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Abstract13

For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in14

G have at most c − 1 neighbours in common. The closure of a graph G, denoted by cl(G), is the15

least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox16

et al. [ICALP ‘18 and SICOMP ‘20]. Koana et al. [ESA ‘20 and SIDMA ‘22] started the study of17

using cl(G) as an additional structural parameter to design kernels for problems that are W-hard18

under standard parameterizations. In particular, they studied problems such as Independent Set,19

Induced Matching, Irredundant Set and (Threshold) Dominating Set, and showed that20

each of these problems admits a polynomial kernel, when parameterized either by k + c or by k for21

each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several22

questions open, one of which was whether the Perfect Code problem admits a fixed-parameter23

tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other24

results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect25

Code, we further explore two more domination problems on the graphs of bounded closure. The26

other problems that we study are Connected Dominating Set and Partial Dominating Set. We27

show that Perfect Code and Connected Dominating Set are fixed-parameter tractable when28

parameterized by k + cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard29

even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial30

kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no31

polynomial kernel even on 2-closed graphs, unless NP ⊆ co-NP/poly.32
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1 Introduction49

For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices50

in G have at most c − 1 neighbours in common. That is, for distinct vertices u and v51

of G, ♣N(u) ∩ N(v)♣ ≤ c − 1 if uv /∈ E(G). In this paper, we study the parameterized52

complexity of domination problems on the class of c-closed graphs. The problems that we53

study are Perfect Code, Connected Dominating Set and Partial Dominating54

Set. All these problems, when parameterized by the solution size, are W[1]-hard on general55

graphs [13, 20, 21], and their complexities on various restricted graph classes have been56

studied extensively [4, 17, 24, 31, 32, 33, 36, 47, 50].57

Fox et al. [27, 28] introduced the class of c-closed graphs in 2018 as a “distribution-free”58

model of social networks. While the literature abounds with models that attempt to capture59

the structure of social networks, they are all probabilistic models. (See, for instance, the60

survey by Chakrabarti and Faloutsos [14].) And in an attempt to capture the spirit of61

“social-network-like” graphs without relying on probabilistic models, Fox et al. [28] “turn[ed]62

to one of the most agreed upon properties of social networks—triadic closure, the property63

that when two members of a social network have a friend in common, they are likely to be64

friends themselves.” It is easy to see that the definition of c-closed graphs is a reasonable65

approximation of this property. In a c-closed graph, every pair of vertices with at least c66

common neighbours are adjacent to each other. Fox et al. [28, Table A.1], and later Koana67

et al. [43, Table 1], showed that several social networks and biological networks are indeed68

c-closed for rather small values of c.69

Fox et al. [28] showed that an n-vertex c-closed graph contains at most 3c/3 · n2 maximal70

cliques.1 This bound, when coupled with an algorithm for enumerating all maximal cliques71

in a graph, yields a 2O(c) · poly(n) time algorithm that enumerates all maximal cliques in72

c-closed graphs. Observe that an algorithm that enumerates all maximal cliques in a graph73

can be used to determine if a graph contains a clique of a given size as well. Thus, the74

Clique problem, which, given a graph G and an integer k as input, asks if G contains a75

clique of size k, is fixed-parameter tractable when parameterized by c. Notice that Clique,76

when parameterized by k, is W[1]-complete on general graphs [20].77

In light of this result, we could very well ask: How do other problems that are W-hard78

on general graphs fare on the class of c-closed graphs? In particular, is Independent Set,79

another canonical W[1]-complete problem [20], fixed-parameter tractable on c-closed graphs?80

Koana et al. [43, 45] showed that Independent Set, which takes a graph G and an integer81

k as input, and asks if G contains an independent set of size k, is indeed fixed-parameter82

tractable when parameterized by k + c. In fact, by applying a “Buss-like” reduction rule [10],83

they showed that the problem admits a kernel with ck2 vertices. Motivated by this example,84

they studied the (kernelization) complexity of three more problems—Induced Matching,85

Irredundant Set and Threshold Dominating Set (TDS)—and showed that these86

problems admit polynomial kernels (when parameterized by either k + c or k for each fixed c.)87

TDS is a variant of Dominating Set in which each vertex needs to be dominated at least r88

times for a given integer r. The kernels for the first two of these problems have size poly(c, k)89

whereas the kernel for TDS has size kO(cr). They also designed an algorithm for TDS that90

1 Note that the classic Moon-Moser theorem only guarantees an upper bound of 3n/3 for the number of
maximal cliques in an n-vertex graph [53].



L. Kanesh, J. Madathil, S. Roy, A. Sahu and S. Saurabh 3

runs in time (ck)O(rk)nO(1). A key ingredient in all these results was a polynomial bound for91

the Ramsey number on c-closed graphs. Koana et al. [43] proved that every c-closed graph92

with O(cb2 + ab) vertices contains either a clique of size a or an independent set of size b,93

and predicted that this bound could be useful in settling the parameterized complexity of94

other problems as well. In this paper, we use this bound, and show that two variants of95

Dominating Set are fixed-parameter tractable on c-closed graphs. In particular, we show96

that Perfect Code is FPT on c-closed graphs, and thus settle a question left open by97

Koana et al. [43].98

Closure of a graph. Recall that a graph G is said to be c-closed if every pair of non-99

adjacent vertices have at most c − 1 neighbours in common. The closure2 of a graph100

G, denoted by cl(G), is the least positive integer c for which G is c-closed. Notice that101

cl(G) = 1 + max ¶0, ♣N(u) ∩ N(v)♣ ♣ u, v ∈ V (G), uv /∈ E(G)♢, and therefore cl(G) can be102

computed in polynomial time. In this paper, we study the parameterized complexity of103

some of the widely studied problems on graphs of bounded closure, and thus attempt to104

present a more comprehensive answer to the following questions. How good a structural105

parameter is cl(G) when it comes to the tractability of domination problems? And in this106

regard, how does cl(G) differ from some of the other widely-studied structural parameters107

such as maximum degree, degeneracy and treewidth? Observe that if the maximum degree108

of graph G is ∆(G), then cl(G) ≤ ∆(G) + 1. But the comparability ends there. As noted109

by Koana et al. [43], an n-vertex clique is 1-closed, but has degeneracy and treewidth n − 1.110

On the other hand, the complete bipartite graph K2,n−2 has treewidth and degeneracy 2,111

but cl(K2,n−2) = n − 1. Thus closure is incomparable with degeneracy and treewidth. We112

also note that when parameterized by cl(G) alone, most of the widely studied problems,113

with the exception of Clique, would be para-NP-hard. This applies to problems such as114

Vertex Cover, Independent Set, Dominating Set, Connected Dominating Set115

and Perfect Code, as all these problems are NP-hard on graphs of maximum degree116

4 [23, 29], and therefore NP-hard on 5-closed graphs. So this parameter alone is too small117

to yield tractability results, and therefore, has to be used in combination with some other118

parameter, for example, the solution size. But this is often the case with other structural119

parameters such as degeneracy and maximum degree as well; they are often combined with120

the solution size [3, 55].121

Our results and methods. Let us first define the concept of domination in graphs. Consider122

a graph G. We say that a vertex in G dominates itself and all its neighbours. That is, a123

vertex v dominates N [v]. And for a set V ′ ⊆ V (G), V ′ dominates N [V ′]. A dominating set of124

a graph is a set of vertices D ⊆ V (G) that dominates the entire vertex set, i.e., N [D] = V (G).125

Or equivalently, D ⊆ V (G) is a dominating set of G if ♣D ∩ N [v]♣ ≥ 1 for every vertex126

v ∈ V (G). A dominating set D ⊆ V (G) is said to be a connected dominating set of G if G[D]127

is a connected subgraph of G. A perfect code of G is a dominating set of G that dominates128

every vertex exactly once. That is, D ⊆ V (G) is a perfect code of G if ♣D ∩ N [v]♣ = 1 for129

every vertex v ∈ V (G). For a non-negative integer t, a set of vertices V ′ ⊆ V (G) is said to130

be a t-partial dominating set of G if V ′ dominates at least t vertices of G, i.e., if ♣N [V ′]♣ ≥ t.131

2 Koana et al. [43] use the term c-closure instead of closure. But we believe that closure is more appropriate.
We must note that the term closure is already used in existing graph theory literature to refer to a
certain super-graph of a graph [9, p. 486]. But for that matter, so is the term k-closure [8]. We believe
that given the context, there is no room for ambiguity.
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In the Perfect Code (resp. Connected Dominating Set (CDS)) problem, the132

input consists of an n-vertex graph G and a non-negative integer k, and the question is to133

decide if G contains a perfect code (resp. connected dominating set) of size at most k. In134

the Partial Dominating Set (PDS) problem, the input consists of an n-vertex graph135

G and two non-negative integers k and t, and the question is to decide if G contains a136

t-partial dominating set of size at most k. We show that Perfect Code and CDS, when137

parameterized by k+cl(G), are fixed-parameter tractable, whereas PDS, when parameterized138

by k, is W[1]-hard, even for cl(G) = 2. Specifically, we prove the following results. (Here,139

n = ♣V (G)♣ and c = cl(G).)140

1. Perfect Code admits an algorithm that runs in time 2O(c+k log(ck))nO(1). Moreover,141

for each fixed c ≥ 1, Perfect Code admits a kernel with O(k3(2c−1)) vertices on the142

family of c-closed graphs.143

2. CDS admits an algorithm that runs in time 2O(c+k log(ck))nO(1). But CDS does not admit144

a polynomial kernel when parameterized by k even when cl(G) = 2, unless NP ⊆ co-145

NP/poly. (The kernelization lower bound follows from a result due to Misra et al. [50].)146

3. PDS, when parameterized by k, is W[1]-hard on 2-closed graphs.147

Note that a perfect code and a connected dominating set are both dominating sets.148

Naturally, our algorithms for Perfect Code and CDS rely on three crucial properties of149

dominating sets and c-closed graphs. Consider a c-closed graph G, and a dominating set D150

of G of size k. (P1) If G contains an independent set I of size k + 1, then by the pigeonhole151

principle, there exists a vertex v ∈ D that dominates at least two vertices of I. That is,152

v ∈ N(u) ∩ N(u′) for a pair of vertices u, u′ ∈ I (Lemma 12). (P2) The dominating set153

D must intersect every “large” maximal clique (Corollary 8). This follows from the fact154

that any vertex outside a maximal clique can dominate at most c − 1 vertices of the clique155

(Lemma 6). Thus, if G contains a maximal clique of size (c − 1)k + 1, say Q, then we must156

have D ∩ V (Q) ̸= ∅. (P3) If G contains ℓ distinct “large” maximal cliques, then G contains157

an independent set of size ℓ as well (Lemma 9). This again is a consequence of the property158

that any vertex outside a maximal clique has at most c − 1 neighbours in the clique. Here,159

depending on each problem, we will define an appropriate lower bound on the size of a clique160

for it to be large. But in both the problems, this bound will be poly(c, k). Finally, we use the161

following two results due to Koana et al. [43]. (R1) Every c-closed graph with O(cb2 + ab)162

vertices contains either a clique of size a or an independent set of size b (Lemma 1). (R2)163

We can find a (k + 1)-sized independent set of an n-vertex c-closed graph, if it exists, or164

correctly conclude that no such set exists, in time 2O(k log(ck))nO(1) (Corollary 4).165

We now briefly outline how our algorithms exploit these properties. In light of (P1),166

we first find an independent set I of size k + 1 using (R2), and branch on the vertices in167

⋃

u,u′∈I N(u) ∩ N(u′). Note that since ♣I♣ = k + 1, we have
(

k+1
2

)

= O(k2) choices for the168

pair ¶u, u′♢. And for each pair u, u′ ∈ I, we have ♣N(u) ∩ N(u′)♣ ≤ c − 1 as G is c-closed.169

Once this branching step is exhaustively applied, every independent set in G has size at most170

k. But then (P3) will imply that G contains at most k “large” maximal cliques. Now we171

partition the vertex set of G into two parts, L and M , where L is the set of vertices that172

belong to at least one large maximal clique and M the set of remaining vertices. Thus, L173

is the union (not necessarily disjoint) of at most k large cliques, and the subgraph G[M ]174

contains no large clique or no independent set of size k + 1. Therefore, by (R1), we will have175

♣M ♣ = poly(c, k). So we can guess the set of vertices from M that belongs to the “dominating176

set” that we are looking for, in case (G, k) is indeed a yes-instance. And corresponding to177

each such guess, we then use the property that L is a union of cliques to solve the problem178
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appropriately. For example, in the case of Perfect Code, we show that once we guess the179

subset of M that belongs to the solution, the problem then reduces to solving an instance180

of the d-Exact Hitting Set problem (a variant of Hitting Set in which every set has181

size at most d and needs to be hit exactly once) for an appropriate choice of d, which can182

then be solved in time dknO(1). In the case of CDS, we reduce the final step to 2poly(c,k)
183

many instances of the (edge-weighted) Steiner Tree problem, a common technique used in184

algorithms that seek connected solutions [34, 50, 51, 52]; and we will have the guarantee that185

our original CDS instance is a yes-instance if and only if at least one of the Steiner Tree186

instances is a yes-instance. We prove the W-hardness of PDS by designing a parameterized187

reduction from the Independent Set problem on regular graphs, which is known to be188

W[1]-complete [11]. The inadmissibility of a polynomial kernel for CDS follows from a result189

due to Misra et al. [50], which says that CDS admits no polynomial kernel on graphs of190

girth 5, and the fact that graphs of girth 5 are 2-closed.191

To design our kernel for Perfect Code, we bound the size of independent sets and192

cliques in the input graph by kO(2c), and then invoke (R1). The main ingredient in bounding193

the independent set size is a reduction rule, by which we find a sufficiently large independent194

set with sufficiently many common neighbours, and delete an arbitrary vertex from that195

independent set. To find this independent set, we design an algorithm that works as follows:196

Given a c-closed graph G and an integer k, the algorithm will either output an independent197

set of size k or correctly report that every independent set in G has size poly(c, k) (Lemma 11).198

After an exhaustive application of this reduction rule, every independent set in the input199

graph will have bounded size, and by (P3), the graph will contain only a bounded number of200

large cliques. Then, we bound the size of each clique as well, which, by (R1), will result in201

the kernel.202

We must point out that properties (P1) and (P2) have been used by Koana et al. [43] in203

their algorithm and kernel for the TDS problem. But these properties alone are inadequate204

for Perfect Code and CDS. Hence we introduce (P3), which bounds the number of large205

maximal cliques in terms of the maximum size of an independent set. We also note that206

while properties (P1) and (P2) are specific to domination problems, (P3) is a general-purpose207

bound. Our strategy of partitioning the vertices into L and R (vertices of large cliques and208

the remaining vertices) is also not specific to domination problems, and could be applicable209

to other problems as well. So is Lemma 11, which, as mentioned above, gives an algorithm210

that either outputs an independent set of size k or guarantees an upper bound of poly(c, k)211

on the independent set size. We use Lemma 11 to fashion a reduction rule (Reduction212

Rule 44), which we use to bound the size of independent sets while designing our kernel for213

Perfect Code. The idea behind Reduction Rule 44 is as follows. To bound the size of any214

independent in the graph, it is sufficient to bound the size of independent sets within the215

induced subgraph G[N(v)] for every v ∈ V (G). Then, to bound the size of independent sets216

in G[N(v)], it is sufficient to bound the size of independent sets in G[N(v) ∩ N(u)] for every217

u ∈ V (G) \ ¶v♢. And to bound the size of independent sets in G[N(v) ∩ N(u)], it is sufficient218

to bound the size of independent sets in G[N(v) ∩ N(u) ∩ N(w)] for every w ∈ V (G) \ ¶v, u♢219

and so on. This strategy of successively bounding the independent sets in stages could be220

applicable to other problems on c-closed graphs as well. Since G is c-closed, we only need to221

continue for c − 1 stages. That is, we only need to bound the size of independent sets in222

G[∩x∈Y N(x)] for all Y ⊆ V (G) with ♣Y ♣ = c − 1.223

Related work on domination problems. Domination problems have long been the subject224

of extensive research in algorithmic graph theory. All the domination problems discussed225
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above are W-hard on general graphs, when parameterized by the solution size. Therefore,226

a great deal of effort has gone into studying the complexity of these problems on various227

graph classes. In particular, the classic Dominating Set problem is known to be W[2]-228

complete [21] on general graphs, and W[2]-hard even on bipartite graphs (and hence on229

triangle-free graphs) [56], but it is fixed-parameter tractable on graphs of girth at least 5 [56],230

planar graphs [1, 2, 26, 38], graphs of bounded genus [22], map graphs [18], H-minor free231

graphs [19] and graphs of bounded degeneracy [3]. The CDS problem is also known to be232

W[2]-hard on general graphs [21], but admits a polynomial kernel on planar graphs, and233

more generally, on apex-minor-free graphs [24, 32, 47]. The problem is FPT on graphs of234

bounded degeneracy [31]. Cygan et al. [16] showed that CDS has no polynomial kernel even235

on 2-degenerate graphs unless NP ⊆ co-NP/poly. Misra et al. [50] studied the effect of the236

girth of the input graph on the complexity of CDS, and showed that CDS remains W[1]-hard237

on graphs of girth 3 and 4, admits a fixed-parameter tractable algorithm but no polynomial238

kernel (unless NP ⊆ co-NP/poly) on graphs of girth 5 and 6, and admits a polynomial kernel239

on graphs of girth at least 7. Fomin et al. [25] showed that both Dominating Set and CDS240

admit linear kernels on graphs with excluded topological minors. We refer the reader to [25]241

for a historical overview of the literature on these problems.242

The Perfect Code problem, also called Efficient Domination or Perfect Domina-243

tion, is known to be W[1]-complete [13, 20], and remains W[1]-hard even on bipartite graphs244

of girth 4 [36], but admits a polynomial kernel on planar graphs [33] and graphs of girth245

at least 5 [36]. Dawar and Kreutzer [17] showed that Perfect Code is fixed-parameter246

tractable on effectively nowhere dense graphs. For a summary of results on the (classical)247

complexity of Perfect Code on various graph classes, see [49].248

The Partial Vertex Cover (PVC) problem, the “partial variant” of the Vertex249

Cover problem, asks if t edges of a graph can be covered using k vertices. Both PVC and250

PDS have been studied under the two natural parameterizations: by k and by t. When251

parameterized by k, unlike the widely-studied Vertex Cover, PVC is W[1]-hard on general252

graphs [34], and remains NP-hard even on bipartite graphs [5]. But Amini et al. [4], using a253

nuanced branching strategy called implicit branching, showed that PVC is fixed-parameter254

tractable on graph classes with “large independent sets.” In particular, they showed that255

PVC (parameterized by k) is FPT on bipartite graphs, triangle-free graphs, and H-minor256

free graphs, and thus, in particular, on planar graphs and graphs of bounded genus. Recently,257

Koana et al. [41] showed that PVC admits a kernel of size kO(c) on c-closed graphs. As for258

PDS, note that a PDS instance with t = n is precisely the Dominating Set problem, and259

therefore, the W [2]-hardness of Dominating Set (parameterized by k) extends to PDS as260

well. In contrast to Dominating Set, PDS remains W[1]-hard even on graphs of bounded261

degeneracy [31]. But Amini et al. [4] showed that PDS is FPT on planar graphs, graphs of262

bounded genus and graphs of bounded maximum degree; these results, in fact, hold for a263

more general problem called Weighted Partial-(k, r, t)-Center. When parameterized by264

t, both PVC and PDS are FPT on general graphs [7, 12, 39, 40].265

Related work on c-closed graphs. As mentioned earlier, Fox et al. [28] showed that every266

n-vertex c-closed graph contains at most 3c/3 · n2 maximal cliques, and that all maximal267

cliques can be enumerated in time 2O(c)nO(1). In a preprint announced in 2020, Husic and268

Roughgarden [35] showed that instead of cliques, other “dense subgraphs” can be enumerated269

in time f(c) · poly(n) as well. In particular, they showed that the problems of finding270

and enumerating subgraphs of bounded co-degree, bounded co-degeneracy and bounded271

co-treewidth in a c-closed graph admit algorithms that run in time 2O(c)nO(1). See the272
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paper by Behera et al. [6] for an updated version of these results. This was soon followed273

by the work of Koana and Nichterlein [46], who investigated the complexity of enumerating274

all copies of a (small) fixed graph H in a given c-closed graph. Note that for each fixed275

graph H, by brute-force, we can detect and enumerate all copies of H in a given n-vertex276

graph in time nO(♣V (H)♣). Nonetheless, Koana and Nichterlein [46] designed significantly277

better combinatorial algorithms for such problems. They showed that for small graphs (i.e.,278

graphs on 3 or 4 vertices) H, the H-detection and enumeration problems admit “FPT in279

P” algorithms [30] when parameterized by c, i.e., algorithms with runtime O(cℓnimj) or280

O(cℓni + mj), where m and n respectively are the number of edges and vertices of the input281

graph G, c = cl(G), and ℓ, i and j are small constants independent of c and H. In particular,282

they designed such algorithms for 11 out of the 15 graphs on 3 or 4 vertices.283

Related work on weakly γ-closed graphs. Along with c-closed graphs, Fox et al. [28] had284

also introduced a larger class of graphs called weakly γ-closed graphs. For a positive integer285

γ, a graph G is weakly γ-closed if every induced subgraph G′ of G has a vertex v such286

that ♣NG′(v) ∩ NG′(u)♣ < γ for each u ∈ V (G′) with u ≠ v and uv /∈ E(G′). Note that if287

a graph G is c-closed, then G is weakly c-closed as well. In a subsequent work, Koana et288

al. [42] extended their result for Independent Set in [43] to weakly γ-closed graphs. They289

showed that Independent Set admits a polynomial kernel on weakly γ-closed graphs as290

well. In fact, they showed that a similar result holds for the G-Subgraph problem, for291

every family G of graphs that is closed under subgraphs; in the G-Subgraph problem, the292

goal is to check if a given graph G contains an induced subgraph on at least k vertices293

that belongs to G. Notice that Independent Set is a special case of G-Subgraph with G294

being the family of all edgeless graphs. Koana et al. [42] also showed that two variants of295

Dominating Set, namely, Independent Dominating Set and Dominating Clique,296

are FPT on weakly γ-closed graphs. But they left open the complexity of Dominating297

Set on weakly γ-closed graphs, which was recently shown to be FPT by Lokshtanov and298

Surianarayanan [48]. Koana et al. [42] also gave bounds and enumeration algorithms for299

various choices of “dense subgraphs” in weakly γ-closed subgraphs. See [42, Table 1] for300

an overview of their results. In a companion work, Koana et al. [44] studied Capacitated301

Vertex Cover, Connected Vertex Cover, and Induced Matching and obtained302

kernels of size kO(γ), kO(γ), and (γk)O(γ), respectively. They showed a kernel with O(ck2)303

vertices for Connected Vertex Cover, and showed lower bounds for the kernelization of304

Capacitated Vertex Cover, Independent Set, and Dominating Set.305

2 Preliminaries306

This section is divided into three parts. In Section 2.1, we introduce some notation and307

terminology that we will be using throughout the paper. We use Section 2.1 only to collect308

the frequently used notation and terms in one place. We will recap the definitions introduced309

here when we use them later on in the paper. In Section 2.2, we summarise the results due310

to Fox et al. [28] and Koana et al. [43] that we will be using. In Section 2.3, we prove a few311

preliminary lemmas that we will be relying on to prove our main results.312

2.1 Notation and Terminology313

Sets and functions. For a positive integer ℓ, we denote the set ¶1, . . . , ℓ♢ by [ℓ]. Let X, Y be314

two sets. By X \ Y we denote the set ¶x ∈ X ♣ x /∈ Y ♢. We define the functions α, β : N → N315

as follows: α(a, b) = (a − 1)b + 1 and β(a, b) = 2[(a − 1)(b − 1) + 1] for every a, b ∈ N.316
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Graphs. All graphs in this paper are simple and undirected. For a graph G, V (G) and317

E(G) respectively denote the vertex set and edge set of G. For a vertex v ∈ V (G), NG(v)318

and NG[v] respectively denote the open neighbourhood and closed neighbourhood of G.319

Also, dG(v) denotes the degree of v in G, i.e., dG(v) = ♣NG(v)♣. For a set V ′ ⊆ V (G),320

NG(V ′) and NG[V ′] respectively denote the open neighbourhood and closed neighbourhood321

of V ′, i.e., N(V ′) = (
⋃

v∈V ′ NG(v)) \ V ′ and NG[V ′] =
⋃

v∈V ′ NG[v]. And CNG(V ′) denotes322

the common neighbours of the vertices in V ′, i.e., CNG(V ′) =
⋂

v∈V ′ NG(v). Note that323

CNG(V ′) ⊆ V (G) \ V ′, because for every v ∈ V ′, we have v /∈ NG(V ′), and therefore, v /∈324

CNG(v). Also, for V ′ ⊆ V (G) with ♣V ′♣ ≥ 2, by N
[2]
G (V ′), we denote the union of the sets of325

common neighbours of every pair of vertices in V ′, i.e., N
[2]
G (V ′) = (

⋃

u,v∈V ′

u ̸=v

CNG(¶u, v♢))\V ′.326

For a pair of vertices x, y ∈ V (G), distG(x, y) denotes the length of a shortest path between327

x and y in G. We may omit the subscript when the graph G is clear from the context.328

Consider a graph G. A clique in G is a complete subgraph of G. An independent set in G329

is a set of pairwise non-adjacent vertices. By a maximal clique (resp. maximal independent330

set) in G, we mean an inclusion-wise vertex maximal clique (resp. independent set) in G.331

That is, a clique Q (resp. an independent set I) in G is a maximal clique (resp. a maximal332

independent set) if G[V (Q) ∪ ¶v♢] is not a clique (resp. I ∪ ¶v♢ is not an independent set)333

for any v ∈ V (G) \ V (Q) (resp. v ∈ V (G) \ I). We say that an independent set I in G is334

2-maximal if I is a maximal independent set and (I \ ¶v♢) ∪ ¶u, u′♢ is not an independent335

set for every v ∈ I and u, u′ ∈ V (G). That is, I is 2-maximal if I is maximal and no vertex336

in I can be replaced by 2 vertices from V (G) \ I.337

We use Q(G) to denote the family of all maximal cliques in G. For ℓ > 0, we denote by338

Qℓ(G), the family of all maximal cliques in G of size at least ℓ. We also define two vertex339

subsets as follows: Lℓ(G) =
⋃

Q∈Qℓ(G) V (Q), and M ℓ(G) = V (G) \ Lℓ(G). That is, Lℓ(G) is340

the set of all vertices in G that belong to at least one maximal clique of size at least ℓ, and341

M ℓ(G) contains the remaining vertices. Notice that
{

Lℓ(G), M ℓ(G)
}

is a partition of V (G)342

(with one of the parts possibly being empty).343

Let G be a graph and H a family of subgraphs of G. By I2(H), we denote the set of344

vertices in G that belong to at least two graphs in H, i.e., I2(H) =
⋃

H1,H2∈H
H1 ̸=H2

(V (H1)∩V (H2)).345

With a slight abuse of terminology, we say that the family H is disjoint if the graphs in H346

are pairwise vertex-disjoint, i.e., if I2(H) = ∅.347

We assume a basic familiarity with concepts in parameterized complexity such as fixed-348

parameter tractability, kernelization and W[1]-hardness. We do not define these terms here,349

and refer the reader to the book by Cygan et al. [15] for an introduction to parameterized350

complexity.351

2.2 Summary of Results from [28] and [43]352

In this section, we briefly summarise the results due to Fox et al. [28] and Koana et al. [43]353

that we will be using throughout this paper. Following the notation of Koana et al. [43], for354

positive integers a, b and c, we let Rc(a, b) = (c − 1)
(

b−1
2

)

+ (a − 1)(b − 1) + 1.355

▶ Lemma 1 ([43]). For positive integers a, b and c, every c-closed graph with at least Rc(a, b)356

vertices contains either a clique of size a or an independent set of size b.357

▶ Remark 2. The proof of the above lemma [43, Proof of Lemma 3.1], in fact, shows that if358

G is a c-closed graph on at least Rc(a, b) vertices such that G contains no clique of size a,359

then any 2-maximal independent set in G has size at least b.360



L. Kanesh, J. Madathil, S. Roy, A. Sahu and S. Saurabh 9

Recall that the Independent Set problem takes a graph G and a non-negative integer361

k as input, and the task is to decide if G has an independent set of size at least k. Koana et362

al. [43] also showed that the Independent Set problem on c-closed graphs admits a kernel363

with ck2 vertices. Specifically, they proved the following.364

▶ Lemma 3 ([43]). There is an algorithm that, given a graph G and a non-negative integer365

k as input, runs in polynomial time, and outputs a graph G′ such that (i) G′ is an induced366

subgraph of G, (ii) G has an independent set of size k if and only if G′ has an independent367

set of size k, and (iii) if ♣V (G′)♣ > ck2 then any maximal independent set in G′ has size at368

least k.369

Note that Lemma 3 immediately leads to an algorithm to solve the Independent Set370

problem on c-closed graphs in time 2O(k log(ck))nO(1).371

▶ Corollary 4. There is an algorithm that, given an n-vertex c-closed graph G and a non-372

negative integer k as input, runs in time 2O(k log(ck))nO(1), and either returns a k-sized373

independent set of G if one exists, or correctly reports that no such set exists.374

Proof. Given G and k, we first run the polynomial time algorithm in Lemma 3 and compute375

G′, as described in Lemma 3. If ♣V (G′)♣ > ck2, then we return any maximal independent376

set in G′, which can be found in polynomial time. Otherwise ♣V (G′)♣ ≤ ck2, and we do as377

follows. We go over all k-sized subsets of V (G′), and check if any of them is an independent378

set; and if there exists an independent set I ⊆ V (G′) with ♣I♣ = k, then we return I, and379

otherwise we return that G has no independent set of size k. Note that since G′ has at380

most ck2 vertices, the last step only takes time
(

ck2

k

)

· (ck2)O(1) = ck · k2k · (ck2)O(1) =381

2k log c · 22k log k · (ck2)O(1) = 2O(k log(ck))(ck2)O(1). Thus the total runtime of the procedure382

is bounded by nO(1) + 2O(k log(ck))(ck2)O(1) ≤ 2O(k log(ck))nO(1).383

The correctness of the procedure follows from property (ii) in the statement of Lemma 3,384

and the fact that since G′ is an induced subgraph of G, any independent set in G′ is also an385

independent set in G and vice versa. ◀386

Fox et al. [28] showed that the number of maximal cliques in an n-vertex c-closed graph387

is bounded by 2O(c)n2. Specifically, they proved the following.388

▶ Lemma 5 ([28]). Let G be a c-closed graph on n vertices. Then G contains at most389

3(c−1)/3n2 maximal cliques. Moreover, there is an algorithm that, given G as input, runs in390

time 2O(c)nO(1), and enumerates all maximal cliques in G.391

2.3 Some Preliminary Lemmas392

We now prove a few lemmas that we will be using throughout this paper.393

▶ Lemma 6. Let G be a c-closed graph, and Q a maximal clique in G. Then, for any394

v ∈ V (G) \ V (Q), v has at most c − 1 neighbours in V (Q), i.e., ♣N(v) ∩ V (Q)♣ ≤ c − 1.395

Proof. If v ∈ V (G) \ V (Q) has at least c neighbours in V (Q), then for any u ∈ V (Q) \ N(v),396

u and v have at least c common neighbours. This implies that u and v must be adjacent for397

every u ∈ V (Q), which contradicts the maximality of Q. ◀398

Lemma 6 immediately implies that two maximal cliques in a c-closed graph can intersect399

in at most c − 1 vertices.400

▶ Corollary 7. Let G be a c-closed graph, and let Q1 and Q2 be two distinct maximal cliques401

in G. Then, ♣V (Q1) ∩ V (Q2)♣ ≤ c − 1.402
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Proof. Since Q1 and Q2 are distinct maximal cliques, there exists a vertex v ∈ V (Q1)\V (Q2).403

Now, if ♣V (Q1) ∩ V (Q2)♣ ≥ c, it would imply that ♣N(v) ∩ V (Q2)♣ ≥ c, which by Lemma 6404

is not possible. ◀405

Another immediate consequence of Lemma 6 is that in a c-closed graph G, every “small”406

dominating set of G must intersect every “large” clique in G. We formally prove this below.407

▶ Corollary 8. Let G be a c-closed graph and k a non-negative integer. Let D be a dominating408

set of G of size at most k, and C a maximal clique in G of size at least (c − 1)k + 1. Then,409

D ∩ V (C) ̸= ∅.410

Proof. Since D is a dominating set of G, D dominates every vertex of G. In particular,411

D dominates V (C). By Lemma 6, every vertex v ∈ D \ V (C) can dominate at most c − 1412

vertices of C. Since ♣D \ V (C)♣ ≤ ♣D♣ ≤ k, D \ V (C) dominates at most (c − 1)k vertices of413

C. And since ♣V (C)♣ ≥ (c − 1)k + 1, we must have D ∩ V (C) ̸= ∅. ◀414

We now show that if a c-closed graph G contains sufficiently many large maximal cliques,415

then G contains a sufficiently large independent set as well. Recall that for ℓ > 0, Qℓ(G)416

denotes the set of all maximal cliques of size at least ℓ in G; and for integers a and b, we417

defined β(a, b) = 2[(a − 1)(b − 1) + 1].418

▶ Lemma 9. Let ℓ be a positive integer, and G be a c-closed graph such that ♣Qβ(c,ℓ)(G)♣ ≥ ℓ.419

Then, G has an independent set of size ℓ. Moreover, there is a polynomial time algorithm420

that, given a c-closed graph G and distinct Q1, Q2, . . . , Qℓ ∈ Qβ(c,ℓ)(G) as input, returns an421

ℓ-sized independent set in G.422

Proof. Let Q1, Q2, . . . , Qℓ ∈ Qβ(c,ℓ)(G) be distinct. For each j ∈ [ℓ], let Xj = ¶v ∈423

V (Qj) ♣ v ∈ V (Qi) for some i ∈ [ℓ] \ ¶j♢♢. That is, Xj =
⋃

i∈[ℓ]\j(V (Qi) ∩ V (Qj)). Note424

that by Corollary 7, we have ♣Xj ♣ ≤ (c − 1)(ℓ − 1).425

We construct an ℓ-sized independent set I as follows. Pick an arbitrary vertex v1 from426

V (Q1) \ X1 into I. For j = 2, 3, . . . , ℓ, pick a vertex vj from V (Qj) \ (Xj ∪
⋃

i<j N(vi)).427

Note that for each j, we have ♣Xj ♣ ≤ (c − 1)(ℓ − 1), and for each i < j, by Lemma 6,428

♣N(vi) ∩ V (Qj)♣ ≤ c−1, and therefore, ♣(
⋃

i<j N(vi)) ∩ V (Qj)♣ ≤ (c−1)(i−1) ≤ (c−1)(ℓ−1).429

Thus, ♣Xj ∪
⋃

i<j(N(vi) ∩ V (Qj)♣ ≤ 2(c−1)(ℓ−1). We thus have V (Qj)\(Xj ∪
⋃

i<j N(vi)) ̸=430

∅, as ♣V (Qj)♣ ≥ β(c, ℓ) > 2(c − 1)(ℓ − 1), and therefore, we can always pick a vj as required.431

Moreover, by definition, vj /∈ N(vi) for i < j, and thus the set I = ¶v1, v2, . . . , vℓ♢ we432

constructed is indeed an independent set.433

Finally, observe that the procedure described above to construct I can be executed in434

polynomial time, when G and the cliques Q1, Q2, . . . , Qℓ are given as input, which leads435

to the algorithm required by the statement of the lemma. (The fact that G contains an436

independent set of size ℓ implies that ℓ ≤ ♣V (G)♣, and therefore the dependence of the runtime437

on ℓ is also bounded by a polynomial function of ♣V (G)♣.) ◀438

▶ Lemma 10. Let ℓ be a positive integer. Let G be a graph and V1, V2, . . . , Vℓ ⊆ V (G) be439

such that
⋃

i∈[ℓ] Vi = V (G), and G[Vi] is a clique for every i ∈ [ℓ]. Then, every independent440

set in G has size at most ℓ.441

Proof. Let I ⊆ V (G) be an independent set in G. Note that for every i ∈ [ℓ], we have442

♣I ∩ Vi♣ ≤ 1, as Vi induces a clique, and I is an independent set. Then, as V (G) =
⋃

i∈[ℓ] Vi,443

we get I =
⋃

i∈[ℓ](I ∩ Vi), which implies that ♣I♣ ≤ ℓ. ◀444
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The following lemma says that given a c-closed graph G and an integer ℓ, in polynomial445

time, we can either find an independent set of size ℓ or conclude that every independent446

set has size O(c · ℓ2). Recall that we defined β(c, ℓ) = 2[(c − 1)(ℓ − 1) + 1]; Qβ(c,ℓ)(G) to447

be the set of all maximal cliques of size at least β(c, ℓ) in G; Lβ(c,ℓ)(G) to be the set of448

all vertices in G that belong to at least one maximal clique of size at least β(c, ℓ), i.e.,449

Lβ(c,ℓ)(G) =
⋃

Q∈Qβ(c,ℓ)(G) V (Q); and Mβ(c,ℓ)(G) = V (G) \ Lβ(c,ℓ)(G).450

▶ Lemma 11. There is an algorithm that, given an n-vertex c-closed graph G and a451

positive integer ℓ as input, runs in time 2O(c)nO(1), and either returns an independent452

set of size at least ℓ, or correctly reports that every independent set in G has size at most453

(ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1 = O(c · ℓ2).454

Proof. Given G and ℓ as input, our algorithm works as follows. We first use the algorithm455

in Lemma 5 to construct Qβ(c,ℓ)(G) in time 2O(c)nO(1). If ♣Qβ(c,ℓ)(G)♣ ≥ ℓ, then we return456

an ℓ-sized independent set constructed using the algorithm in Lemma 9.457

Otherwise we construct the sets Lβ(c,ℓ)(G) and Mβ(c,ℓ)(G). By the definition of the sets458

Lβ(c,ℓ)(G) and Mβ(c,ℓ)(G), the induced subgraph G′ = G[Mβ(c,ℓ)(G)] contains no clique of size459

β(c, ℓ). And G′, being an induced subgraph of G, is c-closed. So, if ♣V (G′)♣ ≥ Rc(β(c, ℓ), ℓ),460

then by Lemma 1, G′ contains an independent set of size ℓ. Thus, if ♣V (G′)♣ ≥ Rc(β(c, ℓ), ℓ),461

then we return a 2-maximal independent set in G′, which can be computed in polynomial462

time, and which, by Remark 2, has size at least ℓ.463

Otherwise, if ♣Qβ(c,ℓ)(G)♣ ≤ ℓ − 1 and ♣V (G′)♣ = ♣Mβ(c,ℓ)(G)♣ ≤ Rc(β(c, ℓ), ℓ) − 1, then464

we return that every independent set in G has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1.465

To see the correctness of the last step, assume that ♣Qβ(c,ℓ)(G)♣ ≤ ℓ − 1 and ♣V (G′)♣ =466

♣Mβ(c,ℓ)(G)♣ ≤ Rc(β(c, ℓ), ℓ) − 1. Note that by definition, Lβ(c,ℓ)(G) =
⋃

Q∈Qβ(c,ℓ)(G) V (Q),467

i.e., a union of cliques. Therefore, by Lemma 10, any independent set in G[Lβ(c,ℓ)(G)]468

has size at most ♣Qβ(c,ℓ)(G)♣ ≤ ℓ − 1. Finally, as
{

Lβ(c,ℓ)(G), Mβ(c,ℓ)(G)
}

is a partition of469

V (G), for any independent set I ⊆ V (G), we have ♣I♣ = ♣I ∩ Lβ(c,ℓ)(G)♣ + ♣I ∩ Mβ(c,ℓ)(G)♣ ≤470

(ℓ − 1) + ♣Mβ(c,ℓ)(G)♣ ≤ (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1.471

Note that the only time consuming step in this algorithm is the construction of the family472

Qβ(c,ℓ)(G) in time 2O(c)nO(1). The rest of the steps run in polynomial time. Hence, the473

lemma follows. ◀474

Recall that for V ′ ⊆ V (G), we defined CN(V ′) to be the set of common neighbours of the475

vertices in V ′, i.e., CN(V ′) =
⋂

v∈V ′ N(v). Also, for V ′ ⊆ V (G) with ♣V ′♣ ≥ 2, we defined476

N [2](V ′) to be the union of the sets of common neighbours of every pair of vertices in V ′,477

i.e., N
[2]
G (V ′) = (

⋃

u,v∈V ′

u ̸=v

CN(¶u, v♢)) \ V ′. The next lemma says that if D is a dominating478

set of size at most k and I is an independent set of size k + 1, then there exists a vertex in479

D that dominates at least two vertices of I. In other words, D must intersect N [2](I).480

▶ Lemma 12. Let G be a graph and k a non-negative integer. Let I be an independent set481

in G of size k + 1. For a dominating set D of G, if ♣D♣ ≤ k, then D ∩ N [2](I) ̸= ∅. Moreover,482

if G is c-closed, then ♣N [2](I)♣ ≤ (c − 1)
(

k+1
2

)

.483

Proof. Assume that D is a dominating set of size at most k. Then, since ♣I♣ = k + 1,484

by the pigeonhole principle, there exists a vertex v ∈ D and a pair of distinct vertices485

u, u′ ∈ I such that v dominates both u and u′, i.e., v ∈ N [u] ∩ N [u′]. Note that since486

uu′ /∈ E(G) as I is an independent set, it follows that v ̸= u and v ̸= u′. And thus,487

v ∈ N(u) ∩ N(u′), which implies that v ∈ N [2](I). Now, if G is c-closed, then by the488
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definition of c-closed graphs, we have ♣N(u) ∩ N(u′)♣ ≤ c − 1, as uu′ /∈ E(G). This implies489

that ♣N [2](I)♣ ≤ ♣
⋃

u,u′∈I
u ̸=u′

N(u) ∩ N(u′)♣ ≤ (c − 1)
(

k+1
2

)

. ◀490

We conclude this section with the following lemma, which says that for a c-closed graph G491

and Y ⊆ V (G) of size at most c − 1, the common neighbours of Y induces a (c − ♣Y ♣)-closed492

graph.493

▶ Lemma 13. Let G be a c-closed graph, and Y ⊆ V (G) be such that ♣Y ♣ ≤ c − 1. Then, the494

graph G[CN(Y )] is (c − ♣Y ♣)-closed.495

Proof. Let G′ = G[CN(Y )]. Consider a pair of distinct vertices u, v ∈ V (G′). Since G′ is496

a subgraph of G, we have NG(u) ⊇ NG′(u) and NG(v) ⊇ NG′(v), and thus CNG(¶u, v♢) ⊇497

CNG′(¶u, v♢). Also, since u, v ∈ CNG(Y ), we have CNG(¶u, v♢) ⊇ Y . Thus, CNG(¶u, v♢) ⊇498

CNG′(¶u, v♢) ∪ Y . Also, note that since V (G′) ∩ Y = ∅, we have CNG′(¶u, v♢) ∩ Y = ∅, and499

therefore, ♣CNG′(¶u, v♢) ∪ Y ♣ =♣CNG′(¶u, v♢)♣ + ♣Y ♣.500

Now, assume that ♣CNG′(¶u, v♢)♣ ≥ c − ♣Y ♣. Then, from the previous observations, we501

get that ♣CNG(¶u, v♢)♣ ≥ ♣CNG′(¶u, v♢) ∪ Y ♣ ≥ c − ♣Y ♣ + ♣Y ♣ = c. Then, as G is c-closed, we502

have uv ∈ E(G), which implies that uv ∈ E(G′) as well. ◀503

3 Perfect Code on c-Closed Graphs504

A perfect code of a graph G is a dominating set of G that dominates every vertex of G505

exactly once. That is, D ⊆ V (G) is a perfect code if ♣N [v] ∩ D♣ = 1, for every v ∈ V (G).506

Note that the definition immediately implies that for a perfect code D, and for every pair of507

distinct vertices x, y ∈ D, we have distG(x, y) ≥ 3. If xy ∈ E(G), then x, y ∈ N [x] ∩ D, and508

if G contains a path xvy then x, y ∈ N [v] ∩ D, neither of which is possible. The Perfect509

Code problem, which we formally define below, asks if a given graph contains a perfect code510

of a certain size.511

Perfect Code Parameter: k + cl(G)

Input: An undirected graph G and a non-negative integer k.

Question: Does G have a perfect code of size at most k?

512

513

In this section, we show that Perfect Code admits an algorithm on c-closed graphs514

that runs in time 2O(c+k log(ck))nO(1). Moreover, we show that for each fixed positive integer515

c, the Perfect Code problem on c-closed graphs admits a kernel with O(k3(2c−1)) vertices.516

To design our algorithm and kernel, we consider a slightly more general version of the517

problem, which we call BW-Perfect Code. A bw-graph is a graph G along with a partition518

of V (G) into two parts, B and W . We do not require that both B and W be non-empty.519

We call the elements of B black vertices and the elements of W white vertices, and for520

convenience we write that (G, B, W ) is a bw-graph. A bw-perfect code of (G, B, W ) is a set521

of vertices D ⊆ B such that ♣N [v] ∩ D♣ = 1 for every v ∈ V (G). That is, a bw-perfect code522

is a set of black vertices that dominates every vertex of G exactly once. We formally define523

the BW-Perfect Code problem below.524

BW-Perfect Code Parameter: k + cl(G)

Input: A bw-graph (G, B, W ) and a non-negative integer k.

Question: Does (G, B, W ) have a bw-perfect code of size at most k?

525

526

It is not difficult to see that an instance (G, k) of Perfect Code can be reduced to an527

equivalent instance ((G, B, W ), k) of BW-Perfect Code by taking B = V (G) and W = ∅.528
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For future reference, we record below the following observation that will be used throughout529

this section.530

▶ Observation 14. Let (G, B, W ) be a bw-graph, and D ⊆ B a bw-perfect code of G. Then,531

(i) D is a dominating set of G, and (ii) distG(x, y) ≥ 3 for every pair of distinct vertices532

x, y ∈ D.533

We first develop some preparatory results that will be useful for both our algorithm and534

kernel. We begin by introducing a reduction rule, which says that if two vertices have the535

same closed neighbourhood and have the same colour, then we can safely delete one of them.536

537

▶ Reduction Rule 15. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let538

x, y ∈ V (G) be distinct vertices such that NG[x] = NG[y]. If x, y ∈ B or x, y ∈ W , then539

delete x.540

▶ Lemma 16. Reduction Rule 15 is safe.541

Proof. Informally, the reduction rule is safe because NG[x] = NG[y], and therefore, a vertex542

v ∈ V (G) dominates x if and only if v dominates y. We now prove this formally. Let543

x, y ∈ V (G) be such that x ̸= y and NG[x] = NG[y]. Let x, y ∈ B or x, y ∈ W , and the544

graph G′ = G − x be obtained by a single application of Reduction Rule 15. We prove the545

safeness of the rule by showing that ((G, B, W ), k) is a yes-instance of BW-Perfect Code546

if and only if ((G′, B \ ¶x♢ , W \ ¶x♢), k) is a yes-instance of BW-Perfect Code.547

Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D be548

a bw-perfect code of (G, B, W ) of size at most k. If x /∈ D, then clearly D is a perfect549

code of G′ as well. So assume that x ∈ D. This means that x ∈ B, and therefore, by550

assumption, y ∈ B. Observe that since NG[x] = NG[y], we have xy ∈ E(G). Then, by551

Observation 14, we have y /∈ D. We claim that D′ = (D \ ¶x♢) ∪ ¶y♢ is a bw-perfect552

code of G′. Note that for every v ∈ V (G′) \ NG′ [y], we have NG[v] = NG′ [v]. Therefore,553

D′ ∩NG′ [v] = ((D\¶x♢)∪y)∩NG[v] = D∩NG[v]. Now, since D is a bw-perfect code of G, we554

have ♣NG[v] ∩ D♣ = 1, which implies that ♣NG′ [v] ∩ D′♣ = 1. Now, for every v ∈ NG′ [y], note555

that D∩NG[v] = ¶x♢, and therefore, (D\¶x♢)∩NG′ [v] = ∅. Thus, ♣D′ ∩ NG′ [v]♣ = ♣¶y♢♣ = 1,556

which proves that D′ is a bw-perfect code of G′ of size at most k.557

Conversely, assume that ((G′, B \ ¶x♢ , W \ ¶x♢), k) is a yes-instance of BW-Perfect558

Code, and let D′′ be a bw-perfect code of G′ of size at most k. We claim that D′′ is a perfect559

code of G as well. Note that for every vertex v ∈ V (G) \ ¶x♢, we have NG′ [v] = NG[v] \ ¶x♢,560

and therefore, ♣D′′ ∩ NG[v]♣ = ♣D′′ ∩ NG′ [v]♣ = 1. Now, by the definition of a perfect code,561

there exists a unique w ∈ NG′ [y] such that D′′ ∩ NG′ [y] = ¶w♢. And note that since562

NG[x] = NG[y], we have w ∈ NG[x]. Thus, ♣D′′ ∩ NG[x]♣ = ♣¶w♢♣ = 1. This proves that D′′
563

is a bw-perfect code of G as well. ◀564

▶ Remark 17. Note that Reduction Rule 15 can be applied in polynomial time, and will be565

applied to an instance ((G, B, W ), k) at most ♣V (G)♣ − 1 times. So, from now on, whenever566

considering an instance of ((G, B, W ), k) of BW-Perfect Code, we assume that Reduction567

Rule 15 has been applied exhaustively to ((G, B, W ), k).568

The following lemma says that (when Reduction Rule 15 is no longer applicable), any569

maximal clique Q in G can contain at most two vertices that do not have neighbours in570

V (G) \ V (Q).571

▶ Lemma 18. Let ((G, B, W ), k) be an instance of BW-Perfect Code. For any maximal572

clique Q in G, we have ♣V (Q) \
⋃

v∈V (G)\V (Q) N(v)♣ ≤ 2.573
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Proof. By Remark 17, Reduction Rule 15 has been applied exhaustively to ((G, B, W ), k).574

Now, assume that the lemma is not true. Let Q be a maximal clique in G such that575

♣V (Q) \
⋃

v∈V (G)\V (Q) N(v)♣ ≥ 3. That is, there exist three distinct vertices, say x1, x2, x3 ∈576

V (Q), such that N [xi] = V (Q) for i ∈ [3]. Note that N [xi] = N [xj ] for every ¶i, j♢ ⊆ [3].577

And at least two of x1, x2 and x3 must be black or at least two of them must be white. But578

this is not possible as Reduction Rule 15 has been applied exhaustively to ((G, B, W ), k). ◀579

We now focus specifically on c-closed graphs. In the rest of this section, whenever we580

consider an instance of ((G, B, W ), k) of BW-Perfect Code, we assume that G is a c-closed581

graph.582

Recall that for integers a and b, we defined α(a, b) = (a − 1)b + 1. In the next three583

lemmas, we explore how a bw-perfect code of size at most k interacts with “large” maximal584

cliques. In this section, by a large clique, we mean a clique of size at least α(c, k). We have585

already shown in Corollary 8 that every dominating set of size at most k must intersect every586

large maximal clique. The next lemma shows that every bw-perfect code of size at most587

k must intersect every large maximal clique in exactly one vertex. Recall that Qα(c,k)(G)588

denotes the set of all maximal cliques of size at least α(c, k) in G.589

▶ Lemma 19. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and D ⊆ B a590

bw-perfect code of (G, B, W ) of size at most k. Then, for every Q ∈ Qα(c,k)(G), we have591

♣V (Q) ∩ D♣ = 1.592

Proof. Since D is a bw-perfect code of G, by Observation 14, D is a dominating set of593

G. Then, by Corollary 8, ♣V (Q) ∩ D♣ ≥ 1. But again by Observation 14, D must be an594

independent set, and since Q is a clique, D can intersect Q in at most 1 vertex. And the595

lemma follows. ◀596

As an immediate consequence of Lemma 19, we derive the following corollary, which597

says that if two distinct large maximal cliques intersect, then exactly one vertex from their598

intersection must belong to every bw-perfect code of size at most k.599

▶ Corollary 20. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and D ⊆ B600

a bw-perfect code of (G, B, W ) of size at most k. Let Q1, Q2 ∈ Qα(c,k)(G) be distinct601

and V (Q1) ∩ V (Q2) ̸= ∅. Then there exists v ∈ V (Q1) ∩ V (Q2) such that V (Q1) ∩ D =602

V (Q2) ∩ D = ¶v♢.603

Proof. Lemma 19 implies that ♣V (Qi) ∩ D♣ = 1 for i ∈ [2]. Let ¶vi♢ = V (Qi) ∩ D, for604

i ∈ [2]. We claim that v1 = v2. Suppose not. Note that V (Q1) ∩ V (Q2) ̸= ∅. Then for every605

w ∈ V (Q1) ∩ V (Q2), we have v1, v2 ∈ N [w] ∩ D, which, by the definition of a perfect code,606

is not possible. ◀607

The following lemma says that every perfect code of size at most k must necessarily608

exclude vertices that are endpoints of edges between different large maximal cliques. It is609

essentially a consequence of property (ii) in Observation 14.610

▶ Lemma 21. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let D be a611

bw-perfect code of (G, B, W ) of size at most k. Let Q1, Q2 ∈ Qα(c,k)(G). Then, for any612

x ∈ V (Q1) \ V (Q2) and y ∈ V (Q2) \ V (Q1) such that xy ∈ E(G), we have D ∩ ¶x, y♢ = ∅.613

Proof. Since Q1, Q2 ∈ Qα(c,k)(G), we have ♣V (Qi)♣ ≥(c − 1)k + 1, for i ∈ [2]. Then, since D614

is a bw-perfect code of size at most k, Lemma 19 implies that ♣V (Qi) ∩ D♣ = 1 for i ∈ [2].615

Let ¶vi♢ = V (Qi) ∩ D for i ∈ [2]. Note that to prove the lemma, it is sufficient to prove616
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that v1 ̸= x and v2 ̸= y. Assume for a contradiction that v1 = x. Note that v1 = x ̸= y, as617

v1 = x ∈ V (Q1) \ V (Q2). Then, v1yv2 is path of length 2 if v2 ̸= y, and (x =)v1v2(= y) is a618

path of length 1 if y = v2. In either case, we have dist(v1, v2) ≤ 2, which, by Observation 14,619

is not possible. By reversing the roles of Q1 and Q2, we can conclude that y /∈ D as well. ◀620

Notation. Consider a bw-graph (G, B, W ) and a vertex v ∈ V (G). By (Gv, Bv, Wv), we621

denote the bw-graph obtained by deleting NG[v] from G, and by colouring all neighbours of622

NG(v) white. That is, Gv = G−NG[v], Wv = (W \NG[v])∪NG(NG(v)), and Bv = V (Gv)\Wv.623

Recall that Lα(c,k)(G) =
⋃

Q∈Qα(c,k)(G) V (Q) and Mα(c,k)(G) = V (G) \ Lα(c,k)(G). That is,624

Lα(c,k)(G) contains all the vertices in G that belong to at least one maximal clique of size at625

least α(c, k), and Mα(c,k)(G) contains the remaining vertices. Now, for each Q ∈ Qα(c,k)(G),626

we define Z(Q) to be the set of vertices in V (Q) that have neighbours in some other627

maximal clique of size at least α(c, k), i.e., Z(Q) = ¶u ∈ V (Q) ♣ uv ∈ E(G) for some v ∈628

V (Q′), where Q′ ∈ Qα(c,k)(G) and u /∈ V (Q′)♢; and Z(G) =
⋃

Q∈Qα(c,k)(G) Z(Q). Notice629

that in the definition of Z(Q), the condition u /∈ V (Q′), in fact, implies that Q ̸= Q′. For630

Q ∈ Qα(c,k)(G) and a set S ⊆ Mα(c,k)(G) such that NG[S] ⊆ Mα(c,k)(G), let Y (Q, S) ⊆ V (Q)631

be the set of vertices u in Q such that u has a common neighbour with some vertex in S,632

i.e., Y (Q, S) = ¶u ∈ V (Q) ♣ there exist v ∈ V (G) and w ∈ S such that uv, vw ∈ E(G)♢;633

and Y (G, S) =
⋃

Q∈Qα(c,k)(G) Y (Q, S). We may think of the vertices of Z(G) and Y (G, S)634

as forbidden vertices—the vertices that cannot belong to a bw-perfect code (that contains635

S); we will prove this formally. The following corollary follows immediately from Lemma 21636

and the definition of Z(G).637

▶ Corollary 22. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let D be a638

bw-perfect code of (G, B, W ) of size at most k. Then Z(G) ∩ D = ∅.639

3.1 FPT Algorithm for Perfect Code on c-Closed Graphs640

In this subsection, we focus exclusively on designing our algorithm for Perfect Code. We641

continue with proving structural results that explore the properties of a bw-perfect code.642

The first of these results says that if D is a bw-perfect code of size at most k, then the643

intersection of D with Mα(c,k)(G) does not dominate any vertex of Lα(c,k)(G).644

▶ Lemma 23. Let D be a bw-perfect code of (G, B, W ) of size at most k, and let S =645

D ∩ Mα(c,k)(G). Then, NG[S] ⊆ Mα(c,k)(G).646

Proof. Suppose not. Then NG[S] ∩ Lα(c,k)(G) ̸= ∅. That is, there exists a maximal647

clique Q ∈ Qα(c,k)(G) such that NG[S] ∩ V (Q) ̸= ∅. Let v ∈ NG[S] ∩ V (Q). Since648

v ∈ NG[S] ∩ Lα(c,k)(G), we have v /∈ S, as S ⊆ Mα(c,k)(G). Then, since v ∈ NG[S], there649

exists u ∈ S such that uv ∈ E(G). Now, by Lemma 19, ♣V (Q) ∩ D♣ = 1. Let ¶w♢ = V (Q)∩D.650

Then, u, w ∈ NG[v] ∩ D, which is not possible. ◀651

Recall that for a large maximal clique Q and S ⊆ Mα(c,k)(G) with NG[S] ⊆ Mα(c,k)(G),652

we defined Y (Q, S) to be the set of vertices u ∈ V (Q) such that u has a common neighbour653

with some vertex in S. The next lemma says that no vertex from Y (Q, S) can belong to a654

bw-perfect code of size at most k.655

▶ Lemma 24. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let D be a656

bw-perfect code of (G, B, W ) of size at most k. Let S = D ∩ Mα(c,k)(G). Then for every657

Q ∈ Qα(c,k)(G), we have D ∩ Y (Q, S) = ∅.658
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Proof. Observe first that by Lemma 23, NG[S] ⊆ Mα(c,k)(G), and therefore Y (Q, S) is well-659

defined for every Q ∈ Qα(c,k)(G). Assume that the lemma is not true, and let u ∈ D∩Y (Q, S)660

for some Q ∈ Qα(c,k)(G). Then there exist vertices v, w such that w ∈ S and uv, vw ∈ E(G).661

Notice that u ≠ w as u ∈ V (Q) ⊆ Lα(c,k)(G) and w ∈ S ⊆ Mα(c,k)(G). We thus have two662

distinct vertices u, w ∈ NG[v] ∩ D, which contradicts the assumption that D is a bw-perfect663

code. ◀664

Recall that for a vertex v ∈ V (G), we defined (Gv, Bv, Wv) to be the bw-graph obtained665

from (G, B, W ) by deleting NG[v] and by colouring NG(NG(v)) white. We will use the666

following lemma to prove the correctness of our algorithm.667

▶ Lemma 25. Let (G, B, W ) be a bw-graph, and let D ⊆ B. Then, D is a bw-perfect code668

of (G, B, W ) if and only if D \ ¶v♢ is a bw-perfect code of (Gv, Bv, Wv) for every v ∈ D.669

Proof. Fix v ∈ D. Assume first that D is a bw-perfect code of (G, B, W ). To prove that670

D \ ¶v♢ is a bw-perfect code of (Gv, Bv, Wv), we need to prove that D \ ¶v♢ ⊆ Bv and671

that D \ ¶v♢ dominates every vertex of Gv exactly once, i.e., ♣NGv
[w] ∩ (D \ ¶v♢)♣ = 1 for672

every w ∈ V (Gv). Consider u ∈ D \ ¶v♢. Then u ∈ B, which means that u /∈ W . And673

by Observation 14, we have distG(u, v) ≥ 3, which implies that u /∈ NG[v] ∪ NG(NG(v)).674

Therefore u /∈ Wv, which implies that u ∈ Bv. Thus, D\¶v♢ ⊆ Bv. Now, consider w ∈ V (Gv).675

Then, since D is a bw-perfect code of (G, B, W ), there exists a unique vertex x ∈ D such that676

x dominates w, i.e., NG[w] ∩ D = ¶x♢. Notice that x ≠ v, as w ∈ V (Gv) = V (G) \ NG[v];677

and hence x ∈ D \ ¶v♢. In fact, x /∈ NG[v], for otherwise, we would have x, v ∈ NG[v] ∩ D,678

which, by the definition of a bw-perfect code, is not possible. Thus x ∈ NGv
[w]; that is, x679

dominates w in the graph Gv as well. Since Gv is a subgraph of G, we have NGv
[w] ⊆ NG[w].680

We thus have NGv
[w] ∩ (D \ ¶v♢) = ¶x♢. As w is an arbitrary element of V (Gw), we can681

conclude that D \ ¶v♢ is a perfect code of (Gv, Bv, Wv).682

Conversely, assume that D \ ¶v♢ is a bw-perfect code of (Gv, Bv, Wv). By assumption,683

D ⊆ B. Therefore, to prove that D is a perfect code of (G, B, W ), we only need to prove684

that D dominates every vertex of G exactly once. So consider w′ ∈ V (G). We will prove that685

♣NG[w′] ∩ D♣ = 1. Suppose first that w′ /∈ NG[v]. Then w′ ∈ V (Gv), and there exists a unique686

vertex y ∈ D\¶v♢ that dominates w′. That is, NGv
[w′]∩(D\¶v♢) = ¶y♢. If NG[w′] = NGv

[w],687

then since w′ /∈ NG[v], we can immediately conclude that NG[w′] ∩ D = ¶y♢. So suppose688

that there exists y′ ∈ NG[w′] \ NGv
[w′]. We claim that y′ /∈ D, which will imply that689

NG[w′] ∩ D = ¶y♢. By the definitions of Gv and y′, we have y′ ∈ NG[v]. Then y′ /∈ D \ ¶v♢690

as D \ ¶v♢ ⊆ Bv ⊆ V (Gv) = V (G) \ NG[v]. Since w′ /∈ NG[v], we can conclude that y′ ̸= v,691

which implies that y′ /∈ D. We thus have NG[w′] ∩ D = ¶y♢. Now, suppose that w′ ∈ NG[v].692

We will show that v is the only vertex in D that dominates w′. First, since D \ ¶v♢ is a693

bw-perfect code of (Gv, Bv, Wv), we have D \ ¶v♢ ⊆ Bv, and by the definition of Bv, we have694

Bv ∩ NG[v] = ∅. Therefore, w′ /∈ D \ ¶v♢. Now, consider w′′ ∈ NG(w′). If w′′ ∈ NG[v], then695

again, we have w′′ /∈ D\¶v♢. So suppose that w′′ ∈ NG(w′)\NG[v]. Then, w′′ ∈ NG(NG(v)),696

which implies that w′′ ∈ Wv, and therefore, w′′ /∈ D \ ¶v♢. Therefore, NG[w′] ∩ (D \ ¶v♢) = ∅697

and hence ♣NG[w′] ∩ D♣ = ♣¶v♢♣ = 1. ◀698

We now prove the following lemma, which says that if I is an independent set of size k + 1699

in G, then every bw-perfect code of (G, B, W ) must contain a vertex that dominates at700

least 2 vertices of I. Recall that for V ′ ⊆ V (G) with ♣V ′♣ ≥ 2, by N
[2]
G (V ′), we denote the701

union of the sets of common neighbours of every pair of vertices in V ′, i.e., N
[2]
G (V ′) =702

(
⋃

u,v∈V ′

u ̸=v

(NG(u) ∩ NG(v)) \ V ′.703
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▶ Lemma 26. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let I be an704

independent set of size k + 1 in G. Then, ((G, B, W ), k) is a yes-instance of BW-Perfect705

Code if and only if ((Gv, Bv, Wv), k − 1) is a yes-instance for some v ∈ N [2](I) ∩ B.706

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B707

be a bw-perfect code of (G, B, W ) of size at most k. Then, by Observation 14, D is a708

dominating set of G, and therefore, by Lemma 12, D ∩ N [2](I) ̸= ∅. Let v ∈ D ∩ N [2](I).709

Then, ♣D \ ¶v♢♣ ≤ k − 1, and by Lemma 25, D \ ¶v♢ is bw-perfect code of (Gv, Bv, Wv),710

which proves that ((Gv, Bv, Wv), k − 1) is a yes-instance.711

Conversely, assume that ((Gv, Bv, Wv), k − 1) is a yes-instance of BW-Perfect Code712

for some v ∈ N [2](I), and let D′ ⊆ Bv be a bw-perfect code of (Gv, Bv, Wv) of size at most713

k − 1. Then again, by Lemma 25, D′ ∪ ¶v♢ is a bw-perfect code of (G, B, W ) of size at most714

k, which proves that ((G, B, W ), k) is a yes-instance. ◀715

The following lemma says that if Q1, Q2 are two distinct large maximal cliques that716

intersect each other, then every bw-perfect code of G must contain a vertex from the717

intersection of Q1 and Q2.718

▶ Lemma 27. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let ¶Q1, Q2♢ ⊆719

Qα(c,k)(G) such that V (Q1) ∩ V (Q2) ̸= ∅. Then, ((G, B, W ), k) is a yes-instance of BW-720

Perfect Code if and only if ((Gv, Bv, Wv), k − 1) is a yes-instance for some v ∈ V (Q1) ∩721

V (Q2) ∩ B.722

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B723

be a bw-perfect code of (G, B, W ) of size at most k. Then, by Corollary 20, there exists724

v ∈ V (Q1)∩V (Q2) such that V (Q1)∩D = V (Q2)∩D = ¶v♢. Then, ♣D \ ¶v♢♣ ≤ k−1, and by725

Lemma 25, D\¶v♢ is a bw-perfect code of (Gv, Bv, Wv), which proves that ((Gv, Bv, Wv), k−1)726

is a yes-instance.727

Conversely, assume that ((Gv, Bv, Wv), k − 1) is a yes-instance of BW-Perfect Code728

for some v ∈ V (Q1) ∩ V (Q2), and let D′ ⊆ Bv be a bw-perfect code of (Gv, Bv, Wv) of size729

at most k − 1. Then again, by Lemma 25, D′ ∪ ¶v♢ is a bw-perfect code of (G, B, W ) of size730

at most k, which proves that ((G, B, W ), k) is a yes-instance. ◀731

Definitions of good and bad instances. We say that an instance ((G, B, W ), k) is bad if732

any of the following three conditions hold.733

(i) There exist three distinct cliques Q1, Q2, Q3 ∈ Qα(c,k)(G) such that V (Q1)∩V (Q2) ̸= ∅,734

V (Q2) ∩ V (Q3) ̸= ∅, but V (Q1) ∩ V (Q3) = ∅.735

(ii) There exist distinct cliques Q1, Q2 ∈ Qα(c,k)(G) such that V (Q1) ∩ V (Q2) ̸= ∅, but736

V (Q1) ∩ V (Q2) ⊆ W .737

(iii) There exists Q ∈ Qα(c,k)(G) such that (V (Q) \ Z(Q)) ⊆ W .738

If none of these three conditions occur, then we say that ((G, B, W ), k) is a good instance.739

We will show that a bad instance is necessarily a no-instance of BW-Perfect Code. It740

follows from Lemma 27 that ((G, B, W ), k) is a no-instance if conditions (i) or (ii) hold;741

similarly, Corollary 22 implies that ((G, B, W ), k) is a no-instance if condition (iii) holds.742

▶ Lemma 28. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)743

is a bad instance, then it is a no-instance of BW-Perfect Code.744

Proof. Let ((G, B, W ), k) be a bad instance. Assume for a contradiction that ((G, B, W ), k)745

is a yes-instance, and let D be a bw-perfect code of (G, B, W ) of size at most k. Since746

((G, B, W ), k) is a bad instance, at least one of the three conditions in the definition of747
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a bad instance must hold. We show that each of the three conditions will lead to a748

contradiction. Suppose that there exist three distinct cliques Q1, Q2, Q3 ∈ Qα(c,k)(G) such749

that V (Q1)∩V (Q2) ̸= ∅, V (Q2)∩V (Q3) ̸= ∅, but V (Q1)∩V (Q3) = ∅. By Corollary 20, there750

exist v12 ∈ V (Q1) ∩ V (Q2) ∩ D and v23 ∈ V (Q1) ∩ V (Q2) ∩ D. Note that v12 ≠ v23, as v12 ∈751

V (Q1) and v23 ∈ V (Q3), and V (Q1) ∩ V (Q3) = ∅. But then v12, v23 ∈ V (Q2) ∩ D, which by752

Lemma 19 is not possible. Now, suppose that there exist distinct cliques Q1, Q2 ∈ Qα(c,k)(G)753

such that V (Q1) ∩ V (Q2) ̸= ∅, but V (Q1) ∩ V (Q2) ⊆ W . By assumption, D ⊆ B. And by754

Corollary 20, there exists v ∈ V (Q1)∩V (Q2)∩D, which implies that V (Q1)∩V (Q2)∩B ≠ ∅.755

This contradicts the assumption that V (Q1) ∩V (Q2) ⊆ W . Finally, suppose that there exists756

Q ∈ Qα(c,k)(G) such that V (Q) \ Z(Q) ⊆ W . By Lemma 19, there exists w ∈ V (Q) ∩ D. By757

Corollary 22, D ∩ Z(Q) = ∅, which implies that w ∈ V (Q) \ Z(Q). But since D ⊆ B, we get758

that (V (Q) \ Z(Q)) ∩ B ≠ ∅, which contradicts the assumption that V (Q) \ Z(Q) ⊆ W . ◀759

Definition of a feasible set. Consider an instance ((G, B, W ), k) of BW-Perfect Code760

such that Qα(c,k)(G) is disjoint. Let kQ = ♣Qα(c,k)(G)♣. We say that a set S ⊆ Mα(c,k)(G)∩B761

is feasible if762

(a) ♣S♣ ≤ k − kQ,763

(b) NG[S] ⊆ Mα(c,k)(G),764

(c) S is a bw-perfect code for the bw-graph (NG[S], B ∩ NG[S], W ∩ NG[S]),765

(d) (V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)) ̸= ∅ for every Q ∈ Qα(c,k)(G), and766

(e) (N(v) ∩ Lα(c,k)(G) ∩ B) \ (Z(G) ∪ Y (G, S)) ̸= ∅ for every v ∈ Mα(c,k)(G) \ NG[S].767

Informally, a set S ⊆ Mα(c,k)(G) is feasible if we can potentially extend S to a bw-perfect768

code of G by adding kQ vertices from Lα(c,k)(G). Since by Corollary 22 and Lemma 24,769

Z(Q) and Y (Q, S) cannot intersect a bw-perfect code that contains S, condition (d) says770

that in every large clique Q contains a vertex that can potentially belong to a bw-perfect771

code (that contains S). Similarly, condition (e) says that for every vertex v ∈ Mα(c,k)(G)772

that is not dominated by S, there exists a vertex that can potentially belong to a bw-perfect773

code (that contains S) and dominate v. The next two lemmas prove properties of a feasible774

set. Recall that we say the family Qα(c,k)(G) is disjoint if the elements of Qα(c,k)(G) are775

pairwise vertex-disjoint.776

▶ Lemma 29. Let ((G, B, W ), k) be an instance of BW-Perfect Code such that Qα(c,k)(G)777

is disjoint, and let D be a bw-perfect code of (G, B, W ) of size at most k. Let S = D ∩778

Mα(c,k)(G). Then (i) ♣D \ S♣ = kQ and (ii) ♣S♣ ≤ k − kQ, where kQ = ♣Qα(c,k)(G)♣.779

Proof. First, since D is a bw-perfect code of G of size at most k, by Lemma 19, we have780

♣D ∩ V (Q)♣ = 1 for every Q ∈ Qα(c,k)(G). Second, since Qα(c,k)(G) is disjoint, the cliques781

in Qα(c,k)(G) are pairwise vertex-disjoint. Thus ¶V (Q) ♣ Q ∈ Qα(c,k)(G)♢ is a partition of782

Lα(c,k)(G). Therefore, ♣D ∩ Lα(c,k)(G)♣ =
∑

Q∈Qα(c,k)(G) ♣D ∩ V (Q)♣ = ♣Qα(c,k)(G)♣ = kQ.783

Now, since S = D ∩ Mα(c,k)(G) and
{

Lα(c,k)(G), Mα(c,k)(G)
}

is a partition of V (G), we784

have D \ S = D ∩ Lα(c,k)(G). Thus, ♣D \ S♣ = ♣D ∩ Lα(c,k)(G)♣ = kQ.785

For proving assertion (ii) of the lemma, note that since
{

Lα(c,k)(G), Mα(c,k)(G)
}

is a786

partition of V (G), we have ♣D♣ = ♣D ∩ Lα(c,k)(G))♣ + ♣D ∩ Mα(c,k)(G)♣ = ♣D \ S♣ + ♣S♣. Since787

♣D♣ ≤ k and since ♣D \ S♣ = kQ, we can conclude that ♣S♣ ≤ k − kQ. ◀788

▶ Lemma 30. Let ((G, B, W ), k) be an instance of BW-Perfect Code such that Qα(c,k)(G)789

is disjoint, and let D be a bw-perfect code of (G, B, W ) of size at most k. Then S =790

D ∩ Mα(c,k)(G) is a feasible set.791
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Proof. Let D and S be as defined in the lemma. To show that S is a feasible set, we show792

that S satisfies each of the five conditions in the definition of a feasible set.793

First, by Lemma 29, ♣S♣ ≤ k − kQ, where kQ = ♣Qα(c,k)(G)♣. Thus condition (a) holds.794

Next, by Lemma 23, we get NG[S] ⊆ Mα(c,k)(G), and thus condition (b) holds.795

Since S ⊆ D and D is a bw-perfect code of (G, B, W ), we get that S ⊆ B, and796

for each v ∈ NG[S], ♣NG[v] ∩ S♣ = 1. Hence, S is a bw-perfect code for the bw-graph797

(NG[S], B ∩ NG[S], W ∩ NG[S]), and thus condition (c) holds.798

Next, to prove that condition (d) holds, consider Q ∈ Qα(c,k)(G). Then, by Lemma 19,799

we have ♣D ∩ V (Q)♣ = 1. Let u be the unique vertex of D ∩ V (Q). Since D ⊆ B, we have800

u ∈ V (Q) ∩ B. By Corollary 22, D does not intersect Z(G), and therefore, in particular,801

D does not intersect Z(Q. Thus u /∈ Z(Q). Similarly, by Lemma 24, D does not intersect802

Y (Q, S). Thus u /∈ Y (Q, S). We thus have u ∈ (V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)), which shows803

that condition (d) holds.804

Finally, to prove that condition (e) holds, consider v ∈ Mα(c,k)(G) \ NG[S]. Since D805

is a bw-perfect code of (G, B, W ), there exists a vertex w ∈ D that dominates v. Thus806

w ∈ NG[v]. Notice that w /∈ S, because v /∈ NG[S]. As S = D ∩ Mα(c,k)(G), we can conclude807

that w ∈ Lα(c,k)(G), which also implies that w ̸= v, and thus w ∈ N(v). We thus have808

w ∈ N(v) ∩ Lα(c,k)(G). Now, by Corollary 22, D does not intersect Z(G) and thus w /∈ Z(G).809

Similarly, by Lemma 24, D does not intersect Y (G, S), and thus w /∈ Y (G, S). We thus have810

w ∈ (N(v) ∩ Lα(c,k)(G)) \ (Z(G) ∪ Y (G, S)), which shows that condition (e) holds. ◀811

With respect to each feasible set S, we now construct an instance of the Exact Hitting812

Set problem. We will have the guarantee that (G, B, W ) has a bw-perfect code D of size at813

most k with D ∩ Mα(c,k)(G) = S if and only if D \ S is a solution for the Exact Hitting814

Set instance corresponding to S.815

▶ Construction 31 (Construction of an Exact Hitting Set instance). In the Exact816

Hitting Set problem, given a universe U , a family A of subsets of U , and a non-negative817

integer ℓ, we ask if there exists a set X ⊆ U of size at most ℓ such that ♣A ∩ X♣ = 1 for every818

A ∈ A; we call such a set X a solution for the Exact Hitting Set instance (U, A, ℓ). With819

respect to each feasible set S ⊆ Mα(c,k)(G) ∩ B, we construct an instance (US , FS , kQ) of the820

Exact Hitting Set problem as follows. We take US = (Lα(c,k)(G) ∩ B) \ (Z(G) ∪ Y (G, S)),821

FS = F1
S ∪ F2

S, where F1
S =

{

(V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)) ♣ Q ∈ Qα(c,k)(G)
}

and F2
S =822

¶(N(v)∩(Lα(c,k)(G)∩B)\(Z(G)∪Y (G, S)) ♣ v ∈ Mα(c,k)(G)\NG[S]♢, and kQ = ♣Qα(c,k)(G)♣.823

The next lemma says that to solve the instance ((G, B, W ), k) of BW-Perfect Code,824

it is enough to solve the instance (US , FS , kQ) of Exact Hitting Set corresponding to825

each feasible set S.826

▶ Lemma 32. Let ((G, B, W ), k) be an instance of BW-Perfect Code such that Qα(c,k)(G)827

is disjoint, and let S ⊆ Mα(c,k)(G) be a feasible set. Then, for D ⊆ V (G) with ♣D♣ ≤ k, D828

is a bw-perfect code of (G, B, W ) with D ∩ Mα(c,k)(G) = S if and only if D \ S ⊆ US and829

D \ S is a solution for the Exact Hitting Set instance (US , FS , kQ).830

Proof. Let D ⊆ V (G) be such that ♣D♣ ≤ k and D ∩ Mα(c,k)(G) = S. First, recall that831

since
{

Lα(c,k)(G), Mα(c,k)(G)
}

is a partition of V (G), we have D = (D ∩ Lα(c,k)(G)) ∪ (D ∩832

Mα(c,k)(G)). And since D ∩ Mα(c,k)(G) = S, we have D ∩ Lα(c,k)(G) = D \ S.833

Assume now that D is a bw-perfect code of (G, B, W ). Observe that the following834

properties hold: (i) Qα(c,k)(G) is disjoint, (ii) D is a bw-perfect code of (G, B, W ) of size at835

most k, and (iii) D ∩ Mα(c,k)(G) = S. Therefore, using Lemma 29, we can conclude that836

♣D \ S♣ = kQ.837
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Now, we show that D \ S ⊆ US . Since D is a bw-perfect code, D \ S ⊆ B. And by838

Corollary 22 (D \ S) ∩ Z(G) = ∅, and by Lemma 24, (D \ S) ∩ Y (G, S) = ∅. Therefore,839

D \ S ⊆ (Lα(c,k)(G) ∩ B) \ (Z(G) ∪ Y (G, S)) = US .840

Finally, to see that D \S is a solution for the Exact Hitting Set instance (US , FS , kQ),841

consider F ∈ FS . We will show that ♣F ∩ (D \ S)♣ = 1.842

Suppose that F ∈ F1
S . Then, F = (V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)) for some maximal843

clique Q ∈ Qα(c,k)((G)). Lemma 19 implies that ♣V (Q) ∩ D♣ = 1. Let ¶x♢ = V (Q) ∩ D.844

Since D ⊆ B, we get that x ∈ B. By Corollary 22, D does not intersect Z(Q), and by845

Lemma 24, D does not intersect Y (Q, S), and therefore, x /∈ Z(Q) ∪ Y (Q, S). We thus have846

x ∈ (V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)) = F . Since x is the only element of V (Q) that belongs to847

D, and since F ⊆ V (Q), we can conclude that F ∩ D = ¶x♢. Since F ⊆ V (Q) ⊆ Lα(c,k)(G),848

F does not intersect S, and therefore, we can conclude that F ∩ (D \ S) = ¶x♢.849

Suppose now that F ∈ F2
S . Then F = (N(v′)∩Lα(c,k)(G)∩B)\(Z(G)∪Y (G, S)) for some850

v′ ∈ Mα(c,k)(G) \ NG[S]. Again, since D is a bw-perfect code of (G, B, W ), ♣NG[v′] ∩ D♣ = 1.851

Let ¶x′♢ = NG[v′]∩D. Since D ⊆ B, we have x′ ∈ B. But since v′ /∈ NG[S], and x′v′ ∈ E(G),852

we have x′ /∈ S. Then, x′ ∈ D \ S. Also, note that x′ ̸= v′, as x′ ∈ D \ S ⊆ Lα(c,k)(G), and853

v′ ∈ Mα(c,k)(G). We can thus conclude that ¶x′♢ = (NG(v′)∩Lα(c,k)(G)∩B)∩(D\S). Since854

D \S ⊆ US , we get that x′ /∈ Z(G)∪Y (G, S). Thus, ¶x′♢ ⊆ F ∩ (D \S) ⊆ NG[v′]∩D = ¶x′♢,855

which proves that ♣F ∩ (D \ S)♣ = ♣¶x′♢♣ = 1.856

Thus, D \ S is a solution for the Exact Hitting Set instance (US , FS , kQ). We have857

thus proved that if D is a bw-perfect code of (G, B, W ), then D \ S ⊆ US , and D \ S is a858

solution for (US , FS , kQ).859

Conversely, assume that D \ S ⊆ US , and that D \ S is a solution for the Exact860

Hitting Set instance (US , FS , kQ). To see that D is a perfect code of (G, B, W ), consider861

a vertex v ∈ V (G). We will show that ♣NG[v] ∩ D♣ = 1. Note first that NG[v] ∩ D =862

(NG[v] ∩ S) ∪ (NG[v] ∩ (D \ S)).863

Suppose that v ∈ Lα(c,k)(G). Since S is feasible, NG[S] ⊆ Mα(c,k)(G), and therefore864

v /∈ NG[S]. That is, S does not dominate v. We now show that ♣NG[v] ∩ (D \ S)♣ = 1. Note865

that since Qα(c,k)(G) is disjoint, v ∈ V (Q) for exactly one clique Q ∈ Qα(c,k)(G). Since S866

is feasible, F ′ = (V (Q) ∩ B) \ (Z(Q) ∪ Y (Q, S)) ∈ F1
S . And since D \ S is a solution for867

the Exact Hitting Set instance (US , FS , kQ), we have ♣F ′ ∩ (D \ S)♣ = 1. But note that868

F ′ ⊆ V (Q) ⊆ NG[v], and thus ♣NG[v] ∩ (D \ S)♣ ≥ ♣F ′ ∩ (D \ S)♣ = 1. Now, to show that869

♣NG[v] ∩ (D \ S)♣ = 1, we will show that NG[v] \ F ′ does not intersect D \ S. Let u ∈ NG[v].870

We claim that if u /∈ F ′, then u /∈ D \ S, which will imply that ♣NG[v] ∩ (D \ S)♣ = 1. So871

assume that u /∈ F ′. There are three possible cases: (a) u ∈ V (Q), (b) u ∈ Lα(c,k)(G) \ V (Q)872

and (c) u ∈ Mα(c,k)(G). In each case, we will show that u /∈ D \ S. First, if u ∈ V (Q), then873

we must have u ∈ W or u ∈ Z(Q) or u ∈ Y (Q, S), for otherwise we would have u ∈ F ′. But874

US does not intersect W , Z(G) ⊇ Z(Q) or Y (G, S) ⊇ Y (Q, S). Thus u /∈ US , and therefore,875

u /∈ D \ S, as D \ S ⊆ US . If u ∈ Lα(c,k)(G) \ V (Q), then u ∈ Z(G), as v ∈ V (Q) and876

uv ∈ E(G). In this case also, u /∈ US , and therefore u /∈ D \ S. Now, if u ∈ Mα(c,k)(G), then877

clearly, u /∈ D \ S, as D \ S ⊆ Lα(c,k)(G). These arguments prove that ♣NG[v] ∩ D♣ = 1.878

Now, suppose that v ∈ Mα(c,k)(G). First, we consider the case when v ∈ NG[S]. Then,879

since S is a bw-perfect code for (NG[S], B∩NG[S], W∩NG[S]), we have ♣(NG[v] ∩ NG[S]) ∩ S♣ =880

1, i.e., ♣NG[v] ∩ S♣ = 1. Observe that to prove that ♣NG[v] ∩ D♣ = 1, it is now sufficient to881

prove that u /∈ D for every u ∈ NG[v] \ NG[S]. Consider such a vertex u ∈ NG[v] \ NG[S].882

Then, u ̸= v, as v ∈ NG[S]. Therefore u ∈ NG(v) \ NG[S]. Note first that if u ∈ Mα(c,k)(G),883

then u /∈ D, as D ∩ Mα(c,k)(G) = S, and u /∈ S. On the other hand, if u ∈ Lα(c,k)(G), then884

u ∈ Y (G, S) as uv ∈ E(G), v ∈ N [S], and N [S] ⊆ Mα(c,k)(G) (as S is feasible). Therefore,885



L. Kanesh, J. Madathil, S. Roy, A. Sahu and S. Saurabh 21

u /∈ US , which implies that u /∈ D \ S. These observations prove that u /∈ D.886

Now, consider the case when v ∈ Mα(c,k)(G) \ NG[S]. Then, NG[v] ∩ S = ∅. We will now887

show that ♣NG[v] ∩ (D \ S)♣ = 1. Note that v /∈ D, as v /∈ S, and v /∈ Lα(c,k)(G) (⊇ (D \ S)).888

Since S is feasible, (N(v) ∩ Lα(c,k)(G) ∩ B) \ (Z(G) ∪ Y (G, S)) ̸= ∅; and by Construction 31,889

there exists F ′′ ∈ F2
S such that F ′′ = (N(v) ∩ Lα(c,k)(G) ∩ B) \ (Z(G) ∪ Y (G, S)). And890

since D \ S is a solution for the Exact Hitting Set instance (US , FS , kQ), we have891

♣F ′′ ∩ (D \ S)♣ = 1, which implies that ♣NG[v] ∩ (D \ S)♣ ≥ ♣F ′′ ∩ (D \ S♣ = 1. Now, to892

complete the proof, it is sufficient to prove that w /∈ D \S for every w ∈ NG[v]\F ′′. Consider893

w ∈ NG[v] \ F ′′. Suppose w ∈ Lα(c,k)(G). Then w ∈ W or w ∈ Z(G) or w ∈ Y (G, S) for894

otherwise, we would have w ∈ F ′′ as w ∈ N(v). Hence w /∈ US , and hence w /∈ D \ S.895

Suppose now that w ∈ Mα(c,k)(G). Then clearly w /∈ D \ S ⊆ Lα(c,k)(G). These arguments896

prove that ♣NG[v] ∩ D♣ = 1. ◀897

In the next lemma we prove some size bounds based on the definition of a feasible set and by898

using the construction of the Exact Hitting Set instance.899

▶ Lemma 33. Let ((G, B, W ), k) be an instance of BW-Perfect Code such that Qα(c,k)(G)900

is disjoint, and G has no independent set of size k + 1. Then the following statements are901

true.902

(i) ♣Mα(c,k)(G)♣ ≤ Rc(α(c, k), k + 1) − 1 ≤ 2(c − 1)k2.903

(ii) G contains at most (2(c − 1)k2)k feasible sets.904

(iii) For every Q ∈ Qα(c,k)(G), ♣V (Q) \ Z(Q)♣ ≤ 2(c − 1)2k2 + 2.905

(iv) If ((G, B, W ), k) is a yes-instance, then ♣N(v) ∩ Lα(c,k)(G)♣ ≤ (c − 1)k for every v ∈906

Mα(c,k)(G).907

(v) If ((G, B, W ), k) is a yes-instance, then for any feasible set S, ♣F ♣ ≤ 2(c − 1)2k2 + 2,908

for every F ∈ FS.909

Proof. (i) By the definition of Mα(c,k)(G), the subgraph G[Mα(c,k)(G)] contains no clique910

of size α(c, k). By assumption, G contains no independent set of size k + 1; in911

particular, G[Mα(c,k)(G)] contains no independent set of size k + 1. Thus, by Lemma 1,912

♣Mα(c,k)(G)♣ ≤ Rc(α(c, k), k + 1) − 1 = (c − 1)
(

k
2

)

+ (α(c, k) − 1)k ≤ (c − 1)k2 + ((c −913

1)k − 1 + 1)k = 2(c − 1)k2.914

(ii) By definition, a feasible set has size at most k, and is contained in Mα(c,k)(G). Therefore,915

by assertion (i), we get that the number of feasible sets is at most
(

♣Mα(c,k)(G)♣
k

)

≤916

(2(c − 1)k2)k.917

(iii) Consider Q ∈ Qα(c,k)(G). Note that every vertex in V (Q) has a neighbour in Lα(c,k)(G)\918

V (Q) or has a neighbour in Mα(c,k)(G) or has no neighbour in V (G) \ V (Q). Let A1919

be the set of vertices in Q that have a neighbour in Lα(c,k)(G) \ V (Q), A2 be the set of920

vertices in Q that have a neighbour in Mα(c,k)(G) and A3 be the set of vertices in Q921

that have no neighbour in V (G) \ V (Q). That is, V (Q) = A1 ∪ A2 ∪ A3. But notice922

that A1 = Z(Q). So to bound ♣V (Q) \ Z(Q)♣, we only need to bound ♣A2♣ and ♣A3♣, as923

V (Q) \ Z(Q) = V (Q) \ A1 ⊆ A2 ∪ A3.924

To bound ♣A2♣, notice that A2 =
⋃

v∈Mα(c,k)(G) N(v) ∩ V (Q). By Lemma 6, we have925

♣N(v) ∩ V (Q)♣ ≤ c − 1 for every v ∈ Mα(c,k)(G). And by assertion (i), ♣Mα(c,k)(G)♣ ≤926

2(c − 1)k2. Thus ♣A2♣ ≤ (c − 1)(2(c − 1)k2).927

To bound ♣A3♣, notice that A3 = V (Q) \
⋃

v∈V (G)\V (Q) N(v); and by Lemma 18, we928

have ♣V (Q) \
⋃

v∈V (G)\V (Q) N(v)♣ ≤ 2.929

We thus have ♣V (Q) \ Z(Q)♣ ≤ ♣A2♣ + ♣A3♣ ≤ 2(c − 1)2k2 + 2.930
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(iv) Assume that ((G, B, W ), k) is a yes-instance, and let D be a bw-perfect code of931

(G, B, W ) of size at most k. Then, by Lemma 19, we have ♣V (Q) ∩ D♣ = 1 for every932

Q ∈ Qα(c,k)(G). And since Qα(c,k)(G) is disjoint, we have ♣Qα(c,k)(G)♣ ≤ ♣D♣ ≤ k.933

Also, note that since Qα(c,k)(G) is disjoint, Lα(c,k)(G) is a disjoint union of the cliques934

in Qα(c,k)(G). Now, consider v ∈ Mα(c,k)(G). Then, by the definition of Mα(c,k)(G),935

v /∈ V (Q) for any Q ∈ Qα(c,k)(G). Therefore, by Lemma 6, ♣N(v) ∩ V (Q)♣ ≤ c−1. Thus,936

♣N(v) ∩ Lα(c,k)(G)♣ = ♣
⊎

Q∈Qα(c,k)(G) N(v) ∩ V (Q)♣ ≤ (c − 1)♣Qα(c,k)(G)♣ ≤ (c − 1)k.937

(v) Assume that ((G, B, W ), k) is a yes-instance, and let S ⊆ Mα(c,k)(G) be a feasible938

set. Consider F ∈ FS . If F ∈ F1
S , then, F ⊆ V (Q) \ Z(Q) for some Q ∈ Qα(c,k)(G),939

and therefore, by assertion (iii), we have ♣F ♣ ≤ 2(c − 1)2k2 + 2. If F ∈ F2
S , then,940

F ⊆ N(v) ∩ Lα(c,k)(G) for some v ∈ Mα(c,k)(G), and therefore, by assertion (iv), we941

have ♣F ♣ ≤ (c − 1)k ≤ 2(c − 1)2k2 + 2.942

◀943

For future reference, we now state the following observation, which follows immediately944

from the definitions of a good instance and a feasible set.945

▶ Observation 34. Let ((G, B, W ), k) be an instance of BW-Perfect Code.946

(i) Using the algorithm in Lemma 5, we can construct Qα(c,k)(G) in time 2O(c)nO(1).947

And once Qα(c,k)(G) is constructed, by brute force, we can check whether or not948

((G, B, W ), k) is a good instance, and whether or not Qα(c,k)(G) is disjoint, in time949

(

♣Qα(c,k)(G)♣
3

)

nO(1) = 2O(c)nO(1).950

(ii) For a set S ⊆ Mα(c,k)(G), we can check in polynomial time whether S is feasible or951

not.952

(iii) For a feasible set S ⊆ Mα(c,k)(G), we can construct the Exact Hitting Set instance953

(US , FS , kQ) in polynomial time.954

Finally, before we start describing the algorithm, we state the following result about955

Exact Hitting Set.956

▶ Lemma 35 (folklore). There is an algorithm that, given an instance (U, F , ℓ) of Exact957

Hitting Set as input, runs in time dℓ · ♣U ♣O(1)
, where d = maxF ∈F ♣F ♣, and correctly decides958

whether (U, F , ℓ) is a yes-instance or a no-instance of Exact Hitting Set.959

We are now ready to describe our algorithm. We first informally discuss the idea behind960

the three main steps of the algorithm. The algorithm consists of two branching procedures961

followed by a brute-force procedure. We are given an instance ((G, B, W ), k). In the first962

stage, we find an independent set I of size k + 1 (if it exists), and branch on the common963

black neighbours of I. Once there is no independent set of size k + 1, in the second step,964

we enumerate all maximal cliques, and branch on the black vertices in the intersection of965

two large maximal cliques. And once this step is also fully executed, (i) Mα(c,k)(G) has no966

independent set of size k + 1 and no clique of size α(c, k), and therefore will have size at967

most Rc(α(c, k), k + 1) − 1, and (ii) large cliques are pairwise vertex disjoint. In the third968

step, we guess which subset of Mα(c,k)(G) will go into the solution, and also guess one vertex969

each from the large maximal cliques that will go into the solution; and check if the guessed970

vertices make a bw-perfect code of size at most k. The third step can be executed by creating971

an Exact Hitting Set instance corresponding to each subset of Mα(c,k)(G).972

Description of our algorithm: Algorithm 1. We are given an instance ((G, B, W ), k) of973

BW-Perfect Code as input.974



L. Kanesh, J. Madathil, S. Roy, A. Sahu and S. Saurabh 23

Step 1. First, if k ≥ 0 and V (G) = ∅, then we return that ((G, B, W ), k) is a yes-instance,975

and terminate. Otherwise, if k > 0, then we do as follows. We use the algorithm in976

Corollary 4 to check if G has an independent set of size k + 1. If the algorithm in977

Corollary 4 returns that G has no such independent set, then we proceed to Step 1.1. On978

the other hand if algorithm in Corollary 4 returns a (k + 1)-sized independent set I, then979

we branch into ♣N [2](I) ∩ B♣ many smaller instances of BW-Perfect Code. For each980

v ∈ N [2](I) ∩ B, we create the instance ((Gv, Bv, Wv), k − 1) and recursively call Step 1981

on this instance. On any branch, at any point if the algorithm in Corollary 4 returns a982

(k + 1)-sized independent set I with N [2](I) ∩ B = ∅, then we discard that branch. On all983

other branches, we recurse only until k = 0 or V (G) = ∅ or Corollary 4 does not return a984

(k + 1)-sized independent set, whichever happens first.985

Step 1.1. If k ≥ 0 and V (G) = ∅, then we return that ((G, B, W ), k) is a yes-instance, and986

terminate. Otherwise, if k > 0, we proceed as follows. We use the algorithm in Lemma 5987

to construct Qα(c,k)(G). Then, using the algorithm in Observation 34-(i), we check if988

the instance ((G, B, W ), k) is good and if Qα(c,k)(G) is disjoint. If the instance is good989

and Qα(c,k)(G) is disjoint, then we proceed to Step 1.1.1. If the instance is good and990

Qα(c,k)(G) is not disjoint, then we choose two cliques Q1, Q2 ∈ Qα(c,k)(G) such that991

V (Q1) ∩ V (Q2) ̸= ∅, and branch into ♣V (Q1) ∩ V (Q2) ∩ B♣ many smaller instances of992

BW-Perfect Code as follows. For each v ∈ V (Q1) ∩ V (Q2) ∩ B, we create the instance993

((Gv, Bv, Wv), k − 1), and recursively call Step 1.1 on this instance. On any branch, at994

any point, if we find that Qα(c,k)(G) is bad, then we discard that branch. On all other995

branches, we recurse only until k = 0 or V (G) = ∅ or Qα(c,k)(G) is disjoint, whichever996

happens first.997

Step 1.1.1. If k ≥ 0 and V (G) = ∅, then we return that ((G, B, W ), k) is a yes-instance, and998

terminate. Otherwise, if k > 0 and kQ > k, then we discard this branch. Otherwise, if999

k > 0 and if kQ = ♣Qα(c,k)(G)♣ ≤ k, then we do as follows. For each set S ⊆ Mα(c,k)(G)1000

such that S is feasible, we construct the instance (US , FS , kQ) of Exact Hitting Set. If1001

♣F ♣ ≤ 2(c − 1)2k2 + 2 for every F ∈ FS, then we solve the Exact Hitting Set instance1002

(US , FS , kQ) using the algorithm in Lemma 35. If (US , FS , kQ) is a yes-instance, then1003

we return that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and terminate.1004

Step 2. We return that (G, B, W, k) is a no-instance, and terminate.1005

This completes the description of the algorithm. The correctness of Step 1 follows from1006

Lemma 26. The correctness of Step 1.1 follows from Lemmas 27 and 28. Note that on any1007

branch, when the algorithm enters Step 1.1.1, the instance G contains no independent set of1008

k + 1, and Qα(c,k)(G) is disjoint. The correctness of considering feasible sets in Step 1.1.11009

follows from Lemma 30. The correctness of proceeding only if ♣F ♣ ≤ 2(c − 1)2k2 + 2 for1010

every F ∈ FS follows from Lemma 33-(v). The correctness of returning yes if (US , FS , kQ)1011

is a yes-instance of Exact Hitting Set follows from Lemma 32. Note that the algorithm1012

enters Step 2 only if we have not already returned that the input instance is a yes-instance.1013

And Lemmas 26 27, 28, 30, 33-(v) and 32 together imply that if ((G, B, W ), k) is indeed a1014

yes-instance, then we correctly return yes (in Steps 1, 1.1 or 1.1.1). Hence Step 2 is also1015

correct. These observations show that Algorithm 1 is correct. We now analyse its runtime in1016

the following lemma.1017

▶ Lemma 36. Algorithm 1 runs in time 2O(c+k log(ck))nO(1).1018

Proof. Let us start with analysing the time taken for one execution of Step 1.1.1. For any1019

set S ⊆ Mα(c,k)(G), by Observation 34-(ii), checking whether S is feasible or not can be done1020
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in polynomial time. Also, by Observation 34-(iii), we can construct the Exact Hitting1021

Set instance (US , FS , kQ) in polynomial time.1022

For each feasible set S, we have ♣US ♣ ≤ ♣V (G)♣ = n. Therefore, by Lemma 35, solving1023

Exact Hitting Set on the instance (US , FS , kQ) takes time (2(c − 1)2k2 + 2)kQnO(1) ≤1024

(2c2k2)knO(1). Finally, by Lemma 33-(ii), there are at most (2(c − 1)k2)k ≤ (2ck2)k many1025

feasible sets. Therefore, one execution of Step 1.1.1 takes time (2ck2)k · (2c2k2)knO(1) =1026

(ck)O(k)nO(1) = 2O(k log(ck))nO(1).1027

Now, consider Step 1.1. By Lemma 5, we can construct in Q(G) and Qα(c,k)(G) in time1028

2O(c)nO(1). By Observation 34-(i), we can check, again in time 2O(c)nO(1), whether or not1029

((G, B, W ), k) is good and Qα(c,k)(G) is disjoint. Also, note that in one execution of Step1030

1.1, at most ♣V (Q1) ∩ V (Q2) ∩ B♣ ≤ c − 1 many recursive calls are being made. So the total1031

number of recursive calls made to Step 1.1 is at most (c − 1)k.1032

Finally, consider Step 1. By Corollary 4, finding a (k + 1)-sized independent set I takes1033

time 2O(k log(ck))nO(1). Now, in one execution of Step 1, at most ♣N [2](I)♣ recursive calls to1034

Step 1 are being made. And by Lemma 12, ♣N [2](I)♣ ≤ (c − 1)
(

k+1
2

)

. So the total number of1035

recursive calls made to Step 1 is at most ((c − 1)
(

k+1
2

)

)k.1036

Therefore, the total runtime of the algorithm is bounded by1037



(c − 1)



k + 1

2

k

2O(k log(ck))nO(1) · (c − 1)k2O(c)nO(1) · 2O(k log(ck))nO(1)
1038

= cO(k)kO(k)2O(k log(ck))nO(1) · cO(k)2O(c)nO(1) · 2O(k log(ck))nO(1)
1039

= 2O(k log(ck))nO(1) · 2O(c+k log c)nO(1) · 2O(k log(ck))nO(1)
1040

= 2O(c+k log(ck))nO(1).1041

◀1042

We have thus proved the following theorem.1043

▶ Theorem 37. BW-Perfect Code on c-closed graphs admits an algorithm running in1044

time 2O(c+k log(ck))nO(1).1045

Since we can reduce an instance (G, k) of Perfect Code into an equivalent instance1046

((G, B, W ), k) in polynomial time, Theorem 37 implies the following result.1047

▶ Theorem 38. Perfect Code on c-closed graphs admits an algorithm that runs in time1048

2O(c+k log(ck))nO(1).1049

3.2 A Polynomial Kernel for Perfect Code on c-Closed Graphs1050

We now move on to designing a kernel for Perfect Code on c-closed graphs. We first prove1051

that for each fixed positive integer c, the BW-Perfect Code problem on c-closed graphs1052

admits a kernel with O(k3(2c−1)) vertices. Then we argue that in polynomial time, we can1053

reduce an instance of BW-Perfect Code to an equivalent instance of Perfect Code,1054

which will give us the required kernel. Specifically, we prove the following theorem.1055

▶ Theorem 39. Let c be a fixed positive integer. There is an algorithm that, when given an1056

instance ((G, B, W ), k) of BW-Perfect Code as input, where G is an n-vertex c-closed1057

graph, runs in polynomial time, and returns an equivalent instance ((G′, B′, W ′), k′) of the1058

BW-Perfect Code problem such that G′ is a c-closed graph and ♣V (G′)♣+k′ = O(k3(2c−1)).1059
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In addition to Theorem 39, we also need the following two intermediate lemmas to prove1060

that Perfect Code admits a kernel. The first of these lemmas deals with the Perfect1061

Code problem on 1-closed graphs, and the second one presents a polynomial time reduction1062

from BW-Perfect Code to Perfect Code.1063

▶ Lemma 40. Perfect Code is polynomial time solvable on 1-closed graphs.1064

▶ Lemma 41. Let c > 1 be a fixed integer. There is an algorithm that given an instance1065

((G′, B′, W ′), k′) of BW-Perfect Code, runs in polynomial time, and returns an equivalent1066

instance (G′′, k′′) of Perfect Code such that (i) G′′ is c-closed if G′ is c-closed, (ii)1067

♣V (G′′)♣ = O(♣V (G′)♣), and (ii) k′′ ≤ k′ + 1.1068

Finally, as a consequence of Theorem 39, Lemmas 40 and 41, we derive the following1069

result.1070

▶ Theorem 42. Let c be a fixed positive integer. Perfect Code on c-closed graphs admits1071

a kernel with O(k3(2c−1)) vertices.1072

Proof. Let (G, k) be an instance of Perfect Code, where G is a c-closed graph. Our1073

kernelization algorithm returns an equivalent instance (G′′, k′′) of Perfect Code as follows.1074

If c = 1, then we use the algorithm in Lemma 40 to solve the Perfect Code problem on1075

(G, k). If (G, k) is a yes-instance, we take (G′′, k′′) to be a trivial yes-instance of Perfect1076

Code with ♣V (G′′)♣ + k′′ = O(k), and otherwise we take (G′′, k′′) to be a trivial no-instance1077

of Perfect Code with ♣V (G′′)♣ + k′′ = O(k), and return (G′′, k′′).1078

If c > 1, then we create from (G, k), an equivalent instance ((G, B, W ), k) of BW-1079

Perfect Code by taking B = V (G) and W = ∅. And then apply the algorithm in1080

Theorem 39, to obtain an equivalent instance ((G′, B′, W ′), k′) of BW-Perfect Code,1081

where ♣V (G′)♣ + k′ = O(k3(2c−1)). Finally, we apply the algorithm in Lemma 41 to obtain1082

from ((G′, B′, W ′), k′) an equivalent instance (G′′, k′′) of Perfect Code. Note that as1083

the algorithms in Lemma 40, Theorem 39 and Lemma 41, run in polynomial time, our1084

kernelization algorithm returns (G′′, k′′) in polynomial time. Since Lemma 41 guarantees1085

that ♣V (G′′)♣ = O(♣V (G′)♣), and k′′ ≤ k′ + 1, we have ♣V (G′′)♣ + k′′ = O(k3(2c−1)), and the1086

theorem follows. ◀1087

So now we only need to prove Theorem 39 and Lemmas 40 and 41. We prove the two1088

lemmas first.1089

Proof of Lemma 40. Let (G, k) be an instance of Perfect Code, where G is a 1-closed1090

graph. Observe first that every connected component of G is a clique. To see this, consider a1091

connected component C of G, and let x, y ∈ V (C). We claim that xy ∈ E(G). Suppose not.1092

Let P = xv1v2 . . . vry be a shortest x-y path in G. Then, note that ♣N(x) ∩ N(v2)♣ ≥ 1 as1093

v1 ∈ N(x) ∩ N(v2). Since G is 1-closed, we must have xv2 ∈ E(G), which contradicts the1094

assumption that P is a shortest path between x and y.1095

Since each connected component of G is a clique, any perfect code of G must contain1096

exactly one vertex from each of the connected components. So, if G has more than k1097

connected components, then (G, k) is a no-instance of Perfect Code, and otherwise, (G, k)1098

is a yes-instance of Perfect Code. Thus, to check if G has a perfect code of size at most k,1099

we only need to enumerate the connected components of G, which can be done in polynomial1100

time. Hence the lemma follows. ◀1101

Proof of Lemma 41. Consider an instance ((G′, B′, W ′), k′) of BW-Perfect Code. If1102

W ′ = ∅, then we take G′′ = G′ and k′′ = k′. Note that this choice of G′′ and k′′ satisfies all1103
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Figure 1 Polynomial time reduction from BW-Perfect Code to Perfect Code

the properties stated in the lemma. So, assume that W ′ ̸= ∅. Let V (G) = ¶v1, v2, . . . , vn♢,1104

and without loss of generality let W ′ = ¶v1, v2, . . . , vr♢ for some r ≤ n. We now define1105

the graph G′′. We take G′′ to be the supergraph of G obtained by adding k′ + 3 + r new1106

vertices z, z1, z2, . . . , zk′+2, y1, y2, . . . , yr. We also add the following new edges to G′′. We1107

make z adjacent to zi and yj for every i ∈ [k′ + 2] and j ∈ [r]; also, for every j ∈ [r], we1108

make yj adjacent to vj . Thus V (G′′) = V (G′) ∪ Y ∪ Z, where Y = ¶y1, y2, . . . , yr♢ and1109

Z = ¶z, z1, z2, . . . , zk′+2♢; and E(G′′) = E(G′) ∪ E1 ∪ E2 ∪ E3, where E1 = ¶viyi ♣ i ∈ [r]♢,1110

E2 = ¶yiz ♣ i ∈ [r]♢ and E3 = ¶zzi ♣ i ∈ [k′ + 2]♢. And we set k′′ = k′ + 1. Notice that G′ is1111

subgraph of G′. Notice also that the set Y is another copy of W ′. Thus, ¶v1, v2, . . . , vr♢ and1112

Y are two copies of W ′, and the set E1 is a matching in G′′ between the two copies. See1113

Figure 1.1114

First, ♣V (G′′)♣ = ♣V (G′)♣ + ♣Y ♣ + ♣Z♣ = ♣V (G′)♣ + ♣W ′♣ + (k′ + 3) = O(♣V (G′)♣).1115

Second, we show that ((G′, B′, W ′), k′) is a yes-instance of BW-Perfect Code if and1116

only if (G′′, k′′) is a yes-instance of Perfect Code. Assume that ((G′, B′, W ′), k′) is a1117

yes-instance of BW-Perfect Code, and let D′ ⊆ B′ be a bw-perfect code of (G′, B′, W ′)1118

of size at most k′. Let D′′ = D′ ∪ ¶z♢. Notice that z dominates NG′′ [z] = Z ∪ Y , and does1119

not dominate vertex vi for any i ∈ [n]; and no vertex of D dominates Z ∪ Y as (D ⊆ B′
1120

and hence) no vertex of D is adjacent to any vertex in Z ∪ Y . Thus D′′ is a perfect code1121

of G′′ of size ♣D′♣ + 1 ≤ k′ + 1 = k′′. Conversely, assume that (G′′, k′′) is a yes-instance1122

of Perfect Code, and let D ⊆ V (G′′) be a perfect code of G′′ of size at most k′′. We1123

first claim that z ∈ D. If not, then, since NG′′ [zi] = ¶z, zi♢, we must have zi ∈ D for1124

every i ∈ [k′ + 2], which contradicts the assumption that ♣D♣ ≤ k′′ = k′ + 1. But then as1125

z dominates Y ∪ (Z \ ¶z♢) = NG′′(z), we have Y ∪ (Z \ ¶z♢) ∩ (D \ ¶z♢) = ∅. Therefore1126

D \ ¶z♢ ⊆ V (G′). Now, for every j ∈ [r], since distG′′(z, vj) = 2, we can conclude that1127

vr /∈ D; i.e., D ∩ W ′ = ∅. Thus D \ ¶z♢ ⊆ B′. Since z does not dominate any vertex in1128

V (G′) ⊆ V (G′′), we can conclude that D \ ¶z♢ dominates every vertex in V (G′) exactly1129

once. And we have ♣D \ ¶z♢♣ = ♣D♣ − 1 ≤ k′′ − 1 = k′. We have thus shown that D ⊆ B′,1130

D dominates every vertex of G′ exactly once, and D has size at most k; that is, D is a1131

bw-perfect code of G′ of size at most k′.1132

Finally, to conclude the proof, we only need to show that if G′ is a c-closed graph, then1133

so is G′′. As it is straightforward to verify this, we omit its proof. ◀1134

The rest of this section is dedicated to proving Theorem 39. Towards that end, we first1135

define two functions γ, µ : N → N as follows. Recall that β(a, b) = 2[(a − 1)(b − 1) + 1] and1136
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Rc(a, b) = (c − 1)
(

b−1
2

)

+ (a − 1)(b − 1) + 1. For a, b ∈ N, we define γ(1, b) = b + 1, and1137

γ(a, b) = bµ(a−1, b)+1; and µ(a, b) = γ(a, b)+Ra(β(a, γ(a, b)+1), γ(a, b)+1)−1.1138

These functions γ and µ will be used to bound the size of independent sets in G when1139

((G, B, W ), k) is a yes-instance.1140

▶ Observation 43. Observe that for every fixed a, i ∈ N, and for b ∈ N, we have Ri(a, b) =1141

O(b2) and β(a, b) = O(b). Therefore, we have1142

γ(1, b) = O(b) µ(1, b) = O(b) + R1(O(b), O(b)) = O(b2)

γ(2, b) = bµ(1, b) + 1 = O(b3) µ(2, b) = O(b3) + R2(O(b3), O(b3)) = O(b6)

γ(3, b) = bµ(2, b) + 1 = O(b7) µ(3, b) = O(b7) + R3(O(b7), O(b7)) = O(b14)

· · · · · ·

γ(a, b) = O(b2a−1) µ(a, b) = O(b2(2a−1)).

1143

Outline of the kernel. Our kernel for BW-Perfect Code has two parts. In the first part,1144

we bound the size of independent sets in (G, B, W ) using Reduction Rule 44, and in the1145

second part, we bound the size of cliques in (G, B, W ) using Reduction Rules 52 and 56 (and1146

Reduction Rule 15). Once the size of cliques and independent sets are bounded, we apply1147

Lemma 1 to derive the kernel. Recall that for a set Y ⊆ V (G), CN(Y ) denotes the set of1148

common neighbours of the vertices in Y , i.e., CN(Y ) =
⋂

v∈Y N(v).1149

To bound the size of independent sets in case ((G, B, W ), k) is a yes-instance, observe1150

the following fact. Consider an independent set I in G and a bw-perfect code D ⊆ B of1151

size at most k. Then, we can partition I into at most k parts, say, I1, I2, . . . , Ik such that1152

for each j ∈ [k], there exists a unique vertex vj ∈ D that dominates Ij , i.e., Ij ⊆ N(vj).1153

Thus, to bound ♣I♣, we only need to bound ♣Ij ♣ for every j ∈ [k]. More generally, we only1154

need to bound the size of independent sets contained in N(v) for every v ∈ V (G). To do1155

this, suppose that for every Y ⊆ V (G) with ♣Y ♣ = 2 we have already managed to bound1156

the size of independent sets contained in CN(Y ) by some function of c and k, say, f(c, k).1157

That is, every independent set with at least 2 common neighbours has size at most f(c, k).1158

Now, consider v ∈ V (G). And let I ′ be an independent set of size at least k · f(c, k) + 11159

contained in N(v) and D a bw-perfect code of size at most k. Then, we must have v ∈ D.1160

If not, there exists u ∈ D that dominates at least ♣I ′♣/k vertices of I. That is, there exist1161

u ∈ D and I ′′ ⊆ I ′ such that ♣I ′′♣ ≥ ♣I ′♣/k > f(c, k) and I ′′ ⊆ N(u). But note that1162

I ′′ ⊆ I ′ ⊆ N(v). Thus, I ′′ ⊆ CN(¶u, v♢) and ♣I ′′♣ > f(c, k), which we have already ruled out1163

to be impossible. By repeating these arguments, we can show that, to obtain the bound of1164

f(c, k) for independent sets with 2 common neighbours, we only need to bound the size of1165

independent sets with 3 common neighbours. This train of arguments only needs to continue1166

until we reach independent sets with c − 1 common neighbours. Thus, we start with sets Y of1167

size c − 1 and bound the size of independent sets contained in CN(Y ). Then proceed to sets1168

Y of size c − 2 and so on. This idea is formalised in Reduction Rule 44. But the difficulty1169

is in checking if CN(Y ) contains an independent set of the required size, which cannot be1170

done in time 2O(c)nO(1). To overcome this, we use the weaker result of Lemma 11, which1171

causes the bound on the independent set size to increase exponentially in each successive1172

stage. Thus, after c − 1 stages, we only manage to obtain a bound of µ(c − 1, k) = kO(2c) for1173

the size of independent sets contained in N(v) for every v ∈ V (G). And this bound is where1174

the kernel size comes from.1175

In the second part, bounding the clique size is fairly straightforward. This involves1176

removing twin vertices (which we already did in Reduction Rule 15), and identifying irrelevant1177

vertices (vertices that cannot belong to any bw-perfect code of size at most k) and colouring1178

them white or removing them (Reduction Rules 52 and 56).1179
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We now formally introduce the following reduction rule.1180

▶ Reduction Rule 44. For each i ∈ [c − 1], we introduce Reduction Rule 44.i as follows. Let1181

((G, B, W ), k) be an instance of BW-Perfect Code. For each fixed set Y ⊆ V (G) with1182

♣Y ♣ = c − i, we run the algorithm in Lemma 11 on the graph G[CN(Y )] with ℓ = γ(i, k) + 1.1183

If the algorithm returns an independent set I of size ℓ, then delete a vertex v ∈ I from G,1184

and colour NG(v) \ Y white. That is, we create a new instance ((G′, B′, W ′), k) as follows:1185

G′ = G − v, B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We keep1186

repeating this procedure until the algorithm in Lemma 11 returns that every independent set1187

in G[CN(Y )] has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1. Also, we apply Reduction Rule 44.i1188

in the increasing order of i. That is, we first apply Reduction Rule 44.1 exhaustively, and for1189

each i ∈ [c − 1] \ ¶1♢, we apply Reduction Rule 44.i only if Reduction Rule 44.(i − 1) is no1190

longer applicable.1191

We now observe the following fact, which will be useful in establishing the correctness of1192

Reduction Rule 44.1193

▶ Observation 45. Fix i ∈ [c − 1]. For any Y ⊆ V (G) with ♣Y ♣ = c − i, by Lemma 13,1194

the subgraph G[CN(Y )] is i-closed. Therefore, after an exhaustive application of Reduction1195

Rule 44.i, by Lemma 11, every independent set in G[CN(Y )] has size at most γ(i, k) +1196

Ri(β(i, γ(i, k) + 1), γ(i, k) + 1) − 1 = µ(i, k). In particular, when i = c − 1, we get that after1197

an exhaustive application of Reduction Rule 44.(c−1), for every v ∈ V (G), every independent1198

set in G[N(v)] has size at most µ(c − 1, k).1199

▶ Lemma 46. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let Y ⊆ V (G) be1200

such that ♣Y ♣ = c − 1, and I ⊆ CN(Y ) be an independent set with ♣I♣ ≥ γ(1, k). Then, for1201

any bw-perfect code D ⊆ B of (G, B, W ) with ♣D♣ ≤ k, we have ♣D ∩ Y ♣ = 1.1202

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with ♣D♣ ≤ k. We first claim that1203

D ∩ Y ̸= ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since ♣I♣ ≥ γ(1, k) = k + 11204

and ♣D♣ ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that dominates1205

at least two vertices of I, say, w1, w2 ∈ I. That is, u ∈ N [w1] ∩ N [w2]. Since I is an1206

independent set, and uw1, uw2 ∈ E(G), we can conclude that u ̸= w1 and u ̸= w2. Thus,1207

u ∈ N(w1)∩N(w2). But since w1, w2 ∈ I ⊆ CN(Y ), we get that Y ⊆ N(w1)∩N(w2). Thus,1208

Y ∪ ¶u♢ ⊆ N(w1) ∩ N(w2). Because of our assumption that D ∩ Y = ∅, we have u /∈ Y ,1209

and thus ♣Y ∪ ¶u♢♣ = c. Thus, w1 and w2 have at least c common neighbours, and therefore1210

w1w2 ∈ E(G), which is not possible as w1and w2 belong to the independent set I. Thus,1211

D ∩ Y ̸= ∅. Now, if there exist y1, y2 ∈ D ∩ Y , where y1 ≠ y2, then for any x ∈ I, we have1212

y1, y2 ∈ N [x] ∩ D, which, by the definition of a bw-perfect code, is not possible. Therefore,1213

we conclude that ♣D ∩ Y ♣ = 1. ◀1214

▶ Lemma 47. Fix i ∈ [c − 1] \ ¶1♢. Let ((G, B, W ), k) be an instance of BW-Perfect1215

Code to which Reduction Rule 44.(i − 1) has been applied exhaustively. Let Y ⊆ V (G) be1216

such that ♣Y ♣ = c − i, and I ⊆ CN(Y ) be an independent set with ♣I♣ ≥ γ(i, k). Then, for1217

any bw-perfect code D ⊆ B of (G, B, W ) with ♣D♣ ≤ k, we have ♣D ∩ Y ♣ = 1.1218

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with ♣D♣ ≤ k. We first claim that1219

D ∩ Y ̸= ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since ♣I♣ ≥ γ(i, k) =1220

kµ(i − 1, k) + 1 and ♣D♣ ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that1221

dominates at least µ(i−1, k)+1 vertices of I. Let I ′ ⊆ I be such that ♣I ′♣ ≥ µ(i−1, k)+1 and1222

u dominates I ′. That is, I ′ ⊆ N [u]. Observe first that u /∈ I ′. To see this, suppose that u ∈ I ′.1223

Then, for every w ∈ I ′\¶u♢, since u dominates w, we must have uw ∈ E(G), which contradicts1224
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the fact that I ′ is an independent set. So, u /∈ I ′, and therefore, I ′ ⊆ N(u). And we already1225

have I ′ ⊆ I ⊆ CN(Y ). We can conclude that I ′ ⊆ N(u)∩CN(Y ) = CN(Y ∪¶u♢). Because of1226

our assumption that D∩Y = ∅, we have u /∈ Y , and thus ♣Y ∪ ¶u♢♣ = c−i+1 = c−(i−1). That1227

is, Y ∪¶u♢ is a set of size c−(i−1), and I ′ is an independent set such that I ′ ⊆ CN(Y ∪¶u♢),1228

and ♣I ′♣ ≥ µ(i − 1, k) + 1. But this conclusion contradicts Observation 45 because of our1229

assumption that Reduction Rule 44.(i − 1) has been applied exhaustively. Thus, D ∩ Y ̸= ∅.1230

Now, if there exist y1, y2 ∈ D∩Y , where y1 ≠ y2, then for any x ∈ I, we have y1, y2 ∈ N [x]∩D,1231

which, by the definition of a bw-perfect code, is not possible. Therefore, we conclude that1232

♣D ∩ Y ♣ = 1. ◀1233

▶ Lemma 48. For each i ∈ [c − 1], Reduction Rule 44.i is safe.1234

Proof. Fix i ∈ [c − 1]. Let ((G′, B′, W ′), k) be the instance obtained from ((G, B, W ), k) by1235

a single application of Reduction Rule 44.i. Then there exists Y ⊆ V (G) with ♣Y ♣ = c − i,1236

and an independent set I ⊆ CN(Y ) with ♣I♣ = γ(i, k) + 1 and a vertex v ∈ I such that1237

G′ = G − v, B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We shall show1238

that ((G, B, W ), k) and ((G′, B′, W ′), k) are equivalent instances.1239

Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be1240

a bw-perfect code of (G, B, W ) of size at most k. We first claim that ♣D ∩ Y ♣ = 1. Suppose1241

i = 1. Then ♣Y ♣ = c − 1 and ♣I♣ = γ(1, k) + 1. By Lemma 46, ♣D ∩ Y ♣ = 1. Now, suppose1242

that i > 1. First, by assumption, Reduction Rule 44.j is not applicable to ((G, B, W ), k) for1243

any j ∈ [i − 1]. And we have ♣Y ♣ = c − i, and ♣I♣ = γ(i, k) + 1. Then, by Lemma 47, we1244

have ♣D ∩ Y ♣ = 1. In either case, we have ♣D ∩ Y ♣ = 1. Let ¶y♢ = D ∩ Y . But then since1245

y ∈ D and I ⊆ CN(Y ) ⊆ N(y), we have I ∩ D = ∅. In particular v /∈ D. Also, for any1246

w ∈ NG(v) \ Y , we have distG(y, w) ≤ 2, and thus, by Observation 14, we have w /∈ D. Thus,1247

D ∩ (NG[v] \ Y ) = ∅, and therefore, D ⊆ B \ (NG[v] \ Y ) = B′. Thus, D is a bw-perfect code1248

of (G′, B′, W ′) as well.1249

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance, and let D′ ⊆ B′ be a bw-perfect1250

code of (G′, B′, W ′) with ♣D′♣ ≤ k. We claim that D′ is a bw-perfect code of (G, B, W ) as well.1251

Note that for any x ∈ V (G) \ ¶v♢, we have NG′ [x] = NG[x] \ ¶v♢. Therefore, since v /∈ D′, we1252

have ♣D′ ∩ NG[x]♣ = ♣D′ ∩ NG′ [x]♣ = 1. So, now we only need to show that ♣D′ ∩ NG[v]♣ = 1.1253

Note that NG[v] = (NG[v] \ Y ) ∪ (NG[v] ∩ Y ). First, since NG[v] \ Y ⊆ W ′, and D′ ⊆ B′, we1254

get that D′ ∩ (NG[v] \ Y ) = ∅. So we only need to show that ♣D′ ∩ (NG[v] ∩ Y )♣ = 1. Now,1255

observe that as ♣I \ ¶v♢♣ = γ(i, k), by Lemma 46 if i = 1 and by Lemma 47 if i > 1, we have1256

♣D′ ∩ Y ♣ = 1. Let ¶y′♢ = D′ ∩Y . Then, y′ ∈ D′ ∩NG[v], and in fact, ¶y′♢ = D′ ∩ (NG[v]∩Y ).1257

This completes the proof. ◀1258

▶ Remark 49. Observe that to apply the rule exhaustively, we need not go over all sets1259

Y ⊆ V (G) of size at most c − 1. We only need to consider sets Y ⊆ V (G) for which1260

CN(Y ) contains at least two non-adjacent vertices, say x and y. But then we would have1261

Y ⊆ CN(¶x, y♢). Since ♣CN(¶x, y♢)♣ ≤ c − 1, we only have at most 2c−1 choices for Y . And1262

since there are only at most
(

n
2

)

= O(n2) choices for ¶x, y♢, we can conclude that we only1263

need to go over 2c−1n2 sets Y to apply the rule exhaustively. Now, note that each application1264

of Reduction Rule 44 can be executed in time 2O(c)nO(1) as the algorithm in Lemma 11 takes1265

time 2O(c)nO(1). Also, for each set Y ⊆ V (G) with ♣Y ♣ ≤ c − 1, Reduction Rule 44 is applied1266

only at most ♣CN(Y )♣ ≤ n times. Thus, we can exhaustively apply Reduction Rule 44 in1267

time 2O(c)nO(1).3 Recall that c is a fixed constant, and therefore we can exhaustively apply1268

3 In the conference version of this paper [37], we had only claimed that we can exhaustively apply
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Reduction Rule 44 in polynomial time. So, from now on, we assume that Reduction Rule 441269

has been applied exhaustively.1270

The following lemma bounds the size of an independent set in G if ((G, B, W ), k) is a1271

yes-instance.1272

▶ Lemma 50. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)1273

is a yes-instance, then every independent set in G has size at most γ(c, k) − 1.1274

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B1275

be a bw-perfect code of (G, B, W ) of size at most k. Let I ⊆ V (G) be an independent set.1276

Assume for a contradiction that ♣I♣ ≥ γ(c, k) = kµ(c − 1, k) + 1. Then, since ♣D♣ ≤ k, by the1277

pigeonhole principle, there exists v ∈ D such that v dominates at least µ(c − 1, k) + 1 vertices1278

of I. That is, there exists an independent set I ′ such that I ′ ⊆ N(v) and ♣I ′♣ ≥ µ(c−1, k)+1,1279

which, by Observation 45, is not possible, as Reduction Rule 44, and in particular, Reduction1280

Rule 44.(c − 1) has been applied exhaustively. ◀1281

We have thus bounded the size of every independent set in G for yes-instances. This1282

immediately bounds the number of large cliques (by Lemma 9), as well as the number of1283

vertices that do not belong to any large maximal clique (by Lemma 1).1284

▶ Lemma 51. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)1285

is a yes-instance, then1286

1. ♣Qβ(c,γ(c,k))(G)♣ ≤ γ(c, k) − 1, and1287

2. ♣Mβ(c,γ(c,k))(G)♣ ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1.1288

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code.1289

1. If ♣Qβ(c,γ(c,k))(G)♣ ≥ γ(c, k), then by Lemma 9, G contains an independent set of size1290

γ(c, k), which contradicts Lemma 50.1291

2. By the definition of Mβ(c,γ(c,k))(G), the induced subgraph G[Mβ(c,γ(c,k))(G)] of G con-1292

tains no clique of size β(c, γ(c, k)). By Lemma 50, the graph G, and hence the graph1293

G[Mβ(c,γ(c,k))(G)], contains no independent set of size γ(c, k). The bound then follows1294

from Lemma 1.1295

◀1296

In what follows, we show that the size of cliques in G can be bounded as well, which, in1297

turn, will help us bound ♣Lβ(c,γ(c,k))(G)♣. Recall that α(c, k) = (c − 1)k + 1.1298

▶ Reduction Rule 52. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let1299

Q ∈ Qα(c,k)(G). Colour N(V (Q)) white. That is, we construct the instance ((G, B′, W ′), k)1300

of BW-Perfect Code, where W ′ = W ∪ N(V (Q)), and B′ = B \ N(V (Q)).1301

▶ Lemma 53. Reduction Rule 52 is safe.1302

Proof. Let Q ∈ Qα(c,k)(G), and let ((G, B′, W ′), k) be the instance obtained from1303

((G, B, W ), k) by a single application of Reduction Rule 52 by colouring N(V (Q)) white.1304

Assume that ((G, B, W ), k) is a yes-instance, and let D ⊆ B be a bw-perfect code of1305

((G, B, W ), k) of size at most k. Then, by Lemma 19, ♣D ∩ V (Q)♣ = 1. Let ¶v♢ = D ∩ V (Q).1306

Reduction Rule 44 in time 2O(c)nO(c). This bound, in particular the term nO(c), comes from going over
all subsets Y ⊆ V (G) of size at most c − 1. While this is obviously true, we need not go over all subsets
Y , as we have just explained. We are grateful to an anonymous reviewer who pointed out this fact to

us, which led to an improvement in the runtime from 2O(c)nO(c) to 2O(c)nO(1).



L. Kanesh, J. Madathil, S. Roy, A. Sahu and S. Saurabh 31

Note that as Q is a clique, for any u ∈ N(V (Q)), we have distG(u, v) ≤ 2, which together1307

with Observation 14, implies that D ∩ N(V (Q)) = ∅. Therefore, D ⊆ B \ N(V (Q)) = B′.1308

Thus, D is a bw-perfect code of (G, B′, W ′) as well.1309

For the other direction, note that as B′ ⊆ B, any bw-perfect code of (G, B′, W ′) is a1310

bw-perfect code of (G, B, W ) as well. ◀1311

▶ Remark 54. Observe that given an instance ((G, B, W ), k) of BW-Perfect Code, using1312

the algorithm in Lemma 5, we can construct Qα(c,k)(G) in time 2O(c)nO(1). Once Qα(c,k)(G)1313

is constructed, we can apply Reduction Rule 52 exhaustively, in time ♣Qα(c,k)(G)♣nO(1) ≤1314

2O(c)nO(1). So, from now on, we assume that Reduction Rule 52 has been applied exhaustively.1315

▶ Lemma 55. Let (G, B, W ) be a bw-graph, and Q a clique (not necessarily maximal) in G1316

such that N(Q) ⊆ W . Then, for any bw-perfect code D of G, we have ♣D ∩ V (Q)♣ = 1.1317

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ). Since N(Q) ⊆ W , we have D∩N(Q) =1318

∅. And since D dominates V (Q), we must have D ∩ V (Q) ̸= ∅. But since Q is a clique1319

and D an independent set, at most one vertex from V (Q) can belong to D. We thus have1320

♣D ∩ V (Q)♣ = 1. ◀1321

Recall that for each Q ∈ Qα(c,k)(G), we defined Z(Q) to be the set of vertices in V (Q)1322

that have neighbours in some other maximal clique of size at least α(c, k), i.e., Z(Q) = ¶u ∈1323

V (Q) ♣ uv ∈ E(G) for some v ∈ V (Q′), where Q′ ∈ Qα(c,k)(G), u /∈ V (Q′), and Q′ ̸= Q♢.1324

▶ Reduction Rule 56. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If there1325

exists Q ∈ Qα(c,k)+1(G) and v ∈ Z(Q), then delete v. That is, we construct the instance1326

((G′, B′, W ′), k) of BW-Perfect Code, where G′ = G−v, B′ = B \¶v♢, and W ′ = W \¶v♢1327

▶ Lemma 57. Reduction Rule 56 is safe.1328

Proof. Let ((G′, B′, W ′), k) be obtained from ((G, B, W ), k) by a single application of Re-1329

duction Rule 56. Then there exists Q ∈ Qα(c,k)+1(G) and v ∈ Z(Q) such that G′ = G − v,1330

B′ = B \ ¶v♢, and W ′ = W \ ¶v♢. Note first that as Qα(c,k)+1(G) ⊆ Qα(c,k)(G), we1331

have Q ∈ Qα(c,k)(G). By Remark 54, NG(V (Q)) ⊆ W . In fact, as v ∈ V (Q), we have1332

NG(V (Q)) ⊆ W \ ¶v♢ = W ′.1333

Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be1334

a bw-perfect code of (G, B, W ) of size at most k. Then by Corollary 22, we have v /∈ D, and1335

therefore D is a bw-perfect code of (G′, B′, W ′) as well.1336

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance of BW-Perfect Code, and1337

let D′ ⊆ B′ be a bw-perfect code of (G′, B′, W ′) of size at most k. We claim that D′
1338

is a bw-perfect code of (G, B, W ) as well. First, D′ ⊆ B′ ⊆ B. Also, note that for1339

every vertex u ∈ V (G) \ ¶v♢, we have NG′ [u] = NG[u] \ v. Since v /∈ D′, we get that1340

D′ ∩ NG′ [u] = D′ ∩ NG[u], and thus ♣D′ ∩ NG[u]♣ = 1. To complete the proof, we now1341

argue that ♣D′ ∩ NG[v]♣ = 1. Since Q − v is a clique (not necessarily maximal) in G′, and1342

NG′(V (Q − v)) ⊆ NG(V (Q)) ⊆ W ′, by Lemma 55, we have ♣D′ ∩ V (Q − v)♣ = 1. Let ¶w♢ =1343

D′ ∩ V (Q − v). Thus ¶w♢ = D′ ∩ (NG[v] ∩ V (Q)). And as NG(v) \ V (Q) ⊆ NG(V (Q)) ⊆ W ′,1344

we get that D′ ∩ NG[v] \ V (Q)) = ∅. Thus, we conclude that ♣D′ ∩ NG[v]♣ = ♣¶w♢♣ = 1. ◀1345

▶ Remark 58. Just like Reduction Rule 52, observe that Reduction Rule 56 can be applied1346

in time 2O(c)nO(1) as well. So from now on, we assume that Reduction Rule 56 has been1347

applied exhaustively.1348

▶ Lemma 59. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)1349

is a yes-instance, then for every Q ∈ Qβ(c,γ(c,k))(G), we have1350
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1. Z(Q) = ∅, and1351

2. ♣V (Q)♣ ≤ (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2.1352

Proof. Assume that ((G, B, W ), k) is a yes-instance. Consider Q ∈ Qβ(c,γ(c,k))(G).1353

1. Observe that as γ(c, k) ≥ γ(1, k) for every c ≥ 1, we have β(c, γ(c, k)) ≥ β(c, γ(1, k)) =1354

2[(c − 1)(γ(1, k) − 1) + 1] = 2[(c − 1)k + 1] ≥ (c − 1)k + 2 = α(c, k) + 1. Therefore,1355

Q ∈ Qα(c,k)+1(G). Thus, if Z(Q) ̸= ∅, then Reduction Rule 56 would apply, which1356

contradicts Remark 58.1357

2. We classify the vertices of V (Q) depending on their neighbours in V (G) \ V (Q). For1358

every vertex v ∈ V (Q), there are three possibilities: (i) v has no neighbour in V (G) \1359

V (Q); but by Lemma 18, the number of such vertices v is at most 2. (ii) The ver-1360

tex v has a neighbour in Lβ(c,γ(c,k))(G) \ V (Q); but in this case v ∈ Z(Q), which1361

contradicts the previous assertion that Z(Q) = ∅. And (iii) v has a neighbour in1362

Mβ(c,γ(c,k))(G); the number of such vertices v is at most (c − 1)♣Mβ(c,γ(c,k))(G)♣, because1363

by Lemma 6, every vertex in Mβ(c,γ(c,k))(G) has at most c − 1 neighbours in V (Q).1364

Now, by Lemma 51, ♣Mβ(c,γ(c,k))(G)♣ ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1 and we thus have1365

♣V (Q)♣ ≤ (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2.1366

◀1367

Finally, Lemma 51-(1) and Lemma 59-(2) together bound ♣Lβ(c,γ(c,k))(G)♣, which, in turn,1368

bounds ♣V (G)♣.1369

▶ Lemma 60. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)1370

is a yes-instance, then ♣V (G)♣ = O(k3(2c−1)).1371

Proof. Assume that ((G, B, W ), k) is a yes-instance. Then, by Lemma 51-(1), we have1372

♣Qβ(c,γ(c,k))(G)♣ ≤ γ(c, k) − 1 = O(k2c−1), and by Lemma 59-(2), we have ♣V (Q)♣ ≤ (c −1373

1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2 = O((γ(c, k))2) = O(k2(2c−1)). Therefore, we have1374

♣Lβ(c,γ(c,k))(G)♣ = ♣
⋃

Q∈Qβ(c,γ(c,k))(G)

V (Q)♣1375

≤ (γ(c, k) − 1) · (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 21376

= O(k2c−1) · O(k2(2c−1))1377

= O(k3(2c−1)).1378

Also, by Lemma 51-(2), we have ♣Mβ(c,γ(c,k))(G)♣ ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1 =1379

Rc(O(k2c−1), O(k2c−1)) = O(k2(2c−1)). Finally, since
{

Lβ(c,γ(c,k))(G), Mβ(c,γ(c,k))(G)
}

is a1380

partition of V (G), we conclude that ♣V (G)♣ = O(k3(2c−1)). ◀1381

Each of our reduction rule is safe and by Remarks 49 and 58, all the reduction rules we1382

introduced can be executed in polynomial time, and are applied only polynomially many1383

times. We have thus proved Theorem 39.1384

4 Connected Dominating Set on c-Closed Graphs1385

Recall that for a graph G, a connected dominating set of G is a dominating set D ⊆ V (G)1386

such that G[D] is connected. The CDS problem, which we formally define below, asks if a1387

given graph contains a connected dominating set of a certain size.1388
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Connected Dominating Set (CDS) Parameter: k + cl(G)

Input: An undirected graph G and a non-negative integer k.

Question: Does G have a connected dominating set of size at most k?

1389

1390

In this section, we show that CDS admits an algorithm on c-closed graphs that runs1391

in time 2O(c+k log(ck))nO(1). We also argue that CDS has no polynomial kernel on c-closed1392

graphs. We address the kernelization question first, for which invoke the following result due1393

to Misra et al. [50].1394

▶ Lemma 61 ([50]). The CDS problem, parameterized by k, admits no polynomial kernel1395

on the class of graphs with girth 5, unless NP ⊆ co-NP/poly.1396

Observe now that if G is a graph with girth 5, then G is 2-closed. If not, then G contains1397

2 non-adjacent vertices, say x, y ∈ V (G) such that x and y have two common neighbours,1398

say, x′ and y′. But then, note that G[¶x, y, x′, y′♢] contains a 4-cycle, which contradicts the1399

assumption that G has girth 5. Lemma 61 thus implies the following result.1400

▶ Theorem 62. CDS admits no polynomial kernel on 2-closed graphs, unless NP ⊆ co-1401

NP/poly.1402

The rest of this section is dedicated to designing an algorithm for CDS that runs in time1403

2O(c+k log(ck))nO(1). To design the algorithm, we consider a slightly more general version of1404

the problem, which we call CPY-Connected Dominating Set (CPY-CDS, for short).1405

A cpy-graph is a graph G along with a partition of V (G) into three parts, C, P and Y (we1406

allow empty parts) such that for each vertex v ∈ P , NG(v) ∩ C ̸= ∅ and there does not exist1407

an edge uv ∈ E(G) such that u ∈ C and v ∈ Y . For convenience we write that (G, C, P, Y )1408

is a cpy-graph. We think of the vertices in these three parts C, P, Y as having colours: C for1409

cyan, P for purple and Y for yellow. So a cpy-graph is a graph in which each purple vertex1410

is dominated by a cyan vertex, and no yellow vertex is dominated by a cyan vertex.1411

A cpy-connected dominating set of (G, C, P, Y ) is a connected dominating set D of G1412

such that C ⊆ D. The CPY-CDS problem is formally defined below.1413

CPY-Connected Dominating Set (CPY-CDS) Parameter: k + cl(G)

Input: A cpy-graph (G, C, P, Y ) and a non-negative integer k.

Question: Does (G, C, P, Y ) have a cpy-connected dominating set of size at most k?

1414

1415

It is not difficult to see that an instance (G, k) of CDS can be reduced to an equivalent1416

instance ((G, C, P, Y ), k) of CPY-CDS by taking Y = V (G) and C = P = ∅. Informally, our1417

algorithm runs in two steps. In the first step, it reduces the size of a maximum independent1418

set in G[Y ] to k, by a branching procedure implied by Lemma 12. After the branching1419

procedure, let (G, C, P, Y ) be the reduced instance such that G[Y ] does not contain any1420

independent set of size k + 1. Informally, in the next step, the algorithm constructs a1421

solution ensuring connectivity as follows. (1) The set C is contained in every solution, which1422

dominates P ∪ C. (2) The set Y is divided into two parts. One part Y1 is the set of vertices1423

that are contained in some maximal clique of G that contains at least β(c, k + 1) vertices1424

of Y , (we call them “large” cliques), and the other part is Y2 = Y \ Y1. (2a) To dominate1425

Y1, we take a vertex from each large clique into the solution. (2b) Guess the set S ⊆ Y21426

which is contained in the solution. Now, to dominate Y ′
2 = Y2 \ N [S], we guess a partition1427

J1, J2, . . . , Jℓ of Y ′
2 such that all vertices in Xi are dominated by the same vertex in the1428

solution. For each Ji, we need to take a vertex from the set of common neighbours of Ji1429

into the solution, while ensuring that the solution is connected. To execute this step, the1430
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algorithm generates f(c, k) many instances of the Steiner Tree problem, and invokes a1431

known algorithm for Steiner Tree. In the Steiner Tree problem, given an n-vertex1432

graph G∗, a weight function w : E(G∗) → [ρ] for some ρ ∈ N and a set of vertices T ⊂ V (G∗)1433

as input, the objective is to find a minimum weight subgraph H of G such that H is a1434

connected subgraph of G∗ and T ⊆ V (H). Here the vertices in T are called terminals. Our1435

algorithm uses the following result due to Nederlof [54] to solve the Steiner Tree instances.1436

▶ Lemma 63 ([54, Theorem 3]). There is an algorithm that, given an instance (G∗, w, T ∗)1437

of Steiner Tree as input, runs in time O(2♣T ∗♣ · ρ · nO(1)) and outputs a minimum weight1438

connected subgraph H of G∗ and T ∗ ⊆ V (H). Here, n is the number of vertices in G∗ and ρ1439

is the maximum weight assigned to any edge of G by w.1440

Next, we state some observations that follow directly from Lemma 12 and Corollary 8.1441

These observations are stated here for the sake of completeness. Recall that for V ′ ⊆ V (G)1442

with ♣V ′♣ ≥ 2, we defined N [2](V ′) to be the union of the sets of common neighbours of every1443

pair of vertices in V ′, i.e., N
[2]
G (V ′) = (

⋃

u,v∈V ′

u ̸=v

(N(u) ∩ N(v))) \ V ′.1444

▶ Observation 64. Let (G, C, P, Y ) be a cpy-graph and k a non-negative integer. Let I ⊆ Y1445

be an independent set in G of size k + 1. Then, for any cpy-connected dominating set D of1446

G of size at most k, D ∩ N [2](I) ̸= ∅.1447

The proof of Observation 64 follows from Lemma 12.1448

▶ Observation 65. Let (G, C, P, Y ) be a c-closed cpy-graph and k a non-negative integer.1449

Let D be a cpy-connected dominating set of G of size at most k, and Q a maximal clique in1450

G of size at least (c − 1)k + 1. Then, D ∩ V (Q) ̸= ∅.1451

The proof of Observation 65 follows from Corollary 8.1452

Notation. Consider a cpy-graph (G, C, P, Y ) and a vertex v ∈ V (G)\C. By (G, Cv, Pv, Yv),1453

we denote the cpy-graph obtained by adding v to C, deleting NG[v] ∩ Y from Y , and by1454

adding NG(v) ∩ Y to P . That is, Cv = C ∪ ¶v♢, Pv = P ∪ (NG(v) ∩ Y ), Yv = Y \ (NG[v] ∩ Y ).1455

Recall that we defined β(a, b) = 2[(a − 1)(b − 1) + 1] for a, b ∈ N. For ℓ ∈ N, we defined1456

Qβ(c,k+1)(G) to be the set of all maximal cliques in G of size at least ℓ. Recall also1457

that Lβ(c,k+1)(G) =
⋃

Q∈Qβ(c,k+1)(G) V (Q) and Mβ(c,k+1)(G) = V (G)\Lβ(c,k+1)(G). That is,1458

Lβ(c,k+1)(G) contains all the vertices in G that belong to at least one maximal clique of size at1459

least β(c, k+1), and Mβ(c,k+1)(G) contains the remaining vertices. We now define a subfamily1460

of Qβ(c,k+1)(G) as follows. By Q
β(c,k+1)
Y (G) we denote the set of all cliques Q ∈ Qβ(c,k+1)(G)1461

such that ♣V (Q)∩Y ♣ ≥ β(c, k +1); that is, Q
β(c,k+1)
Y (G) = ¶Q ∈ Qβ(c,k+1)(G) ♣ ♣V (Q)∩Y ♣ ≥1462

β(c, k + 1)♢. And we define L
β(c,k+1)
Y (G) =

⋃

Q∈Q
β(c,k+1)

Y
(G)

V (Q) ∩ Y and M
β(c,k+1)
Y (G) =1463

Y \ L
β(c,k+1)
Y (G). That is, L

β(c,k+1)
Y (G) contains all the vertices in Y that belong to at least1464

one maximal clique that contains at least β(c, k+1) vertices from the set Y , and M
β(c,k+1)
Y (G)1465

contains the remaining vertices of Y . For Z ⊆ V (G) and a non-negative integer ℓ, by B(Z, ℓ),1466

we denote the set of all partitions of Z into at most ℓ parts. For a partition Z ∈ B(Z, ℓ), we1467

define ZCN = ¶CNG(X)♣X ∈ Z♢. That is, ZCN is the set of common neighbourhoods of1468

the sets in Z.1469

We first prove a few structural results that explore the properties of a cpy-connected1470

dominating set. In what follows, ((G, C, P, Y ), k) is an instance of CPY-CDS.1471

▶ Observation 66. Let Q be a clique in G such that V (Q) ∩ Y ̸= ∅. Then Q is a maximal1472

clique in G if and only if Q is a maximal clique in G[P ∪ Y ].1473
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Observation 66 follows from that fact that there does not exist any edge between a vertex in1474

C and a vertex in Y .1475

The following observation is a direct consequence of Lemma 9, where we proved that we1476

can construct a (k + 1)-sized independent set from k + 1 maximal cliques of size β(c, k + 1).1477

It is not difficult to see that we can construct a (k + 1)-sized independent set contained in Y ,1478

provided that each of the k + 1 maximal cliques intersect Y in at least β(c, k + 1) vertices.1479

▶ Observation 67. If ♣Q
β(c,k+1)
Y (G)♣ ≥ k + 1, then G[Y ] contains an independent set of size1480

k + 1.1481

▶ Lemma 68. If G[Y ] does not contain an independent set of size k+1, then ♣M
β(c,k+1)
Y (G)♣ <1482

Rc(β(c, k + 1), k + 1).1483

Proof. By the definition of M
β(c,k+1)
Y (G), the subgraph G[M

β(c,k+1)
Y (G)], does not contain1484

any clique of size β(c, k + 1). And by our assumption, G[Y ], and hence G[M
β(c,k+1)
Y (G)]1485

does not contain an independent set of size k + 1. The proof follows from Lemma 1. ◀1486

▶ Lemma 69. Let ((G, C, P, Y ), k) be an instance of CPY-CDS, and let I ⊆ Y be an1487

independent set of size k + 1 in G. Then, ((G, C, P, Y ), k) is a yes-instance of CPY-CDS if1488

and only if ((G, Cv, Pv, Yv), k) is a yes-instance for some v ∈ N [2](I).1489

Proof. Assume that ((G, C, P, Y ), k) is a yes-instance of CPY-CDS, and let D be a cpy-1490

connected dominating set of ((G, C, P, Y ), k) of size at most k. By Observation 64, D ∩1491

N [2](I) ̸= ∅. Let v ∈ D ∩ N [2](I). Then, C ∪ ¶v♢ ⊆ D. Recall that Cv = C ∪ ¶v♢, which1492

implies that D is a cpy-connected dominating set of (G, Cv, Pv, Yv) of size at most k. This1493

proves that ((G, Cv, Pv, Yv), k) is a yes-instance of CPY-CDS.1494

Conversely, assume that ((G, Cv, Pv, Yv), k) is a yes-instance of CPY-CDS for some1495

v ∈ N [2](I), and let D′ be a cpy-connected dominating set of ((G, Cv, Pv, Yv), k) of size at1496

most k. Then again, C ⊆ Cv ⊆ D, which implies that D′ is a cpy-connected dominating1497

set of (G, C, P, Y ) of size at most k. This proves that ((G, C, P, Y ), k) is a yes-instance of1498

CPY-CDS. ◀1499

Next, we describe how to construct an instance of Steiner Tree from an instance of1500

CPY-CDS.1501

▶ Construction 70 (Construction of a Steiner Tree instance). Let ((G, C, P, Y ), k) be an1502

instance of CPY-CDS such that G[Y ] does not contain an independent set of size k + 1. For1503

S ⊆ M
β(c,k+1)
Y (G), let ZS = M

β(c,k+1)
Y (G) \ N [S]. With respect to every S ⊆ M

β(c,k+1)
Y (G)1504

with ♣S ∪ C♣ ≤ k, and every Z ∈ B(ZS , k), we construct an instance I(S,Z) = (G∗, w, T ∗) of1505

the Steiner Tree problem as follows.1506

Informally, for each clique Q ∈ Q
β(c,k+1)
Y (G) (resp. for each set X ∈ ZCN ), we add a1507

terminal t and make it adjacent to exactly all the vertices in Q (resp. X), and thus ensure1508

that a vertex from Q (resp. X) must go into the solution. Moreover, we assign weight k +1 to1509

all edges incident with t to ensure that exactly one edge incident with t goes into the solution.1510

Figure 2 shows the construction. Now, we describe the construction formally.1511

We initialise V (G∗) = V (G), E(G∗) = E(G) and T ∗ = C ∪ S. We also set w(e) = 11512

for each e ∈ E(G∗). Now, for each Q ∈ Q
β(c,k+1)
Y (G), we add a new vertex tQ and edges1513

EQ = ¶tQv ♣ v ∈ V (Q)♢ to G∗; and for each e ∈ EQ, we set w(e) = k + 1. We also add tQ1514

to T ∗. Let T 1 be the set of terminals added in this step to T ∗. Also, for each set X ∈ ZCN ,1515

we add a new vertex tX and edges EX = ¶tXu ♣ u ∈ X♢ to G∗; and for each e ∈ EX , we set1516

w(e) = k + 1. Finally, we add tX to T ∗. Let T 2
(S,Z) be the set of terminals added in this1517
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Figure 2 Depicts the partition of the vertex set of G into C, P , and Y and construction of the

Steiner Tree instance. The set Y is further divided into L
β(c,k+1)
Y (G) and M

β(c,k+1)
Y (G), denoted

by LY and MY , respectively. Based on the guessed set S, M
β(c,k+1)
Y (G) is further divided. The grey

box depicts ZS = M
β(c,k+1)
Y (G) \ N [S]. The tuple (J1, J2, J3) denotes a partition of the set ZS into

3 parts; and for each i ∈ [3], Xi denotes the set of common neighbours of Ji, i.e., Xi = CN(Ji). It

is not necessarily that Xi ⊆ P . For clarity of the figure we have depicted Xis being contained in P .

The sets Q1, Q2 and Q3 denote “large” cliques. The vertices tX1 , tX2 , tX3 , tQ1 , tQ2 , and tQ3 are the

terminals created in the construction of the Steiner Tree instance (Construction 70); tXi and tQi

are adjacent to every vertex in Xi and Qi, respectively, and every edge (in orange) incident with

tXi and tQi has weight k + 1; and each of the “original edges” of G has weight 1 in the Steiner

Tree instance.

step to T ∗. Note that given a cpy-graph (G, C, P, Y ), an integer k, S ⊆ M
β(c,k+1)
Y (G) and1518

a partition Z of ZS, where ZS = M
β(c,k+1)
Y (G) \ N [S], an instance I(S,Z) = (G∗, w, T ∗) of1519

Steiner Tree can be constructed in polynomial time. Figure 2 shows the construction.1520

▶ Observation 71. ♣T ∗♣ ≤ ♣C ∪ S♣ + k + ♣Q
β(c,k+1)
Y (G)♣.1521

Proof. Observe the following facts:1522

(i). T ∗ = C ∪ S ∪ T 1 ∪ T 2
(S,Z);1523

(ii). ♣T 1♣ ≤ ♣Q
β(c,k+1)
Y (G)♣; and1524

(iii). ♣T 2
(S,Z)♣ ≤ ♣ZCN ♣ ≤ ♣Z♣ ≤ k.1525

The proof follows from (i)-(iii). ◀1526

▶ Lemma 72. Consider an instance ((G, C, P, Y ), k) of CPY-CDS such that G[Y ] has no1527

independent set of size k + 1. Then, ((G, C, P, Y ), k) is a yes-instance of CPY-CDS if and1528

only if there exists some S ⊆ M
β(c,k+1)
Y (G) with ♣C ∪ S♣ ≤ k and a partition Z of ZS into at1529

most k parts, where ZS = M
β(c,k+1)
Y (G)\N [S], such that for the instance I(S,Z) = (G∗, w, T ∗)1530

of Steiner Tree there exists a solution H such that
∑

e∈E(H) w(e) ≤ ♣T ′♣(k + 1) + k − 1,1531

where T ′ = T 1 ∪ T 2
(S,Z), and I(S,Z), T 1, T 2

(S,Z) are as described in Construction 70.1532

Proof. Assume that ((G, C, P, Y ), k) is a yes-instance of CPY-CDS, and let D be a cpy-1533

connected dominating set of (G, C, P, Y ) of size at most k. Then G[D] is connected and1534

C ⊆ D. Let H ′ be a spanning tree of G[D]. Let D ∩M
β(c,k+1)
Y (G) = S. Thus C ∪S ⊆ D and1535

therefore ♣C ∪ S♣ ≤ ♣D♣ ≤ k. (a) Observe that for each vertex u ∈ ZS = M
β(c,k+1)
Y (G)\N [S],1536

there exist a vertex v ∈ D such that v dominates u. Let D′ = ¶v1, v2, . . . , vℓ♢ ⊆ D be a1537

minimal set of vertices in D that dominates ZS , i.e., ZS ⊆ N [D′]. Note that ℓ ≤ ♣D♣ ≤ k. Let1538
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Z = ¶Z1, Z2, . . . , Zℓ♢ be a partition of ZS such that all the vertices in Zi are dominated by the1539

vertex vi ∈ D′ for every i ∈ [ℓ]. That is, vi ∈ CNG(Zi). (Note that the partition Z need not1540

be unique.) For each i ∈ [ℓ], let Xi = CNG(Zi). Recall that ZCN = ¶CNG(Zi) ♣ Zi ∈ Z♢ =1541

¶Xi ♣ i ∈ [ℓ]♢. Observe that vi ∈ Xi ∩ D for every i ∈ [ℓ]. (b) By Observation 65, for each1542

Q ∈ Q
β(c,k+1)
Y (G), we have D ∩ V (Q) ̸= ∅. Let vQ ∈ D ∩ V (Q) for each Q ∈ Q

β(c,k+1)
Y (G).1543

Now, consider the Steiner Tree instance I(S,Z) = (G∗, w, T ∗) with respect to S and Z, as1544

defined in Construction 70. (1) Recall that corresponding to each clique Q ∈ Q
β(c,k+1)
Y (G),1545

the graph G∗ contains a terminal tQ ∈ T ∗ and edges EQ = ¶tQv ♣ v ∈ V (Q)♢. Also,1546

T 1 =
{

tQ ♣ Q ∈ Q
β(c,k+1)
Y (G)

}

⊆ T ∗. By (b) there exists a vertex vQ ∈ D ∩ V (Q). This1547

implies that vQ is adjacent to tQ in G∗. Therefore, we can obtain a connected subgraph1548

H ′
1 of G∗ from H ′ by adding vertices in T 1 and the edges in

{

tQvQ ♣ Q
β(c,k+1)
Y (G)

}

to H ′.1549

Note that dH′
1
(tQ) = 1 for every tQ ∈ T 1. (2) Recall also that corresponding to each set1550

X ∈ ZCN , the graph G∗ contains a terminal tX and edges EX = ¶tXu ♣ u ∈ X♢. Also,1551

T 2
(S,Z) = ¶tX ♣ X ∈ ZCN ♢. By (a) there exists a vertex vi ∈ Xi ∩ D for every i ∈ [ℓ]. This1552

implies that vi is adjacent to tXi
in G∗ for every i ∈ [ℓ]. We can thus obtain a connected1553

subgraph H of G∗ from H ′
1 by adding the vertices in T 2

(S,Z) and the edges ¶tXi
vi ♣ i ∈ [ℓ]♢ to1554

H ′
1. Note that dH′

1
(tX) = 1 for every tX ∈ T 2

(S,Z). Recall that T ∗ = C ∪ S ∪ T 1 ∪ T 2
(S,Z) and1555

(C ∪S) ⊆ D. By (1) and (2), T ∗ ⊆ V (H). Now, since H ′ is a spanning tree of G[D], w(e) = 11556

for every e ∈ E(H), and ♣D♣ ≤ k, we have
∑

e∈E(H′) w(e) = ♣D♣−1 ≤ k−1. Finally, since the1557

vertices in T ′ = T 1 ∪ T 2
(S,Z) have degree 1 in H, we have

∑

e∈E(H)\E(H′) w(e) ≤ ♣T ′♣(k + 1).1558

Thus,
∑

e∈E(H) w(e) ≤ ♣T ′♣(k + 1) + k − 1, and therefore, H is a required solution for the1559

Steiner Tree instance I(S,Z) = (G∗, w, T ∗).1560

Conversely, assume that for S ⊆ M
β(c,k+1)
Y (G) and a partition Z ∈ B(ZS , k) of ZS , where1561

ZS = M
β(c,k+1)
Y (G) \ N [S], the Steiner Tree instance I(S,Z) = (G∗, w, T ∗) has a solution1562

H such that
∑

e∈E(H) w(e) ≤ ♣T ′♣(k + 1) + k − 1, where T ′ = T 1 ∪ T 2
(S,Z). We can assume1563

that H is a tree, for otherwise any spanning tree of H is also a solution for the instance1564

I(S,Z) = (G∗, w, T ∗) with weight at most ♣T ′♣(k + 1) + k − 1. (I) For each edge e incident1565

with the vertices of T ′, we have w(e) = k + 1, and since
∑

e∈E(H) w(e) ≤ ♣T ′♣(k + 1) + k − 1,1566

the vertices in T ′ are leaves in H. Hence, H∗ = H[D∗] is a tree, where D∗ = V (H) \ T ′.1567

Note that by the definition of the instance I(S,Z), we have w(e) = 1 for every e ∈ E(H∗),1568

and therefore,
∑

e∈E(H∗) w(e) ≤ k − 1, which implies that ♣D∗♣ = ♣E(H∗)♣ + 1 ≤ k. Since G1569

and G∗ differ only by the vertex set T ′, observe that we have E(H∗) ⊆ E(G), and therefore1570

H∗ = H[D∗] is a subgraph of G[D∗]. Thus, G[D∗] is connected. Now, we only need to prove1571

that D∗ is a dominating set of G. (II) Consider a clique Q ∈ Q
β(c,k+1)
Y (G). Corresponding to1572

Q, there exists a vertex tQ ∈ T ∗ with NG∗(tQ) = V (Q). Since tQ is a terminal, and T ′ does1573

not contain any neighbour of tQ, and since H is connected, D∗ = V (H) \ T ′ must contain a1574

neighbour of tQ, which implies that D∗ ∩ V (Q) = D ∩ NG∗(tQ) ̸= ∅. Let uQ ∈ D∗ ∩ V (Q).1575

Observe that uQ dominates V (Q). By Observation 66, Q is a maximal clique in G[P ∪ Y ].1576

Therefore, uQ /∈ C. Let D1 = ¶uQ ♣ Q ∈ Q
β(c,k+1)
Y (G)♢. Note that D1 ⊆ D∗. The above1577

observations imply that D1 dominates L
β(c,k+1)
Y (G) =

⋃

Q∈Q
β(c,k+1)

Y
(G)

V (Q) in G. (III)1578

Consider a set Xi = CNG(Zi) ∈ ZCN . Corresponding to Xi, there exists a vertex tXi
∈ T ∗

1579

with NG∗(tXi
) = Xi. Again, since tXi

is a terminal, and T ′ does not contain any neighbour1580

of tXi
, and since H is connected, D∗ = V (H) \ T ′ must contain a neighbour of tXi

, which1581

implies that D∗ ∩ Xi = D ∩ NG∗(tXi
) ̸= ∅. Let uXi

∈ D∗ ∩ Xi. Observe that uXi
dominates1582

Zi ⊆ NG(uXi
). Recall that Zi ⊆ Y and a vertex in Y is not adjacent to any vertex in C, and1583

hence uXi
/∈ C. Let D2 = ¶uXi

♣ Xi ∈ ZCN ♢. Note that D2 ⊆ D∗. Recall that Z ∈ B(ZS , k)1584

is a partition of ZS , where ZS = M
β(c,k+1)
Y (G) \ N [S], and therefore D2 dominates ZS .1585
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Note also that as S ⊆ T ∗ \ T ′, we have S ⊆ V (H) \ T ′ = D∗. These observations imply1586

that D2 ∪ S dominates M
β(c,k+1)
Y (G) in G. (IV) Finally, as C ⊆ T ∗ \ T ′, we also have1587

C ⊆ V (H) \ T ′ = D∗. And for each vertex in P there exists a neighbour in C, and therefore1588

C dominates P . By (II), (III) and (IV), D′ = D1 ∪ D2 ∪ S ∪ C is a dominating set of G1589

and D′ ⊆ D∗. Hence, by (I)-(IV), D∗ is a cpy-connected dominating set of (G, C, P, Y ) of1590

size at most k, and thus ((G, C, P, Y ), k) is a yes-instance of CPY-CDS. This completes the1591

proof. ◀1592

We now describe our algorithm.1593

Description of our algorithm: Algorithm 2. We are given an instance ((G, C, P, Y ), k) of1594

CPY-CDS as input.1595

Step 1. First, if k−♣C♣ ≥ 0, Y = ∅ and G[C] is connected, then we return that ((G, C, P, Y ), k)1596

is a yes-instance, and terminate. Otherwise, if k − ♣C♣ > 0, we do as follows. We use the1597

algorithm in Corollary 4 to check if G[Y ] has an independent set of size k + 1. If the1598

algorithm in Corollary 4 returns that G[Y ] has no such independent set, then we proceed1599

to Step 1.1. On the other hand, if the algorithm in Corollary 4 returns a (k + 1)-sized1600

independent set I, then we branch into ♣N [2](I)♣ many instances of CPY-CDS. For each1601

v ∈ N [2](I), we create the instance ((G, Cv, Pv, Yv), k) and recursively call Step 1 on1602

this instance. On any branch, at any point if the algorithm in Corollary 4 returns a1603

(k + 1)-sized independent set I with N [2](I) = ∅, then we discard that branch. On all1604

other branches, we recurse only until k −♣C♣ = 0 or Y = ∅, whichever happens earlier. We1605

note that on any branch, for each of the instances ((G, Cv, Pv, Yv), k) that we create from1606

((G, C, P, Y ), k), we have ♣Cv♣ = ♣C ∪ ¶v♢♣ = ♣C♣ + 1, and therefore, k − ♣Cv♣ < k − ♣C♣.1607

That is, k − ♣C♣ decreases as we proceed along a branch.1608

Step 1.1. Use the algorithm in Lemma 5 to construct Qβ(c,k+1)(G). For each set S ⊆1609

M
β(c,k+1)
Y (G) with ♣S ∪ C♣ ≤ k and for each Z ∈ B(ZS , k), we construct the instance1610

I(S,Z) = (G∗, w, T ∗) of Steiner Tree. We solve the Steiner Tree instance I(S,Z) =1611

(G∗, w, T ∗) using the algorithm in Lemma 63. Let H be the solution returned by the1612

algorithm in Lemma 63. Let T 1, T 2
(S,Z) ⊆ T ∗ be as defined in the Construction 70 of1613

the instance I(S,Z) = (G∗, w, T ∗). Then, if
∑

e∈E(H) w(e) ≤ ♣T ′♣(k + 1) + k − 1, where1614

T ′ = T 1 ∪ T 2
(S,Z), then we return that ((G, C, P, Y ), k) is a yes-instance, and terminate.1615

Step 2. We return that ((G, C, P, Y ), k) is a no-instance, and terminate.1616

This completes the description of the algorithm. The correctness of Step 1 follows from1617

Lemma 69. The correctness of Step 1.1 follows from Lemma 72. Note that the algorithm1618

enters Step 2 only if we have not already returned that the input instance is a yes-instance.1619

And Lemmas 69 and 72 together imply that if ((G, B, W ), k) is indeed a yes-instance, then we1620

correctly return yes (in Step 1 or Step 1.1). Hence Step 2 is also correct. These observations1621

show that Algorithm 2 is correct. Now, we analyse its runtime in the following lemma.1622

▶ Lemma 73. Algorithm 2 runs in time 2O(c+k log(ck))nO(1).1623

Proof. Recall that β(c, k + 1) = 2[(c − 1)k + 1]. Therefore, Rc(β(c, k + 1), k + 1) =1624

(c − 1)
(

k
2

)

+ (2(c − 1)k + 1)(k + 1) = O(ck2).1625

Consider Step 1.1. By Lemma 5, we can construct Qα(c,k)(G) in time 2O(c)nO(1). By1626

Lemma 68, we have ♣M
β(c,k+1)
Y (G)♣ < Rc(β(c, k + 1), k + 1) = O(ck2). For every subset1627

S ⊆ M
β(c,k+1)
Y (G) with ♣S ∪ C♣ ≤ k and every partition Z of ZS into at most k parts,1628

where ZS = M
β(c,k+1)
Y (G) \ N [S], the algorithm constructs an instance I(S,Z) = (G∗, w, T ∗)1629

of Steiner Tree in polynomial time. Note that the number of choices for S is at most1630
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∑k
j=0

(♣M
β(c,k+1)

Y
(G)♣

j

)

=
∑k

j=0

(

O(ck2)
j

)

≤ (k + 1) · (O(ck2))k = 2O(k log(ck)). The number of1631

choices for Z is at most ♣M
β(c,k+1)
Y (G)♣

k
= (O(ck2))k = 2O(k log(ck)). Therefore, the number1632

of choices for the pair (S, Z) is at most 2O(k log(ck)) · 2O(k log(ck)) = 2O(k log(ck)). Thus, the1633

the algorithm constructs 2O(k log(ck)) many instances of Steiner Tree. By Lemma 63,1634

the algorithm takes O(2♣T ∗♣ · ρ · nO(1)) time for each instance of Steiner Tree. Now we1635

compute the value of ♣T ∗♣. Observe the following property of the instance CPY-CDS instance1636

((G, C, P, Y ), k) when the algorithm enters Step 1.1. The subgraph G[Y ] has no independent1637

set of size k + 1, and therefore, by Observation 67, we have ♣Q
β(c,k+1)
Y (G)♣ ≤ k. Recall also1638

that we have ♣S ∪ C♣ ≤ k Now, by Observation 71, the number of terminals in each of the1639

Steiner Tree instances I(S,Z) is at most ♣C ∪ S♣ + k + ♣Q
β(c,k+1)
Y (G)♣ = O(k). Also, in1640

each of the Steiner Tree instances I(S,Z), the maximum weight of any edge is k + 1. These1641

observations, along with Lemma 63, imply that each of the instances I(S,Z) of Steiner Tree1642

can be solved in time 2O(k)nO(1). Therefore, the total time taken by one execution of Step1643

1.1 is bounded by 2O(c)nO(1) + 2O(k log(ck)) · 2O(k)nO(1) ≤ 2O(c+k log(ck))nO(1).1644

Now, consider one execution of Step 1. By Corollary 4, finding a (k +1)-sized independent1645

set I takes time 2k log(ck)nO(1). Note that in one execution of Step 1, at most ♣N [2](I)♣1646

recursive calls to Step 1 are being made; and by Lemma 12, ♣N [2](I)♣ ≤ (c − 1)
(

k+1
2

)

. Note1647

also that recursive calls to Step 1 are made only until k = 0. Thus the total number of1648

recursive calls made to Step 1 is bounded by ((c − 1)
(

k+1
2

)

)k = 2O(k log(ck)).1649

Hence the total running time of the algorithm is bounded by 2O(k log(ck)) ·1650

2O(c+k log(ck))nO(1) = 2O(c+k log(ck))nO(1). ◀1651

We have thus proved the following theorem.1652

▶ Theorem 74. CPY-CDS on c-closed graphs admits an algorithm running in time1653

2O(c+k log(ck))nO(1).1654

Since we can reduce an instance (G, k) of CDS into an equivalent instance ((G, R, P, Y ), k)1655

of CPY-CDS in polynomial time, Theorem 74 implies the following result.1656

▶ Theorem 75. CDS on c-closed graphs admits an algorithm that runs in time1657

2O(c+k log(ck))nO(1).1658

5 Partial Dominating Set on c-Closed Graphs1659

For a graph G and a non-negative integer t, a t-partial dominating set of G is a vertex1660

subset V ′ ⊆ V (G) that dominates at least t vertices of G, i.e., ♣NG[V ′]♣ ≥ t. In the Partial1661

Dominating Set (PDS) problem, we are given a graph G and two non-negative integers k1662

and t as input, and the task is to decide if G has a t-partial dominating set of size at most1663

k. In this section, we show that PDS (parameterized by k) is W[1]-hard even on 2-closed1664

graphs. We do this by a reduction from Independent Set on regular graphs, which is1665

known to be W[1]-complete [11].1666

▶ Lemma 76. There is a parameterized reduction from Independent Set on regular graphs1667

to PDS on 2-closed graphs.1668

Proof. Let (G, k) be an instance of Independent Set, where G is a regular graph. Assume1669

that G is r-regular for some r ≥ 3. Let V (G) = ¶v1, v2, . . . , vn♢ and E(G) = ¶e1, e2, . . . , em♢.1670

We construct an instance (G′, k′, t) of PDS as follows. Informally, G′ is obtained by sub-1671

dividing every edge of G. More formally, we take V (G′) = X ∪ Y , where X = ¶xi ♣ i ∈ [n]♢1672
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and Y = ¶yi ♣ i ∈ [m]♢; and E(G′) = ¶xiyj ♣ vi is an endpoint of ej , i ∈ [n], j ∈ [m]♢. Fi-1673

nally, we set k′ = k and t = k(r + 1). Note that G′ can be constructed in polynomial time,1674

and the reduction preserves the parameter as k′ = k. Also, observe that G′ is 2-closed, as1675

any two distinct vertices in G′ have at most 1 common neighbour. For two distinct vertices1676

xi, xj ∈ X, ¶i, j♢ ⊆ [n], if eℓ = vivj ∈ E(G), then xi and xj have exactly one common1677

neighbour yℓ, and otherwise, they have no common neighbour. For u ∈ Y and xi ∈ X, they1678

do not have a common neighbour, since N(u) ⊆ X and N(xi) ⊆ Y . Also, no two vertices in1679

Y have more than one common neighbor by the definition of E(G′).1680

Now, to see that (G, k) and (G′, k′, t) are equivalent instances, observe the following prop-1681

erties of G′, which follow from the definitions of E(G′). (i) The sets X and Y are independent1682

sets in G′. (ii) For each xi ∈ X, we have NG′(xi) = ¶yj ∈ Y ♣ ej is incident to vi in G♢, and1683

therefore, ♣NG′(xi)♣ = dG(vi) = r. (iii) For distinct xi, xj ∈ X such that vivj /∈ E(G), we1684

have N(xi) ∩ N(xj) = ∅. (iv) For each xi ∈ X, dG′(xi) = ♣N(xi)♣
(ii)
= r and for each yi ∈ Y ,1685

dG′(yi) = 2.1686

We now claim that (G, k) is a yes-instance of Independent Set if and only if (G′, k′, t)1687

is a yes-instance of PDS. Assume that (G, k) is a yes-instance of Independent Set, and1688

let S ⊆ V (G) be an independent set in G of size k. We define S′ ⊆ V (G′) as follows:1689

S′ = ¶xi ∈ X ♣ vi ∈ S♢. And we claim that S′ is a t-partial dominating set of G′. We1690

have N [S′] =
⋃

xi∈S′ N [xi] = S′ ∪
⋃

xi∈S′ N(xi). Since, for each i ∈ [n], N(xi) ⊆ Y , we1691

have that S′ ∩
⋃

xi∈S′ N(xi) = ∅. By property (iii) observed above, we have ♣N [S′]♣ =1692

♣S′♣ +
∑

xi∈S′ ♣N(xi)♣
(iv)
= k +

∑

xi∈S′ r = k(r + 1) = t. Thus, S′ is indeed a t-partial1693

dominating set of G′ of size k.1694

Now, assume that (G′, k′, t) is a yes-instance of PDS, and let T ′ ⊆ V (G′) be a t-partial1695

dominating set of G′ of size at most k. Note that for every w ∈ T ′, by property (iv),1696

dG′(w) ≤ r. Now, observe that ♣T ′♣ = k, for otherwise, ♣N [T ′]♣ ≤ ♣T ′♣ +
∑

w∈T ′ dG′(w) ≤1697

(k − 1) + (k − 1)r < k(r + 1) = t, which contradicts the fact that T ′ is a t-partial dominating1698

set. Observe also that T ′ ⊆ X. Otherwise, suppose that ♣T ′ ∩ Y ♣ = ℓ for some 0 < ℓ ≤ k.1699

Thus, since V (G′) = X ∪ Y , we have1700

♣N [T ′]♣ = ♣N [T ′ ∩ X]♣ + ♣N [T ′ ∩ Y ]♣1701

≤ ♣T ′♣ +
∑

w∈T ′∩X

dG′(w) +
∑

v∈T ′∩Y

dG′(v)1702

(iv)
= k + r(k − ℓ) + 2ℓ1703

< k(r + 1) for r ≥ 3.1704

The second last equality follows from the degree bounds in property (iv) observed above. The1705

last inequality is true whenever ℓ > 0 and r ≥ 3. Therefore, ♣N [T ′]♣ < t, which again, contra-1706

dicts the fact that T ′ is a t-partial dominating set. Thus, T ′ ⊆ X and ♣T ′♣ = k. Now, consider1707

the set T ⊆ V (G) defined as follows: T = ¶vi ♣ xi ∈ T ′♢. We claim that T is an independent1708

set in G. Suppose not. Then, there exist vi, vj ∈ T such that vivj ∈ E(G). Let eℓ = vivj . But1709

then note that yℓ ∈ NG′(xi) ∩ NG′(xj). Thus, ♣NG′(xi) ∪ NG′(xj)♣ < ♣NG′(xi)♣ + ♣NG′(xj)♣,1710

which implies that ♣NG′ [T ′]♣ = ♣T ′ ∪
⋃

w∈T ′ NG′(w)♣ < ♣T ′♣ +
∑

w∈T ′ NG′(w) = k + kr = t, a1711

contradiction. We have thus shown that T is an independent set of size k in G, and therefore,1712

(G, k) is a yes-instance of Independent Set. ◀1713

Lemma 76, along with the fact that Independent Set on regular graphs is W[1]-1714

complete [11], implies the following result.1715

▶ Theorem 77. PDS parameterized by the solution size is W[1]-hard on 2-closed graphs.1716
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6 Conclusion1717

We resolved the parameterized complexity of three domination problems—Perfect Code,1718

Connected Dominating Set and Partial Dominating Set—on c-closed graphs. In1719

particular, we showed that Perfect Code is fixed-parameter tractable, and that for each1720

fixed c, Perfect Code admits a polynomial kernel on c-closed graphs, and thus settled a1721

question posed by Koana et al. [43]. We believe that our results, along with that of Koana1722

et al. [43, 45], make a convincing case for continuing the study of closure of a graph as a1723

structural parameter. In the course of proving our results, we exploited several structural1724

and algorithmic properties of c-closed graphs. It would be interesting to see if any of these1725

properties can be used to solve other problems on c-closed graphs. It would also be interesting1726

to see if any our results extend to weakly γ-closed graphs (see [28] and [42]).1727
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