimal identity correspond to the non-negativity
condition in Definition 3.2 (the definition of a probability measure), while ⊔-
monotonicity corresponds to the ⊔-additivity condition.

1For extended exposition on Scott’s axiom, see (Titelbaum 2022, 491ff).
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Indeed, we can make the analogy with the measurement of length more ex-
plicit by restating Theorem 4.1 thus:

Theorem 4.1′ ⟨A,≿⟩ is a finite system of qualitative probability iff there is at
least one probability measure µ that is also a weak homomorphism from ⟨A,≿;⊔⟩
into ⟨R≥0,≥; +⟩.

This way of stating Scott’s result better captures the point of the probabilistic
representation of comparative confidence. After all, if the goal was to show how a
system ⟨A,≿⟩might be represented in ⟨R≥0,≥⟩, then the finitude and weak order
axioms would have sufficed—everything beyond that just serves to restrict the
kinds of qualitative systems under consideration without making any difference
to their representability in ⟨R≥0,≥⟩. What makes it worthwhile to represent
comparative confidence using a probability measure is that the characteristic
properties of such measures (namely: ⊔-additivity) are reflected in the ‘additive’
behaviour of ≿ in relation to ⊔, thus giving rise to meaning beyond just the
ordering information. If not for this, then there’s no apparent reason to care
about probabilistic representations of ≿ over any number of non-probabilistic
but ordinally-equivalent representations.

With that said, there’s a couple important disanalogies with the case of
length that should be noted. First, additive measures of ⟨L,≿; ◦⟩ are 1-point
unique—that is, fixing the numerical value of any non-minimal length L will
uniquely determine the remainder of the scale. The same needn’t always be
true for probabilistic measures of ⟨A,≿;⊔⟩. Consider a finite algebra with atoms
a1, a2, a3, where

a1 ≻ (a2 ∪ a3) ≻ a2 ≻ a3

A probability measure µ will represent ⟨A,≿;⊔⟩ just in case

1 > µ(a1) >
1

2
> µ(a2 ∪ a3) > µ(a2) > µ(a3) > 0

Obviously, choosing a measure µ such that µ(a1) = 2

3
, for instance, won’t yet

determine the values for a2 and a3—it only determines that they’ll take distinct
positive values summing to 1

3
. So the measure isn’t 1-point unique. Essentially

similar examples can be constructed to show that there will be systems of finite
probability such that the additive measures of ⟨A,≿;⊔⟩ are not n-point unique
for arbitrarily large n.

Second, + is meaningful relative to the additive measures of ⟨L,≿; ◦⟩, but
the same needn’t be true for probabilistic measures of ⟨A,≿;⊔⟩. In other words,
where µ and µ′ are distinct probabilistic representations of the same system
⟨A,≿;⊔⟩, the relation R(+, µ) induced on A by + relative to µ need not be
the relation R(+, µ′) induced on A by + relative to µ′. (Recall from Definition
2.5 that (p, q, r) ∈ R(+, µ) iff µ(p) + µ(q) = µ(r).) Consider again the previous
example, where µ(a1) =

2

3
, and so

µ(a2 ∪ a3) + µ(a2 ∪ a3) = µ(a1)

Now suppose that µ′ is such that µ′(a1) =
3

4
; hence

µ′(a2 ∪ a3) + µ′(a2 ∪ a3) ̸= µ′(a1)

35



Though both µ and µ′ are weakly additive measures of ⟨A,≿;⊔⟩, the qualitative
relation corresponding to + under µ isn’t identical to the qualitative relation
corresponding to + under µ′. So addition isn’t ⟨A,≿;⊔⟩-meaningful relative to
⟨R≥0,≥; +⟩.

Both disanalogies are a result of the fact that probabilistic representations
of a system of qualitative probability need not be unique. This situation can be
remedied if we add more axioms, such as:

• p ≿ q only if p ∼ q ∪ r for some r ∈ A (solvability)

Supposing that ⟨A,≿⟩ is a finite system of qualitative probability satisfying
solvability, then the analogy with the additive measurement of length is consid-
erably stronger. In that case, the set of weakly additive measures of ⟨A,≿;⊔⟩
will include all and only those φ that are related to µ by a positive similar-
ity transformation, and hence they will be 1-point unique (Suppes 1969, 6–7).
Furthermore, R(+, µ) = R(+, φ) for any φ related to µ by a positive similar-
ity transformation, and so + will be meaningful relative to any set of weakly
additive measures of ⟨A,≿;⊔⟩.

Another way to make that analogy clear is to generalise ⊔ slightly, and then
show that this generalised relation can be (strongly) mapped into +. Start with
the following:

Definition 4.2 Where ∼ is an equivalence relation and • is a binary operation,
•\∼ is the relation induced by • and ∼ iff (p, q, r) ∈ •\∼ whenever p′ • q′ ∼ r for
some p′ and q′ such that p ∼ p′ and q ∼ q′.

In the special case where ∼ is antisymmetric, there’s no difference between •
and •\∼. For example, +\= is just the same as +. But since the equiprobability
of p and q need not imply the identity of p and q, in many cases it will be
impossible to construct a system ⟨A,≿; •⟩ that admits of an additive measure
in the stronger sense. For suppose p • q = r, but there also exists some s ̸= r

such that r ∼ s. Then, if φ maps ≿ into ≥, then • will strongly map into + only
if φ(p) + φ(q) = φ(s) implies p • q = s, which by hypothesis is false. But this
isn’t a deep problem—we dissolve it entirely by mapping the very slightly more
general ternary relation •\∼ into + instead (where the latter is construed this
time as a ternary relation). Thus,

Theorem 4.2 Suppose that ⟨A,≿⟩ is a finite system of qualitative probability
satisfying solvability. Then there exists a homomorphism φ from ⟨A,≿,⊔\∼⟩
into ⟨R≥0,≥,+⟩. Furthermore, the set of all homomorphisms from ⟨A,≿,⊔\∼⟩
into ⟨R≥0,≥,+⟩ is unique up to positive similarity transformations, and exactly
one of them is a probability measure.

Proof. Suppose that µ is the unique probability representation of ⟨A,≿⟩, guaran-
teed by the hypothesis of the theorem. R(+, µ) always maps into + by definition,
so for the existence result we need only establish R(+, µ) = ⊔\∼. To that end,
note (p, q, r) ∈ R(+, µ) iff there exist p′, q′, r ∈ A such that p′ ∼ p, q′ ∼ q,
p′∩q′ = ∅, and p′∪q′ ∼ r. The right-to-left of that biconditional is trivial, given
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that ≥ represents ≿ and that µ satisfies ⊔-additivity. For the left-to-right, sup-
pose µ(p)+µ(q) = µ(r). Where p∩q = ∅, let p = p′, q = q′ and r = p∪q. Where
p ∩ q ̸= ∅, let s be a proposition such that s ∩ (p ∪ q) = ∅ and s ∼ p ∩ q. Using
solvability it can be shown some such s exists. Now let p′ = p, q′ = (q ∪ s) − p,
and r = p∪ q′ = p⊔ q′. The proof of the uniqueness result is straightforward and
omitted.

Note, thought, that solvability isn’t necessary for unique probabilistic rep-
resentation. This is a good thing, since the axiom is very restrictive—in the
context of the other axioms, it requires every atom of A that’s non-minimal in
≿ must be equiprobable with every other such atom. In other words, it forces
all non-minimal atoms into a single ∼-equivalence class (Suppes 1969, 6–7). A
more general condition that also suffices for unique probabilistic representability
can be formulated in terms of scalability.

Definition 4.3 Suppose r1, . . . , rn is any sequence of pairwise disjoint and
equiprobable propositions where (r1 ⊔ · · · ⊔ rn) ∼ q. Then,

1. If p ∼ ri, for i = 1, . . . , n, then p is directly scaled by q
2. If p is directly scaled by q, then p is scaled by q
3. If p is scaled by q, and q is scaled by r, then p is scaled by r

In other words, the scaling relation is the ancestral of the direct scaling relation.
The more general axiom can now be stated with ease:

• For any non-minimal atom a ∈ A, a is scaled by Ω (scalability)

(a)
a1

(1
4
)

a2

(1
4
)

a3

(1
4
)

a4

(1
4
)

(b)

a1

(1
2
) a2

(1
4
)

a3

(1
8
)

a4

(1
8
)

Figure 4.1: solvability (a) versus scalability (b)

The difference between solvability and scalability is represented in Figure 4.1.
We assume in each case that ⟨A,≿⟩ is a finite system of qualitative probability,
with the ≿-ordering over the atoms of A represented by the relative size of the
corresponding areas inside the box. On the left, case (a), solvability is satisfied,
and hence also scalability. There are four equiprobable non-minimal atoms, a1
to a4, all directly scaled by Ω. Since µ(Ω) = 1, so each atom must be assigned 1

4

by any probability measure µ. Case (b) violates solvability, since

(a1 ∪ a2 ∪ a3) ≿ (a3 ∪ a4),

but there’s no p such that

(a1 ∪ a2 ∪ a3) ∼ (a3 ∪ a4 ∪ p)
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However, case (b) still satisfies scalability, and has a unique probabilistic repre-
sentation. There are four atoms. The largest, a1, is directly scaled by Ω, since
a1 and (a2 ∪ a3 ∪ a4) are disjoint, equiprobable, and their union is identical to
and thus equiprobable with Ω. So µ(a1) =

1

2
. The second largest atom a2 is then

directly scaled by a1:
1

2
·
1

2
=

1

4

Finally, a3 and a4 are both directly scaled by a2 and thus assigned

1

4
·
1

2
=

1

8

As with solvability, scalability isn’t necessary for unique probabilistic repre-
sentability either. It turns out that necessary and sufficient conditions for unique
probabilistic representations here are not easy to express (for reasons explained
in Narens 1980), and we’ll need to wait until we’ve introduced extended indicator
functions in §5.2.

4.2 The problem of logical omniscience

A probability measure on an algebra of setsA will always represent a comparative
confidence ordering that extends the superset relation over the propositions in
A, in the sense that p ⊇ q implies p ≿ q. Given Assumption 1, Ω includes only
logically possible worlds. The combination of these facts presents a problem,
since if Ω is restricted to possible worlds then p ⊆ q iff p implies q. In other
words, in the presence of Assumption 1, a probability measure can represent
only logically omniscient agents—agents whose comparative confidence orderings
invariably respect the logical relations between propositions.

Given the desiderata discussed in §3.4, it’s therefore worth considering whether
and how the standard epistemic approach might be generalised—or better, de-
idealised—so as to apply also to agents who aren’t logically ideal. The generali-
sation I have in mind involves a tweak to how we understand the ‘concatenation’
operation. Basically, what we need to do is replace ⊔ with a strictly more gen-
eral operation that still allows for the same kind of additivity results that make
the standard probabilistic approach interesting, while not also forcing logical
omniscience.

Let me start by noting two important constraints. First, the concatenation
operation ought to be natural. As explained in §2.4, without naturalness in the
choice of qualitative primitives, the very idea of measurement is trivialised. Sec-
ond, to avoid disjunctiveness (Desideratum 4), we are looking for a generalisa-
tion of the standard epistemic approach—specifically in the sense that we want
a qualitative system ⟨A,≿, R⟩ that can be represented in ⟨R≥0,≥,+⟩, which in-
cludes qualitative probability structures as a special case, but which also allows
for the non-probabilistic representation of structures that are not probabilisti-
cally representable. So we need a natural relation R that’s an extension of ⊔ in
those cases (or at least some of those cases) where ⟨A,≿;⊔⟩ does admit proba-
bilistic representation.
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These are not trivial constraints! It’s not easy to find a natural relation that
has the aforementioned properties, and which doesn’t lead us right back in to the
problem of logical omniscience. To appreciate the difficulty here, consider what
happens when R = ⊔\∼. In this case, R is guaranteed to be an extension of ⊔, as
desired. However, mapping ⊔\∼ into + leads inevitably to logical omniscience.
Since p and ∅ are always disjoint, p ⊔ ∅ is always defined; moreover, ∅ will be
the identity element with respect to ⊔ (i.e., for all p, p⊔∅ = p). Consequently, if
φ is any additive measure of ⟨A,≿,⊔\∼⟩, then p⊔∅ = p implies φ(p)+φ(∅) =
φ(p) implies φ(∅) = 0. In other words, the identity element of ⊔ will need to
be mapped to the identity element of +, which is zero. Furthermore, for any
p, q ∈ A, if q ⊆ p then there will exist some r ∈ A such that q ⊔ r = p, hence
φ(q) + φ(r) = φ(p) and so φ(p) ≥ φ(q) and so p ≿ q. The result: p ⊇ q implies
p ≿ q; logical omniscience.

If we’re to avoid logical omniscience, then ⊔ cannot be what “plays the
concatenation role”. We do better if we consider instead the union of subjectively
incompatible propositions. Henceforth, let ⊎ designate this operation, defined
relative to ≿ as the restriction of ∪ to those pairs of propositions p, q such that
p∩q is minimal in ≿. Intuitively, p and q are subjectively incompatible whenever
the subject has at least as much confidence in any proposition whatsoever as
they do in the conjunction of p and q. Then, ⊎ is an extension of ⊔ whenever
⟨A,≿;⊔⟩ can be represented probabilistically, as required. In other cases, though,
p ⊔ q = r needn’t imply p ⊎ q = r. Hence, it’s possible to have an additive
mapping from ⟨A,≿,⊎\∼⟩ into ⟨R≥0,≥,+⟩ that needn’t satisfy ⊔-additivity in
all cases, but which is also guaranteed to satisfy ⊔-additivity in those cases where
a probabilistic representation of ⟨A,≿,⊎\∼⟩ exists.2

I’ll start with a simple example, chosen to demonstrate that none of ∅-
minimality, non-triviality or Scott’s axiom are required for the desired homo-
morphisms to exist. (As such, this is intended to be an extreme example, not a
realistic one.) We suppose that A contains exactly four atoms, a1 through a4. We
then label the non-atomic propositions via the indices of the atomic propositions
from which they’re constructed; so, for instance,

p⟨234⟩ = a2 ∪ a3 ∪ a4

Given that, consider the following non-omniscient confidence ranking:

[
Ω

∅

]

≻









a1

a2

a4

p⟨134⟩

p⟨234⟩









≻









p⟨12⟩

p⟨14⟩

p⟨24⟩

p⟨34⟩

p⟨123⟩









≻





p⟨13⟩

p⟨23⟩

p⟨124⟩



 ≻ a3

We want to show there’s at least one φ : A 7→ R
≥0 such that for all p, q ∈ A,

i. p ≿ q iff φ(p) ≥ φ(q)

2Every homomorphic mapping from ⟨A,≿,⊎\∼⟩ into ⟨R≥0,≥,+⟩ is a weakly additive mea-
sure of ⟨A,≿;⊎⟩. For the reasons discussed earlier, strongly additive measures of ⟨A,≿;⊎⟩ will
often be impossible inasmuch as ≿ needn’t be antisymmetric.
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ii. (p, q, r) ∈ ⊎\∼ iff φ(p) + φ(q) = φ(r)

It’s clear the following assignment would satisfy property i:

φ(Ω) = 1, φ(a1) =
3

4
, φ(p⟨12⟩) =

1

2
, φ(p⟨13⟩) =

1

4
, φ(a3) = 0

So we just need to show that this assignment also satisfies property ii. To that
end, note that p and q are subjectively incompatible only if they both include
the minimal proposition a3; for all the other propositions, it matters not where
they sit in the ≿ ordering (so long as they don’t sit at the bottom). Hence, we
need only consider the ordering of the concatenable propositions:

Ω ≻

[
p⟨134⟩

p⟨234⟩

]

≻

[
p⟨34⟩

p⟨123⟩

]

≻

[
p⟨13⟩

p⟨23⟩

]

≻ a3

It’s then easy to check that φ(p⊎ q) = φ(p)+φ(q); and whenever φ(p)+φ(q) =
φ(r), then (p, q, r) ∈ ⊎\∼. Thus, it’s possible to have a weakly additive (but not
⊔-additive) measure of ⟨A,≿;⊎⟩. More generally, it’s possible to have a (strong)
homomorphism from ⟨A,≿,⊎\∼⟩ into ⟨R≥0,≥,+⟩, even while ≿ is not logically
omniscient.

The construction makes use of the same general notion of scaling from the
previous section, though this time understood in terms of pairwise subjectively
incompatible propositions rather than pairwise disjoint propositions. For exam-
ple, p⟨34⟩ and p⟨123⟩ are equiprobable and subjectively incompatible, and their
union is Ω; hence, they’re directly scaled by Ω:

φ(p⟨34⟩) = φ(p⟨123⟩) =
1

2
φ(Ω)

Then, p⟨13⟩ and p⟨23⟩ are equiprobable and subjectively incompatible, and their
union is p⟨123⟩; hence, they’re scaled by p⟨123⟩ and derivatively scaled by Ω:

φ(p⟨13⟩) = φ(p⟨123⟩) =
1

4
φ(Ω)

The value for p⟨134⟩ can then be determined by summing the values for the
subjectively incompatible propositions p⟨13⟩ and p⟨34⟩; i.e.,

1

4
φ(Ω) +

1

2
φ(Ω) =

3

4
φ(Ω)

Similar applies to p⟨234⟩. And, finally, the value for every other proposition is
determined via equiprobability with some proposition whose value has already
been fixed via scaling relative to Ω. So what makes the avoidance of logical om-
niscience possible here is that subjective incompatability needn’t coincide with
logical incompatibility. They will coincide whenever ⟨A,≿;⊔⟩ can be represented
probabilistically, but not always. Thus we can generalise the case of probabilistic
representations by swapping out ⊔ as the concatenation operation for the more
general ⊎ operation.

Sufficient conditions for the existence of such representations are established
in the following definition and associated theorem. There are three structural
conditions—finitude, richness and weak solvability—all of which are satisfied in
the foregoing example.
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Definition 4.4 Let A be an algebra of propositions on Ω, and ≿ a binary
relation on A. Then ⟨A,≿⟩ is a finite system of additive confidence iff A is finite
and for all p, q, r, s ∈ A,

1. ≿ is a weak order (weak order)
2. If p⊎ q is defined, p ≿ r and q ≿ s, then there are r′ and s′ such that r′⊎s′

is defined, r ∼ r′, and s ∼ s′ (richness)
3. If p ≻ q, then there are q′ and r such that q′ ⊎ r is defined, q′ ∼ q and
p ≿ q′ ∪ r (weak solvability)

4. If p⊎r and q⊎r are defined and p ≿ q, then p∪r ≿ q∪r (⊎-monotonicity)
5. If p ⊎ q is defined, then p ∪ q ≿ p, with p ≿ p ∪ q only if q is minimal

(⊎-positivity)

Theorem 4.3 If ⟨A,≿⟩ is a finite system of additive confidence, then there
exists a homomorphism from ⟨A,≿,⊎\∼⟩ into ⟨R≥0,≥,+⟩; furthermore, the set
of all such homomorphisms is unique up to positive similarity transformations.

Proof. The finer details of the proof are not especially illuminating, so I provide
a summary. The strategy is to reconstruct ⟨A,≿,⊎\∼⟩ as a system for which
strongly additive measures are known to exist. First we let A = {p,q, . . . } be
the set of ∼-equivalence classes in A, with the minimal elements excised; that
is, p = {q ∈ A | q ∼ p}, with p ∈ A only if p ≻ ∅. We then let ≿≿≿ be the total
order induced on A by ≿; that is, p ≿≿≿ q whenever p ≿ q. C is to be interpreted
as the set of concatenable pairs in A, so (p,q) ∈ C just when p′ ⊎ q′ is defined
for some p′ ∈ p and q′ ∈ q, or (same thing) when (p, q, r) ∈ ⊎\∼ for some r.
Finally, ◦ is an operation on A such that p ◦ q = r iff (p, q, r) ∈ ⊎\∼, and so a
function from C into A. We then want to show that ⟨A,≿≿≿, C; ◦⟩ satisfies:

A. ≿≿≿ is a total order
B. If (p,q) ∈ C, p ≿≿≿ r, and q ≿≿≿ s, then (r, s) ∈ C

C. If (r,p) ∈ C, then if p ≿≿≿ q, r ◦ p ≿≿≿ r ◦ q
D. If (p, r) ∈ C, then if p ≿≿≿ q, p ◦ r ≿≿≿ q ◦ r
E. (p,q), (p ◦ q, r) ∈ C iff (q, r), (p,q ◦ r) ∈ C, and when both hold then

(p ◦ q) ◦ r = p ◦ (q ◦ r)
F. If (p,q) ∈ C, then p ◦ q ≻≻≻ p

G. If p ≻≻≻ q, then there exists an r ∈ A such that (q, r) ∈ C and p ≿≿≿ q ◦ r

A follows from weak order, and B from richness. Given B, conditions C and
D follow from ⊎-monotonicity and the commutativity of ∩ and ∪. The first
conjunct of E falls out of how ◦ has been defined, and the second conjunct
follows from the associativity of ∩ and ∪. F is fixed by ⊎-positivity, and G by
weak solvability. From these seven conditions plus finitude, it follows that the
system ⟨A,≿≿≿, C; ◦⟩ is a Archimedean, regular, positive, ordered local semigroup
(Krantz et al. 1971, 44–5). This suffices for the existence of a homomorphism ψ

from ⟨A,≿≿≿; ◦⟩ into ⟨R>0,≥; +⟩, and the set of such homomorphisms is unique up
to positive similarity transformations. (This is a corollary of Krantz et al. 1971,
44–6, Theorem 4 and Theorem 4′.) We then let φ be defined on A such that
φ(p) = ψ(p) for all non-minimal p, and φ(p) = 0 otherwise, which gives us a

41



homomorphism from ⟨A,≿,⊎\∼⟩ into ⟨R≥0,≥,+⟩, and inherits the uniqueness
properties mentioned above.

If ⟨A,≿;⊔⟩ is a finite system of qualitative probability that also satisfies
solvability, then it will be a finite system of additive confidence. In that case,
the unique representation φ of ⟨A,≿,⊎\∼⟩ in ⟨R≥0,≥,+⟩ that satisfies nor-
malisation just is the unique probability representation of ⟨A,≿;⊔⟩. From the
perspective of the desiderata in §3.4, these are all good things.

However, it’s not all happy news. While Theorem 4.3 offers a step forward
in dealing with logical omniscience, it’s no great leap. We’ve managed to avoid
the strictest form of logical omniscience—i.e., where p ⊇ q always implies p ≿

q—but the additive representation of ⟨A,≿,⊎\∼⟩ is perhaps not as flexible as
one might like. For one thing, note that Ω will always be maximal in ≿. To
see why, suppose it isn’t. A proposition p is concatenable just in case it’s a
superset of q for some q that’s minimal in ≿. The concatenable propositions are
those that can stand in relations of subjective incompatibility, and in a finite
system of additive confidence, every proposition must be equiprobable with a
concatenable proposition. So, if Ω isn’t maximal in ≿, then at least one other
concatenable proposition must be. Let pmax be that proposition, or one of them,
and let pmin be any minimal proposition that implies pmax. Now suppose q is
(Ω \ pmax) ∪ pmin. So q and pmax are subjectively incompatible, and we should
have φ(p) + φ(q) = φ(p ∪ q); but p ∪ q = Ω, so φ(Ω) ≥ φ(p), contradicting the
hypothesis that pmax ≻ Ω.

More generally, in any finite system of additive confidence, q ⊆ p will always
entail p ≿ q with respect to pairs of concatenable propositions p and q. So while
we’ve shown that it’s possible to maintain the analogy with the measurement of
length while avoiding logical omniscience, the results here are still quite limited.
What we really have in the end is not non-omniscience but a restricted form
of omniscience. Moreover, this means that any time ∅ is minimal, then the
stricter form of logical omniscience follows immediately—since in that case every
proposition in the algebra is automatically concatenable.

Other generalisations of the standard epistemic approach might be possible,
though the relevant work has yet to be done. The difficulty, as I said, is locat-
ing an appropriately natural operation to “play the concatenation role”, which
generalises the probabilistic case but doesn’t force logical omniscience (or some-
thing near as bad). Not an easy thing to find, when the most natural operations
in the vicinity seem to be set-theoretic relations between contents that, given
Assumption 1, correspond directly to their logical relationships. Maybe that’s
a good reason to revisit Assumption 1. But if it is, then it’s also a good rea-
son to consider alternative measurement structures that don’t rely so much on
set-theoretic relations between belief contents.
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Chapter 5

Epistemic Approaches:

Alternatives

Epistemic approaches to the measurement of belief aren’t limited to those in-
volving a single binary confidence relation. In this chapter, I briefly look at sev-
eral other epistemic approaches. The first involves quarternary (or conditional)
confidence relations (§5.2); then qualitative expectation relations (§5.1); then
structures involving multiple primitive doxastic relations (§5.3).

5.1 Conditional confidence

A theory of belief measurement that makes use of a binary confidence relation
will be well-suited for representations that assign a single numerical value to
each proposition, where this is intended to represent the agent’s unconditional
confidence regarding that proposition. However, it’s sometimes thought that the
more fundamental concept in epistemology is not unconditional confidence but
rather conditional confidence—the level of confidence one has in p given some
hypothesis q (e.g., Hájek 2003). A common motivation for this thought is that,
while it’s standard to define conditional probabilities out of unconditional prob-
abilities like so

µ(p|q) =
µ(p ∩ q)

µ(q)
,

that definition only makes sense when µ(q) > 0; yet there appear to be cases
where it makes sense to speak of the probability of p conditional on q even while
the unconditional probability of q is zero.

There is an epistemic approach to the measurement of belief that fits nicely
with this perspective. It involves replacing the binary confidence relation of the
standard epistemic approach with a quarternary relation—or, same thing, a bi-
nary relation ≿ on A×A, interpreted

(p, q) ≿ (r, s) iff α is at least as confident in p given q as she is in r given s

To make things a little easier, let’s write p|q ≿ r|s instead. The goal, then is
to lay down axioms on this quarternary ≿ that will suffice for the ‘probabilis-
tic’ representation thereof. Much of the work done on this matter is owing to



Koopman—see especially his (1940a) and (1940b); see also (Luce 1968). For this
section, however, I will briefly summarise a more recent (but closely related)
result in (Hawthorne 2016).1

Since we are treating conditional probabilities as basic, the numerical rep-
resentation cannot consist in probability measures strictly so-called (i.e., as per
Definition 3.2). Instead, we employ Popper functions, which generalise the classic
definition of a probability measure:

Definition 5.1 π : A×A 7→ R is a Popper function iff

1. For some p, q, r, s ∈ A, π(p|q) ̸= π(r|s)
2. For all p, q, r ∈ A, π(p|p) ≥ π(q|r)
3. If q ⊆ p, then π(p|r) ≥ π(q|r)
4. π(p|q) + π(¬p|q) = π(q|q) unless π(r|q) = π(q|q) for all r ∈ A
5. π(p ∩ q|r) = π(p|q ∩ r)× π(q|r)

Relative to a fixed condition, a Popper function behaves essentially like a prob-
ability measure. For instance, fixing the condition to Ω, the definition implies:

• π(p|Ω) ∈ [0, 1],
• π(Ω|Ω) = 1, and
• if p ∩ q = ∅, then π(p ∪ q|Ω) = π(p|Ω) + π(q|Ω)

Moreover, if µ is the probability measure corresponding to π(·|Ω), then for any p
such that π(p|Ω) > 0, π(q|p) will behave just like µ(q|p). The difference, though,
is that π(q|p) can still be defined even when π(p|Ω) = 0. In this case, π(·|p)
also behaves just like a probability measure µ′, different from µ, in the same
way that π(·|Ω) behaves like µ. And likewise, there may be some r such that
π(r|p) = 0, and π(·|r) might behave in turn like yet another probability measure
different again from µ′ and µ. Thus the Popper function π can act like an ordered
hierarchy of probability measures. As Hawthorne helpfully puts it,

. . . a Popper function may consist of a ranked hierarchy of classi-
cal probability functions, where conditionalization on a probability 0
sentence induces a transition from one classical probability function
to another classical function at a lower rank. The idea is that prob-
ability 0 need not mean “absolutely impossible”. Rather, it means
something like, “not a viable possibility unless (and until) the more
plausible alternatives are refuted.” (2016, 281)

See also (van Fraasen 1976), (Spohn 1986), (Halpern 2001), (Brickhill & Horsten
2018) for detailed discussion on the close relationship between Popper functions,
lexicographic probability measures (lexically-ordered sequences of probabilities),
and non-Archimedean probability measures (probabilities that can take infinites-
imal numerical values).

1Hawthorne interprets ≿ as a relation of comparative evidential support between premises
and conclusions. As he notes, though, the formalism can be interpreted in many ways. See
(DiBella 2018) for a quarternary ≿ explicitly interpreted as comparative conditional confidence.
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As one might naturally expect, the additional complexity of the numeri-
cal representation—with Definition 5.1 including both an additive component
in condition 4, and a multiplicative component in condition 5—corresponds to
significant increased complexity in the required axioms on ≿:

Definition 5.2 Let A be an algebra of propositions on Ω, and ≿ a binary
relation on A×A. We say that ⟨A×A,≿⟩ is a system of qualitative conditional
probability iff the following are satisfied:

1. ≿ is a weak order (weak order)
2. For some p, q, r, s ∈ A, p|q ≻ r|s (non-triviality)
3. For all p, q ∈ A, p|p ≿ q|p (maximality)
4. For all p, q, r ∈ A, if p ⊆ q, then q|r ≿ p|r (implication)
5. For all p, q, r, s ∈ A, if p|q ≿ r|s and q ̸= ∅, then ¬r|s ≿ ¬p|q

(negation-symmetry)
6. For all p1, q1, r1, p2, q2, r2 ∈ A, if

i) p1|(q1 ∩ r1) ≿ p2|(q2 ∩ r2) and q1|r1 ≿ q2|r2, or
ii) p1|(q1 ∩ r1) ≿ q2|r2 and q1|r1 ≿ p2|(q2 ∩ r2),

then (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 (composition)
7. For all p1, q1, r1, p2, q2, r2 ∈ A, if (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 and r2 ̸⊆ ¬q2,

and

i) if q2|r2 ≿ q1|r1, then p1|(q1 ∩ r1) ≿ p2|(q2 ∩ r2)
ii) if q2|r2 ≿ p1|(q1 ∩ r1), then q1|r1 ≿ p2|(q2 ∩ r2) (decomposition-a)

8. For all p1, q1, r1, p2, q2, r2 ∈ A, if (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 and (q2 ∩ r2) ̸⊆
¬p2, then

i) if p2|(q2 ∩ r2) ≿ p1|(q1 ∩ r1), then q1|r1 ≿ q2|r2
ii) if p2|(q2 ∩ r2) ≿ q1|r1, then p1|(q1 ∩ r1) ≿ q2|r2 (decomposition-b)

9. For all p, q, r, s ∈ A, if p|q ≻ r|s, then for some n ≥ 2 there exist t1, . . . , tn, u ∈
A such that

i) u|u ≻ ¬t1|u,
ii) for distinct i, j = 1, . . . , n, ti|u ∼ tj |u and ¬(ti ∩ tj)|u ≿ u|u,
iii) (t1 ∪ · · · ∪ tn)|u ≿ u|u,
iv) for some m ≤ n, p|q ≻ (t1 ∪ · · · ∪ tm)|u ≻ r|s (Archimedean)

Theorem 5.1 (Hawthorne 2016) If ⟨A×A,≿⟩ is a system of qualitative condi-
tional probability, there exists a homomorphism from ⟨A×A,≿⟩ into ⟨R≥0,≥⟩,
and exactly one such homomorphism is a Popper function.

The non-triviality, maximality and implication axioms directly correspond to
conditions 1, 2 and 3 of Definition 5.1. The negation-symmetry axiom is the main
axiom corresponding to the additivity condition 4, while the composition and de-
composition axioms correspond to the multiplicative condition. The Archimedean
axiom says that whenever p|q ≻ r|s, there is a finite number of mutually exclu-
sive and equiprobable propositions such that the conditional probability of their
union (relative to some condition) is strictly between that of p|q and r|s. In terms
of the representation: if p|q ≻ r|s then the difference between π(p|q) and π(r|s)
is not infinitesimal, ensuring ≿ can be represented in R.
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5.2 Qualitative expectations

A rather different epistemic approach—originating with Suppes & Zanotti (1976),
see also Clark (2000) and (Suppes & Pedersen 2016)—takes the primitive order-
ing relation ≿ to be defined not over an algebra of propositions, but instead over
an algebra of extended indicator functions.

Extended indicator functions are a generalisation of indicator functions. In
the broadest terms, an extended indicator function is a certain kind of random
variable—an integer-valued function f defined on Ω such that for some positive
integer n, propositions p1, . . . , pn, and non-negative integers k1, . . . , kn,

f(ω) =
n∑

j=1

kj · p
i
j(ω)

But that’s unlikely to be intuitive, so it’ll help to consider how extended indicator
functions can be built up via the pointwise summation of ordinary indicator
functions. Start with the indicator function of p, or pi, which in Chapter 4 was
defined as the function that takes each world ω in Ω and returns the value 1 if
ω belongs to p, and 0 otherwise. Now consider it’s nth iteration, npi, defined:

npi(ω) =

n times
︷ ︸︸ ︷

p
i(ω) + · · ·+ p

i(ω) =

{

n if ω ∈ p

0 otherwise

For any integer n ≥ 1, the nth iteration of any indicator function will count
as an extended indicator function. Clearly, where n = 1, then 1pi = p

i; and
where n > 1, then npi can be expressed as the pointwise sum of mp

i and kpi

(or mp
i∔ kpi) for m + k = n. More generally, the pointwise sum of any two

extended indicator functions will also count as an extended indicator function.
So, for example, npi∔mq

i is an extended indicator function:

npi∔mq
i(ω) = npi(ω) +mq

i(ω) =







n+m if ω ∈ p and ω ∈ q

n if ω ∈ p and ω ̸∈ q

m if ω ̸∈ p and ω ∈ q

0 otherwise

In the same fashion, (npi∔mq
i)∔ kri is an extended indicator function, and so

on. Hence we can construct a space of extended indicator functions by starting
with a set of propositions, taking the set of indicator functions corresponding to
those propositions, and closing it under pointwise summation:

Definition 5.3 Ai is the algebra of extended indicator functions generated by
A iff

1. For all p ∈ A, pi ∈ Ai

2. If f, g ∈ Ai, then f ∔ g ∈ Ai

3. Nothing else is in Ai
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This algebra of extended indicator functions will comprise the domain of the
primitive binary relation ≿—a so-called qualitative expectations relation—with
the goal being to represent ≿ via an expectation function:

Definition 5.4 Where Ai is the algebra of extended indicator functions gener-
ated by A, a function ϵ : Ai 7→ R

≥0 is an expectation function iff for all x, y ∈ Ai,

1. ϵ(Ωi) > ϵ(∅∅∅i) = 0
2. ϵ(x∔ y) = ϵ(x) + ϵ(y)

So we’re mapping ∔ into +, in other words. Sufficient conditions for the existence
of such representations are provided by the following theorem. Given the additive
structure of the representation, these axioms should come as no surprise:

Definition 5.5 Let A be an algebra of propositions on Ω, and ≿ a binary
relation on the algebra Ai of extended indicator functions generated by A. Then
⟨Ai,≿⟩ is a system of qualitative expectations iff it satisfies the following, for all
for all x, y, z ∈ Ai,

1. ≿ is a weak order (weak order)
2. x ≿ ∅∅∅

i (∅∅∅i-minimality)
3. Ωi ≻ ∅∅∅

i (non-triviality)
4. x ≿ y iff x∔ z ≿ y∔ z (∔-monotonicity)
5. If x ≻ y, then there are k, n ≥ 1 with nx ≻ kΩi ≻ ny (Archimedean)

Theorem 5.2 (Suppes 2016) If ⟨Ai,≿⟩ is a system of qualitative expectations,
then there is an expectation function that maps ⟨Ai,≿⟩ into ⟨R≥0,≥⟩; further-
more, the set of homomorphisms from ⟨Ai,≿⟩ into ⟨R≥0,≥⟩ that are also expec-
tation functions is unique up to positive similarity transformations.

Note that any expectation function which maps ⟨Ai,≿⟩ into ⟨R≥0,≥⟩ is ipso
facto a weakly additive representation of ⟨Ai,≿;∔⟩ in ⟨R≥0,≥; +⟩, and vice
versa. Indeed, similar to the reformulation Theorem 4.1 as Theorem 4.1′ earlier,
it would be straightforward to re-write Theorem 5.2 so as to make the connection
with extensive measurement more transparent. Essentially: if ⟨Ai,≿;∔⟩ satisfies
the stated axioms, then there is a weak homomorphism, unique up to a positive
similarity transformation, from ⟨Ai,≿;∔⟩ into ⟨R≥0,≥; +⟩.

There is a direct connection between expectation representations of quali-
tative expectation relations and the probabilistic representation of comparative
confidence relations. Note that any expectation function ϵ is related by a positive
similarity transformation to exactly one normalised expectation function ϵ′, with
ϵ′(Ωi) = 1. This ϵ′ describes a probability measure µ if, for all p ∈ A, we let
µ(p) = ϵ′(pi). In other words, the weakly additive measures of ⟨Ai,≿;∔⟩ corre-
spond to a unique probability measure on A. Indeed, Suppes & Zanotti (1976,
435–7) were able to establish that ⟨A,≿⟩ has a unique probabilistic representa-
tion if and only if there exists a system of qualitative expectations ⟨Ai,≿⟩ such
that ≿ on A is the weak order induced by ≿ on Ai, defined like so:

p ≿ q iff p
i ≿ q

i
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So a (complete) binary confidence relation is uniquely probabilistically repre-
sentable just when it can be extended to a qualitative expectations relation
which satisfies Suppes & Zanotti’s five axioms.

So much for the formalities, now for the hard part: the interpretation of
≿ over Ai isn’t entirely transparent, and I suspect this is main reason why
there’s been comparatively little work done on this approach. In the usual case,
random variables are functions from the outcomes of an experiment-type to
numerical values of those outcomes. For instance, if we say the experiment is
tossing two six-sided die, there are 36 possible outcomes corresponding to the
different combinations, and 11 possible numerical values from 2 to 12 they might
sum to. Letting r be the corresponding random variable, the expected value ϵ of r
is the probability-weighted average value of the outcomes (under the supposition
the experiment is run), and the sum of the expected value of r with itself n times
can be interpreted as the expected total value of n independent runs of the same
experiment under the same conditions. If the die are fair, then ϵ(r) = 7, and

ϵ(r∔r) = ϵ(r) + ϵ(r) = 14

For this to make sense, though, it should be possible for those 36 outcomes to
recur across independent instances of the same experiment. It is much less clear
how to make sense of the iterated variables where the ‘outcomes’ are maximally
specific possible worlds and the ‘experiment’, as such, can only be run once.
Suppose p is the proposition there are dogs, and q the proposition most roses
are red. Presumably we should be able to find both propositions in A, given
the intended interpretation of that set. Each corresponds to a random variable
over Ω, namely p

i and q
i, and there’s no difficulty in interpreting p

i ≿ q
i as an

expectation relation in this case. But the interpretations of 3pi and 5qi are not
similarly transparent, and still less the interpretation of 3pi∔5qi.

In connection to this, it’s noteworthy that Suppes (2014, 53) later flagged
interpretive difficulties as a distinctive cost for the approach, particularly vis-à-
vis the mixed indicator functions pi

j ∔q
i
j . Suppes & Zanotti explain one possible

way to interpret their mixed non-iterated functions pi∔q
i thus:

Suppose Smith is considering two locations to fly to for a weekend
vacation. Let pj be the event of sunny weather at location j and qj be
the event of warm weather at location j. The qualitative comparison
Smith is interested in is the expected value of pi

1 ∔ q
i
1 versus the

expected value of pi
2∔q

i
2. It’s natural to insist that the utility of the

outcomes has been too simplified by the sums p
i
j ∔ q

i
j . The proper

response is that the expected values of the two functions are being
compared as a matter of belief, not value or utility. Thus it would
seem quite natural to bet that the expected value of p

i
1 ∔ q

i
1 will

be greater than that of pi
2 ∔ q

i
2, no matter how one feels about the

relative desirability of sunny versus warm weather. (1982, 433)

And in regards to the non-mixed iterated indicator functions, npi where n > 1,
Suppes offers the following interpretation:
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From an intuitive estimation or gambling standpoint, it’s much easier
to reflect on the subjective probability of npi than of npi∔mq

i. For
example, if pi(ω) = 1 means “heads” in a toss of a coin with unknown
bias, then 5pi is just the estimate of 5 such tosses being “heads”.
(2014, 53)

The “heads” example is selectively chosen. Supposing Ω is a set of possible
worlds, pi(ω) = 1 in general means that the proposition p is true at the world ω.
It is not clear to me how something along the lines of Suppes’ suggested reading
will make intuitive sense when p is there are dogs or most roses are red.

5.3 Multiprimitive structures

Suppose we identify an agent’s unconditional probabilities with their probabili-
ties conditional on the necessary proposition Ω. Given that, we can usefully see
the two epistemic accounts just discussed as alternative ways of enriching the
relatively simple systems of unconditional comparative confidence ⟨A,≿⟩ that
were characterised by Definition 4.1. The account in §5.1 extends the domain
of the confidence relation to A×A, such that the agent’s unconditional confi-
dence ordering falls out as a special case. The qualitative expectations account
in §5.2 instead extends the domain from A to Ai, again with the unconditional
confidence ordering being a special part of the richer relation. The following
alternative also enriches the simple ⟨A,≿⟩ systems, though in a different way
again: by adding more psychological primitives to the system.

Of course, there is an absurd variety of ways this might go, depending on
what primitives we choose to add and the structures we take them to have. One
might conceivably add a primitive unary property corresponding to certainty,
for example. Definitions of ‘certainty’ in terms of comparative confidence will
usually equate it with maximal confidence, but one might imagine that being
certain that p can sometimes come apart from being at least as confident that p as
any other proposition—and so an independent primitive for qualitative certainty
would be useful. Similarly, if one supposes that all-or-nothing belief is related but
not reducible to comparative confidence, and therefore seeks to represent all-or-
nothing beliefs alongside degrees of belief within a single numerical framework,
then one might try adding a primitive all-or-nothing believes relation by which
to do so. There’s all sorts of things one might conceivably do.

Probably the most commonly suggested additional primitive, however, is an
independence relation (e.g., Domotor 1970; Fine 1973; Kaplan & Fine 1977; Luce
1978; Luce & Narens 1978; Joyce 2010). Per usual, we say p and q are independent
relative to a probability measure µ whenever

µ(p ∩ q) = µ(p) · µ(q)

In cases where a comparative confidence relation can be represented by more
than one probability measure, which propositions will count as probabilistically
independent of one another can sometimes vary depending on which measures are
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chosen. An example: suppose A contains four atoms, a1–a4, and the probability
measures µ and µ′ are defined like so:

µ(a1) = 0.02, µ(a2) = 0.08, µ(a3) = 0.18, µ(a4) = 0.72

µ′(a1) = 0.03, µ′(a2) = 0.08, µ′(a3) = 0.18, µ′(a4) = 0.71

The resulting measures correspond to the same overall confidence ordering, as
represented in the following table:

µ µ′ µ µ′

Ω 1 1 p⟨123⟩ 0.28 0.29

p⟨234⟩ 0.98 0.97 p⟨23⟩ 0.26 0.26

p⟨134⟩ 0.92 0.92 p⟨13⟩ 0.20 0.21

p⟨34⟩ 0.90 0.89 a3 0.18 0.18

p⟨124⟩ 0.82 0.82 p⟨12⟩ 0.10 0.11

p⟨24⟩ 0.80 0.79 a2 0.08 0.08

p⟨14⟩ 0.74 0.74 a1 0.02 0.03

a4 0.72 0.71 ∅ 0 0

Observe that p⟨24⟩ and p⟨34⟩ are independent relative to µ, not relative to µ′:

µ(a4) = µ(p⟨24⟩) · µ(p⟨34⟩), µ′(a4) ̸= µ′(p⟨24⟩) · µ
′(p⟨34⟩)

So probabilistic independence is not, in general, meaningful relative to the prob-
abilistic measurement of comparative confidence.

Since independence is one of the more central concepts in probability theory,
and does important theoretical work, we should want to rectify this situation.
One might suppose we can simply solve the problem by imposing further axioms
on ≿, thus ensuring a unique probabilistic representation. But this response is
inadequate. For one thing, it doesn’t solve the problem. Even supposing that
⟨A,≿;⊔⟩ has a unique probabilistic representation in ⟨R,≥; +⟩, there will still
be many non-probabilistic representations of that system in ⟨R,≥; +⟩ whereby
φ(Ω) needn’t equal 1—so independence will not be meaningful relative to the
natural class of additive homomorphisms into ⟨R,≥; +⟩.2 Moreover, there will
still be ordinally-equivalent probability measures that plausibly represent dis-
tinct systems of belief—as evidenced by their differentiable roles in epistemology
and decision theory—and we should like to be able to account for them too.

The better response is to find a system of primitives that will guarantee
meaningfulness for independence. Most obviously, we can include a primitive
qualitative independence relation alongside comparative confidence. Let ⊥ des-
ignate a binary relation on A. The goal is then to supply conditions on an
enriched system ⟨A,≿,⊥⟩ sufficient for the existence of a measure φ such that

i. p ≿ q iff φ(p) ≥ φ(q)

2See (Luce et al. 1990, 277–8) for useful discussion on this point. As they note, one shouldn’t
infer meaningfulness from an arbitrary restriction on the additive homomorphisms (e.g., to the
special case where ϕ(Ω) = 1). If that sort of thing were admissible, we could quickly trivialise
the notion of meaningfulness for any measure that’s 1-point unique.
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ii. If p ∩ q = ∅, then φ(p ∪ q) = φ(p) + φ(q)
iii. p⊥ q iff φ(p ∩ q) = φ(p) · φ(q)

If A is finite, then such a measure will exist only if ≿ satisfies the axioms from
Definition 4.1. Necessary axioms for ⊥ on this interpretation are provided by
Suppes (2014); each directly corresponds to basic properties of probabilistic in-
dependence:

1. p⊥Ω
2. If p⊥ p, then p ∼ Ω or p ∼ ∅

3. If p⊥ q, then q⊥ p

4. If p⊥ q, then p⊥¬q
5. If q ∩ r = ∅, and p⊥ q, p⊥ r, then p⊥ q ∪ r

Including a primitive independence relation with these constraints into a sys-
tem of qualitative probability will in some cases be enough to let us meaningfully
differentiate between ordinally-equivalent probability measures. It does for the
example just above, for instance, depending on whether p⟨12⟩⊥ p⟨23⟩ or not. But
it’s not always enough. Consider again the case that was earlier discussed in §3.4,
where A = {Ω, p,¬p,∅} and

Ω ≻ p ≻ ¬p ≻ ∅

Suppose that the A and ≿ in ⟨A,≿,⊥⟩ have this structure. Then ⟨A,≿,⊥⟩ can
be represented by numerous measures satisfying properties i and ii, provided

φ(Ω) > φ(p) =
(
φ(Ω)− φ(¬p)

)
> φ(∅) = 0

The addition of property iii forces those measures to satisfy normalisation, and
hence forces them all to be probability measures. However, it does nothing to
sort between the many ordinally equivalent probability measures that fit with
those comparative confidences.

It is possible to add yet further primitives that will help to guarantee unique
probabilistic representability even where the conditions on ≿ and ⊥ alone are
not enough. Suppes (2014, 49–50) shows that if one adds a primitive entropic un-
certainty relation ≿u (defined over partitions of Ω) alongside appropriate axioms
relating ≿, ⊥, and ≿u, then one can guarantee a unique (absolute scale) repre-
sentation of the resulting system that also happens to be a probability measure.
No doubt there are many other primitives that one could try including alongside
≿ and ⊥ that might work too. The matter has so far only undergone the most
cursory exploration.

51



Chapter 6

Decision-Theoretic Approaches

A decision-theoretic representation is a kind of conjoint representation, typically
of a single binary preference relation that decomposes into a representation of
beliefs and a representation of (basic) desires that pairwise determine those pref-
erences according to a pre-specified decision rule.

Decision-theoretic representations can differ along several dimensions, de-
pending on the primitives used to construct the qualitative system, the desired
constraints on the numerical representations of belief and desire, or the details
of the decision rule. By far the most well-known theorems in this space are those
for subjective expected utility theory; here we find the seminal works of Ramsey
(1931), Savage (1954), and Jeffrey (1965). But there are dozens of variations on
these theorems, and many more indeed for the huge number of non-expected
utility theories that have been proposed as descriptive or normative rivals to the
orthodox expected utility theory.

I won’t attempt to cover all the variety in this chapter. Instead, I’ll start
with a brief overview of the main frameworks in which decision-theoretic rep-
resentations tend to be constructed (§6.1), after which I’ll go into more detail
on (a version of) Ramsey’s theorem (§6.2). Then I discuss meaningfulness in the
conjoint measurement of belief and desire (§6.3), and finally rebut some common
objections and concerns about the decision-theoretic approach (§6.4).

6.1 The objects of preference

Before we can build a conjoint representation of preferences as determined by
beliefs and desires, we require an appropriate means of formalising the objects
over which the preference relation is to be defined. These objects are variably
referred to as gambles, bets, prospects, options, acts, decisions, choices, and more,
depending on the intended interpretation of the theorem and the personal in-
clinations of its authors. But, broadly speaking, there are three main ways to
formalise the objects of preference. These can be roughly ordered by the degree
of internal structure they represent those objects as having—i.e., from those that
posit very richly structured objects of preference to those that define preferences
over unstructured sets.



At the ‘richly structured’ end of the spectrum will be theorems that, like
Savage’s (1954), employ more or less arbitrary associations between states of
nature and consequences. In this context, preferences are usually understood as
a relation over actions the agent might perform, or perhaps intentions to perform
those action, with the idea being that actions can be represented by their possible
consequences relative to the states of the world under which the action brings
them about. Where S = {s1, s2, . . . } is a partition of Ω representing different
states the world might be in, and C = {c1, c2, . . . } is a set of consequences that
some potential action could bring about depending on which state happens to
be true, we let each action be represented by a function from S to C. (So if f is
the function that pairs si with ci, then it represents the action such that were
it performed, then if s1 is the true state then c1 would result, and if s2 is the
true state then c2 would result, and so on.) The preference relation is defined
over a set of these functions, and a conjoint representation is constructed that
(typically, not always) decomposes into two measures—a function on the set of
consequences C (corresponding to the desirability of those consequences); and a
function on an algebra of propositions (usually called ‘events’) constructed from
the states in S (corresponding to the agent’s beliefs).

For example, suppose S is finite, and the set of events E = {e1, e2, . . . } is
the algebra of propositions with atoms given by S. Then, an ordinary expected
utility theorem provides axioms on a preference relation ≿ defined over the space
of actions CS sufficient for the existence of a probability measure β on E (‘β’ for
beliefs) and a real-valued function δ on C (‘δ’ for desires), such that for any
actions f and g,

f ≿ g iff
∑

s∈S

β(s)δ
(
f(s)

)
≥

∑

s∈S

β(s)δ
(
g(s)

)

Note that β and δ must here be defined on distinct sets—indeed, in Savage’s
original construction S and C are disjoint. The reason is that a proposition counts
as an event just in case it’s logically equivalent to a disjunction of states; hence
any proposition that’s consistent with any state and its negation cannot be an
event. Given that, observe that consequences cannot in general be events, if the
functional representation of actions is to be coherent. We cannot say that f is
the action that brings consequence c1 at state s1, whereas g is the action that
brings some other consequence c2 at s1, if the state logically determines that a
particular consequence obtains. So consequences need to be logically independent
of states. For a similar reason, states cannot in general determine actions. Hence,
the domain of the belief function cannot include propositions that determine the
actions under deliberation nor the consequences thereof. For some this is seen
as a good-making feature of Savage’s construction (e.g., Spohn 1977); for others,
not so much (e.g., Hájek 2016; Elliott 2017a).

At the other end of the spectrum are theorems that, like Jeffrey’s (1965; 1978;
see also Bolker 1967 and Domotor 1978), define preferences over an algebra of
propositions (qua sets of worlds) that simultaneously serves as the domain of
both the belief and desire functions. For this reason they are sometimes called
‘monoset theorems’. Jeffrey’s theorem supplies axioms on a preference relation
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≿ defined over an algebra of propositions A sufficient for the existence of a
probability measure β and a real-valued δ where p ≿ q iff δ(p) ≥ δ(q), and for
p ∈ A, if {p1, p2, . . . , pn} is any finite partition of p then:

δ(p) =

n∑

i=1

β(pi | p)δ(pi)

It makes little sense to interpret the objects of Jeffrey’s preference relation as
actions. Some of the propositions in A may very well correspond to actions that
the agent may choose to perform—these Jeffrey (1968, 170) refers to as actual
propositions—but many more of the propositions over which ≿ is defined will
correspond to no plausible object of choice in any realistic decision context. So
≿ is much better seen in this case as a relative desirability relation:

To say that p is ranked higher than q [in the agent’s preference or-
dering] means that the agent would welcome the news that p is true
more than he would the news that q is true: p would be better news
than q. (Jeffrey 1990, 82)

Given this, the axioms of Jeffrey’s theorem constrain the agent’s relative desir-
abilities for propositions in general, and decision-making is construed as selecting
between actual propositions on the basis of their desirabilities in contexts where
one is able to make one or another of them true.

The difference in how the objects of preference are represented is also impor-
tant from a measurement-theoretic perspective. For any numerical representation
of any weak order, if that representation is going to be more than just an ordinal
scale then one needs posit some additional structure when characterising the
qualitative system—else there will be nothing for the extra-ordinal structure of
the representation to be a representation of. In the Savage framework, the addi-
tional structure can be found mostly in the objects of preference. For example,
Savage’s theorem requires:

• If f(s) = c1 and g(s) = c2 for all s ∈ S, and f ≻ g, then if f ′(s) = g′(s) for
all s ∈ X ⊂ S, and otherwise f ′(s) = f(s) and g′(s) = g(s), then f ′ ≻ g′

In other words, if two acts f ′ and g′ have identical consequences for a subset of
the states, and for all other states f ′ has better consequences, then f ′ should
be preferred to g′. In the Jeffrey framework, however, the relata of ≿ have no
internal structure; they are just sets of worlds. Hence, we need appeal instead
to logical (or set-theoretic) relations between propositions to get an interesting
(more-than-merely-ordinal) representation. For example:

• If (p∪ q) ∼ q for some q ∈ A such that p∩ q = ∅ and either p ≻ q or q ≻ p,
then (p ∪ r) ∼ r for all r ∈ A

In other words, if p makes no contribution to the desirability of p∪ q for disjoint
p and q of distinct desirabilities, then the agent must presumably have zero
confidence in p, and hence for consistency p should make no contribution to the
desirability of p ∪ r for any other r.
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An interesting middle-ground is provided by the third kind of framework,
originating with Ramsey (1931), where preferences are defined over a domain
of very simple prospects of the form “c1 if p, c2 otherwise”. These are typically
interpreted as conjunctions of conditionals, perhaps corresponding to potential
choices or gambles the agent might take. They are typically formalised as n-
tuples of conditions and consequences—e.g., (c1, p, c2). Most such theorems focus
on binary prospects like the one just described. In some cases preferences are
also defined for ternary prospects “c1 if p, c2 if q, c3 otherwise”, or sometimes
even quarternary prospects, but nothing so richly structured as the (potentially
infinitary) act-functions we find in the Savage-style frameworks. (For examples
of theorems in the Ramseyan framework, see Debreu 1959; Davidson & Suppes
1956; Davidson et al. 1957; Fishburn 1967; Elliott 2017b; 2017c.) The theorem
discussed in the next section belongs to this third class.

It’s worth noting that the Ramseyan approach is extremely limited as a
framework for formalising decision theory—especially in contrast to either of
the Savagean or Jeffreyan frameworks just discussed. Most decision situations
involve choices between options that cannot plausibly be reduced to simple n-
ary prospects, for very small n. Our decisions usually have more than 2 or 3
possible consequences. Savage and Jeffrey sought to achieve a complete and fully
general axiomatisation of a decision theory in terms of preferences, and from this
perspective the Ramseyan framework is grossly inadequate.

But for a theory of measurement we needn’t ask so much. The goal here is
to isolate a qualitative conjoint psychological system with a relational structure
that suffices to explain the quantitation of belief. With that in mind, we needn’t
assume that the qualitative system should include all of the agent’s preferences
over all possible actions and/ propositions, nor that the decision rule should be
generally applicable to every conceivable decision situation.

6.2 Ramsey’s theorem

Here’s the goal: from a single preference ordering over a space of binary prospects
(e.g, of the form “c1 if p, c2 otherwise”), we want to extract numerical represen-
tations of belief and desire that conjointly represent those preferences according
to a version of the expected utility rule.

The first step is to be more precise about the form of the intended numerical
representation. We let≿ be a preference relation defined over a set G of prospects.
Where A = {p, q, r, . . . } is an algebra of propositions and C = {c1, c2, c3, . . . } is a
set of consequences, we formalise prospects as 3-tuples (c1, p, c2) in G ⊆ C×A×C.1

For simplicity, we will be assuming that both A and C are finite. This just lets
us ignore a complicated ‘Archimedean’ axiom that’s trivially satisfied in finite
contexts. Given that, we desire a function φ : G 7→ R that represents ≿ in the

1We don’t presume that A and C are disjoint sets, nor that the consequences are maximally
specific. In Ramsey’s essay, consequences are maximally specific worlds, or in some cases almost-
worlds that are maximally specific up to a single question about which the agent cares not.
With some minor adjustments, this ends up being unnecessary for the representation result
and for the decision theory underlying it.
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sense that
(c1, p, c2) ≿ (c3, q, c4) iff φ

(
c1, p, c2

)
≥ φ

(
c3, q, c4

)
,

where φ itself decomposes into two functions β : A 7→ R (for beliefs) and δ : C 7→
R (for desires) such that

φ
(
c1, p, c2

)
= δ(c1)β(p) + δ(c2)

(
1− β(p)

)

Call this the simplified formula.
Note an immediate complication: the simplified formula is too simple! It

implies that the three factors contributing to the value of a prospect are inde-
pendent of one another. In particular, according to the simplified formula,

β(p) = β(q) iff φ
(
c1, p, c2

)
= φ

(
c1, q, c2

)

However, the desirability of c1—as supposedly represented by δ(c1)—may vary
depending on whether it obtains in a context where p is true versus a context
where q is true, which could imply a difference in desirability between (c1, p, c2)
and (c1, q, c2). In general, the value of a prospect’s consequences ought to be
judged relative to the conditions under which those consequences obtain. Conse-
quently, the value of (c1, p, c2) isn’t always given by the simplified formula, but
by the slightly more complicated:

φ
(
c1, p, c2

)
= δ(p ∧ c1)β(p) + δ(¬p ∧ c2)

(
1− β(p)

)

The implication is that if ≿ is determined by this more complicated decision
rule, then either it cannot be represented in the desired manner, or ≿ cannot be
defined for all possible prospects in C×A×C. The resolution to this little problem
is to restrict G to those prospects (c1, p, c2) such that the agent is indifferent
between c1 and c1∧p, and likewise between c2 and c2∧¬p, since in these cases the
complicated formula will just reduce to the simplified formula. If propositions
are coarsely-individuated—if they are sets of logically possible worlds, as per
Assumption 1—then one way to achieve this restriction is to suppose that a
prospect can be found in G only if its consequences entail the conditions under
which they obtain, so c1 = p ∧ c1 and c2 = ¬p ∧ c2. More precisely:

1. (c1, p, c2) ∈ G only if c1 implies p ∧ c1 and c2 implies ¬p ∧ c2; and p ∧ c1 is
inconsistent only if p is inconsistent, and ¬p ∧ c2 is inconsistent only if ¬p
is inconsistent (restricted prospects)

But this only tells us what kinds of prospects aren’t in G. We will also need
to ensure that the domain of ≿ is rich enough to ensure the existence of the
desired representation. There are five richness axioms in total, starting with:

2. For every c ∈ C, there is a prospect (c, p, c) ∈ G (trivial prospects)

The purpose of this axiom is to let us extend the preference ordering ≿ to the
set of consequences C, in the obvious way:

c1 ≿ c2 iff ∃(c1, p, c1), (c2, q, c2) ∈ G : (c1, p, c1) ≿ (c2, q, c2)
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Axioms 7–10, below, will ensure that ≿ on C is a weak order. This trivial prospects
axiom is isn’t necessary if we treat preferences over consequences as a primitive
relation. That is what Ramsey did. However, letting preferences be defined in
the first instance only over gambles, rather than both gambles and their conse-
quences, makes some parts of the construction slightly more natural.

Before I state the four remaining richness axioms, some notation will prove
useful. First, let c designate the set of consequences c′ in C such that c ∼ c′.
In terms of the intended representation, c contains all and only those c′ such
that δ(c) = δ(c′). We then use (c1, p, c2) for a prospect conditional on p with
consequences equal in desirability to c1 and c2. Next, suppose that for c1 ≻ c2,

(c1, p, c2) ≿ (c1, q, c2)

Supposing ≿ is represented in the desired format, this can hold only if β(p) ≥
β(q). Consequently, if

(c1, p, c2) ≿ (c1,¬p, c2)

then β(p) = β(¬p). In this fashion we can isolate the half-probability propositions
in A. We use (c1,

1

2
, c2) for a prospect with consequences equal in desirability to

c1 and c2 conditional on one or another of these half-probability propositions.
These prospects can be used to define halfway points between the desirabilities
of c1 and c2. Finally, we characterise a qualitative ordering ≿∆ over C×C like so:

(c1, c2) ≿∆ (c3, c4) iff (c1,
1

2
, c4) ≿ (c2,

1

2
, c3)

Defined as such, ≿∆ represents the relative size of intervals in desirability—in
the final representation, we will see

(c1, c2) ≿∆ (c3, c4) iff δ(c1)− δ(c2) ≥ δ(c3)− δ(c4)

We can now state the remaining richness axioms with comparative ease:

3. If c1 ≻ c2, then there is some (c1,
1

2
, c2) ∈ G (halfway prospects)

4. If (c1, c2) ≿∆ (c3, c4) ≿∆ (c1, c1), then there are c5, c6 ∈ C such that
(c1, c5) ∼∆ (c3, c4) ∼∆ (c6, c2) (∆-solvability)

5. For every (c1, p, c2) ∈ G, there’s some (c3, q, c3) ∈ G such that (c1, p, c2) ∼
(c3, q, c3), or some (c4,

1

2
, c5) ∈ G such that (c1, p, c2) ∼ (c4,

1

2
, c5)
(extendibility)

6. For every p ∈ A, there’s some (c1, p, c2) ∈ G such that c1 ≻ c2 or c2 ≻ c1
(non-trivial prospects)

The halfway prospects axiom ensures that we can always define halfway points be-
tween the desirabilities of any two consequences. ∆-solvability is a non-necessary
condition used to guarantee that for any non-zero interval in desirability between
two consequences, there will be another interval of the same size to which it can
be ‘added’. This allows ratios of differences to be defined, which is what ulti-
mately allows the construction of an interval-scale measure δ. The extendibility
axiom is then used to extend δ on C to all of G, and hence define φ. Finally, non-
trivial prospects ensures there are enough prospects around such that a degree
of belief can be defined for every proposition in A.
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Definition 6.1 Where A is a finite algebra of propositions and C is a finite set of
propositions, ⟨G,≿⟩ is a finite Ramseyan structure iff G ⊆ C×A×C satisfying re-
stricted prospects, trivial prospects, halfway prospects, ∆-solvability, extendability
and non-trivial prospects.

What remains is to specify conditions on a finite Ramsey structure suffi-
cient for the existence of the desired representation. We proceed in three stages,
starting with the construction of the desirability function δ. This uses:

7. ≿ is a weak order (weak order)
8. ≿∆ is transitive (∆-transitivity)
9. For all c1, c2 ∈ C, (c1,

1

2
, c2) ∼ (c2,

1

2
, c1) (reversibility)

10. For all c1, c2 ∈ C, if c1 ≿ c2, then (c1, p, c1) ≿ (c1, q, c2) (averaging)

In overview, δ is derived as follows. (For details, see Elliott 2017c and Krantz
et al. 1971, 145–52.) First, we use weak order, ∆-transitivity and reversibility, in
conjunction with halfway prospects and ∆-solvability, to define a concatenation
operation ⊕ over desirability intervals, such that ⟨C×C,≿∆;⊕⟩ is an additive
extensive structure. This allows for a ratio-scale measure of desirability intervals.
Given averaging, we can define an interval-scale measure δ : C 7→ R such that:

i. c1 ≿ c2 iff δ(c1) ≥ δ(c2)
ii. (c1, c2) ≿∆ (c3, c4) iff δ(c1)− δ(c2) ≥ δ(c3)− δ(c4)

Next, we define φ on G using δ, like so:

φ
(
c1, p, c2

)
=

{

δ(c3) if (c1, p, c2) ∼ (c3, q, c3)
1

2

(
δ(c3)− δ(c4)

)
if c3 ≻δ c4 and (c1, p, c2) ∼ (c3,

1

2
, c4)

The extendibility axiom ensures the definition is adequate. Note, of course, that
δ(c) = φ

(
c, p, c

)
. Finally, we extract the belief function β out of φ. Where c1 ≻

c2, reorganising the simplified formula gets us β(p) as a ratio of differences in
desirability:

β(p) =
φ
(
c1, p, c2

)
− δ(c2)

δ(c1)− δ(c2)

This last step requires the non-trivial prospects axiom, plus one more axiom
which asserts that the contribution β(p) makes to the overall value of a prospect
is independent of the desirabilities of its consequences. Expressed directly in
terms of preferences, this axiom is rather complicated and not at all intuitive.
The interested reader should refer to Davidson & Suppes’ (1956) axiom A10 and
the associated definitions for how it goes. We can simplify matters greatly by
‘cheating’ and expressing the axiom in terms of the intended representation:

11. For all p ∈ A, if δ(c1) ̸= δ(c2), δ(c3) ̸= δ(c4), and (c1, p, c2), (c3, p, c4) ∈ G,
then

φ
(
c1, p, c2

)
− δ(c2)

δ(c1)− δ(c2)
=

φ
(
c3, p, c4

)
− δ(c4)

δ(c3)− δ(c4)

(independence)
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The upshot is that the foregoing definition of β(p) won’t depend on the particular
choice of prospect. It is a consistency requirement, on how the agent values
different prospects conditional on the same proposition.

Putting that all together:

Theorem 6.1 (Ramsey 1931; Elliott 2017c) If ⟨G,≿⟩ is a finite Ramseyan struc-
ture satisfying weak order, ∆-transitivity, reversibility, averaging, and indepen-
dence, then there are functions φ : G 7→ R, δ : C 7→ R and β : A 7→ R, such
that

i. (c1, p, c2) ≿ (c3, q, c4) iff φ
(
c1, p, c2

)
≥ φ

(
c3, q, c4

)

ii. φ
(
c1, p, c2

)
= δ(c1)β(p) + δ(c2)

(
1− β(p)

)

Furthermore, δ is unique up to a positive affine transformation, while β is unique
and for all p ∈ A,

iii. 1 ≥ β(p) = 1− β(¬p) ≥ 0

Note that β is unique simpliciter—an absolute scale. The uniqueness clause
applies to all representations satisfying properties i and ii. (Property iii, by con-
trast, is not an explicit stipulation on the form of the representation but is rather
derived as a consequence of the representation.) The uniqueness of β is a result
of how it was defined—as a dimensionless ratio of differences in desirability—and
the fact that δ is unique up to an interval-preserving transformation.

6.3 Uniqueness and meaning

It’s a point often noted that the expected utility representations of a preference
ordering are not unique. Theorem 6.1 implies, for example, that if ≿ has an
expected utility representation involving the pair of belief and desire functions β
and δ, then there will be another such representation involving β and δ⋆, where

δ⋆(c) = 9δ(c) + 1

Since it’s widely held that desirabilities can be measured on nothing stronger
than an interval scale (similar to temperatures as measured in Celsius or Fahren-
heit), the usual response to this fact is that there is no meaningful difference
between δ and δ⋆.

Now consider the following example, from (Zynda 2000). Where γ is an n-ary
prospect with consequences γ(pi) conditional on which element of a partition
p1, . . . , pn happens to be true, then ≿ has an expected utility representation
involving β and δ whenever γ ≿ γ′ iff

n∑

i=1

β(pi)δ
(
γ(pi)

)
≥

n∑

i=1

β(pi)δ
(
γ′(pi)

)

If any such representation exists, then there will be another representation of ≿
involving the functions β⋆ and δ, where

β⋆(p) = 9β(p) + 1
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In this case, though, the belief and desire functions will be combined by a different
decision rule—the valuation maximisation rule. This rule tells us that γ ≿ γ′ just
in case

n∑

i=1

β⋆(pi)δ
(
γ(pi)

)
− δ

(
γ(pi)

)
≥

n∑

i=1

β⋆(pi)δ
(
γ′(pi)

)
− δ

(
γ′(pi)

)

It is straightforward to show that an expected utility representation of ≿
(with β and δ) exists if and only if a valuation maximisation representation of
≿ (with β⋆ and δ) likewise exists. The key step is then just to note that the
transformation from β to β⋆ is bijective and so invertible:

β(p) =
β⋆(p)− 1

9

So, substituting into the inequality for expected utility representations above:

n∑

i=1

(
β⋆(pi)− 1

9

)

δ
(
γ(pi)

)
≥

n∑

i=1

(
β⋆(pi)− 1

9

)

δ
(
γ′(pi)

)

Then dropping the constant factor:

n∑

i=1

(
β⋆(pi)− 1

)
δ
(
γ(pi)

)
≥

n∑

i=1

(
β⋆(pi)− 1

)
δ
(
γ′(pi)

)

Which is just another way to write the valuation maximisation rule.
By analogy with desirabilities, one might imagine this tells us something

about meaningfulness in β and β⋆: that in just the same way as we wanted to
say that δ and δ⋆ are not meaningfully distinct, so too should we want to say
that β and β⋆ are not meaningfully distinct. As Zynda has suggested,

One might point out that β⋆ is simply a linear transformation of β,
and argue that in the case of probabilities (like utilities and temper-
atures) this is a difference that makes no difference. This approach
commits [the theorist] to taking as real properties of degrees of belief
at most those properties that are common to both. . . (2000, 64)

And a little further on, Zynda argues that β and β⋆ will share a common ordering,
and thus represent the same comparative confidences. Hence,

According to this solution, people really have properties that can
properly be called “degrees of belief”, though these are more abstract
in nature than subjective probabilities, being purely qualitative. . .
the concept of degree of belief on this strategy becomes a purely
ordinal notion. (2000, 65, emphasis added)

However, while there is an important lesson about meaningfulness to be gleaned
from this example, this is not it.

First note that β and β⋆ will have more than just their orderings in common.
The linear transformation which relates β to β⋆ also preserves difference ratios,
and those ratios are not decision-theoretically superfluous. Again, the example
from §3.4 suffices to make this point. Where A = {Ω, p,¬p,∅}, we imagine that
Ramsey has a choice between:
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α: receive $1 if p is true, nothing otherwise
β: receive $2 if p is false, nothing otherwise

According to expected utility theory, Ramsey should prefer α iff

β(Ω)− β(∅)

β(p)− β(∅)
<

β(p)− β(∅)

β(¬p)− β(∅)

As there are numerically-distinct but ordinally-equivalent probability measures
that differ with respect to this inequality, expected utility theory requires that
there are meaningful differences between those measures. The same is therefore
true for the valuation maximisation rule, according to which Ramsey should
prefer α iff

β⋆(Ω)− β⋆(∅)

β⋆(p)− β⋆(∅)
<

β⋆(p)− β⋆(∅)

β⋆(¬p)− β⋆(∅)

Do not be tempted, though, to infer from these facts that difference ratios
are meaningful in β. (They are meaningful; the mistake is to think the reason
has anything to do with what’s common to β and β⋆.) For consider yet another
decision-theoretic representation. Define β† such that

β†(p) = β⋆(p)2

Now ≿ has an expected utility representation involving β and δ iff it also has
an ‘equivalent’ schmaluation maximisation representation involving β† and δ,
where this time we say γ ≿ γ′ iff

n∑

i=1

(√

β†(pi)− 1
)

δ
(
γ(pi)

)
≥

n∑

i=1

(√

β†(pi)− 1
)

δ
(
γ′(pi)

)

However, difference ratios are not preserved in the transformation from β to β†.
So if earlier we were tempted to say that difference ratios are meaningful in β

only if they’re shared with β⋆, then by the same token they should be shared
with β† as well—but then difference ratios wouldn’t be meaningful after all.

The proof that a schmaluation maximisation representation exists just in
case an expected utility representation exists is near identical to that for the
valuation maximisation representations above, and relies mostly on the fact that
the transformation from β to β† is bijective and so invertible:

β(p) =

√

β†(p)− 1

9

And it generalises easily: if the transformation from β to β† is bijective, then
we’ll be able to construct a representation of ≿ which makes use of βx and δ,
where that representation exists iff an expected utility representation with β and
δ exists. This includes transformations that do not preserve ratios, or difference
ratios, or even orderings. In fact, there’s virtually nothing that’s shared across
all possible decision-theoretic representations of ≿. But it would be a gross error
to infer that almost all the information in β is meaningless!
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Clearly, whether something is meaningful in β has nothing much to do with
what kind of information β shares or doesn’t share with β⋆ and β†. And hopefully
you can see the problem: the valuation and schmaluation maximisation represen-
tations are ‘equivalent’ to the expected utility representation in the sense that
they are equally legitimate ways to numerically represent a system of preferences,
but they are representations within distinct numerical systems—and meaning-
fulness in the representation of any quantity is only sensibly defined relative to
a fixed choice of numerical format (§2.5). Indeed, for any real-valued represen-
tation φ of any quantity, if φ and φ′ are related by an invertible transformation
on the reals, then φ′ will also be a way of representing that quantity in some
numerical system or other. This includes transformations that do not preserve
ratios, or difference ratios, or even orderings.

What Zynda-style examples actually establish is that ratios in β are mean-
ingful relative to expected utility representations, precisely because any trans-
formation of β that doesn’t preserve ratios must therefore employ a different
combination rule. Since ratios are meaningful, therefore difference ratios and or-
derings are also meaningful. But there is a deeper lesson here too: the conjoint
structure being represented isn’t any structure internal to the system of beliefs
itself, considered in isolation from anything else, but relates instead to the con-
nection between beliefs, desires, and preferences. The belief functions β, β⋆ and
β† do have something in common—they all play similar roles in the respective nu-
merical models of decision-making that employ them. (Essentially: these beliefs
interact with those desires to produce such-and-such preferences.) That is what’s
invariant, and that is why we cannot transform the belief function without mak-
ing adjustments to the decision rule: because the meaning of β is tied up with
how it interacts with δ to produce preferences. Of course there are many ways
to represent that conjoint system—there are always many ways to represent any
system. But however we do so, the three components of the representation—the
belief function, the desire function, and the decision rule—need to be interpreted
together.

For an analogy, consider the relationship between force, mass, and accelera-
tion. If those quantities are represented in Newtons, kilograms, and meters per
second squared (respectively), then the connection between them can be neatly
captured with the usual formula:

F = ma

But if we start playing around with the numerical representation of the differ-
ent components, then we can easily come up with many numerically distinct
but ‘equivalent’ representations of the very same relationship. Where mass is
measured in pounds, acceleration in schmeters per second squared,2 and force in
negative Newtons, then we get:

F =
−5m· log2(a)

11

2Recall from §2.4 that the schmeter is a multiplicative variant of the meter, defined such
that n meters is 2n schmeters.
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The superficial form of the rule has changed, but not the underlying relational
system between the three quantities. What’s happening with the different ways
of expressing the connection between beliefs, desires, and preferences is no dif-
ferent in kind that what’s happening with these different ways of expressing the
connection between force, mass, and acceleration.

6.4 An apology

Theorem 6.1 describes a very flexible representation of belief—β must be such
that β(p) ∈ [0, 1] and β(p) = 1− β(¬p), but otherwise there are few constraints
on the shape it must take. It’s possible to construct finite Ramseyan structures
such that β is logically non-omniscient, and it’s also possible to construct finite
Ramseyan structures such that β is a probability measure. Given the desiderata
of §3.4, I take it that this flexibility is a good-making feature. It allows for
a non-disjunctive theory of belief measurement that’s consistent with a range
of probabilistic and non-probabilistic representations, on a more-than-merely
ordinal scale, without forcing logical omniscience.

The reason for this flexibility is that the degree of belief assigned to p is de-
termined independently of almost any other proposition, aside from ¬p. This
contrasts with epistemic approaches (and Jeffrey-style decision-theoretic ap-
proaches). The quantitation of belief on the Ramseyan approach requires no
particular appeal to relations between belief states or the contents thereof, but
instead depends primarily on systematic relationships between the agent’s de-
gree of belief in p and the value they attach to prospects conditional on p. As
Ramsey put it,

[The] degree of a belief is a causal property of it, which we can express
vaguely as the extent to which we are prepared to act on it. (1931,
169)

A rough way to express the difference: on the epistemic approach, the strength
of Sally’s belief towards p is twice that of q when p is equiprobable with the
disjunction of two incompatible q′ and q′′ equiprobable with q; on the Ramseyan
approach, if p is believed to twice the degree as q, then this will connected to
the difference in desirability between (c1, p, c2) and c2 being twice the difference
between (c1, q, c2) and c2 (for c1 ≻ c2).

It’s worth emphasising again that the connection between belief and pref-
erence needn’t be constitutive. Many have claimed to find in Ramsey’s essay
the thesis that beliefs are nothing over and above preferences as manifest in
choice dispositions. Ramsey himself never said that, and instead characterised
the relationship between them in causal terms. But in any case, nothing about
Theorem 6.1 implies that beliefs are reducible to preferences. It’s true that in
the proof of the theorem we first characterise a desirability function that rep-
resents preferences and from that go on to derive a belief function—but one
cannot infer any kind of ontological or conceptual dependence relations between
quantities just from the order in which their numerical representations happen
to be constructed in a conjoint representation thereof. That would be fallacious.

63



The numerical representation requires a qualitative interpretation involving some
systematic connection between beliefs and preferences, but that connection may
take many possible forms.

Recognising this fallacy helps in dealing with some common objections to
the decision-theoretic approach. An exemplar here is Eriksson & Hájek’s (2007)
Zen monk. A ‘Zen monk’ is an agent who is indifferent between all consequences,
and therefore indifferent between all prospects. The preferences of such an agent
would violate non-trivial prospects in such a way that the belief function β can-
not be derived from the agents’ desirabilities. Yet, presumably, such an agent
could still have determinate degrees of belief, and two Zen monks could have
distinct degrees of belief between them. If such beings could exist, then they
are a counterexample to the thesis that an agent’s degrees of belief are nothing
over and above their preferences. But the zen monk is much less problematic if
we take the strength of an agent’s belief to be “a causal property of it” which
need not be manifest in all cases (Elliott 2019a). Even if a zen monk is actu-
ally indifferent among all consequences, she may still be in a state of belief the
typical causal role of which would only become apparent if she were no longer
universally indifferent. What it is to believe p to degree x, on this picture, is to
be in a state whose typical causal role in connection to preferences and desire is
reflected in the class of systems with representations such that β(p) = x.

Another common objection is that Ramsey’s theorem (and the like) only
establishes conditions under which a preference relation behaves as if it’s deter-
mined by such-and-such beliefs and desires combined according to the expected
utility rule—it doesn’t guarantee that the agent really has those beliefs and de-
sires (cf. Zynda 2000; Christensen 2001; Eriksson & Hájek 2007; Meacham &
Weisberg 2011). The observation is correct, of course, just as it would also be
correct to say that a representation theorem for the conjoint measurement of
momentum as determined by mass and velocity only supplies conditions under
which momentum behaves as if it’s determined by mass and velocity. But so
what? If the point of a decision-theoretic representation theorem were to show
that an agent whose preferences satisfy the axioms must therefore have the be-
liefs and desires they are represented as having, then it would be safe to say that
no such theorem has ever succeeded in that task. It’s not the sort of thing they
can show. Lucky, then, that this isn’t the only way to interpret Theorem 6.1!

A much more fruitful interpretation is in terms of measurement. The aptness
of the conjoint representation is presupposed as part of the theoretical back-
ground on which the account of measurement is founded, not magically derived
from the representation theorem. Ramsey knew this:

I propose to take as a basis a general psychological theory, which. . .
comes, I think, fairly close to the truth in the sorts of cases with
which we are most concerned. I mean the theory that we act in the
way we think most likely to realize the objects of our desires, so
that a person’s actions are completely determined by his desires and
opinions. (Ramsey 1931, 173)
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What Ramsey’s theorem supplies is an explanation of the quantitation of belief
and desire in the context of that model of decision-making. There’s nothing
unusual about this—the quantitation of any quantity is always explained against
a backdrop of theoretical models and presuppositions.

So we shouldn’t be worried about that objection. However, a natural followup
concern is that the expected utility model of decision making is unrealistic—and
if that’s the case, then the qualitative systems these models represent may fail to
capture any explanatorily relevant relations at all. Addressing this concern will
take a little more work, since the response depends on where the lack of realism
originates. There are two main sources, which I’ll discuss in turn.

The first is the extremely precise nature of the numerical representation—it
involves real-valued degrees of belief and desire, combined with perfect consis-
tency according to a precise decision rule. To achieve such a precise representa-
tion, we require strong assumptions about the richness of the domain over which
the preferences are defined and about the structure of the preferences over that
domain. That’s hardly surprising—infinite precision is a strong property for a
representation to have. For the same reason, I do not think we should be too
concerned with any lack of realism arising from this source. Such is an inevitable
consequence of trying to model a squishy psychological system in a rigid numer-
ical framework, and any feasible theory of belief measurement needs allow for
some idealisations that make the topic tractable. It’s enough if the systems we
characterise are in the ballpark of realism. More importantly, it’s usually possible
to isolate and weaken or remove the axioms (or parts of the axioms) that are
required in fixing the precision of the representation, if we’re willing to accept
somewhat weaker uniqueness conditions as a result.

I said ‘somewhat weaker’ for a reason. Critics of decision-theoretic represen-
tation theorems tend to write as though failing to establish a unique real-valued
belief function is the same as establishing no bounds on degrees of belief at all—
as if any lack-of-uniqueness implies radical non-uniqueness. More often, though,
one can weaken the very strong axioms required for unique real-valued represen-
tation and while still establishing tight bounds on that representation. Consider
some examples. I’ve already talked about how the weak order axiom can be re-
placed with a weaker preorder axiom so as to allow for incompleteness, leading
to a representation of ‘imprecise’ beliefs and desires (§3.3). So consider instead
the extendibility axiom. This (structural) axiom helps us to pinpoint precise de-
grees of belief by fixing a precise φ-value for some appropriate prospect (c1, p, c2)
conditional on p; it does so either by setting that value equal to the desirability
of a consequence or equal to the midway point between two consequences. But
where extendibility is violated and the required prospects don’t exist, we can still
characterise bounds on degrees of belief provided there are c3, c4 such that

c1 ≿ c3 ≻ (c1, p, c2) ≻ c4 ≿ c2

In this case, the value of β(p) will be bound like so:

δ(c1)− δ(c3)

δ(c1)− δ(c2)
> β(p) >

δ(c1)− δ(c4)

δ(c1)− δ(c2)
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More or less the same effect can be achieved if the independence axiom is violated.
That axiom requires perfect consistency across how every prospect conditional
on p is evaluated relative to its consequences, which is necessary if β(p) is to be
defined as a ratio of differences in real-valued desirabilities. But it’s possible to
weaken independence to allow for a bit of fuzziness in the evaluation of prospects,
with corresponding fuzziness in the characterisation of β. Essentially, where the
axiom is violated then for every p there’s still a unique—and potentially very
narrow—interval [x, y] such that every prospect on p is valued as if β(p) ∈ [x, y].

In like fashion we can define bounds on the desirabilities of consequences
where any or all of trivial gambles, halfway prospects and/or ∆-solvability are
violated. In general, the point here is that some of the axioms (or some parts
of some axioms) in a decision-theoretic representation theorem primarily serve
to ensure a precise numerical representation—and while they tend to be quite
unrealistic, it is not so hard to weaken them. The effect of doing so is a little
less precision in the numbers obtained, but nothing more substantially affecting
the basic explanatory structure being represented. I suspect Ramsey understood
this point well, and was expressing as much when he wrote:

I have not worked out the mathematical logic of this in detail, because
this would, I think, be rather like working out to seven places of
decimals a result only valid to two. (1931, 180)

That, I think, is the right attitude. It’s not realistic to suppose that degrees
of belief (and desire) have the all the precision of the real numbers. However,
we gain some insight into their quantitation by pretending otherwise, and lose
nothing of great import in the fiction.

The second source of potential irrealism will be the more fundamental struc-
ture of the expected utility model itself—even after accounting for imprecision
in degrees of belief and desirability. Perhaps we do not simply evaluate prospects
by weighing the values of its consequences against our confidence that those con-
sequences will obtain, but instead also take risk into account in a manner that
cannot properly be captured by the expected utility rule (or any ‘equivalent’
decision rule). If so, then again there is a concern that the model fails to cap-
ture any explanatorily relevant relations between beliefs and preferences. We’re
looking for those relations in the wrong place, because we’ve been presupposing
the wrong psychological picture.

We must be a little careful here. Suppose that ordinary decision-makers sys-
tematically violate the expected utility rule when evaluating prospects. Still,
that rule may serve as a rational ideal, and Theorem 6.1 may still prove useful
in explaining the quantitation of belief by reference to the role one’s beliefs re-
garding p ought to play in connection to how they ought to evaluate prospects
conditional on p. I said above that we don’t have to interpret the systematic re-
lationship between belief and preference that explains the conjoint quantitation
thereof as a constitutive relation; we don’t have to interpret it as a descriptive
relation either. Similarly, an analytic functionalist might say that the expected
utility rule captures the essence of folk psychology (a la Lewis 1974), and hence
a theorem like Ramsey’s can help explain how beliefs are quantitated according

66



to folk psychology. Since it’s no commitment of analytic functionalism that folk
psychology provides a perfect descriptive account of decision-making, concerns
about the adequacy of expected utility theory are largely irrelevant to this inter-
pretation. The theory is uncontroversially close to the truth in either case, and
the analytic functionalist needs nothing stronger than this.

Still, one may be concerned that the expected utility rule is neither descrip-
tively nor normatively adequate, and may not be satisfied with the analytic
functionalist’s interpretation. In that case, we will need a theory of quantitation
formulated against the backdrop of some alternative to expected utility theory.
Not to worry, for there are many essentially similar theorems for a wide range
of these alternatives. The details change, but in outline the general approach to
explaining the quantitation of belief remains more or less the same.

Representation theorems for the huge number of non-expected utility theories
are too numerous to discuss in detail, but it’s worth looking at one example—
Kahneman & Tversky’s (1979) prospect theory.3 I’ll start by describing the the-
ory. We designate a special (non-)consequence the status quo; in the representa-
tion, the desirability of the status quo will be fixed at zero, hence we’ll label it
‘0’. We then focus in on ternary prospects of the form “c1 if p, c2 if q, and 0 oth-
erwise”, where p and q are mutually exclusive. We assume that degrees of belief
are values between zero and one that sum to one for sets of mutually exclusive
and jointly exhaustive propositions. Fixing the desirability of the status quo at
zero, according to the expected utility rule:

φ
(
c1, p, c2, q, 0

)
= β(p)δ(c1) + β(q)δ(c2)

In other words, the part of the prospect corresponding to the status quo makes
no contribution to the value of the prospect, which is a weighted average of
the desirabilities of the remaining consequences. According to prospect theory,
however, the weights aren’t given by the agent’s degrees of belief directly. In-
stead they’re given by a decision weight corresponding to the agent’s beliefs in
combination with their attitudes towards risk, where the latter modify the im-
pact the agent’s degrees of belief have on the overall value of a gamble. Where
π : [0, 1] 7→ [0, 1] and π(0) = 0 and π(1) = 1,

φ
(
c1, p, c2, 0

)
= π

(
β(p)

)
δ(c1) + π

(
β(q)

)
δ(c2)

For example, suppose β(p) = β(q) = 1

2
, δ(c1) > δ(c2), and that δ(c3) is halfway

between δ(c1) and δ(c2). According to expected utility theory, the desirability of
(c1, p, c2, q, 0) should be halfway between the desirabilities of c1 and c2, so equal
to the desirability of c3. However, if π(

1

2
) < 1

2
, then according to prospect theory

the desirability of (c1, p, c2, q, 0) will be less than that of c3. In this case, the
decision weight reflects a ‘risk averse’ attitude whereby the agent would prefer a
guaranteed c3 to a risky prospect with an expected value equal to c3.

For our purposes, the thing to note is the close similarity between the ex-
pected utility formula for evaluating (c1, p, c2) and prospect theory’s formula for

3I highlight this example because (i) it’s simple, (ii) prospect theory is well-known among de-
scriptive theories, and (iii) it’s formally similar to expected utility theory’s main contemporary
normative contender: risk-weighted utility theory (Buchak 2013).
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evaluating (c1, p, c2, q, 0). Suppose q = ¬p; then in both cases we’re looking for
a pair of functions, θ and δ, such that the value of the prospect is given by

θ(p)δ(c1) + θ(¬p)δ(c2)

The difference between them is that, for expected utility theory, θ is interpreted
as the agent’s degrees of belief ; whereas for prospect theory θ is interpreted as
a decision weight that reflects the agent’s degrees of belief and their attitudes
towards risk.4 Thus is it possible, as Kahneman & Tversky observe (1979, 280),
to infer decision weights from preferences over simple prospects in a manner
that’s not dissimilar from how we go about inferring degrees of belief in the orig-
inal Ramseyan approach. Moreover, and with the appropriate additional axioms
on preference, those decision weights can in turn be decomposed into a belief
function and a risk function (e.g., Wakker 2004).

The end result is only a light modification on the Ramseyan theme: the degree
of a belief is not quite a measure of the extent to which we are prepared to act
on it, but instead a measure of the extent we’re prepared to act on it given our
attitudes towards risk. Either way, the meaning of the numerical representation
of belief is manifest in the role that representation plays in a decision-theoretic
context, and such representations tend to play very much the same kind of
role regardless of the precise details of the decision theory in question. Expected
utility theory may be unrealistic in some ways, or it may not be, but that doesn’t
mean the theory of quantitation we get out of it isn’t fundamentally on the right
track.

4I’m simplifying, but only lightly. Another difference between expected utility theory and
prospect theory is that decision weights needn’t sum to one, so we need slightly more general
axioms to represent prospect theory.
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