The
University
s Of

)

2" Sheffield.

This is a repository copy of No faster-than-light observers (GenRel).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209132/

Version: Published Version

Article:

Stannett, M. orcid.org/0000-0002-2794-8614, Higgins, E., Andréka, H. et al. (3 more
authors) (2023) No faster-than-light observers (GenRel). Archive of Formal Proofs, 2023.
ISSN 2150-914x

© 2023 The Author(s). For reuse permissions, please contact the Author(s).

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
| university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt S://e I"IntS.WhlterOSG.aC.Uk/

No Faster-Than-Light Observers (GenRel)

Mike Stannett*, Edward Higgins
University of Sheffield, UK

Hajnal Andréka, Judit Madarész, Istvan Németi, Gergely Székely!
Alfréd Rényi Institute of Mathematics, Budapest, Hungary
(T Secondary affiliation: University of Public Service, Budapest, Hungary)

September 13, 2023

Abstract

We have previously verified, in the first order theory SpecRel of
Special Relativity, that inertial observers cannot travel faster than light
[1, 2]. We now prove the corresponding result for GenRel, the first-order
theory of General Relativity. Specifically, we prove that whenever an
observer m encounters another observer k (so that m and k are both
present at some spacetime location x), k will necessarily be observed
by m to be traveling at less than light speed.

Contents

1 Sorts 3
1.1 Bodies 3
1.2 Quantities Lo 3

2 Points 11
2.1 Squared norms and separation functions 13
2.2 Topological concepts 14
23 Lines. 14
2.4 Directions 14
2.5 Slopesandslopers 15

3 WorldView 26

4 Functions 27
4.1 Differentiable approximation 29
4.2 lemApproxEqualAtBase 30

5 WorldLine 33

*Corresponding author: m.stannett@sheffield.ac.uk

6 Translations 34

7 AXIOM: AxSelfMinus 41
8 TangentLines 42
9 Cones 49
10 AXIOM: AxLightMinus 49
11 Propositionl 50
12 AXIOM: AxEField 53
13 Norms 53

13.1 axTrianglelnequality 54
14 AxTriangleInequality 58
15 Sublemma3 58
16 Vectors 67
17 CauchySchwarz 73
18 Matrices 82
19 LinearMaps 83
20 Affine 91

20.1 Affine approximation 91
21 Sublemma4 107
22 MainLemma 110
23 AXIOM: AxDiff 125
24 TangentLineLemma 125
25 Proposition2 137
26 AXIOM: AxEventMinus 139
27 Proposition3 139
28 ObserverConeLemma 141
29 Quadratics 142
30 Classification 148
31 ReverseCauchySchwarz 195

32 KeyLemma 201

33 Cardinalities 207
34 AffineConeLemma 211
35 NoFTLGR 218
1 Sorts

GenRel is a 2-sorted first-order logic. This theory introduces
the two sorts and proves a number of basic arithmetical results.
The two sorts are Bodies (things that can move) and Quantities
(used to specify coordinates, masses, etc).

theory Sorts
imports Main
begin

1.1 Bodies

There are two types of Body: photons and observers. We do not
assume a priori that these sorts are disjoint.

record Body =
Ph :: bool
0b :: bool

1.2 Quantities

The quantities are assumed to form a linearly ordered field. We
may sometimes need to assume that the field is also Euclidean,
i.e. that square roots exist, but this is not a general requirement
so it will be added later using a separate axiom class, AxEField.

class Quantities = linordered-field
begin

abbreviation inRangeOO :: 'a = 'a = 'a = bool (- < - < -)
where (a < b < ¢)=(a<b) A(b<c)

abbreviation inRangeOC :: 'a = 'a = 'a = bool (- < - < -)
where (a < b<¢)=(a<b) A((b<e)

abbreviation inRangeCO :: 'a = 'a = 'a = bool (- <
where (a < b<¢)=(a<b)A((b<e)

A
A

abbreviation inRangeCC :: 'a = 'a = 'a = bool (- < - < -)

lemma lemLEPlus: a <b+c¢c—c>a—>b
by (simp add: add-commute local.diff-le-eq)

lemma lemMultPosLT1:
assumes (a > 0) A (b>0) A (b< 1)
shows (a * b) < a
using assms local.mult-less-cancel-left2 local.not-less by auto

lemma lemAbsRange: ¢ > 0 — ((a—e) < b < (a+e)) «— (abs
(b—a) < e)
by (simp add: local.abs-diff-less-iff)

lemma lemAbsNeg: abs x = abs (—x)
by simp

lemma lemAbsNegNeg: abs (—a—b) = abs (a+b)
using add-commute local.abs-minus-commute by auto

lemma lemGENZGT: (x > 0) A (z # 0) — x> 0
by auto

lemma lemLENZLT: (z < 0) AN (z £ 0) — < 0
by force

lemma lemSumOfNonNegAndPos: ¢ > 0 Ny > 0 — z+y > 0
by (simp add: local.add-strict-increasing2)

lemma lemSumOfTwoHalves: © = x/2 + x/2
using mult-2[of x/2] by force

lemma lemDiffDiffAdd: (b—a)+(c—b) = (c—a)
by (auto simp add: field-simps)

lemma lemSumDiffCancelMiddle: (a — b) + (b — ¢) = (a — ¢)
by (auto simp add: field-simps)

lemma lemDiffSumCancelMiddle: (a — b) + (b + ¢) = (a + ¢)
by (auto simp add: field-simps)

lemma lemMultPosLT: (0 < a) A (b < ¢)) — (axb < axc)
using mult-strict-left-mono by auto

lemma lemMultPosLE: ((0 < a) A (b < ¢)) — (axb < axc)
using mult-left-mono by auto

lemma lemNonNegLT: ((0 < a) A (b < ¢)) — (axb < axc)
using mult-left-mono by auto

lemma lemMultNonNegLE: ((0 < a) A (b < ¢)) — (axb < axc)
using mult-left-mono by auto

abbreviation sqr :: ‘a = a

where sqrz = axx

abbreviation hasRoot :: 'a = bool
where hasRootx =3 r . x = sqrr

abbreviation isNonNegRoot :: 'a = 'a = bool
where isNonNegRoot x r = (r > 0) A (x = sqrr)

abbreviation hasUniqueRoot :: 'a = bool
where hasUniqueRoot x = 3! r . isNonNegRoot © r

abbreviation sqrt :: ‘a = ‘a
where sqrt t = THE r . isNonNegRoot x r

lemma lemAbsIsRootOfSquare: isNonNegRoot (sqr x) (abs x)
by simp

lemma lemSqrt:
assumes hasRoot x
shows hasUniqueRoot x
proof —
obtain r where x = s¢r r using assms(1) by auto
define rt where 1t = (if (r > 0) then r else (—r))
hence rt: rt > 0 A sqr rt = z using rt-def <x = sqr r» by auto
hence rtroot: isNonNegRoot x rt by auto

{ fix y

assume yprops: isNonNegRoot x y

hence y = rt

using local.square-eq-iff vt by auto

hence ((y > 0) A (z = sqr y)) — (y = rt) by auto
}
hence rtunique: V y . isNonNegRoot x y — (y = rt) by auto
thus ?thesis using rtroot by auto

qed

lemma lemSgrMonoStrict: assumes (0 < u) A (u < v)

shows (sqr u) < (sqr v)
proof —
have 1: (uxu) < (uxv) using assms comm-mult-left-mono by auto
have (uxv) < (v*v)
using assms mult-commute comm-mult-strict-left-mono by auto
thus ?thesis using 1 le-less-trans by auto
qed

lemma lemSqgrMono: (0 < u) A (u < v) — (sqr u) < (sqr v)
by (simp add: local.mult-mono’)

lemma lemSqrOrderedStrict: (v > 0) A (sqru < sqrv) — (u < v)
using mult-mono[of v u v u] by force

lemma lemSqrOrdered: (v > 0) A (sqr u < sqrv) — (u < v)
using mult-strict-mono[of v u v u] by force

lemma lemSquaredNegative: sqr x = sqr (—z)
by auto

lemma lemSqrDiffSymmetrical: sqr (z — y) = sqr (y — z)
using lemSquaredNegative|of y—z] by auto

lemma lemSquaresPositive: © # 0 — sqrz > 0
by (simp add: lemGENZGT)

lemma lemZeroRoot: (sqr z = 0) «— (z = 0)
by simp

lemma lemSqrMult: sqr (a * b) = (sqr a) = (sqr b)
using mult-commute mult-assoc by simp

lemma lemFEqualSquares: sqr u = sqr v — abs u = abs v
by (metis local.abs-mult-less local.abs-mult-self-eq local.not-less-iff-gr-or-eq)

lemma lemSqrtOfSquare:
assumes b = sqr a
shows sqrt b = abs a
proof —
have b > 0 using assms by auto
hence conj1: hasUniqueRoot b using lemSqrt[of b] assms by auto
moreover have isNonNegRoot b (abs a) using lemAbsIsRootOf-
Square assms by auto
ultimately have sqrt b = abs a
using thel[of A r . 0 < r A b= sqrr abs a] by blast
thus ?thesis by auto

qed

lemma lemSquareOfSqrt:
assumes hasRoot b

and a = sqrt b
shows sqra=1>
proof —

obtain r where r: isNonNegRoot b r using assms(1) lemSqrt[of b]
by auto

hence Vz. 0 <z A b= sqr x — x = r using lemSqrt by blast

hence a = r using r assms(2) the-equality[of isNonNegRoot b] by
blast

thus ?thesis using r by auto
qed

lemma lemSqrtl: sqrt 1 = 1
proof —
have isNonNegRoot 1 1 by auto
moreover have V r . isNonNegRoot 1 1 — 7 = 1
proof —
{ fix r assume isNonNegRoot 1 r
hence r: (r > 0) A (1 = sqr r) by simp
hence r = 1 using calculation lemSqrt by blast

thus ?thesis by blast
qed
ultimately show ?thesis using the-equality[of isNonNegRoot 1 1]
by blast
qed

lemma lemSqrt0: sqrt 0 = 0
using lemZeroRoot local.mult-cancel-right! by blast

lemma lemSqrSum: sqr (z + y) = (z*xz) + (2xxxy) + (y*y)
proof —
have zxy + yxx = zxy + xxy using mult-commute by simp
also have ... = (z+x)*y using distrib-right by simp
finally have zy: zxy + y*xx = 2*xx*xy using mult-2 by auto

have sqr (z+y) = zx(z+y) + yx(z+y) using distrib-right by auto
also have ... = zxz + z*xy + y*z + y*xy using distrib-left add-assoc
by auto
finally have sqr (z+y) = (sqr z) + zxy + y*xz + (sqry)
using distrib-left add-assoc by auto

thus ?thesis using zy add-assoc by auto
qed

lemma lemQuadraticGEZero:
assumes V z. ax(sqr z) + bxx + ¢ > 0
and a>0
shows (sqr b) < 4xaxc
proof —
{fixz:'a
have a * sqr (z + (b/(2%a))) = a * ((sqr z) + 2x(b/(2xa))*z +
(sqr (b/(2+0))))
using lemSqrSum[of z (b/(2xa))] mult-assoc
mult-commute[of x (b/(2xa))]
by auto
hence 1: a x sqr (z + (b/(2x*a)))
= (a * (sqr z)) + (ax(2x(b/(2xa))*x)) + (a x sqr (b/(2xa)))
using distrib-left by auto
have ax(2x(b/(2xa))*z) = bxz using mult-assoc assms(2) by
simp

hence 2: a * sqr (z + (b/(2xa))) = ax(sqr z) + (bxx) + (a * sqr

(b/(2xa)))

using 1 by auto

have (a * sqr (b/(2xa))) = ¢ + ((a * sqr (b/(2xa))) — ¢)
using add-commute diff-add-cancel by auto
hence (a * sqr (x + (b/(2%a))))
= (ax(sqr z) + (bxz) + ¢) + ((a * sqr (b/(2*a))) — ¢) using 2
add-assoc by auto
hence 3: (a * sqr (z + (b/(2xa)))) > ((a * sqr (b/(2xa))) — ¢)
, using assms(1) by auto
hence V z . (a * sqr (z + (b/(2xa)))) > ((a * sqr (b/(2xa))) — c)
by auto

hence (a * sqr ((=b/(2xa)) + (b/(2xa)))) > ((a * sqr (b/(2xa)))
— ¢) by fast
hence ((a * sqr (b/(2xa))) — ¢) < 0 by simp
hence 4xax((a * sqr (b/(2xa))) — ¢) < 0
using local.mult-le-0-iff assms(2) by auto
hence 4xax((a * sqr (b/(2xa)))) — 4xa*xc < 0
using right-diff-distrib mult-assoc by auto
hence 4: 4xax((a * sqr (b/(2xa)))) < 4*axc by simp

have sqr (b/(2xa)) = (sqr b)/(4*axa)
using mult-assoc mult-commute by simp
hence +ax((a * sqr (b/(2+a)))) = 4xax((a * (sqr b)/(4+axa))) by

auto
hence /xax((a * sqr (b/(2+0)))) = (4+ara)(sqr b)/(4+axa)
using mult-commute by auto
hence 4xax((a * sqr (b/(2xa)))) = (sqr b)
using assms(2) by simp

thus ?thesis using 4 by auto
qed

lemma lemSquareEzistsAbove:
shows 3 > 0. (sqrz) >y
proof —
have cases: (y < 0) V (y > 0) by auto
have one: 1 > 0 by simp
have onestrict: 0 < 1 by simp

{ assume yle0: y < 0
hence y < sqr 1 using yle0 le-less-trans by simp
hence ?thesis using onestrict by fast

}

hence casel: (y < 0) — ?thesis by auto

{ assume ygt0: y > 0

{ assume ylt1: y < 1

hence sqr y < y using ygt0 mult-strict-left-monolof y 1] by auto
hence sqr y < sqr 1 using ylt1 by simp

hence y < 1 using ygt0 lemSqrOrderedStrict[of 1 y] by auto
hence y < sqr 1 by simp

hence ?thesis using onestrict by best

}

hence a: (y < 1) — ?2thesis by auto

{ assume y = 1
hence b1: y < sqr 2 by simp
have 2 > 0 by simp
hence ?thesis using b1 by fast

}

hence b: (y = 1) — ?thesis by auto

{ assume ygt1: y > 1
hence ygel: y > 1 by simp
have yge0: y > 0 using ygt0 by simp
have y < y by simp
hence sqr y > yx1 using lemMultPosLT ygt0 ygtl by blast
hence sqr y > y by simp
hence ?thesis using ygt0 by bestsimp

}

hence (y > 1) — ?thesis by simp

hence ((y<1)V(y=1)V(y>1)) — ?thesis using a b by auto

hence ?thesis by fastforce

}

hence ypos: (y > 0) — ?thesis by auto

thus ?thesis using cases casel by auto
qed

lemma lemSmallSquares:
assumes z > 0
shows 3 y > 0. (sqry < z)
proof —
have invpos: 1/x > 0 using assms(1) by auto
then obtain z where z: (z > 0) A ((sqr z) > (1/2))
using lemSquareFxistsAbove by auto
define y where y: y = 1/2
hence ypos: y > 0 using z by auto
have 1: 1/(sqr z) < 1/(1/x) using z invpos
by (meson local.divide-strict-left-mono
local.mult-pos-pos local.zero-less-one)
hence (sqr y) < z using z y by simp
thus ?thesis using ypos by auto
qed

lemma lemSqrLT1:
assumes 0 < z < 1
shows 0 < (sqrz) <z
using assms lemMultPosLT1[of z x] by auto

lemma lemReducedBound:
assumes z > (
shows 3 y> 0. (y<z)A(sgry<y A(y<1)
proof —
have 22: z > z/2
using assms lemSumOfTwoHalves|of x| add-strict-left-monolof 0
by auto
have z2pos: /2 > 0 using assms by simp

define y where y = min (z/2) (1/2)
hence y: (y < z/2) A (y < 1/2) A (y > 0) using z2pos by auto

have yltz: y < z using y 2 le-less-trans by auto
have ylt1: y < 1 using y le-less-trans by auto

hence sqr y < y using lemSqrLT1 y by simp

10

thus ?thesis using yltz ylt1 y by auto
qed

end

end

2 Points

This theory defines (1+3)-dimensional spacetime points. The
first coordinate is the time coordinate, and the remaining three
coordinates give the spatial component.

theory Points
imports Sorts
begin

record 'a Point =

tval :: 'a
zval : 'a
yval 2 'a
2al 2 'a

record ‘a Space =

svalz 2 'a
svaly :: 'a
svalz : 'a

abbreviation tComponent :: ‘a Point = 'a where
tComponent p = tval p

abbreviation sComponent :: ‘a Point = 'a Space where
sComponent p = (| svalz = zval p, svaly = yval p, svalz = zval p)

abbreviation mkPoint :: 'a = 'a = 'a = 'a = 'a Point where
mkPoint t z y z = (tval = t, zval = z, yval =y, zval = z |

abbreviation stPoint :: ‘a = 'a Space = 'a Point where
stPoint t s = mkPoint t (svalzx s) (svaly s) (svalz s)

abbreviation mkSpace :: 'a = 'a = 'a = 'a Space where
mkSpace © y z = (| svalz = z, svaly =y, svalz = z |

Points have coordinates in the field of quantities, and can be

11

thought of as the end-points of vectors pinned to the origin. We
can translate and scale them, define accumulation points, etc.

class Points = Quantities
begin

abbreviation moveBy :: 'a Point = ’a Point = 'a Point (- ® -)
where
(p ® q) = (tval = tval p + tval g,

zval = zval p + zval q,

yval = yval p + yval q,

zval = zval p + zval q)

abbreviation movebackBy :: 'a Point = 'a Point = 'a Point (- © -)
where
(p ©q) = (tval = tval p — tval g,

zval = zval p — zval q,

yval = yval p — yval q,

zval = zval p — zval q)

abbreviation sMoveBy :: 'a Space = 'a Space = 'a Space (- ®s -)
where
(p ®s q) = (svalz = svalx p + svalz g,

svaly = svaly p + svaly q,

svalz = svalz p + svalz q |

abbreviation sMovebackBy :: 'a Space = 'a Space = 'a Space (- Ss
-) where
(p ©s q) = (| svalz = svalx p — svalz ¢,

svaly = svaly p — svaly q,

svalz = svalz p — svalz q |

abbreviation scaleBy :: ‘a = 'a Point = 'a Point (- ® -) where
scaleBy a p = (| tval = axtval p, zval = axzval p,
yval = axyval p, zval = axzval pl)

abbreviation sScaleBy :: ‘a = 'a Space = 'a Space (- ®s -) where
sScaleBy a p = (| svalr = axsvalz p,

svaly = axsvaly p,
svalz = axsvalz p))

abbreviation sOrigin :: 'a Space where

12

sOrigin = (| svalz = 0, svaly = 0, svalz = 0

abbreviation origin :: ‘a Point where
origin = (| tval = 0, zval = 0, yval = 0, zval = 0)

abbreviation tUnit :: ‘a Point where
tUnit = (tval = 1, zval = 0, yval = 0, zval = 0)

abbreviation zUnit :: ‘a Point where
zUnit = (| tval = 0, zval = 1, yval = 0, zval = 0)

abbreviation yUnit :: 'a Point where
yUnit = (| tval = 0, zval = 0, yval = 1, zval = 0

abbreviation zUnit :: ‘a Point where
zUnit = (tval = 0, zval = 0, yval = 0, zval = 1

abbreviation timeAuxis :: ‘a Point set where
timeAzis = {p.avalp =0 A yvalp = 0 A zvalp = 0 }

abbreviation onTimeAzis :: 'a Point = bool
where onTimeAxzis p = (p € timeAuxis)

2.1 Squared norms and separation functions

This theory defines squared norms and separations. We do not
yet define unsquared norms because we are not assuming here
that quantities necessarily have square roots.

abbreviation norm?2 :: ‘a Point = 'a where
norm2 p = sqr (tval p) + sqr (zval p) + sqr (yval p) + sqr (zval p)

abbreviation sep2 :: ‘a Point = ’a Point = 'a where
sep2p g = norm2 (p © q)

abbreviation sNorm2 :: 'a Space = 'a where
sNorm2 s = sqr (svalz s)
+ sqr (svaly s)
+ sqr (svalz s)

abbreviation sSep2 :: ‘a Point = 'a Point = 'a where
sSep2 p q = sqr (zval p — zval q)
+ sqr (yval p — yval q)
+ sqr (zval p — zval q)

abbreviation mNorm2 :: 'a Point = 'a (|| - ||m)
where || p ||m = sqr (tval p) — sNorm2 (sComponent p)

13

2.2 Topological concepts

We will need to define topological concepts like continuity and
affine approximation later, so here we define open balls and ac-
cumulation points.

abbreviation inBall :: 'a Point = 'a = ’a Point = bool
(- within - of -)
where inBall g e p = sep2 qp < sqr e

abbreviation ball :: 'a Point = 'a = 'a Point set
where ball ge ={ p . inBallgep}

abbreviation accPoint :: 'a Point = 'a Point set = bool
where accPoint p s =V e > 0.3 g€ s. (p # q) A (inBall g € p)

2.3 Lines

A line is specified by giving a point on the line, and a point
(thought of as a vector) giving its direction. For these purposes
it doesn’t matter whether the direction is "positive" or "negative".

abbreviation line :: ‘a Point = 'a Point = 'a Point set
where line base drin = { p . 3 a . p = (base & (a®drin)) }

abbreviation lineJoining :: 'a Point = 'a Point = 'a Point set
where lineJoining p ¢ = line p (¢Sp)

abbreviation isLine :: ‘a Point set = bool
where isLine l =3 b d . (I = line b d)

abbreviation sameLine :: 'a Point set = 'a Point set = bool
where sameLine 11 12 = ((isLine 11) V (isLine 12)) A (11 = 12)

abbreviation onLine :: 'a Point = 'a Point set = bool
where onLine p | = (isLine) A (p € 1)

2.4 Directions

Given any two distinct points on a line, the vector joining them
can be used to specify the line’s direction. The direction of a
line is therefore a set of points/vectors. By lemDrtn these are
all parallel

fun drtn :: 'a Point set = ’a Point set
where drtnl={d .3 pq.(p# q) A (onLine pl) A (onLine q)
A(d= (g p))}

abbreviation parallelLines :: 'a Point set = 'a Point set = bool
where parallelLines 11 12 = (drtn 1) N (drin 12) # {}

14

abbreviation parallel :: 'a Point = 'a Point = bool (- | -)
where parallelp = (3 a# 0 . p= (e ® q))

The "slope" of a line can be either finite or infinite. We will often
need to consider these two cases separately.

abbreviation slopeFinite :: ‘a Point = 'a Point = bool
where slopeFinite p ¢ = (tval p # tval q)

abbreviation slopelnfinite :: 'a Point = 'a Point = bool
where slopelnfinite p ¢ = (tval p = tval q)

abbreviation lineSlopeFinite :: 'a Point set = bool
where lineSlopeFinite | = (3 z y . (onLine z) A (onLine y)
A (z # y) A (slopeFinite x y))

2.5 Slopes and slopers

We specify the slope of a line by giving the spatial component
("sloper") of the point on the line at time 1. This is defined
if and only if the slope is finite. If the slope is infinite (the
line is "horizontal") we return the spatial origin. This avoids
using "option" but means we need to consider carefully whether
a sloper with value sOrigin indicates a truly zero slope or an
infinite one.

fun sloper :: 'a Point = 'a Point = 'a Point
where sloper p ¢ = (if (slopeFinite p q) then ((1 / (tval p — tval

9) @ (p © q))
else origin)

fun velocityJoining :: 'a Point = 'a Point = 'a Space

where velocityJoining p ¢ = sComponent (sloper p q)

fun lineVelocity :: 'a Point set = 'a Space set
where lineVelocity | = { v . 3 d € drtn | . v = velocityJoining origin

d}

15

lemma lemNorm2Decomposition:
shows norm2 u = sqr (tval v) + sNorm2 (sComponent)
by (simp add: add-commute local.add.left-commute)

lemma lemPointDecomposition:
shows p = (((tval p)®tUnit) ® (((zval p)@zUnit)
& (((yval p)@yUnit) & ((zval p)®2zUnit))))
by force

lemma lemScaleLeftSumDistrib: ((a + b) ® p) = ((a®p) & (b®p))
using distrib-right by auto

lemma lemScaleLeftDiffDistrib: ((a — b) @ p) = ((a®p) & (bRp))
using left-diff-distrib by auto

lemma lemScaleAssoc: (@ @ (8 @ p)) = ((a *x 8) ® p)
using semiring-normalization-rules(18) by auto

lemma lemScaleCommute: (o ® (8 ® p)) = (8 @ (@ @ p))
using mult.left-commute by auto

lemma lemScaleDistribSum: (o @ (p ® q)) = ((a®p) & (a®q))
using distrib-left by auto

lemma lemScaleDistribDiff: (a @ (p © q)) = ((a®p) © (a®q))
using right-diff-distrib by auto

lemma lemScaleOrigin: (a ® origin) = origin
by auto

lemma lemMNorm20fScaled: mNorm2 (scaleBy o p) = (sqr «) *
mNorm2 p
using lemSqrMult distrib-left right-diff-distrib’ by simp

lemma lemSNorm20fScaled: sNorm2 (sScaleBy « p) = (sqr «) =
sNorm2 p
using lemSqrMult distrib-left by auto

lemma lemNorm20fScaled: norm2 (a @ p) = (sqr o) * norm2 p
using lemSqrMult distrib-left by auto

16

lemma lemScaleSep2: (sqr a) * (sep2 p q) = sep2 (a®p) (a®q)
using lemNorm20fScaled[of a pSq| lemScaleDistribDiff by auto

lemma lemSScaleAssoc: (a ®s (8 ®@s p)) = ((a * B) ®s p)
using semiring-normalization-rules(18) by auto

lemma lemScaleBall:
assumes z within e of y

and a#£ 0
shows (a®x) within (axe) of (a®y)
proof —

have a2pos: sqr a > 0 using assms(2) lemSquaresPositive by auto
have sep?2 (a®z) (a®y) = (sqr a) * (sep2 x y) using lemScaleSep2
by auto
hence sep2 (a®z) (a®y) < (sqra) = (sqr e)
using assms mult-strict-left-mono a2pos by auto
thus ?thesis using mult-commute mult-assoc by auto
qed

lemma lemScaleBallAndBoundary:
assumes sep2 zy < sqre

and a# 0
shows sep2 (a®z) (a®y) < sqr (axe)
proof —

have a2pos: sqr a > 0 using assms(2) lemSquaresPositive by auto
have sep2 (a®z) (a®y) = (sqr a) * (sep2 z y) using lemScaleSep2
by auto
hence sep2 (a®z) (a®y) < (sqr a) = (sqr e)
using assms mult-left-mono a2pos by auto
thus ?thesis using mult-commute mult-assoc by auto
qed

lemma lemTimeAxislsLine: isLine timeAxis
proof —
{ fixp
{ assume p: p € timeAxis
hence p = (origin & ((tval p) ® tUnit)) by auto

}

hence [2r: onTimeAxis p — (3 v . (p = (origin & (v @ tUnit))))
by blast

{ assume v: 3 v . p = (origin & (v ® tUnit))

17

hence onTimeAzis p by auto
}
hence (3 v . (p = (origin & (v ® tUnit)))) +— onTimeAxis p
using [2r by blast
}

hence timeAxis = line origin tUnit by blast
thus ?thesis by blast
qed

lemma lemSameLine:
assumes p € line b d
shows samelLine (line b d) (line p d)
proof —
define [where [1: l1 = line b d
define [2 where [2: [2 = line p d
have lines: isLine 1 A isLine [2 using (1 (2 by blast

obtain A where p: p = (b @& (A ® d)) using assms by auto
hence b: b = (p © (A ® d)) by auto

{ fix z
{ assume z: z € I
then obtain a where a: z = (b ® (a®d)) using I1 by auto
hence z = ((p © (A ® d)) ® (a®d)) using b by simp
also have ... = (p @ ((a®d)S(A®d)))
using add-diff-eq diff-add-eq add-commute add-assoc by simp
finally have z = (p @ ((a—4)®d))
using lemScaleLeftDiffDistrib by presburger
hence z € [2 using [2 by auto

}

hence 2r: (z € I1) — (z € 12) using 2 by simp

{ assume z: z € [2
then obtain a where a: z = (p @ (a ® d)) using I2 by auto
hence z = (b @ ((A+ a)®d))
using p add-assoc lemScaleAssoc distrib by auto
hence x € [1 using [by auto

}

hence (z € 1) +— (z € [2) using [2r by auto

}

thus ?thesis using lines [1 (2 by auto
qed

18

lemma lemSSep2Symmetry: sSep2 p q = sSep2 q p
using lemSqrDiffSymmetrical by simp

lemma lemSep2Symmetry: sep2 p q = sep2 q p
using lemSqrDiffSymmetrical by simp

lemma lemSpatial NulllmpliesSpatialOrigin:
assumes sNorm2 s = 0
shows s = sOrigin

using assms local.add-nonneg-eq-0-iff by auto

lemma lemNorm2NonNeg: norm2 p > 0
by simp

lemma lemNulllmpliesOrigin:
assumes norm2 p = 0
shows p = origin
proof —
have norm2 p = sqr (tval p) + sNorm2 (sComponent p) using
add-assoc by simp
hence a: sqr (tval p) + sNorm2 (sComponent p) = 0 using assms
by auto
{ assume b: sNorm2 (sComponent p) > 0
have sqr (tval p) + sNorm2 (sComponent p) > 0
using b lemSumOfNonNegAndPos by auto
hence Fulse using a by auto
}
hence c¢: =(sNorm2 (sComponent p) > 0) by auto
have d: sNorm2 (sComponent p) > 0 by auto

haveV z . (=(z > 0)) A (x> 0) — =z = 0 by auto
hence e: sNorm2 (sComponent p) = 0 using ¢ d by force
hence f: sComponent p = sOrigin

using lemSpatial NulllmpliesSpatialOrigin by blast

have norm2 p = sqr (tval p) using e add-assoc by auto
hence sqr (tval p) = 0 using assms by simp
hence (tval p) = 0 using lemZeroRoot by simp
thus ?thesis using f by auto
qed

lemma lemNotOriginImpliesPosNorm?2:
assumes p # origin

19

shows norm2 p > 0

proof —

have 1: norm2 p > 0 by simp

have 2: norm2 p # 0 using assms(1) lemNullImpliesOrigin by force
thus ?thesis using 1 2 dual-order.not-eq-order-implies-strict by fast
qed

lemma lemNotEquallmpliesSep2Pos:
assumes y # T
shows sep2 y z > 0
proof —
have (ySz) # origin using assms by auto
hence 1: norm2 (yoz) > 0 using lemNotOriginImpliesPosNorm2
by fast
have sep2 y x = norm2 (ySz) by auto
thus ?thesis using 1 by auto
qed

lemma lemBallContainsCentre:
assumes ¢ > 0
shows z within ¢ of x
proof —
have sep2 x ©+ = 0 by auto
thus ?thesis using assms by auto
qed

lemma lemPointLimit:
assumes V ¢ > 0 . (v within € of u)
shows v = u
proof —
define d where d: d = sep2 v u
{ assume v # u
hence d > 0 using lemNotEquallmpliesSep2Pos d by auto
then obtain s where s: (0 < s) A (sqr s < d) using lemSmall-
Squares by auto
hence v within s of v using d assms(1) by auto
hence sep2 v u < sep2 v u using s d by auto
hence Fulse by auto
}
thus ?thesis by auto
qed

lemma lemBallPopulated:
assumes e > ()
shows 3 y . (y within e of z) A (y # x)

20

proof —
obtain el where el: (0 < el) A (el < e) A (sqrel < el)
using assms lemReducedBound by auto
hence e2: sqr el < sqr e using lemSqrMonoStrict[of el €] by auto

define y where y: y = (z @ (tval = el, zval=0, yval=0, zval=0
D)

hence (y © z) = (| tval = el, zval=0, yval=0, zval=0 | by auto

hence sep2 y x = sqr el by auto

hence 1: y within e of © using e¢2 by auto

have tval y = tval x + el using y by simp
hence y # = using el by auto
thus ?thesis using 1 by auto

qed

lemma lemBalllnBall:
assumes p within x of q

and 0<z<uy
shows p within y of q
proof —

have sqr z < sqr y using assms(2) lemSqrMono by auto
thus ?thesis using le-less-trans using assms(1) by auto
qed

lemma lemSmallPoints:

assumes e > 0

shows 3 a > 0 . norm2 (a®p) < sqr e
proof —

{ assume po: p = origin
define a where a: a = 1
hence apos: a > 0 by auto
have norm2 (a®p) < sqr e using a po assms by auto
hence ?thesis using apos by auto

}

hence casel: p = origin — ?thesis by auto
{ assume pnoto: p # origin
obtain el where el: (el > 0) A (el < €) A (sqrel < el)
using lemReducedBound assms by auto
hence elsqr: 0 < (sqr el) < (sqr e) using lemSqrMonoStrict by

auto

define n2 where n2: n2 = norm2 p
hence n2pos: n2 > 0 using pnoto lemNotOriginImpliesPosNorm2

21

by auto
then obtain s where s: (s > 0) A (sqr s > n2)
using lemSquareFxistsAbove by auto
hence 0 < (n2/(sqr s)) < 1 using n2pos by auto
hence (sqr el)x(n2/(sqr s)) < sqr el
using lemMultPosLT1[of sqr el (n2/(sqr s))] elsqr by auto
hence ineq: (sqr el)*(n2/(sqr s)) < sqr e using elsqr by auto

define a where a: a = el/s

have el > 0 A s > 0 using el s by auto

hence apos: a > 0 using a by auto

have norm?2 (a®p) = (sqr el)=(n2/(sqr s))
using lemNorm20fScaled|of a] a n2 by auto

hence norm2 (a®p) < sqr e using ineq by auto

hence ?thesis using apos by auto

}

hence p # origin — ?thesis by auto

thus ?thesis using casel by auto
qed

lemma lemLineJoiningContainsEndPoints:
assumes | = lineJoining x p
shows onLine x I A onLine p |
proof —
have line: isLine | using assms(1) by blast
have p: z = (z @ (0 ® (pox))) by simp
have z: p = (z @ (1 ® (pSx))) using add-commute diff-add-cancel
by fastforce
thus ?thesis using p line assms(1) by blast
qed

lemma lemLineAndPoints:

assumes p # ¢

shows (onLine p I A onLine q 1) «— (I = lineJoining p q)
proof —

define lj where [j : lj = lineJoining p q
define lhs where lhs: lhs = (onLine p I A onLine q 1)
define rhs where rhs: rhs = (I = lj)

{ assume hyp: lhs
then obtain b d where bd: [= { z. 3 a. z = (b ® (a®d)) }
using lhs by auto
obtain ap where ap: p = (b © (ap ® d)) using hyp lhs bd by

auto

22

obtain ag where aq: ¢ = (b ® (ag ® d)) using hyp lhs bd by
auto

hence (¢op) = ((b @ (ag ® d)) © (b & (ap @ d))) using ap by
fast

also have ... = ((aqg ® d) © (ap ® d)) using add-diff-cancel by
auto

finally have q¢diffp: (¢©p) = ((ag — ap) ® d)

using lemScaleLeftDiffDistriblof aq ap d] by auto

define R where R: R = aq — ap

hence Rnz: R # 0 using assms(1) qdiffp by auto

define r where m: r = 1/R

hence (r®(R ® d)) = (r ® (¢Sp)) using R qdiffp by auto

hence d: d = (r ® (¢©p)) using lemScaleAssoc[of r R d] r Rnz
by force

have b = (p © (ap ® d)) using ap by auto
also have ... = (p © (ap ® (r ® (¢Op)))) using d by auto
finally have b: b = (p © ((apxr) ® (¢Sp)))

using lemScaleAssoclof ap r ¢Op] by auto

{ fix z

assume z € [

then obtain a where z = (b ® (a ® d)) using bd by auto

hence z = ((p © ((ap*r) ® (¢op))) ® ((axr) @ (¢©p)))
using b d lemScaleAssoc|of a r ¢qOp] by fastforce

also have ... = (p @ (((axr)®(qop)) © ((ap*r)®(¢Sp))))
using add-diff-eq diff-add-eq by force

also have ... = (p @ (((axr)—(ap*r))®(¢Sp)))
using left-diff-distrib by force

finally have z € lj using lj by auto

}

hence 2r: | C [j by auto

{ fix =
assume z € [j
then obtain ¢ where a: z = (p @ (a ®(¢Op))) using lj by auto
hence z = (b ® (ap ® d)) ® (a (R ® d))) using ap qdiffp R
by auto
also have ... = (b & ((ap + a*R)®d))
using add-assoc distrib-right lemScaleAssoc
by auto
finally have onLine z [using bd by auto
}
hence [j C [by auto
hence [= [j using [2r by auto

}

hence L2R: lhs — rhs using rhs by auto

23

{ assume [: rhs
hence line: isLine | using rhs lj by blast
have p: p = (p @ (0 ® (¢©p))) by simp
have ¢: ¢ = (p ® (I ® (¢©p))) using add-commute diff-add-cancel
by fastforce
hence [hs using p line [lhs rhs lj by blast

}

hence rhs — [hs by auto
hence lhs +— rhs using L2R by auto

thus ?thesis using lhs rhs [j by auto
qed

lemma lemLineDefined ByPair:
assumes z # p

and (onLine p 11) A (onLine x 1)

and (onLine p 12) A (onLine x 12)
shows [1 = [2

proof —

have [1 = lineJoining x p
using lemLineAndPoints[of x p 11] assms(1) assms(2) by auto
also have ... = [2
using lemLineAndPoints[of x p 12] assms(1) assms(3) by auto
finally show 1 = [2 by auto
qed

lemma lemDrtn:
assumes { d1, d2 } C drtn |
shows 3 a # 0 .d2 = (. ® dI)
proof —
have d1d2: {d1,d2} C{d.3 pq.(p# q) N onLinepl A onLine
glA(d=(q0p)}
using assms(1) by auto
have di: 3 p1 q1 . (pI # q1) A (onLine p1 1) A (onLine g1 1) A
(d1 = (g1 © p1))
using d1d2 by auto
then obtain p1 qI
where pql: (p1 # q1) A (onLine p1 1) A (onLine q1 1) A (dI =
(¢1 © p1))
by blast
hence [1: | = lineJoining p1 q1 using lemLineAndPoints|of p1 q1
I] by auto

have d2: 3 p2 q2 . (p2 # ¢2) A (onLine p2 1) A (onLine g2 1) A
(d2 = (¢2 © p2))

24

using d1d2 by auto
then obtain p2 ¢2
where pg2: (p2 # ¢2) A (onLine p2 1) A (onLine ¢2 1) A (d2 =
(42 © p2))
by blast

hence (p2 € lineJoining p1 q1) A (g2 € lineJoining pl q1) using
l1 by blast
then obtain ap aq
where apag: (p2 = (pl @© (ap@(q1Spl)))) A ((¢2 = (p1 @

(aq®(q1©pl)))))
by blast

define diff where diff: diff = aq — ap
hence diffnz: diff # 0 using apaq pg2 by auto

have d2 = (¢2 © p2) using pq2 by simp

also have ... = ((p! @ (aq®(q16p1))) © (p1 & (ap®(qlSpl))))
using apaq by force

also have ... = ((aq®(ql1©p1)) © (ap®(ql6p1))) by auto

also have ... = ((aqg — ap) ® d1)

using pql lemScaleLeftDiffDistrib| of aq ap d1] by auto
finally have (d2 = (diff ® d1)) A (diff # 0) using diff diffnz by
auto

thus ?thesis by auto
qed

lemma lemLineDetermined ByPointAndDrtn:
assumes (z # p) A (p € 1) A (onLine z 11) A (onLine x 12)
and drtn 11 = drtn 12
shows 1 =12
proof —
define dI where di: dI = drtn 1
define d2 where d2: d2 = drin 2
hence dd: dI = d2 using assms(2) dI by auto

define px where pz: pr = (p © x)

have I1: (z # p) A (onLine p 11) A (onLine z 1) using assms(1)
by auto

hence 3 p ¢ . (p # q) A onLine p l1 A onLine q I N (px = (¢ ©
p)) using pz by blast

hence pr € {d.3 pq.(p+# q) AN onLine pll N onLine ¢ 11 A (d
=(qep)}

by blast
hence px € dI using dI subst[of dI drtn I As. px € s|] by auto
hence pz € d2 using dd by simp

25

hence pzonl2: pz € drin (2 using d2 by simp

hence 3 u v . (u # v) A onLine u I2 A onLine viI2 A (pz = (v ©
u)) by auto

then obtain u v where wv: (u # v) A onLine u 12 A onLine v [2
A (pz = (v © u)) by blast

hence (z # u) V (z # v) by blast

then obtain w where w: ((w = u) V (w = v)) A (z # w) by blast

hence zw: (z # w) A (onLine xz 12) A (onLine w 12) using uv
assms(1) by blast

hence [2: 12 = lineJoining = w using lemLineAndPoints[of T w 2]
by auto

hence (w © z) € drtn I2 A pz € drtn 12 using zw pzonl2 by auto

then obtain a where a: (a # 0) A (p ©2) = (0 @ (w O 2))

using lemDrtn[of wOz pSz 12] pr zw pronl2 by blast
hence p = (z ® (a ® (w © 2))) by (auto simp add: field-simps)
hence onLine p (lineJoining x w) by blast

hence [2lj: 12 = lineJoining x p
using lemLineAndPoints[of = p 12] assms(1) 12 zw
by auto
have [1lj: I1 = lineJoining x p
using lemLineAndPoints[of = p 1] assms(1)
by auto

thus ?thesis using [2lj by blast
qed

end

end

3 WorldView

This theory defines worldview transformations. These form the
ultimate foundation for all of GenRel’s axioms.

theory WorldView
imports Points
begin

class WorldView = Points +
fixes

W :: Body = Body = 'a Point = bool (- sees - at -)

26

begin

abbreviation ev :: Body = ’a Point = Body set
where evhx ={ b. hseesbatz}

fun wut :: Body = Body = 'a Point = 'a Point set
where wut mkp={¢ (3 b.(mseesbatp)) N(evmp=evkq)

}

abbreviation wvtFunc :: Body = Body = ('a Point = 'a Point =
bool)
where wutFunc mk = (A p q. g € wut m k p)

abbreviation wvtLine :: Body = Body = 'a Point set = 'a Point
set = bool
where wutLine mkll'= 3 pqgp' q . (
(wvtFunc m k p p’) A (wutFunc m k q q¢') A
(I = lineJoining p q) A (I’ = lineJoining
p'q’)

end

4 Functions

This theory characterises the various types of function (injective,
bijective, etc).
theory Functions

imports Points
begin

We do not assume a priori that all of the functions we define are
well-defined or total. We therefore need to allow for functions
which are only partially defined, and also for "functions" which
might be multi-valued. For example, we cannot say in advance
whether one observer might see another’s worldline as a bifur-
cating structure rather than a basic single-valued trajectory.

To achieve this we’ll often think of functions as relations and
write "f x y = true" instead of "f x = y". Similarly, a spacetime set
S will be sometimes be expressed as its characteristic function.

class Functions = Points
begin

abbreviation bounded :: ('a Point = 'a Point) = bool

27

where bounded f = 3 bnd > 0 . (VY p . (norm2 (fp) < bnd *
(norm2 p)))

abbreviation composeRel ::
("a Point = 'a Point = bool)
=('a Point = 'a Point = bool)
=('a Point = 'a Point = bool)

where (composeRel g f) pr=3 q. (fp g N(gqr)))

abbreviation injective :: (‘a Point = 'a Point = bool) = bool
where injective f =V z1 22 yI y2.
(fal yl N fa2y2) A (21 # 22) — (yl # y2)

abbreviation definedAt :: ('a Point = 'a Point = bool) = 'a Point
= bool
where definedAt fr =3 y . fzy

abbreviation domain :: (‘a Point => 'a Point = bool) = 'a Point
set
where domain f = { z . definedAt f x }

abbreviation total :: ('a Point = 'a Point = bool) = bool
where total f =V z . (definedAt f x)

abbreviation surjective :: (‘a Point = 'a Point = bool) = bool
where surjective f =V y .3 z . fzy

abbreviation bijective :: (‘a Point = 'a Point = bool) = bool
where bijective f = (injective f) A (surjective f)

abbreviation invertible :: (‘a Point = 'a Point) = bool
where invertible f =V ¢. 3 p. (fp=9¢ AN V. fz=q¢— z=

)

fun applyToSet :: ('a Point = 'a Point = bool) = 'a Point set = 'a
Point set
where applyToSet fs={q.I pes.fpq}

abbreviation singleValued :: ('a Point = 'a Point = bool) = 'a Point
= bool
where singleValued fz = YV yz. (((fzy) A (fz2) — (y = 2))

28

abbreviation isFunction :: (‘a Point = 'a Point = bool) = bool
where isFunction f =V z . singleValued f x

abbreviation isTotalFunction :: ('a Point = 'a Point = bool) = bool
where isTotalFunction f = (total f) A (isFunction f)

fun toFunc:: (‘a Point = 'a Point = bool) = 'a Point = 'a Point
where toFunc fz = (SOME y . fx y)

fun asFunc :: ('a Point = 'a Point) = ('a Point = 'a Point = bool)
where (asFunc f) zy = (y = fx)

4.1 Differentiable approximation

Here we define differentiable approximation. This will be used
later when we define what it means for a worldview transforma-
tion to be "approximated" by an affine transformation.

abbreviation diffApproz :: ('a Point = 'a Point = bool) =
("a Point = 'a Point = bool) =
'a Point = bool
where diffApprox g f x = (definedAt f z) A
VMe>0.36d>0.(y.
((y within 0 of x)
.
((definedAt fy) NV wov. (fyuANgyv) —
(sep2vwu) < (sqre)xsep2yz))))
)

abbreviation cts :: (‘a Point = 'a Point = bool) = 'a Point = bool
where cts fz =Vy . (fzy) — (Vex>0.36>0.
(applyToSet f (ball x 6)) C ball y €)

fun invFunc :: ('a Point = 'a Point = bool) = ('a Point = 'a Point
= bool)
where (invFunc f) pg=fqp

lemma lemBijlnv: bijective (asFunc f) «— invertible f
by (metis asFunc.elims(1))

29

4.2 lemApproxEqualAtBase

The following lemma shows (as one would expect) that when
one function differentiably approximates another at a point, they
take equal values at that point.

lemma lemApproxEqualAtBase:
assumes diffApproz g f =
shows (fzy Agzz) — (y=2)
proof —
{fixyz
assume hyp: fry A gz 2

have [t01: 0 < 1 by auto
then obtain d where dprops: (d > 0) A (V y .
((y within d of x)
s
(Vuv. (fyuAgyv) —
(sep2vu) < (sqri1)=sep2yzx)))
using assms(1) by best

hence z within d of z by auto

henceV uvv. (fxu A gzv) — (sep2vu) < (sqrl) x sep2zz
using dprops by blast

hence sep0: (sep2 z y) < 0 using hyp by auto

{ assume z # y
hence sep2 z y > 0 using lemNotEquallmpliesSep2Pos|of z y]

by auto

hence Fulse using sep0 by auto

}

hence z = y by auto

thus ?thesis by auto
qed

lemma lemCtsOfCtslsCts:
assumes cts f z
and Vy. (fzy) — (cts g y)
shows cts (composeRel g f) x
proof —
{ fix z
assume z: (composeRel g f) z z
then obtain y where y: fx y A g y z by auto

{ fix e
assume epos: e > (

have (Ve>0. 36>0.(applyToSet g (ball y §)) C ball z €)
using assms(2) y by auto

30

then obtain dy
where dy: (dy > 0) A ((applyToSet g (ball y dy)) C ball z €)
using epos y by auto

have (Ve>0. 36>0.(applyToSet f (ball x 6)) C ball y €)
using y assms(1) by auto

then obtain d
where d: (d > 0) A ((applyToSet f (ball x d)) C ball y dy)
using dy by auto

{ fix w
assume w: w € applyToSet (composeRel g f) (ball z d)
then obtain u v
where v: (u € ball z d) A (fuv) A (g v w) by auto
hence v € ball y dy using d by auto
hence w € ball z e using v dy by auto
}
hence applyToSet (composeRel g f) (ball x d) C ball z e by auto
hence 3d>0. (applyToSet (composeRel g f) (ball x d) C ball z
)
using d by auto
}
hence Ve>0. 3d>0. applyToSet (composeRel g f) (ball x d) C ball
z e by auto

thus ?thesis by auto
qed

lemma lemInjOfInjlsIng:
assumes injective f

and injective g
shows injective (composeRel g f)
proof —

{ fix z1 21 22 22
assume hyp: (composeRel g f) x1 z1 A (composeRel g f) 2 22 N
(1 # 22)
then obtain y1 y2
where ys: (fz1 y1) A (g yl 21) A (f22 y2) A (g y2 22) by auto
hence y1 # y2 using hyp assms(1) by auto
hence z1 # 22 using assms(2) ys by auto
}
thus ?thesis by auto
qed

lemma lemInverseComposition:
assumes h = composeRel g f
shows (invFunc h) = composeRel (invFunc f) (invFunc g)

31

proof —
{fixpr
{ assume hyp: hp r
then obtain ¢ where fp g A g ¢ r using assms by auto
hence (invFunc g) r ¢ A (invFunc f) q p by force
hence (composeRel (invFunc f) (invFunc g)) r p by blast

}

hence [2r: (invFunc h) rp — (composeRel (invFunc f) (invFunc
g)) r p by auto

{ assume (composeRel (invFunc f) (invFunc g)) r p
then obtain ¢ where (invFunc g) r ¢ A (invFunc f) ¢ p by
auto
hence (invFunc h) r p using assms by auto

}

hence (composeRel (invFunc f) (invFunc g)) v p <— (invFunc
h) rp
using [2r by auto

thus ?thesis by fastforce
qed

lemma lemToFuncAsFunc:

assumes isFunction f
and total f
shows asFunc (toFunc f) = f
proof —

{fixpr

{ assume (asFunc (toFunc f)) p r
hence f p r using somel[of f p] assms(2) by auto

}

hence 2r: (asFunc (toFunc f)) p r — fp r by auto

{ assume fpr: fpr
hence (asFunc (toFunc f)) p r using somel[of f p] assms(1) by
auto

}

hence f p r «+— (asFunc (toFunc f)) p r using [2r by auto

thus ?thesis by blast
qed

lemma lemAsFuncToFunc: toFunc (asFunc f) = f
by fastforce

32

end

end

5 WorldLine

This theory defines worldlines.

theory WorldLine
imports WorldView Functions
begin

class WorldLine = WorldView + Functions
begin

abbreviation wline :: Body = Body = 'a Point set
where wiinem k= {p.mseeskatp}

lemma lem WorldLineUnderWVT:
shows applyToSet (wvtFunc m k) (wline m b) C wline k b
by auto

lemma lemFiniteLineVelocityUnique:
assumes (u € lineVelocity 1) A (v € lineVelocity 1)

and lineSlopeFinite |

shows u =
proof —

have 3 di € drtn |l . u = velocityJoining origin d1 using assms by
simp

then obtain d1
where d1: d1 € drtn Il N u = velocityJoining origin d1 by blast

have 3 d2 € drtn | . v = velocityJoining origin d2 using assms by
s1mp
then obtain d2
where d2: d2 € drtn | N v = velocityJoining origin d2 by blast
hence (d1 € drtn 1) A (d2 € drtn 1) using dI d2 by auto

then obtain ¢ where a: (¢ # 0) A (d2 = (a ® d1))
using lemDrtn[of d1 d2 1] by blast

have slopes: (tval d1 # 0) A (tval d2 # 0)
A (slopeFinite origin d1) A (slopeFinite origin d2)

33

proof —
obtain z y where zy: (z # y) A (onLine x 1) A (onLine y 1) A
(slopeFinite x y)
using assms(2) by blast
hence slopeFinite x y by blast
hence tvalnz: tval y — tval x # 0 by simp

define yz where yz = (ySz)

hence (z # y) A (onLine 1) A (onLine y 1) A (yx = (y © z))
using zy by simp

hence 3 zy . (z # y) A (onLine z 1) A (onLine y 1) A (yz = (y
© z)) by blast

hence (y © z) € drin | using yz-def by auto

then obtain b where b: (b # 0) A (d2 = (b ® (y©x)))

using d2 lemDrtn[of yox d2 1] by blast

hence tval2: tval d2 # tval origin using tvalnz b by simp
hence tvall: tval d1 # tval origin using a by auto
hence finite: (slopeF'inite origin d1) N (slopeFinite origin d2)
using tval2 by auto
have tval origin = 0 by simp
thus ?thesis using tvall tval2 finite by blast
qed

have tinz: tval d1 # 0 using slopes by auto
have anz: a # 0 using a by blast
hence equ: 1/(tval d1) = (1/(axtval d1))*a by simp

hence sloper origin d1 = (((1/(axtval d1))*a) ® d1) using slopes
by auto
also have ... = ((1/(tval d2)) ® d2)
using lemScaleAssoc|of 1/(axtval d1) a d1] a by auto
finally have equalslopers: sloper origin d1 = sloper origin d2 using
slopes by auto

thus ?thesis using d1 d2 by auto
ged

end

end

6 Translations

This theory describes translation maps.

theory Translations
imports Functions
begin

34

class Translations = Functions
begin

abbreviation mkTranslation :: 'a Point = (‘a Point = 'a Point)
where (mkTranslation t) = (A p . (p @ t))

abbreviation translation :: (‘a Point = 'a Point) = bool
where translation T=3 q¢.V p. ((Tp) = (p ® q))

lemma lemMkTrans: ¥V t . translation (mkTranslation t)
by auto

lemma lemInverseTranslation:

assumes (T = mkTranslation t) A (T' = mkTranslation (origin ©
t)

shows (T'o T =4d) A (T o T'=id)
using assms by auto

lemma lem TranslationSum:
assumes translation T
shows T (u® v) = (T u) ® v)
proof —
obtain ¢ where ¢:V z. Tz = (z @ t) using assms(1) by auto
thus ?thesis using add-commute add-assoc t by auto
qed

lemma lemlIdIsTranslation: translation id
proof —
have V p . (id p) = (p ® origin) by simp
thus ?thesis by blast
qed

lemma lem TranslationCancel:
assumes translation T
shows ((T'p) & (Tq) =(p© q)

35

proof —
obtain ¢ where ¢:V z. Tz = (z @ t) using assms(1) by auto
hence (p @& t) o (¢ ® t)) = (p © ¢) by simp
thus ?thesis using t by auto

qed

lemma lemTranslationSwap:
assumes translation T
shows (p & (T'q)) = ((Tp) & q)
proof —
obtain ¢ where ¢:V z . Tz = (z @ t) using assms(1) by auto
thus ?thesis using add-commute add-assoc by simp
qed

lemma lemTranslationPreservesSep2:
assumes translation T
shows sep2 p ¢ = sep2 (T p) (T q)
proof —
obtain ¢ where Vz. T z = (z @ t) using assms(1) by auto
thus ?thesis by force
qed

lemma lemTranslationInjective:
assumes translation T
shows injective (asFunc T)
proof —
obtain ¢ where ¢:V z . Tz = (z @ t) using assms(1) by auto
define Tinv where Tinv: Tinv = mkTranslation (origin © t)
{fixzy
assume 'z =Ty
hence (Tinv o T) z = (Tinv o T) y by auto
hence z = y using Tinv t by auto
}
thus ?thesis by auto
qed

lemma lem TranslationSurjective:
assumes translation T
shows surjective (asFunc T')
proof —
obtain ¢t where t:V 2. Tz = (z ® t) using assms(1) by auto
hence mkT: T = mkTranslation t by auto

36

define Tinv where Tinv: Tinv = mkTranslation (origin © t)
hence Vy . y = T (Tinv y) using mkT lemInverseTranslation by
auto
thus ?thesis by auto
qed

lemma lem TranslationTotalFunction:
assumes translation T
shows isTotalFunction (asFunc T)
by simp

lemma lem TranslationOfLine:
assumes translation T
shows (applyToSet (asFunc T) (line B D)) = line (T B) D
proof —
define [where [: | = line B D
{fix ¢’
{ assume ¢’ € (applyToSet (asFunc T) 1)
then obtain ¢ where ¢: ¢ € | A (asFunc T) q ¢’ by auto
then obtain « where a: ¢ = (B @ (a®D)) using | by auto
have ¢’ = T ¢ using ¢ by auto
also have ... = ((T B) @ (a®D)) using « assms lemTransla-
tionSum by blast
finally have ¢’ € line (T B) D by auto
}
hence 2r: ¢’ € (applyToSet (asFunc T) 1) — q' € line (T B) D
by auto
{ assume ¢’ € line (T B) D
then obtain a where a: ¢’ = ((T B) @ (a®D)) by auto
hence ¢' = T (B @ (a®D)) using assms lemTranslationSum|of
T B (a®D)] by auto
moreover have (B @ (a®D)) € | using [by auto
ultimately have ¢’ € (applyToSet (asFunc T) I) by auto
}
hence ¢’ € line (T B) D +— ¢’ € (applyToSet (asFunc T) 1)
using [2r by auto
}
thus ?thesis using | by auto
qed

lemma lemOnLineTranslation:
assumes (translation T) A (onLine p I)

shows onLine (T p) (applyToSet (asFunc T) 1)

proof —
obtain B D where BD: | = line B D using assms by auto
hence (applyToSet (asFunc T) 1) = line (T B) D using assms

37

lemTranslationOfLine by auto

moreover have T p € (applyToSet (asFunc T)) using assms by
auto

ultimately show ?thesis by blast
qed

lemma lemLineJoining Translation:

assumes translation T

shows applyToSet (asFunc T) (lineJoining p q) = lineJoining (T
p) (T q)
proof —

define D where D: D = (¢Sp)

hence lineJoining p ¢ = line p D by auto

hence applyToSet (asFunc T) (lineJoining p q) = line (T p) D

using assms lemTranslationOfLine by auto

moreover have ((T q) © (T p)) = (¢Sp) using assms lemTrans-
lationCancel by auto

ultimately show ?thesis using D by auto
ged

lemma lemBallTranslation:
assumes translation T

and x within e of y
shows (T z) within e of (T y)
proof —

have sep2 (T z) (Ty) = sep2z y
using assms(1) lemTranslationPreservesSep2|of T] by auto
thus ?thesis using assms(2) by auto
qed

lemma lemBallTranslation WithBoundary:
assumes translation T

and sep2xy < sqre
shows sep2 (T z) (Ty) < sqre
proof —

have sep2 (T z) (Ty) = sep2z y
using assms(1) lemTranslationPreservesSep2[of T x y] by simp
thus ?thesis using assms(2) by auto
qed

lemma lem TranslationlsCts:

38

assumes translation T
shows cts (asFunc T) z
proof —
{ fix z’
assume z" 2z’ = Tz

{ fix e
assume epos: e > ()
{ fix p’
assume p”: p’ € applyToSet (asFunc T) (ball x e)
then obtain p where p: (p € ball z ¢) A p' = T p by auto
hence sep2 p © < sqr e using lemSep2Symmetry by force
hence sep2 p’ ' < sqr e using assms(1) p x’ lemBallTranslation
by auto
}
hence applyToSet (asFunc T) (ball x €) C ball z’ e
using lemSep2Symmetry by force
hence 3d>0. applyToSet (asFunc T) (ball x d) C ball =’ e
using epos lemSep2Symmetry by auto
}
hence Ve>0. 3d>0. applyToSet (asFunc T) (ball x d) C ball z’ e
by auto

thus ?thesis by auto
qed

lemma lemAccPointTranslation:
assumes translation T
and accPoint z s
shows accPoint (T z) (applyToSet (asFunc T) s)
proof —
{ fix e
assume e > 0
then obtain ¢ where ¢: ¢ € s A (z # q) A (inBall g e)
using assms(2) by auto

have accl: g € s using ¢ by auto
have acc2: © # ¢ using ¢ by auto
have acc3: inBall q e x using ¢ by auto

define ¢’ where ¢ ¢’ = T g

have ripl: q’ € applyToSet (asFunc T) s using q’ accl by auto
have rtp2: T z # q' using assms(1) acc2 lemTranslationInjective[of
T] ¢’ by force
have rtp3: inBall ¢’ e (T z)
using assms(1) acc8 q' lemBallTranslation[of T q x €] by auto

39

hence 3 ¢'. (¢’ € applyToSet (asFunc T) s) A (T z # q)
A (inBall q¢' e (T 1))
using rtpl rtp2 by auto

thus ?thesis by auto
qed

lemma lemlInverseOfTranslsTrans:
assumes translation T

and T' = invFunc (asFunc T)
shows translation (toFunc T’)
proof —

obtain ¢ where ¢: Vp . T p = (p @ t) using assms(1) by auto
hence mkT: T = mkTranslation t by auto

define T1 where T1: T1 = mkTranslation (origin © t)
hence transT1: translation T1 using lemMkTrans by blast

have TT1: (T o T1 = id) A (T1 o T = id) using t T1 lemInver-
seTranslation by auto

{fixpr
{ assume invFunc (asFunc T) p r
hence T r = p by simp
hence T1 p = (T1oT) r by auto
hence T1 p = r using TT1 by simp
}
hence 2r: invFunc (asFunc T) p r — (asFunc T1) p r by auto
{ assume (asFunc T1) p r
hence T'p: T1 p = r by simp
have (T o T1) p = T r using T'p by auto
hence p = T r using TT1 by auto
}
hence (asFunc T1) p r <— invFunc (asFPunc T) p r using [2r
by force

}

hence (asFunc T1) = T' using assms(2) by fastforce

hence toFunc T' = toFunc (asFunc T1) using assms(2) by fastforce
hence toFunc T' = T1 by fastforce
thus ?thesis using transT1 by auto

qed

lemma lemiInverseTrans:
assumes translation T
shows 3 T'. (translation TY AN (N pqg. Tp=q+— T q¢=1p)

40

proof —
obtain ¢t where t: Vp . T p = (p @ t) using assms by auto
hence mkT: T = mkTranslation t by auto
define T’ where T": T' = mkTranslation (origin © t)
hence trans’: translation T’ using lemMkTrans by blast

have TT" (T'oT = id) A (ToT' = id) using mkT T’ lemInverse-
Translation by auto

{fixpgqg
{ assume T p = ¢
hence T' ¢ = (T' o T) p by auto
hence T/ q = p using TT' by auto
}
hence 12r: Tp = q — T’ q = p by auto
{ assume T’ ¢ =p
hence T p = (ToT’) g by auto
hence T p = ¢ using TT' by auto

}

hence T’/ q = p +— T p = q using [2r by blast

thus ?thesis using trans’ by blast
qed

end

end

7 AXIOM: AxSelfMinus

This theory declares the axiom AxSelfMinus.

theory AzSelfMinus
imports World View
begin

AxSelfMinus: The worldline of an observer is a subset of the time
axis in their own worldview.

class azSelfMinus = WorldView
begin
abbreviation azSelfMinus :: Body = 'a Point = bool
where azSelfMinus m p = (m sees m at p) — onTimeAxis p
end

41

class AzSelfMinus = azSelfMinus +

assumes AxSelfMinus : ¥ m p . axSelfMinus m p
begin
end

end

8 TangentLines

This theory defines tangent lines and establishes their key prop-
erties.

theory TungentLines
imports Translations AxSelfMinus
begin

At each point along the worldline of a body, we can ask what its
instantaneous direction of motion is. Unfortunately we do not
know a priori that the "worldline" actually has tangents. Dealing
with tangent lines is one of the more complicated aspects of the
main proof.

class TangentLines = Translations + AxzSelfMinus
begin

abbreviation tangentLine :: 'a Point set = 'a Point set = 'a Point
= bool

where tangentLine | s © =

(z € s) A (onLine z 1) A (accPoint z s)

N
(3 ((onLinepl) A (p # z) A
e>0.306>0.Vyes
(y within 6 of) A (y # z))
—
: (3 r. ((onLine r (lineJoining x y)) A (r within € of p))))
)

P .
(¥
(

abbreviation tangentLineA :: 'a Point set = 'a Point set = 'a Point
= bool
where tangentLineA | s x =
(z € s) A (onLine z 1) A (accPoint z s)
A
vV p.(((onLinepl) A (p # x)) —
VMe>0.306>0.Vyes
((y within 0 of) A (y # z))
RN
(3 r. ((onLine r (lineJoining z y)) A (r within € of p))))

42

abbreviation hasTangent :: 'a Point set = 'a Point = bool
where hasTangent s p = 3 [. tangentLine | s p

The instantaneous velocity of a body is defined to be the velocity
of a co-moving body moving along the tangent line (assuming a
tangent line exists).

fun vel :: 'a Point set = 'a Point = 'a Space = bool
where vel wlp v = (3 1. ((tangentLine l wl p) A (v € lineVelocity

n))

lemma lemTangentLine Translation:
assumes translation T
and tangentLine | s x
shows tangentLine (applyToSet (asFunc T) 1)
(applyToSet (asFunc T) s) (T x)
proof —
define z’ where z”: 2z’ = Tz
define !’ where I": I’ = applyToSet (asFunc T) |
define s’ where s’ s’ = applyToSet (asFunc T) s

have tgt1: z € s using assms(2) by simp

have tgt2: onLine z | using assms(2) by simp
hence linel: isLine [by auto

have tgt3: accPoint z s using assms(2) by simp
have tgt{: 3 p . (((onLine p 1) A (p # z)) A
Ve>0.35>0.Vyes
((y within 6 of) A (y # z))
H
(3 r. ((onLine r (lineJoining x y)) A (r within € of p))))

)

) using assms(2) by simp

have ripl: z’ € s’ using z’ s’ tgt! by auto
have rtp2: onLine ' I’
using lemOnLine Translation[of T I x| ' 1" assms(1) linel tgt2
by auto
have rtp3: accPoint ' s’
using assms(1) tgt3 lemAccPointTranslation x' s’
by simp

43

obtain p where p: ((onLine p I) A (p # z)) A
VMe>0.36>0.YVyes
((y within § of x) N (y # z))
H
(3 r. ((onLine r (lineJoining z y)) A (r within € of p))))
) using tgt4 by auto

define p’ where p”: p’ = (T p)
hence p’-on-1": onLine p’ I’ using 1’ rtp2 p by auto
have p’-not-z’: p’' # z’
using p’ p assms(1) =’ lemTranslationInjective[of T) by force

{ fix e
assume epos: e > ()
then obtain d where d: (d > 0) A (V¥ y € s. (
((y within d of) N (y # z))
—
(3 r. ((onLine r (lineJoining x y)) A (r within e of p))))
) using p by blast

{ fix y’
assume y” (y' € s') A (y' within d of ') A (y' # ')
then obtain y where y: y € s A y' = T y using s’ by force

hence y1: y € s using y by auto
have y2: y within d of

using assms(1) z' y y’ lemBallTranslation by fastforce
have y3: y # z using y' y 2’ assms(1) by fastforce

then obtain r
where r: (onLine r (lineJoining x y)) A (r within e of p)
using y! y2 d by force

define r’ where r": v/ = T'r
hence r’ € applyToSet (asFunc T) (lineJoining x y) using r by
auto
hence r1: onLine v’ (lineJoining x’ y')
using assms(1) lemLineJoiningTranslation|of T = y] 'y
by blast
have r2: r’ within e of p’
using assms(1) r r' p’ lemBallTranslation by auto

hence 3r'. (onLine r' (lineJoining z' y')) A (r’ within e of p’)
using 71 by auto

hence (y’ within d of ') A (y' # z')
— (3. (onLine r’ (lineJoining =’ y")) A (r’ within e of
)
using y’ by blast

}

44

hence V y’ € s'. (y' within d of ') A (y' # ')
— (37", (onLine v’ (lineJoining =’ y')) A (r’ within e of
p)

by auto

hence 3d>0.V y' € s’. (y' within d of ') A (y' # z”)
— (3r". (onLine v’ (lineJoining =’ y')) A (r’ within e of
p")

}

hence Vex>0. 3d>0.V y' € s'. (y' within d of z') A (y' # ')
— (3r". (onLine v’ (lineJoining =’ y')) A (r’ within e of
p")

by force
hence (onLine p’ I') A (p' #)
ANNVex>0.3d>0.V y' € s’ (y within d of z') A (y' # z)
— (3r". (onLine r' (lineJoining =’ y')) A (r' within e of

using d by auto

?))
using p’-not-z’ p’-on-l’ by auto
hence rtp4: 3 p’ . (((onLine p’ I') A (p’ # z'))
ANNex>0.3d>0.V y' € s’ (y within d of) N (y' # z7)
— (3r’. (onLine r' (lineJoining x’ y')) A (r’ within e of p"))))
by auto

hence ?thesis «+— (z' € ') A (onLine z' ') A (accPoint " s')
using z’ s’ I’ by simp
thus ?thesis using rtp1 rtp2 rtp3 by blast
qed

lemma lemTangentLineA:

assumes tangentLine | s x

shows tangentLineA | s z
proof —

have 1: (z € s) A (onLine z 1) A (accPoint z s) using assms by
auto

have 3 P . (onLine P 1) A (P #) A
VMe>0.306>0.Vyes
((y within 0 of) A (y # z))
_>
(3 r. ((onLine r (lineJoining © y)) A (r within € of P))))
)
using assms by simp
then obtain P where P: (onLine P 1) A (P # x) A
VMe>0.306>0.V yes.
((y within 6 of) A (y # z))
H
(3 r. ((onLine r (lineJoining x y)) A (r within € of P))))

45

)
by blast

{ fixp
assume p: onLinep I AN p # x

hence onLine x I A onLine p I A xz#p using 1 by auto
hence lzp: | = lineJoining x p
using 1 lemLineAndPoints[of z p I] by auto

then obtain ¢ where a: P = (z ® (a ® (pSz))) using P by auto
hence anz: a # 0 using P by auto

{fixe
assume epos: e > (
hence aenz: a x e # 0 using anz by auto
define el where el: el = abs (axe)
hence elpos: el > 0 using aenz by auto

then obtain d where d: (d > 0) A (V y € s. (
((y within d of ©) N (y # z))
RN
(3 r. ((onLine r (lineJoining x y)) A (r within el of P))))

)

using P by auto

{fixy
assume y: (y € s) A (y within d of) A (y #)
then obtain R
where R: (onLine R (lineJoining z y)) A (R within el of P)
using d by blast

define r where 7: r = (z ®((1/a)®(Rex)))
hence (roz) = ((z ®((1/a)®(Ro1))) ©) using r by auto
also have ... = ((1/a)®(RSx))

using add-commute add-assoc diff-add-cancel by auto
finally have nrz: (r&z) = ((1/a)®(RS1)) by metis

define T where T: T = mkTranslation (origin S z)
hence transT: translation T using lemMkTrans by blast
have R within el of P using R by simp
hence (T R) within el of (T P)
using transT lemBallTranslation[of T R P el]
by fastforce
hence nearl: ((1/a)®(RSx)) within (el/a) of ((1/a)®(PSkx))
using lemScaleBall[of Rox PSx el 1/a) anz T
by auto

46

define T’ where T": T’ = mkTranslation z
hence transT’: translation T' using lemMkTrans by blast
hence near2: (T’ ((1/a)®(ROx))) within (el/a) of (T’
(1 /a)(Pox))
using near! transT’
lemBallTranslation[of T' (1/a)®(Rez) (1/a)R(Po1)
el/a]
by blast

have term1: (T’ ((1/a)®(RSx))) = r using T' add-commute
r by auto

have (P & z) = (a ® (pSz)) using a by auto

hence (7' ((1/a)0(Por))) = (z @ ((1/a)®(a @ (pSi))))
using T’ add-commute by auto

hence (T’ ((1/a)®(PoS1))) = (2 & (pOz))
using lemScaleAssoclof 1/a a PSx] anz by auto

hence term2: (T’ ((1/a)®(PSx))) = p
using diff-add-cancel add-commute by auto

have el /a = abs (axe)/a using el by auto

hence sqr (el/a) = (sqr (abs (axe)))/ (sqr a) by auto

hence sqr (el/a) = (sqr (axe))/ (sqr a) by auto

hence sqr (el/a) = (sqr a)x(sqr €)/(sqr a) using lemSqrMult
by auto

hence term3: sqr (el/a) = (sqr e) using anz by simp

hence r-near-p: r within e of p using near2 term1 term2 term3
by auto

have cases: (R = z) V (R # z) by auto
have z-on-zy: onLine z (lineJoining = y)
using y lemLineAndPoints[of x y lineJoining = y] by auto
{ assume R =z
hence r = x using nrx anz by auto
hence onLine r (lineJoining x y) using z-on-zy by blast
}
hence casel: (R = z) — (onLine r (lineJoining x y)) by auto
{ assume R # z
hence lineJoining x R = lineJoining x y
using R z-on-zy lemLineAndPoints[of x R lineJoining x y|
by auto
hence onLine r (lineJoining = y) using r by blast
}
hence (R # z) — (onLine r (lineJoining z y)) by auto
hence onLine r (lineJoining x y) using cases casel by auto

hence 3 r. (onLine r (lineJoining z y)) A (r within e of p)

47

using r-near-p by auto
}
hence Vy € s . (y within d of) A (y # z)
— (3 r. (onLine r (lineJoining x y)) A (r within e of p))
by auto
hence 3d>0.Vy € s. (y within d of) N\ (y # x)
— (3 r. (onLine r (lineJoining x y)) A (r within e of p))
using d by auto
}
hence Ve>0.3d>0.Vy € s. (y within d of) A (y # z)
— (3 r. (onLine r (lineJoining x y)) A (r within e of p))
by blast
}
hence 2: Vp . (onLinep I A p # z) —
(Ve>0.3d>0.Vy € s. (y within d of z) N (y # x)
— (3 r. (onLine r (lineJoining z y)) A (r within e of
p)))
by blast
thus ?thesis using 1 by auto
qed

lemma lemTangentLineE:
assumes tangentLineA | s x
and dp # x . onLine p [
shows tangentLine | s
proof —
have I: (z € s) A (onLine z 1) A (accPoint x s) using assms(1) by
auto

obtain p where p: (p # x) A (onLine p) using assms(2) by auto
henceVe>0.36§>0.Vyes
((y within 0 of) A (y # z))
RN
(3 r. ((onLine r (lineJoining z y)) A (r within € of p))))
using assms(1) by blast
thus ?thesis using 1 p by auto
qed

end

end

48

9 Cones

This theory defines (light)cones, regular cones, and their prop-
erties.

theory Cones
imports WorldLine TangentLines
begin

class Cones = WorldLine + TangentLines
begin

abbreviation ¢l :: ‘a Point set = Body = Body = 'a Point = bool
where ¢l I m bz = tangentLine | (wline m b) =

The cone of a body at a point comprises the set of points that lie
on tangent lines of photons emitted by the body at that point.

abbreviation cone :: Body = 'a Point = 'a Point = bool

where cone m = p
=3 1. (onLine pl) A (onLine xl) A (3 ph . Phph A tll
m ph x)

abbreviation reqularCone :: 'a Point = 'a Point = bool
where reqularCone x p = 3 1. (onLine p 1) A (onLine z 1)
A (3 v € lineVelocity | . sNorm2 v = 1)

abbreviation coneSet :: Body = 'a Point = 'a Point set
where coneSet mxz = { p.conemzp}

abbreviation regularConeSet :: 'a Point = 'a Point set
where reqularConeSet © = { p . reqularCone z p }

end

end

10 AXIOM: AxLightMinus

This theory declares the axiom AxLightMinus.

theory AxzLightMinus
imports WorldLine TangentLines

49

begin

AxLightMinus: If an observer sends out a light signal, then the
speed of the light signal is 1 according to the observer. Moreover
it is possible to send out a light signal in any direction.

class azLightMinus = WorldLine + TangentLines
begin

The definition of AxLightMinus used in this Isabelle proof is
slightly different to the one used in the paper-based proof on
which it is based. We have established elsewhere, however, that
each entails the other in all relevant contexts.

abbreviation azLightMinusOLD :: Body = 'a Point = 'a Space =
bool
where azLightMinusOLD m p v = (m sees m at p) — (
(3 ph . (Ph ph A (vel (wline m ph) p v))) +— (sNorm2v = 1)
)

abbreviation axLightMinus :: Body = 'a Point = 'a Space = bool
where azLightMinus m p v = (m sees m at p)
— (VY 1.V v € lineVelocity 1 .
(3 ph . (Ph ph A (tangentLine | (wline m ph) p))) +—
(sNorm2 v = 1))

end
class AzLightMinus = axLightMinus +

assumes AzLightMinus: ¥ m p v . azLightMinus m p v
begin

end

end

11 Propositionl

This theory shows that observers consider their own lightcones
to be upright.

theory Propositionl
imports Cones AxLightMinus
begin

class Propositionl] = Cones + AxLightMinus
begin

lemma lemPropositionl:

50

assumes z € wline m m
shows cone m z p = reqularCone = p
proof —
have mmz: m sees m at r using assms by simp

have axlight: ¥V [.V v € lineVelocity [.
(3 ph . (Ph ph A (tangentLine 1 (wline m ph) z))) <—
(sNorm2 v = 1)
using AzLightMinus mmzx by auto

define azph where azph: azph = (A 1. X ph . (Ph ph A (tangentLine
I (wline m ph) x)))

define lhs where lhs: lhs = cone m = p
define rhs where rhs: rhs = regularCone x p

{ assume Ilhs
hence 3 [. onLine p Il A onLine z 1 A (3 ph . axph | ph)
using lhs axph by auto
then obtain [
where I: onLine p Il A onLine x| A (3 ph . azph | ph) by auto

have zonl: onLine z [using [by auto
have ponl: onLine p | using [by auto

have exph: 3 ph . axph | ph using | by auto
then obtain ph where ph: azph | ph by auto

have azlight: ¥V v € lineVelocity | . (3 ph . axph | ph) <+—
(sNorm2 v = 1)
using azph axlight by force

hence Ww1:V v € lineVelocity | . (sNorm2 v = 1) using exph by
blast

have tterml1: tl | m ph z using ph azph by force

hence 3 p. ((onLinep) A(p#z) ANV e>0. 3 56>0.V
y € (wline m ph). (
((y within § of) AN (y # z)) —
(3 r. ((onLine r (lineJoining x y)) A (r within € of p))))))
by auto
then obtain ¢ where ¢: onLine ¢l A g # x by auto
define gz where ¢z: gz = (¢ ©)

o1

hence (z # q) A onLine z 1 A onLine ¢l A (¢gz = (¢ © 1)) using
q ronl by auto

hence 3 p q . (p # q) A onLine p I A onLine ¢l A (gz = (¢ ©
p)) by blast

hence qzl: gr € drin | by auto

define v where v: v = velocityJoining origin qx

hence 3 d € drtn | . v = velocityJoining origin d using gzl by
blast

hence existsv: v € lineVelocity | by auto

hence norm2v: sNorm2 v = 1 using vl by auto

hence 3 v € lineVelocity | . sNorm2 v = 1 using existsv by force

hence onLine p I A onLine z 1 A (3 v € lineVelocity I . sNorm2
v=1)
using ponl zonl by auto
hence 3 1. onLine p I A onLine z I A (3 v € lineVelocity 1 .
sNorm2 v = 1)
by blast
hence regularCone = p by auto

hence [2r: lhs — rhs using rhs by blast

{ assume rhs
hence 3 | . onLine p I A onLine x I A (3 v € lineVelocity | .
sNorm2 v = 1)
using rhs by auto
then obtain [
where [: (onLine p [) A (onLine z 1) A (3 v € lineVelocity | .
sNorm2 v = 1)
by blast

have zonl: onLine z | using [by auto
have ponl: onLine p | using [by auto

have 3 v € lineVelocity | . sNorm2 v = 1 using [by blast
then obtain v where v: (v € lineVelocity 1) A (sNorm2 v = 1)
by blast

define final
where final: final = (A 1. onLine p Il A onLine zl A (3 ph .
azph 1 ph))

have 3 ph . axph | ph using v azlight axph by blast
hence final | using ponl zonl final by auto

hence 3 [. final | by auto

hence cone m = p using final axph by auto

hence [hs using lhs by auto

52

}

hence r2l: rhs — lhs using lhs by blast

hence [hs <— rhs using [2r by auto
thus ?thesis using lhs rhs by auto
qed

end

end

12 AXIOM: AxEField

This theory defines the axiom AxEField, which states that the
linearly ordered field of quantities is Euclidean, i.e. that all non-
negative values have square roots in the field.

theory AxzEField
imports Sorts
begin

class azFEField = Quantities
begin
abbreviation arEField :: 'a = bool
where azEField x = (x > 0) — hasRoot x
end

class AzEField = axEField +
assumes AzFEField: V z . axEField x

begin

end

end

13 Norms

This theory defines norms, assuming that roots exist.

theory Norms
imports Points AzEField
begin

class Norms = Points + AxEField

93

begin

abbreviation norm :: ‘a Point = ‘a (|| - ||)
where norm p = sqrt (norm?2 p)

abbreviation sNorm :: 'a Space = 'a
where sNorm p = sqrt (sNorm2 p)

13.1 axTriangleInequality

Given that norms exist, we can define the triangle inequality for
specific cases. This will be asserted more generally as an axiom
later.

abbreviation azxTrianglelnequality :: 'a Point = 'a Point = bool
where azTrianglelnequality p ¢ = (norm (p®q) < norm p + norm

q)

lemma lemNormSqrisNorm2: norm2 p = sqr (norm p)

proof —
have norm2 p > 0 by simp
moreover have azEField (norm2 p) using AzEField by simp
ultimately show ?thesis using lemSquareOfSqrt[of norm2 p norm

p] by force
qed

lemma lemZeroNorm:
shows (p = origin) <+— (norm p = 0)
proof —
{ assume p = origin
hence norm2 p = 0 by auto
hence norm p = 0 using lemSquareOfSqrt lemZeroRoot AzEField
by force
}

hence 2r: (p = origin) — (norm p = 0) by auto

{ assume norm p = 0
hence norm2 p = 0 using lemNormSqrIsNorm?2[of p] by auto
hence p = origin using lemNulllmpliesOrigin by auto

}

hence (norm p = 0) — (p = origin) by auto

54

thus ?thesis using [2r by blast
qed

lemma lemNormNonNegative: norm p > 0
proof —

have norm2 p > 0 by auto

hence unique: !r. 0 < r A norm2 p = sqr r using AxEField
lemSqrt[of norm?2 p] by auto

then obtain r where : 0 < r A norm2 p = sqr v N (V = .
isNonNegRoot (norm2 p) x — = 1)

by auto

hence r = norm p using the-equality[of isNonNegRoot (norm?2 p)
r] by blast

moreover have r > 0 using r by blast

ultimately show ?thesis by auto
qed

lemma lemNotOriginImpliesPositiveNorm:
assumes p # origin
shows (norm p > 0)
proof —
have 1: norm p # 0 using lemZeroNorm assms(1)by auto
have norm p > 0 using lemNormNonNegative assms(1) by auto
hence 2: norm p > 0 using 1 by auto
thus ?thesis by auto
qed

lemma lemNormSymmetry: norm (p©q) = norm (¢Sp)
proof —
have norm2 (p © q) = norm2 (¢ © p) using lemSep2Symmetry by
simp
thus ?thesis by presburger
qed

lemma lemNormOfScaled: norm (a®p) = (abs a) * (norm p)
proof —

have sqr (norm (a®p)) = norm2 (a®p) using lemNormSqrisNorm?2
by presburger

also have ... = (sgr a)x(norm2 p) using lemNorm20fScaled by
auto

also have ... = (sqr a)*(sqr (norm p)) using lemNormSqrIsNorm2
by force

95

also have ... = sqr (ax(norm p)) using lemSqrMult by auto

finally have abs (norm (a®p)) = abs (o *(norm p)) using lemE-
qualSquares by blast

moreover have abs (norm (a®p)) = norm (a®p)

using lemNormNonNegative[of (a®p)] abs-of-nonneg by auto

moreover have abs (a *x(norm p)) = (abs a)x(abs (norm p))
using abs-mult by auto

ultimately show ?thesis using lemNormNonNegative|of p] abs-of-nonneg
by auto
qged

lemma lemDistancesAdd:

assumes triangle: azTriangleInequality (¢op) (r&q)
and distances: (x > 0) A (y > 0) A (sep2 p q < sqrz) A (sep2
rq < sqry)

shows r within (z+vy) of p
proof —

define npq where npg: npg = norm (¢Sp)

hence sqr npq < sqr x

using lemNormSqrisNorm2 distances lemSep2Symmetry by pres-

burger

hence npqz: npg < = using lemSqrOrderedStrict distances by blast

define ngr where ngr: ngr = norm (r&q)

hence sqr ngr < sqr y using lemNormSqrlsNorm2 distances by
presburger

hence ngry: ngr < y using lemSqrOrderedStrict distances by blast

have rminusp: (r&p) = ((¢Sp)B(rOq)) using lemDiffDiffAdd by
fastforce
define npr where npr: npr = norm (rop)

have nz: norm (¢Sp) = npq using npq lemSqrt by fast
have ny: norm (r&q) = ngr using ngr lemSqrt by fast
have nz: norm (rSp) = npr using npr lemSqrt by fast

have norm (rop) < (norm (¢op) + norm (rSq)) using triangle
rminusp by fastforce
hence npr < (npg + ngr) using nz ny nz lemSqrt npg ngr npr by
stmp
hence npr < z + y using npgx nqry add-strict-monolof npq © ngr
y]
by simp

hence sqr npr < sqr (z+y) using npr lemNormNonNegative[of
(rep)] lemSqgrMonoStrict by auto

hence sep: sep2 r p < sqr (z+y) using npr lemSquareOfSqrt AzE-
Field by auto

o6

thus ?thesis using npr lemSep2Symmetry by auto
qed

lemma lemDistancesAddStrictR:
assumes triangle: axTriangleInequality (¢op) (r©q)

and distances: (x > 0) A (y > 0) A (sep2p q < sqrz) A (sep2
rq < sqry)

shows r within (z+y) of p
proof —

define npq where npg: npg = norm (¢Sp)

hence sqr npg < sqr x using lemNormSqrlsNorm2 distances lem-
Sep2Symmetry by presburger

hence npqz: npq < z using lemSqrOrdered|of x npq| distances npq
by auto

define ngr where ngr: ngr = norm (r9q)

hence sqr ngr < sqr y using lemNormSqgrisNorm?2 distances by
presburger

hence nqgry: ngr < y using lemSqrOrderedStrict distances by blast

define npr where npr: npr = norm (rop)

have nz: norm (¢Sp) = npq using npq lemSqrt by blast
have ny: norm (r©q) = ngr using ngr lemSqrt by blast
have nz: norm (r©p) = npr using npr lemSqrt by blast

have norm (r&p) < (norm (¢©p) + norm (r©q)) using triangle
lemDiff DiffAdd by fastforce
hence npr < (npg + ngr) using nz ny nz by simp
hence npr < x + y using npgx nqry add-le-less-monolof npq = ngr
]
by auto

hence sqr npr < sqr (z+y) using npr lemNormNonNegative[of
(rep)] lemSqgrMonoStrict by auto

hence sep: sep2 r p < sqr (z+y) using npr lemSquareOfSqrt AzE-
Field by auto

thus ?thesis using npr lemSep2Symmetrylof r p] by auto
qed

end

end

57

14 AxTriangleInequality

This theory declares the Triangle Inequality as an axiom.

theory AzTriangleInequality
imports Norms
begin

Although AxTrianglelnequality can be proven rather than as-
serted we have left it as an axiom to illustrate the flexibility
of using Isabelle for mathematical physics: well-known mathe-
matical results can be asserted, leaving the researcher free to
concentrate on the physics. We can return later to prove the
mathematical results when time permits.

class AzTriangleInequality = Norms +

assumes AxTrianglelnequality: ¥ p q . axTriangleInequality p q
begin
end

end

15 Sublemma3

This theory establishes how closely tangent lines approximate
world lines.

theory Sublemma3
imports WorldLine AzTriangleInequality TangentLines
begin

class Sublemma8 = WorldLine + AzxTrianglelnequality + Tangent-
Lines
begin

lemma sublemmas3:
assumes onLine p |
and norm2 p = 1
and tangentLine | wl origin
shows
Ve>0.36d>0.Y yny.
((y within & of origin) N (y # origin) A (y € wl) A (norm y =
ny))
H
((((1/ny)@y) within & of p) V (((=1/ny)@y) within & of p))

o8

proof —
{fixe:'a
{ assume epos: ¢ > 0

hence e2pos: ¢/2 > 0 by simp

have prop1: origin € wl using assms(3) by auto

have prop2: onLine origin | using assms(8) by auto

hence prop3: V ¢ > 0.3 q € wl. (origin # q) A (inBall q

origin)
using assms(3) by auto

have prop/: V p .(((onLine p I) A (p # origin)) —
VMe>0.306>0.Vyecuwl.(
((y within & of origin) A (y # origin))
H

3 r . ((onLine r (lineJoining origin y)) A (r within € of
p)))))

) using assms(3) lemTangentLineA[of origin]
by auto

have p # origin using assms(2) lemNullImpliesOrigin by auto

hence ballprops: ¥V e > 0. 36> 0.V ye€ wl.
((y within & of origin) N (y # origin))
—

(3 7. ((onLine r (lineJoining origin y)) A (r within € of
p)))
)

using assms(1) prop4 by auto

define eps where eps = (if (e/2 < 1/2) then (e/2) else (1/2))

hence eps-le-e2: eps < e/2 by auto
have epspos: eps > 0 using e2pos eps-def by simp

{ assume assi: e/2 < 1/2
hence eps = ¢/2 using eps-def by auto
hence eps < 1/2 using ass! by simp
hence eps < 1/2 by simp
}
hence casel: (/2 < 1/2) — eps < 1/2 by auto
have —(e/2 < 1/2) — eps = 1/2 using eps-def by simp

99

hence case2: =(e/2 < 1/2) — eps < 1/2 by auto

p))))

of p))

of p)

hence (eps < (1/2)) using casel case2 by auto

hence eps-lt-1: eps < 1 using le-less-trans by auto

hence sqr eps < eps using epspos lemMultPosLT1 by auto
hence epssqu: sqr eps < 1 using eps-lt-1 le-less-trans by auto

then obtain d where dprops: (d > 0) A (V y € wl. (

((y within d of origin) A (y # origin))
—
(3 r. ((onLine r (lineJoining origin y)) A (r within eps of

) using epspos ballprops by auto

{ fix y ny assume ny: ny = norm y

{ assume y: (y within d of origin) N (y # origin) A (y € wl)
hence 3 r . ((onLine r (lineJoining origin y)) A (r within eps

using dprops by blast
then obtain r
where 7: (onLine r (lineJoining origin y)) A (r within eps

by auto

hence 3 o . r = (o ® y) by simp
then obtain « where alpha: 7 = (a« ® y) by auto

{ assume o = 0
hence rnull: r = origin using alpha by simp
hence one: sep2 r p = 1 using assms(2) by auto
have sep2 rp < sqr eps using r by auto
hence not-one: sep2 r p < 1 using epssqu by auto
hence Fulse using one not-one by auto

}

hence anz: o # 0 by auto

define np where np = norm p
hence np: np = 1 using assms(2) lemSqrt! by auto

define npr where npr = norm (p © r)
hence sqr npr = sep2 p r using local.lemNormSqrisNorm2

by presburger

hence sqr npr < sqr eps using r lemSep2Symmetry by auto
hence sqr npr < sqr eps A eps > 0 using epspos by auto
hence npr: npr < eps

using lemSqrOrderedStrict|of eps npr] by auto
hence npri: 1 — npr > 1 — eps

60

using diff-strict-left-mono by simp

have npr-lt-e2: npr < e/2 using npr eps-le-e2 le-less-trans
by auto

define nr where nr = norm r
hence sqr nr = norm?2 (a ® y) using alpha lemNormSqrls-
Norm2 by presburger
hence nr: sqr nr = (sqr &) * norm2 y using lemNorm20fScaled
by auto

have azTriangleInequality (pSr) r using Az TriangleInequality
by blast
hence (np < npr + nr) using np-def npr-def nr-def by simp
hence nr > 1 — npr using np lemLEPlus by auto
hence trianglel: nr > 1 — eps using nprl le-less-trans by
simp

define nrp where nrp = norm (rop)
hence nrppr: nrp = npr using npr-def nrp-def lemSep2Sym-
metry[of p r] by auto

have azTriangleInequality (r©p) p using AzTriangleInequality
by blast
hence (nr < npr + 1)
using np-def npr-def nr-def np nrp-def nrppr by auto
hence triangle2: nr < 1 + eps
using npr add-strict-right-mono le-less-trans add-commute
by simp

have range: (1 — eps) < nr < (1 + eps)
using trianglel triangle2 by simp

have (ny = 0) — (y = origin)
using ny lemNormSqrIsNorm2|of y] lemNullImpliesOrigin
by auto

hence nynz: ny # 0 using y by auto

have norm ((1/ny)®y) = ((abs (1/ny)) * ny) using ny
lemNormOfScaled|of 1 /ny y] by auto

hence nyunit: norm ((1/ny)®y) = 1 using y nynz ny
lemNormNonNegative by auto

have norm r = ((abs) * ny) using ny alpha lemNormOfS-
caled|of a y] by auto

hence nr-is-any: nr = ((abs) * ny) using nr-def lemSqrt
by auto

61

hence (1 — eps) < ((abs a) * ny) < (I + eps) using range
by auto
hence star: abs (((abs) * ny) — 1) < eps
using epspos lemAbsRange|of eps 1 ((abs a) * ny)] by auto

have cases: (a« > 0) V (o < 0) using anz by auto

{ assume apos: a > 0
hence abs a = a by auto
hence caselrange: abs ((o * ny) — 1) < eps using star by
auto

define w! where w! = ((a ® y) © ((1/ny)Ry))
define nw! where nwl = norm wl

have (o ®@ y) = ((1/ny) @ ((o x ny) @ y))
using nynz lemScale Assoc by auto
hence w1 = (((1/ny) @ (o x ny) ® y)) & ((1/ny)®y))
using wil-def by simp
hence wl = ((1/ny) ® (0 % ny) @ 4) © y)
using lemScaleDistribDiff [of 1/ny (a * ny) ® y y] by force
hence w! = (((a x ny) — 1) ® ((1/ny) ® ¥))
using lemScaleLeftDiffDistrib lemScaleCommute by auto
hence 2: norm wl = (abs ((« * ny) — 1))
using lemNormOfScaled[of ((o * ny) — 1) (1/ny) & y]
nyunit by auto

{
define pp where pp: pp = (pS(a®y))
define ¢¢ where qq: q¢ = ((a®y) © ((1/ny)®y))
have axTrianglelnequality pp qq using AxTrianglelnequality
by simp
hence norm (pp @ qq) < norm pp + norm qq by auto
hence norm ((p © ((1/ny)®y))) < norm pp + norm qq
using lemSumDiffCancelMiddle pp qq by simp
hence norm ((p © ((1/ny)®y))) < norm (pSr) + norm wl

using alpha wi-def pp qq by auto
}

hence 3: norm ((p © ((1/ny)®y))) < npr + nwl
using nwl-def npr-def by force

define nminus where nminus = norm ((p © ((1/ny)®y)))

hence almost1: nminus < npr 4+ nwl using 8 nminus-def
by auto

62

have abs ((ny * o) — 1) > 0 by auto

hence nw! = abs ((a * ny) — 1) using nwli-def 2 lemSqrt
by blast

hence nw! < eps using caselrange le-less-trans by auto

hence nw! < e¢/2 using eps-le-e2 le-less-trans by auto

hence nminus < (e/2 + ¢/2)
using almostl npr-lt-e2 add-strict-mono le-less-trans by
stmp

hence nminus < e using lemSumOfTwoHalves by simp

hence sqr nminus < sqr e
using lemSqrMonoStrict[of nminus e] nminus-def
lemNormNonNegative[of ((p © ((1/ny)Ry)))]
by auto

hence norm2 ((p © ((1/ny)®y))) < sqre
using lemNormSgrisNorm2[of ((p © ((1/ny)®y)))]
nminus-def by auto
hence p within e of ((1/ny)®y) by auto
hence ((1/ny)®y) within e of p
using lemSep2Symmetry[of ((1/ny)®y)] by auto

}

hence casel: (o > 0) — (((1/ny)Qy) within e of p) by blast

{ assume aneg: a < 0
hence abs @« = —a by auto
hence abs (—(a * ny) — 1) < eps using star by auto
hence caseZrange: abs (axny + 1) < eps
using lemAbsNegNeg[of axny 1] by auto

define w2 where w2 = ((a®y) & ((1/ny)®y))
define nw?2 where nw?2 = norm w2

have (o ® y) = ((1/ny) @ ((a x ny) © y))
using nynz lemScale Assoc by auto
hence w2 = (((1/ny) @ ((ax ny) @ y)) & ((1/ny)@y))
using w2-def by simp
also have ... = ((1/ny) @ (((a * ny) @ y) ® y))
using lemScaleDzstmbSum[of 1/ny (o * ny) ® y y] by
simp
also have ... = (((a x ny) + 1) ® ((1/ny) ® y))
using lemScaleLeftDiffDistribjwhere b=—1] lemScaleCom-
mute by auto
finally have 4: norm w2 = (abs ((a * ny) + 1))
using lemNormOfScaled[of ((ov * ny) + 1) (1/ny) & y]
nyunit by auto

63

{
define pp where pp: pp = (pO(a®y))
define gqg where qg: ¢q = ((a®y) & ((1/ny)®y))
have axTrianglelnequality pp qq using AxTrianglelnequality
by simp
hence norm (pp ® qq) < norm pp + norm qq by auto
hence norm ((p @ ((1/ny)®y))) < norm pp + norm qq
using lemDiffSumCancelMiddle pp qq by force
hence norm ((p ® ((1/ny)®y))) < norm (pOr) + norm
w2
using alpha w2-def pp qq by auto
}
hence 5: norm ((p ® ((1/ny)®y))) < npr + nw? using
nw2-def npr-def by auto

define nplus where nplus = norm ((p ® ((1/ny)®y)))

hence almost2: nplus < npr + nw2 using 5 nplus-def by
auto

have abs ((ny *) — 1) > 0 by auto
hence nw2 = abs ((a * ny) + 1) using nw2-def 4 lemSqrt|of
norm2 w2] by auto
hence nw2 < eps using case2range le-less-trans by auto
hence nw2 < e/2 using eps-le-e2 le-less-trans by auto

hence nplus < (e/2 + ¢/2)
using almost2 npr-lt-e2 add-strict-mono le-less-trans by

simp
hence nplus < e using lemSumOfTwoHalves by simp
hence sqr nplus < sqr e using
lemSqrMonoStrict[of nplus e] nplus-def
lemNormNonNegative[of ((p & ((1/ny)Ry)))]
by auto
hence norm2 ((p © ((1/ny)®y))) < sqre
using lemNormSqgrisNorm2[of ((p & ((1/ny)®y)))] nplus-def
by auto
hence sep2 p ((—1/ny)®y) < sqr e by simp
hence (((—1/ny)®y) within e of p)
using lemSep2Symmetrylof ((—1/ny)®y)] by auto
}
hence case2: (o < 0) — (((—=1/ny)®y) within e of p) by
blast

64

hence (((1/ny)®y) within e of p) V (((—1/ny)®y) within e
of p)

using cases casel by auto

}
hence ((y within d of origin) A (y # origin) A (y € wl) A
(norm y = ny))
— ((((1/ny)®y) within e of p) V (((—1/ny)®y) within e
of p))

}

hence 3 § > 0 .V y ny .((y within & of origin)
A (y # origin) A (y € wl) A (norm y = ny))
— ((((1 /ny)®y) within e of p) V (((—1/ny)®y) within e

by blast

of p))
}

hence e > 0 —
(35 >0V yny .((y within 0 of origin) A (y # origin) A (y €

wl) A (norm y = ny))
— ((((1 /ny)®y) within e of p) V (((—1/ny)®y) within e

using dprops by blast

of p)))
by blast
}

thus ?thesis by blast
qged

lemma sublemmadTranslation:
assumes onlLine p [
and norm?2 (pSz) = 1
and tangentLine | wl x
shows Ve>0.3§>0.V ynyr.
((y within 6 of x) A (y # z) A (y € wl) A (norm (yor)

= nyz))
—>
(1 /nyz)@(yox)) within € of (pow))
V (=1 /nyz)®(yo)) within € of (pez))
proof —
define pre

where pre: pre = (A d y nyz . (y within d of) A (y # 2) A (y €
wl) A (norm (ySz) = nyr))
define post
where post: post = (A e y nyz . (1 /nyx)2(yOx)) within e of
(voa))
V (=1 /nyz)®(yox)) within e of (pox)))

define T where T = mkTranslation (origin © x)

65

hence transT: translation T using lemMkTrans by blast
have T: Vp. T p = (p ® (origin © z)) using T-def by simp

define p’ where p: p'= T p

define [’ where [": I’ = (applyToSet (asFunc T) 1)
define z’ where z”: z' = Tz

define wl’ where wl”" wl’ = (applyToSet (asFunc T) wl)

have 1: onLine p’ 1’
using assms(1) T p' ' lemOnLineTranslation[of T 1 p]
by blast

have z'0: 2’ = origin using T z’ add-diff-eq by auto
hence sep2 p’ origin = 1

using T assms(2) p’ lemTranslationPreservesSep2 by simp
hence 2: norm2 p’ = 1 by auto

have tangentLine (applyToSet (asFunc T) 1)
(applyToSet (asFunc T) wl) (T x)
using transT assms(8) lemTangentLine Translation[of T x wl]
by auto
hence 3: tangentLine I’ wl’ origin using I’ wl’ z’ '0 by auto

hence conc:Ve>0.36>0.VY y' ny' . (
((y" within & of origin) A (y' # origin) A (y' € wl’) A (norm y’

= ny’))
—
((((1/ny"Y®y") within € of p") V (((—1/ny")®y’) within € of
P))

using 1 2 8 sublemma3[of I’ p]

by auto

{ fix e
assume epos: e > ()
then obtain d where d: (d > 0) A (V y' ny’ . (
((y" within d of origin) A (y’ # origin) A (y' € wl’) A (norm y’

= ny))
H
((((1/ny"Y®y") within e of p’) V (((—1/ny")®y’) within e of
»")))

using conc by blast

{ fix y nyz
assume hyp: pre d y nyz

define y’ where y: y' = Ty

hence rtp1: y' within d of origin
using transT hyp =’ x'0 lemBallTranslation pre by auto

66

have p'pz: p’ = (p © z) using p’ T by simp
have y'yz: y' = (y © z) using y’ T by simp
hence nyz: norm y’ = nyx using hyp pre by force

{have (Tz=2") N (Ty=y") AN (injective (asFunc T))
using z’ y’ lemTranslationInjective[of T) transT by blast
moreover have z # y using hyp pre by auto
ultimately have y’ # 2'by auto

}

hence rtp2: y' # origin using z’'0 by simp
have rtp3: y' € wl’ using hyp pre y’' wl’ by force

hence (y’ within d of origin) N (y' # origin) A (y' € wl’) A
(norm y' = nyx)
using rtpl ritp2 ritp3 nyx by blast

hence (((1/nyz)®y") within e of p’) V (((—1/nyz)®y") within e
of p')
using d by auto
hence post e y nyz using post y'yz p'px by auto
}
hence V y nyx . pre d y nyx — post e y nyz by auto
hence 36>0.V y nyx . pre § y nyr — post e y nyz using d by
auto

}

hence Ve>0 . 36>0.V y nyx . pre § y nyr — post € y nyz by
auto

thus ?thesis using post pre by blast
qed

end

end

16 Vectors

In this theory we define dot-products, and explain what we mean
by timelike, lightlike (null), causal and spacelike vectors.

theory Vectors
imports Norms
begin

class Vectors = Norms
begin

67

fun dot :: ‘a Point = 'a Point = 'a (- ® -)
where dot u v = (tval w)x(tval v) + (zval u)*(zval v) +
(yval w)*(yval v) + (zval u)*(zval v)

fun sdot :: 'a Space = 'a Space = 'a (- @s -)
where sdot u v = (svalz u)*x(svalr v) + (svaly u)*(svaly v) + (svalz
u)*(svalz v)

fun mdot :: 'a Point = 'a Point = 'a (- ®m -)
where mdot u v = (tval u)*(tval v) — ((sComponent u) ©s (sComponent

v))

abbreviation timelike :: 'a Point = bool
where timelike p = mNorm2 p > 0

abbreviation lightlike :: 'a Point = bool
where lightlike p = (p # origin A mNorm2 p = 0)

abbreviation spacelike :: 'a Point = bool
where spacelike p = mNorm2 p < 0

abbreviation causal :: ‘a Point = bool
where causal p = timelike p V lightlike p

abbreviation orthog :: ‘a Point = 'a Point = bool
where orthogp ¢ = (p ©® ¢q) = 0

abbreviation orthogs :: ‘a Space = 'a Space = bool
where orthogs p ¢ = (p ©®s q) = 0

abbreviation orthogm :: ‘a Point = 'a Point = bool
where orthogm p ¢ = (p ©@Gm ¢q) = 0

lemma lemDotDecomposition:
shows (u ® v) = (tval u * tval v) + ((sComponent u) ©s (sComponent

v))

by (simp add: add-commute local.add.left-commute)
lemma lemDotCommute: dot u v = dot v u
by (simp add: mult-commute)

lemma lemDotScaleLeft: dot (a®u) v = a * (dot u v)

68

using mult-assoc distrib-left by force

lemma lemDotScaleRight: dot u (a®v) = a * (dot u v)
using mult-assoc mult-commute distrib-left by auto

lemma lemDotSumLeft: dot (udv) w = (dot u w) + (dot v w)
using distrib-right add-assoc add-commute by force

lemma lemDotSumRight: dot u (vw) = (dot u v) + (dot u w)
using distrib-left add-assoc add-commute by auto

lemma lemDotDiffLeft: dot (uov) w = (dot u w) — (dot v w)
by (simp add: field-simps)

lemma lemDotDiffRight: dot u (vOw) = (dot u v) — (dot u w)
by (simp add: field-simps)

lemma lemNorm20fSum: norm2 (u @ v) = norm2 u + 2%(u © v)
+ norm2 v
proof —
have norm2 (v ® v) = (v ® v) © (v ® v)) by auto
alsohave ... = (v © (u ® v)) + (v © (u ® v))
using lemDotSumLeft[of u v (u ® v)] by auto
also have ... = (uGu) + ((uGV) + (vOu)) + (vOV)
using lemDotSumRight[of u u v] lemDotSumRight]of v u v
add-assoc by auto
finally show ?thesis using mult-2 lemDotCommute[of u v]
by auto
qed

lemma lemSDotCommute: sdot uw v = sdot v u
by (simp add: mult-commute)

lemma lemSDotScaleLeft: sdot (a ®s u) v = a * (sdot u v)
using mult-assoc distrib-left by force

lemma lemSDotScaleRight: sdot u (a ®s v) = a * (sdot u v)
using mult-assoc mult-commute distrib-left by auto

lemma lemSDotSumLeft: sdot (u @s v) w = (sdot u w) + (sdot v w)
using distrib-right add-assoc add-commute by force

lemma lemSDotSumRight: sdot u (v®s w) = (sdot u v) + (sdot u w)
using distrib-left add-assoc add-commute by auto

lemma lemSDotDiffLeft: sdot (v ©s v) w = (sdot u w) — (sdot v w)
by (simp add: field-simps)

69

lemma lemSDotDiffRight: sdot u (vSs w) = (sdot u v) — (sdot u w)
by (simp add: field-simps)

lemma lemMDotDiffLeft: mdot (uSv) w = (mdot u w) — (mdot v w)
by (simp add: field-simps)

lemma lemMDotSumLeft: mdot (v ® v) w = (mdot u w) + (mdot v
w
)
proof —
have mdot (u®v) w = (tval (udv))*(tval w) — ((sComponent (uBv))®s(sComponent
w))
by auto
also have ... = (tval uxtval w) + (tval vtval w)
— (((sComponent u)®s(sComponent w)) +
((sComponent v)©s(sComponent w)))
using distrib lemSDotSumLeft[of (sComponent u) (sComponent v)
(sComponent w)]
by auto
also have ... = ((twal uxtval w) — ((sComponent u)®s(sComponent

+ ((tval vxtval w) — ((sComponent v)©s(sComponent

using add-diff-eq add-commute diff-diff-add by auto
finally show ?thesis by simp
qed

lemma lemMDotScaleLeft: mdot (a @ u) v = a * (mdot u v)
proof —
have mdot (a ® u) v = ax(tval uxtval v) — ax((sComponent u)®s(sComponent
)
using lemSDotScaleLeft[of a sComponent u sComponent v]
by (simp add: mult-assoc)
thus %thesis by (simp add: local.right-diff-distrib’)
qed

lemma lemMDotScaleRight: mdot u (a ® v) = a * (mdot u v)
proof —
have mdot u (a ® v) = a*x(tval uxtval v) — ax((sComponent u)®s(sComponent
)
using lemSDotScaleRight[of sComponent u a sComponent v]
by (simp add: local.mult.left-commute)
thus ?thesis by (simp add: local.right-diff-distrib’)
qed

70

lemma lemSNorm20fSum: sNorm2 (u @s v) = sNorm2 u + 2x(u ©s
v) + sNorm2 v
proof —
have sNorm2 (u @s v) = ((u Bs v) ©s (u Bs v)) by auto
also have ... = (u ©s (u s v)) + (v Os (u Ds v))
using lemSDotSumLeft[of u v (u Bs v)] by auto
also have ... = (u ©s u) + (v ©@sv) + (v ©s u)) + (v Os v)
using lemSDotSumRight[of u u v] lemSDotSumRight[of v u v]
add-assoc by auto
finally show %thesis using mult-2 lemSDotCommute[of u v]
by auto
qed

lemma lemSNormNonNeg:
shows sNorm v > 0
proof —
have hasUniqueRoot (sNorm2 v) using AzEField lemSqrt by auto
thus ?thesis using thel-equality[of isNonNegRoot (sNorm2 v)] by
blast
qed

lemma lemMNorm20fSum: mNorm2 (u ® v) = mNorm2 u + 2x(u
©m v) + mNorm2 v
proof —

define su where su: su = sComponent u

define sv where sv: sv = sComponent v

have mNorm2 (u @ v) = (v @ v) ©m (u & v)) by auto
also have ... = (sqr (tval u) + 2x(tval u)*(tval v) + sqr (tval v))
— sNorm?2 (su s sv)
using lemSqrSum su sv by auto
also have ... = (sqr (tval u) + 2x(tval u)*(tval v) + sqr (tval v))
— (sNorm2 su + 2x(su ©s sv) + sNorm2 sv)
using lemSNorm20fSum by auto
also have ... = (sqr (tval u) — sNorm?2 su)
+ (2x(tval u)x(tval v) — 2x(su ©s sv))
+ (sqr (tval v) — sNorm?2 sv)
using add-commute add-assoc add-diff-eq diff-add-eq diff-diff-add
by simp
finally show ?thesis using su sv right-diff-distrib’ mult-assoc by
auto
qed

71

lemma lemMNorm20fDiff: mNorm2 (v © v) = mNorm2 u — 2x(u
©m v) + mNorm2 v
proof —
define vm where vm: vm = ((—1)®v)
hence mNorm2 (u © v) = mNorm2 (u @ vm) by auto
hence mNorm2 (u © v) = mNorm2 u + 2x%(u ©m vm) + mNorm?2
um
using lemMNorm20fSum by auto
moreover have (v @m vm) = —(u ©m v)
using lemMDotScaleRight[of u (—1) v] vm by auto
moreover have mNorm2 vm = mNorm2 v using vm lemMNorm20f-
Scaled by auto
ultimately show ¢thesis
by (metis local.diff-conv-add-uminus local.mult-minus-right)
qed

lemma lemMNorm2Decomposition: mNorm2 p = (p ©@m p)
by auto

lemma lemMDecomposition:
assumes (u @m v) # 0

and mNorm2 v # 0

and a = (u ®m v)/(mNorm2 v)

and up = (a ® v)
and uo = (u & up)
shows u = (up @ wo) A parallel up v A orthogm wo v A (up Om v)
= (v Om v)
proof —

have anz: a # 0 using assms by auto

have psum: u = (up ® wo) using assms add-diff-eq by auto
moreover have parallel up v using assms(4) anz by auto
moreover have ppdot: (up ©m v) = (u Om v)
proof —
have (up ©@m v) = ax(v ©@m v) using assms lemMDotScaleLeft|of
a v v] by auto
thus ?thesis using assms by auto
qed
moreover have orthogm uo v
proof —
have (uo ©m v) = (v ©@m v) — (up @m v) using lemMDotSumLeft
psum by force
thus ?thesis using ppdot by auto
qed
ultimately show ?thesis by blast
qed

72

end

end

17 CauchySchwarz

This theory defines and proves the Cauchy-Schwarz inequality
for both spatial and spacetime vectors.

theory CauchySchwarz
imports Vectors
begin

We essentially prove the same result twice, once for 3-dimensional
spatial points, and once for 4-dimensional spacetime points. While
this is clearly inefficient, it keeps things straightforward for non-
Isabelle experts.

class CauchySchwarz = Vectors
begin

lemma lemCauchySchwarz4 :
shows abs (dot u v) < (norm u)*(norm v)
proof —
have vorigin: v = origin — abs (dot u v) < (norm u)*(norm v)
proof —
{ assume v = origin
hence abs (dot u v) = 0 by simp
also have ... < (norm u)*(norm v) using lemNormNonNegative
by simp
finally have abs (dot u v) < (norm w)*(norm v) by auto

thus ?thesis by blast
qed

define a where a = dot v v
define b where b = 2 * dot u v
define ¢ where ¢ = dot u u

{fixz:'a
define w where w = (v @ (z ® v))
have ww: (dot w w) > 0 by simp

define zv where zv: 2v = (z ® v)
define middle2 where middle2 = dot u xv + dot zv u

73

have dot xv u = dot u zv using lemDotCommute by blast
hence middle2 = dot u zv + dot u zv using middle2-def by simp
also have ... = 2 x dot u zv using mult-2 by simp
finally have bterm: middle2 = b * z
using lemDotScaleRight mult-assoc mult-commute b-def xv by
auto

have vzv: (dot v zv) = (z * dot v v)using zv lemDotScaleRight by
blast

have dot zv 2v = z * (dot v zv) using lemDotScaleLeft v by blast

also have ... = (sqr z)*(dot v v) using vzv mult-assoc by simp

finally have aterm: dot xv v = ax(sqr z) using mult-commute
a-def by simp

have vww: dot v w = dot v v + dot u zv using lemDotSumRight
w-def xv by blast

have vw: dot zv w = dot v u + dot zv zv using lemDotSumRight
w-def zv by blast

have dot w w = dot u w + dot zv w using lemDotSumLeft w-def
zv by blast

also have ... = (dot u u + dot u zv) 4+ (dot zv u + dot zv zv)
using uww vw by simp

also have ... = (dot u u) + (dot u zv + dot 2v u) + dot zv 2v
using add-assoc by force

also have ... = (dot u u) + middle2 + dot zv zv
using middle2-def by simp

also have ... = ¢ + bxx + ax(sqr z) using c-def bterm aterm by

force

finally have dot w w = ax(sqr z) + bxz + ¢ using add-commute
add-assoc by auto

hence axsqr(z) + bxx + ¢ > 0 using ww by simp

}

hence quadratic: ¥V z. axsqr(z) + bxx + ¢ > 0 by auto

{ assume vnot0: v # origin
hence a > 0 using a-def lemNulllmpliesOrigin[of v
by (metis local. AzEField local.not-less local.not-less-iff-gr-or-eq
local.not-sum-squares-lt-zero dot.simps)
hence (sqr b) < /xaxc using lemQuadraticGEZero quadratic by
auto

hence (sqr b) < /x(dot v v)x(dot u u) using a-def c-def by auto
hence sqrie: (sqr (abs b)) < 4*(dot v v)x(dot u u) by auto

define nv where nv: nv = norm v
define nu where nu: nu = norm u

74

have nwvpos: nv > 0 using nv lemNormNonNegative by auto
have nupos: nu > 0 using nu lemNormNonNegative by auto
hence nvnu: 2+«nvsnu > 0 using nuvpos by auto

have n2v: norm2 v = sqr nv using AxEField nv nupos lemNorm-

SqrlsNorm2 by presburger
have n2u: norm2 u = sqr nu using AxEField nu nupos lemNorm-

SqrisNorm2 by presburger

have /x(dot v v)x(dot u u) = 4*(norm2 v)x(norm2 u) by auto

also have ... = (sqr 2)*(sqr nv)*(sqr nu) using n2u n2v by auto

also have ... = (sqr (2% nv))*(sqr nu) using lemSqrMult[of 2 nv]
by auto

also have ... = sqr (2xnvxnu) using lemSqrMult[of 2xnv nu] by
auto

finally have (sqr (abs b)) < sqr (2*xnvxnu) using sqrle by auto
hence bnvnu: abs b < 2xnvxnu

using nu nv nvnu lemSqrOrdered|of 2xnvxnu)

by auto

have pos2: 0 < 2 by simp

have b = 2xdot u v using b-def by auto

hence abs b = 2xabs(dot u v) using abs-mult by auto

hence 2xabs(dot u v) < 2x(nvknu) using bnvnu mult-assoc by
auto

hence 2xabs(dot u v) < 2x(nuxnv) using mult-commute by simp

hence abs(dot u v) < (nuxnv) using mult-le-cancel-left[of 2] pos2
by blast

hence ?thesis using nu nv by auto

}

hence (v # origin) — ?thesis by auto

thus ?thesis using vorigin by auto
qed

lemma lemCauchySchwarzSqrs:

shows sqr(dot u v) < (norm2 u)x(norm?2 v)
proof —

have 1: abs(dot u v) > 0 by simp

have sqr(dot u v) = sqr(abs(dot u v)) by simp

also have ... < sqr((norm u)*(norm v)) using 1 lemCauchySchwarz4
lemSqrMono by blast

also have ... = sgr(norm u) x sqr(norm v) using lemSqrMult by
auto
also have ... = norm2 u x norm2 v

using lemSquareOfSqrt lemSqrt AxEField lemNormSqrlisNorm?2
by force

75

finally show ?thesis by simp
qed

lemma lemCauchySchwarz:
shows abs (sdot u v) < (sNorm u)*(sNorm v)
proof —
have vorigin: v = sOrigin — abs (sdot u v) < (sNorm u)*(sNorm
v)
proof —
{ assume v = sOrigin
hence abs (sdot u v) = 0 by simp
also have ... < (sNorm u)*(sNorm v) using lemSNormNonNey
by simp
finally have abs (sdot u v) < (sNorm u)x(sNorm v) by auto

thus ?thesis by blast
qed

define a where a = sdot v v
define b where b = 2 x sdot u v
define ¢ where ¢ = sdot u u

{fixz:'a
define w where w = (u ®s (z ®s v))
have ww: (sdot w w) > 0 by simp

define zv where zv: 2v = (z ®s v)
define middle2 where middle2 = sdot u zv + sdot zv u

have sdot zv u = sdot u zv using lemSDotCommute by blast
hence middle2 = sdot u zv + sdot u xv using middle2-def by
stmp
also have ... = 2 x sdot u zv using mult-2 by simp
finally have bterm: middle2 = b * z
using lemSDotScaleRight mult-assoc mult-commute b-def zv by
auto

have vzv: (sdot v zv) = (z % sdot v v)using zv lemSDotScaleRight
by blast

have sdot zv zv = z * (sdot v zv) using lemSDotScaleLeft zv by
blast

also have ... = (sqr z)*(sdot v v) using vzv mult-assoc by simp

finally have aterm: sdot zv zv = ax(sqr x) using mult-commute
a-def by simp

76

have vw: sdot u w = sdot u u 4+ sdot u zv using lemSDotSumRight
w-def zv by blast
have vw: sdot zv w = sdot zv v + sdot zv xv using lemSDotSum-
Right w-def zv by blast
have sdot w w = sdot uw w + sdot zv w using lemSDotSumLeft
w-def zv by blast

also have ... = (sdot u u + sdot u zv) + (sdot zv u + sdot zv xv)
using uww vw by simp

also have ... = (sdot v u) + (sdot u 2v + sdot zv u) + sdot zv v
using add-assoc by force

also have ... = (sdot u u) + middle2 + sdot zv zv
using middle2-def by simp

also have ... = ¢ + bxx + ax(sqr z) using c-def bterm aterm by

force

finally have sdot w w = ax(sqr) + bxx + ¢ using add-commute
add-assoc by auto

hence axsqr(z) + bxx + ¢ > 0 using ww by simp

}

hence quadratic: ¥V x. axsqr(z) + bxx + ¢ > 0 by auto

{ assume vnot0: v # sOrigin
hence a > 0 using a-def lemSpatialNullImpliesSpatial Origin|of v]
by (metis local. AzEField local.not-less local.not-less-iff-gr-or-eq
local.not-sum-squares-lt-zero sdot.simps)
hence (sqr b) < /xaxc using lemQuadraticGEZero quadratic by
auto
hence (sqr b) < 4x(sdot v v)*(sdot u u) using a-def c-def by auto
hence sqrle: (sqr (abs b)) < 4x(sdot v v)x(sdot u u) by auto

define nv where nv: nv = sNorm v
define nu where nu: nu = sNorm u

have nwvpos: nv > 0 using nv lemSNormNonNeg by auto
have nupos: nu > 0 using nu lemSNormNonNeg by auto
hence nvnu: 2xnvsnu > 0 using nvpos by auto

have n2v: sNorm2 v = sqr nv using AzFEField lemSquareOfSqrt
nv nupos by auto

have n2u: sNorm2 u = sqr nu using AzEField lemSquareOfSqrt
nu nvpos by auto

have 4x(sdot v v)*(sdot u u) = 4*(sNorm2 v)x(sNorm2 u) by
auto

also have ... = (sqr 2)x(sqr nv)x(sqr nu) using n2u n2v by auto

also have ... = (sqr (2% nv))x*(sqr nu) using lemSqrMult[of 2 nv]
by auto

also have ... = sqr (2xnvxnu) using lemSqrMult[of 2xnv nu] by
auto

77

finally have (sqr (abs b)) < sqr (2xnv+nu) using sqrle by auto
hence bnvnu: abs b < 2xnvxnu

using nu nv nunu lemSqrOrdered|of 2xnvxnu)

by auto

have pos2: 0 < 2 by simp

have b = 2xsdot u v using b-def by auto

hence abs b = 2xabs(sdot u v) using abs-mult by auto

hence 2xabs(sdot u v) < 2x(nv+nu) using bnvnu mult-assoc by
auto

hence 2xabs(sdot u v) < 2%(nuxnv) using mult-commute by simp

hence abs(sdot u v) < (nuxnv) using mult-le-cancel-left[of 2] pos2
by blast

hence ?thesis using nu nv by auto

}

hence (v # sOrigin) — ?thesis by auto

thus ?thesis using vorigin by auto
qed

lemma lemCauchySchwarzSqr:

shows sgr(sdot u v) < (sNorm2 u)*(sNorm2 v)
proof —

have 1: abs(sdot u v) > 0 by simp

have sqr(sdot u v) = sqr(abs(sdot u v)) by simp

also have ... < sgr((sNorm u)x(sNorm v)) using 1 lemCauchySchwarz
lemSqrMono by blast

also have ... = sqgr(sNorm u) * sqr(sNorm v) using lemSqrMult
by auto
also have ... = sNorm2 u *x sNorm2 v using lemSquareOfSqrt

lemSqrt AzEField by auto
finally show ?thesis by simp
qed

lemma lemCauchySchwarzEquality:
assumes sqr (sdot u v) = (sNorm2 u)*(sNorm2 v)

and u # sOrigin N\ v # sOrigin
shows 3 a#0.u=(a®sv)
proof —

define a where a: a = (sdot u v)/(sNorm2 v)

have uvnz: sNorm2 u # 0 A sNorm2 v # 0 using assms lemSpa-
tial NulllmpliesSpatialOrigin by blast

hence sqr (sdot u v) # 0 using assms by auto

78

hence anz: a # 0 using assms uvnz a by auto

define upv where upv: upv = (a Qs v)
hence sdotupv: sdot upv v = sdot u v
proof —
have sdot upv v = a * sNorm2 v using upv lemSDotScaleLeft by
auto
thus ?thesis using a uvnz by auto
qed
have sn2upv: sNorm2 upv = (sqr a)xsNorm2 v using upv lem-
SNorm20fScaled by auto

define wov where wov: uwov = (u ©s upv)

have usum: u = (upv ®s vov) using uov add-diff-eq by auto

hence sdotuov: sdot uov v = 0 using lemSDotSumLeft sdotupv by
force

hence pdoto: sdot uov upv = 0 using upv lemSDotScaleRight lo-
cal.mult-not-zero by metis

have sqr (sdot u v) = sqr (sdot (a ®s v) v) using sdotupv upv by
auto
also have ... = (sqr a) * sqr (sNorm2 v)
using lemSDotScaleLeft[of a v v] lemSqrMult|of a] by auto
finally have lhs: sqr (sdot u v) = (sqr a) * sqr (sNorm2 v) by auto

have sNorm2 u = sNorm2 upv + 2x(upv @s uov) + sNorm2 uov
using lemSNorm20fSum usum by auto

also have ... = (sgr a)*sNorm2 v + sNorm2 wov using sn2upv
pdoto lemSDotCommute by auto

finally have rhs: (sNorm2 u)x(sNorm2 v) = (sqr a)xsqr(sNorm2 v)
+ (sNorm?2 uov)*(sNorm2 v)

using distrib-right[of (sqr a)xsNorm2 v sNorm2 uov sNorm2 v]
mult-assoc by auto

hence (sqr a) * sqr (sNorm2 v) = (sqr a)xsqr(sNorm2v) + (sNorm2
uov)*(sNorm2 v)
using lhs assms(1) by auto
hence (sNorm2 uov)*(sNorm2 v) = 0 using add-diff-eq by auto
hence uov = sOrigin using uvnz lemSpatial NullImpliesSpatial Origin
by auto

hence a # 0 A u = (a ®s v) using anz usum upv by auto

thus ?thesis by auto
qed

79

lemma lemCauchySchwarzEqualityInUnitSphere:
assumes (sNorm2 u < 1) A (sNorm2 v < 1)

and sdotuv =1
shows U=
proof —

have wovnz: u # sOrigin A v # sOrigin using assms(2) by auto
{ assume ass: (sNorm2 u < 1) V (sNorm2 v < 1)
have (sNorm2 v > 0) A (sNorm2 v > 0)
using uwvnz lemSpatialNulllmpliesSpatialOrigin add-less-zeroD
less-linear not-square-less-zero
by blast
hence (sNorm2 u)x(sNorm2 v) < 1
by (metis ass assms(1) local.dual-order.not-eq-order-implies-strict
local.leD
local.less-imp-le local.mult-le-one local.mult-less-cancel-left1
local.mult-less-cancel-right1)
hence Fulse using lemCauchySchwarzSqr assms(2)
by (metis local.dual-order.strict-iff-not local.mult-cancel-right1)
}
hence norms1: sNorm2u = 1 A sNorm2 v = 1 using assms(1) by
force
hence sqr (sdot u v) = (sNorm2 u)*(sNorm2 v) using assms(2) by
auto
hence 3 a # 0 . v = (a ®s v) using lemCauchySchwarzEquality
uvnz by blast
then obtain ¢ where a: a # 0 A u = (a ®s v) by auto
hence sdot u v = a * sNorm2 v using lemSDotScaleLeft by auto
hence ¢ = 1 using assms(2) norms! by auto
thus ?thesis using a by auto
qed

lemma lemCausalOrthogmToLightlikeImpliesParallel:
assumes causal p
and lightlike q

and orthogm p q
shows parallel p q
proof —
have tpnz: tval p # 0
proof —

have p # origin using assms(1) by auto
have casel: lightlike p — ?thesis
by (metis local.diff-add-cancel local.lemNorm2Decomposition
local.lemNullImpliesOrigin local.lemZeroRoot)
have case2: timelike p —> ?thesis
by (metis local.add-less-zeroD local.diff-gt-0-iff-gt
local.lemZeroRoot local.not-square-less-zero)
thus ?thesis using assms(1) casel by blast
qed

80

have tgnz: tval ¢ # 0 using assms(2)
by (metis local.diff-add-cancel local.lemNorm2Decomposition
local.lemNullImpliesOrigin local.lemZeroRoot)

define phat where phat: phat = ((1/tval p)Qp)
define ghat where ghat: ghat = ((1/tval q)®q)

have phatcausal: causal phat
proof —
have n2: mNorm?2 phat = (sqr (1 /tval p))xmNorm2 p using phat
lemMNorm20fScaled by blast
have lightlike p — lightlike phat using phat n2 tpnz by auto
moreover have timelike p — timelike phat using phat n2 tpnz
by (simp add: local.lemSquaresPositive)
ultimately show ?thesis using assms(1) by blast
qed

have qhatlightlike: lightlike qhat
proof —
have mNorm2 qhat = (sqr (1/tval q))xmNorm2 ¢ using ghat
lemMNorm20fScaled by blast
thus ?thesis using assms(2) tqnz ghat local. divide-eq-0-iff by force

qed

have hatsorthog: orthogm phat ghat
proof —

have (phat ©m ghat) = (1 /tval p)x(p ©m ghat)

using phat lemMDotScaleLeft[of 1/tval p p ghat] by auto
thus “thesis
using qhat lemMDotScaleRight[of p 1/tval q q] tpnz tqnz assms(3)
by auto

qed

define ps where ps: ps = sComponent phat
define ¢gs where g¢s: gs = sComponent qhat

have p: phat = stPoint 1 ps using phat ps tpnz by auto
have ¢: ghat = stPoint 1 ¢s using qhat qs tgnz by auto

have sNorm2 ps < 1 using p phatcausal by auto
moreover have sNorm2 qs = 1 using q ghatlightlike by auto
moreover have sdot ps gs = 1 using hatsorthog p q by auto
ultimately have ps = gs

using lemCauchySchwarzEqualityInUnitSphere by auto

hence phat = ghat using p q by auto
hence ((1/tval p)®p) = ((1/tval q)®q) using phat ghat by auto

81

hence p = (((tval p)/(tval q)) ® q)
using tpnz tqnz
lemScaleAssoc|of tval p 1/tval p p)
lemScaleAssoc[of tval p 1/tval q q]
by auto
thus ?thesis using tpnz tqnz using local. divide-eq-0-iff
by blast
qed

end

end

18 Matrices

This theory defines 4 x 4 matrices.

theory Matrices
imports Vectors
begin

record ‘a Matriz =
trow :: 'a Point
zrow :: 'a Point
yrow :: 'a Point
zrow :: 'a Point

class Matrices = Vectors
begin

fun applyMatriz :: 'a Matriz = 'a Point = 'a Point
where applyMatriz m p = (| tval = dot (trow m) p, zval = dot (zrow
m) p,
yval = dot (yrow m) p, zval = dot (zrow m) p |

fun tcol :: 'a Matriz = 'a Point
where tcol m = (| tval = tval (trow m), zval = tval (zrow m),
yval = tval (yrow m), zval = tval (zrow m) |)

fun zcol :: 'a Matriz = 'a Point
where zcol m = (| tval = aval (trow m), zval = zval (zrow m),
yval = zval (yrow m), zval = xval (zrow m) |

fun yeol :: 'a Matriz = 'a Point

where ycol m = (| tval = yval (trow m), zval = yval (zrow m),
yval = yval (yrow m), zval = yval (zrow m) |

82

fun zcol :: 'a Matriz = 'a Point
where zcol m = (| tval = zval (trow m), zval = zval (zrow m),
yval = zval (yrow m), zval = zval (zrow m) |

fun transpose :: 'a Matrizx = 'a Matriz
where transpose m = (| trow = (tcol m), zrow = (zcol m),
yrow = (ycol m), zrow = (zcol m) |

fun mprod :: 'a Matrix = 'a Matriz = 'a Matriz
where mprod m1 m2 =
transpose (trow = applyMatriz m1 (tcol m2), zrow =
applyMatriz m1 (zcol m2),
yrow = applyMatriz m1 (ycol m2), zrow =
applyMatriz m1 (zcol m2) |

end

end

19 LinearMaps

This theory defines linear maps and establishes their main prop-
erties.

theory LinearMaps
imports Functions CauchySchwarz Matrices
begin

class LinearMaps = Functions + CauchySchwarz + Matrices
begin

abbreviation linear :: (‘a Point = 'a Point) = bool where
linear L = (L origin = origin)
ANVap. L(e®p) = (a® (Lp)
ANV pg. Lpeq=(~Lp &
ANV pag.Lpeaq=I(Lp) s

83

lemma lemLinearProps:
assumes linear L
shows (L origin = origin) A (L (¢ ® p) = (a ® (L p)))
AL (p&q) = ((Lp))
AN(L(poq=(Lp)
using assms by simp

lemma lemMatrizApplicationIsLinear: linear (applyMatriz m)
using lemDotScaleRight lemDotSumRight lemDotDiff Right
by fastforce

lemma lemLinearIsMatrizApplication:

assumes linear L

shows 3 m . L = (applyMatriz m)
proof —

define Lt where Lt = L tUnit

define Lz where Lx = L zUnit

define Ly where Ly = L yUnit

define Lz where Lz = L zUnit

define M where M = transpose (| trow = Lt, zrow = Lz, yrow =
Ly, zrow = Lz)

have trowM: trow M = (| tval = (tval Lt), zval = (tval Lx),
yval = (tval Ly), zval = (tval Lz) |
using M-def by auto
have zrowM: zrow M = (tval = (aval Lt), zval = (2val Lz),
yval = (zval Ly), zval = (zval Lz) |
using M-def by auto
have yrowM: yrow M = (tval = (yval Lt), zval = (yval Lz),
yval = (yval Ly), zval = (yval Lz) |
using M-def by auto
have zrowM: zrow M = (tval = (zval Lt), zval = (zval Lz),
yval = (zval Ly), zval = (zval Lz) |
using M-def by auto

{ fix u :: 'a Point
define tvu where tou: tou = ((tval u)@tUnit)
define zvu where zvu: zvu = ((zval u)@xUnit)
define yvu where yovu: you = ((yval w)RyUnit)
define zvu where zvu: zvu = ((zval v)®2zUnit)

have u: u = (tvu @ (zvu O (yvu & zvw)))
using tvu zvu you zvu lemPointDecomposition|of u] by simp

84

have Mu: applyMatriz M v = (| tval = dot (trow M) u,
zval = dot (zrow M) u,
yval = dot (yrow M) u,
zval = dot (zrow M) u |) by simp

have tvalMu: tval (applyMatriz M u) =
(tval Lt)x(tval u) + (tval Lx)x(zval u) + (tval Ly)*(yval u) +
(tval Lz)*(zval u)
using Mu trowM by force
have zvalMu: zval (applyMatric M u) =
(zval Lt)x(tval u) + (zval Lz)*(zval u) + (aval Ly)x(yval u) +
(zval Lz)*(zval u)
using Mu xrowM by force
have yvalMu: yval (applyMatriz M u) =
(yval Lt)*(tval u) + (yval Lz)*(zval u) + (yval Ly)*(yval u) +
(yval Lz)*(zval u)
using Mu yrowM by force
have zvalMu: zval (applyMatriz M u) =
(zval Lt)x(tval u) + (zval Lz)x(zval u) + (zval Ly)*(yval u) +
(zval Lz)x*(zval u)
using Mu zrowM by force

hence Lu: L u = ((L tvu) & ((L zvu) @ (L yvu) & (L zvu))))
using assms u
lemLinearProps[of L 0 tou zvu & (you & zvu))
lemLinearProps|of L 0 zvu yvu @ zvu]
by auto
have Ltvu: L tvu = ((tval u)®Lt)
using tvu Lt-def assms lemLinearProps[of L tval u tUnit] by auto
have Lzvu: L zvu = ((zval u)QLx)
using zvu Lz-def assms lemLinearProps[of L zval u xUnit] by
auto
have Lyvu: L yvu = ((yval uw)®Ly)
using yvu Ly-def assms lemLinearProps[of L yval u yUnit] by
auto
have Lzvu: L zvu = ((zval u)®Lz)
using zvu Lz-def assms lemLinearProps[of L zval u zUnit] by
auto

hence Lu" L u = (((tval u)®Lt) & (((zval u)®Lz)

@ (((yval u)@Ly) & ((zval u)®Lz))))
using Lu Ltvu Lxvu Lyvu Lzvu by force

hence L u = applyMatriz M u
using Lu’ add-assoc tvalMu zvalMu yvalMu zvalMu mult-commute
by simp

}

85

hence V u. L v = applyMatriz M u by auto
thus ?thesis by force
qed

lemma lemLinearIffMatriz: linear L <— (3 M. L = applyMatriz M)
using lemMatrizApplicationlsLinear lemLinearIsMatrixApplication
by auto

lemma lemlIdIsLinear: linear id
by simp

lemma lemLinearIsBounded:

assumes linear L

shows bounded L
proof —

obtain M where M: L = applyMatriz M using assms lemLinear-
IffMatriz by auto

define tr where tr = trow M

define zr where xr = zrow M

define yr where yr = yrow M

define zr where zr = zrow M

define bnd where bnd = (sqr(norm tr)+sqr(norm zr)+sqr(norm
yr)+sqr(norm zr))

define n
where n: n = (tval=norm tr, aval=norm xr, yval=norm yr,
zval=norm zr |)
hence bnd = dot n n using bnd-def by auto
hence norm2n: bnd = norm2 n by simp
hence bndnonneg: bnd > 0 by simp

{ assume bndpos: bnd > 0
{ fix p :: 'a Point

define ¢ where ¢ = applyMatriz M p
hence ¢ = (| tval=dot tr p, zval=dot zr p,yval=dot yr p, zval=dot
zrp)

using tr-def xr-def yr-def zr-def by auto

hence 1: dot q g = sqr (dot tr p) + sqr (dot xr p)
+ sqr (dot yr p) + sqr(dot zr p)

by auto

also have ... < sqr (dot tr p) + sqr (dot zr p) + sqr (dot yr p)
+ (sgr(norm zr)xsqr(norm p))

86

using lemCauchySchwarzSqr4|of zr p| lemNormSqrisNorm?2
by auto
also have ... < sgr (dot tr p) + sqr (dot zr p) + (sgr(norm
yr)*sqr(norm p))
+ (sgr(norm zr)xsqr(norm p))
using lemCauchySchwarzSqr4|of yr p] lemNormSqrisNorm2
by auto
also have ... < sqr (dot tr p) + (sqr(norm zr)+sqr(norm p)) +
(sqr(norm yr)xsqr(norm p))
+ (sgr(norm zr)xsqr(norm p))
using lemCauchySchwarzSqr4[of xzr p] lemNormSqrIsNorm2
by auto
also have ... < (sgr(norm tr)xsqr(norm p)) + (sqr(norm
zr)xsqr(norm p)) + (sgr(norm yr)xsqr(norm p))
+ (sgr(norm zr)xsqr(norm p))
using lemCauchySchwarzSqr4[of tr p| lemNormSqrisNorm?2
by auto
finally have dot q ¢ < (sqr(norm tr)xsqr(norm p)) + (sqr(norm
xr)*sqr(norm p)) + (sqgr(norm yr)xsqr(norm p))
+ (sqr(norm zr)xsqr(norm p)) by auto
hence dot q ¢ < (sqr(norm tr)+sqr(norm zr)+sqr(norm yr)+sqr(norm
zr))*sqr(norm p)
using distrib-right by auto
hence norm2 ¢ < bnd * sqr(norm p) using bnd-def by simp
hence norm2 (applyMatriz M p) < bnd * norm2 p
using ¢-def lemNormSqrlsNorm2 by simp
}
hence V p. norm2 (applyMatriz M p) < bnd * norm2 p by auto
hence 3 bnd > 0 .V p. norm2 (applyMatriz M p) < bnd * norm2

p
using bndpos by auto

}

hence casel: (bnd > 0) — (bounded (applyMatriz M)) by simp

{ assume bnd0: bnd = 0
hence n = origin using lemNulllmpliesOrigin norm2n by auto
hence (norm tr = 0) A (norm zr = 0) A (norm yr = 0) A (norm
zr = 0)
using n by simp
hence allzero: (tr = origin) A(zr=origin) A(yr=origin) \(zr=origin)
using lemZeroNorm by auto

define one where one = (1::'a)
hence onepos: one > 0 by simp
{ fix p :: 'a Point
have applyMatrix M p = origin
using allzero tr-def xr-def yr-def zr-def by auto
hence norm2(applyMatriz M p) = 0 by auto
hence norm?2(applyMatriz M p) < one * (normZ2 p) using onepos

87

by auto
}
hence V p . norm2(applyMatriz M p) < one x (norm2 p) by auto
hence 3 one > 0.V p. norm2(applyMatric M p) < one * (norm2
)
using onepos by auto
hence bounded (applyMatriz M) by simp

}

hence case2: (bnd = 0) — (bounded (applyMatriz M)) by simp

thus ?thesis using casel case2 bndnonneg M by auto
qed

lemma lemLinearlsCts:
assumes linear L
shows cts (asFunc L)
proof —
{ fix z’
assume z": z' = L x

have bounded L using assms(1) lemLinearlsBounded[of L] by auto
then obtain bnd where bnd: (bnd > 0) A (Vp. norm2(L p) <
bnd*(norm2 p))
by auto
then obtain bb where bb: (bb > 0) A (sqr bb) > bnd
using bnd lemSquareEzxistsAbove|of bnd] by auto

{fixp
have p1: norm2 (L p) < bndx(norm2 p) using bnd by simp
have bndx(norm2 p) < (sqr bb)*(norm2 p) using bb mult-mono
by auto
hence norm?2 (L p) < (sqr bb)*(norm2 p) using p! by simp
}

hence bbbnd: Vp . norm2 (L p) < (sqr bb)*(norm2 p) by auto

{ fix e
assume epos: e > ()
define d where d: d = ¢/bb
hence dpos: d > 0 using epos bb by simp
have (d = ¢/bb) A (bb # 0) using d bb by auto
hence esqr: (sqr d)*(sqr bb) = sqr e by simp

{ fix p’
assume p”: p’ € applyToSet (asFunc L) (ball z d)
then obtain p where p: (p € ball x d) A (p’ = L p) by auto
hence p-near-z: p within d of x using lemSep2Symmetry|of p

88

z] by force

have norm2 (L (pSz)) < (sgr bb) * norm2 (pSz) using bbbnd
by blast
hence 1: norm2 (L (poz)) < (sqr bb) * (sep2 p z) by auto
have (sqr bb)x(sep2 p x) < (sqr bb)*(sqr d)
using lemMultPosLT bb p-near-x by auto
hence 2: norm2 (L (poz)) < (sqr bb) * (sqr d) using 1 by
simp

have (L (pozx)) = (L p) © (L z)) using assms(1) by auto
hence norm2 (L (pSz)) = sep2 p’ x’ using p z’ by force
hence sep2 p’ x’ < (sqr bb) * (sqr d) using 2 by simp
hence sep2 p’ 1/ < sqr e using d bb by auto
hence p’ € ball ' e using lemSep2Symmetry by auto

}

hence applyToSet (asFunc L) (ball x d) C ball ' e by auto

hence 3d>0. applyToSet (asFunc L) (ball z d) C ball 2’ e
using dpos by auto

}

hence Vex>0. 3d>0. applyToSet (asFunc L) (ball z d) C ball ' e
by auto

thus ?thesis by auto
qed

lemma lemLinOfLinlsLin:
assumes (linear A) A (linear B)
shows linear (B o A)
proof —

have 1: (B o A) origin = origin using assms by auto

have 2:V ap. (Bo A)(a ® p) = (a ® ((B o A) p)) using assms
by auto

have 3:V pgq. (Bo A) (p® q) = ((Bo A4) p) & ((Bo 4) q)
using assms by auto

have /:V pq.(BoA) (p©q) = (((BoA)p) o ((BoA)aq)
using assms by auto

thus ?thesis using 1 2 3 by force
qed

lemma lemlInverseLinear:
assumes linear A
and invertible A
shows 3A’. (linear A NN pqg. Ap=q+— A qg=p)
proof —
obtain L where L: (V pq. Ap=q+— L q=p)

89

using assms(2) by metis
have 1: L origin = origin using assms L by auto

{fixp' ¢ a
obtain p where p: (A p=p) A (V2. A 2 =p’ — 2 = p) using
assms(2) by blast
obtain ¢ where ¢: (A ¢ =¢) A (V2. A 2 = ¢ — 2z = ¢) using
assms(2) by blast

have L (a ® p’) = L (a ® (A p)) using p by auto

also have ... = L (A (a ® p)) using assms(1) by auto
also have ... = (¢ ® p) using L by blast

finally have 2: L (a ® p) = (a ® (L p’)) using p L by auto

(A p) @ (A q)) using p ¢ by auto

have L (p' ® ¢') =L
= L(A (p ® q)) using assms(1) by auto

also have ...

also have ... = (p ® ¢) using p ¢ L by auto

finally have 3: L (p' ® ¢') = ((L p') ® (L q’)) using p ¢ L by
auto

have L (p' & ¢') = ((A p) © (A q)) using p q by auto
also have ... = L(A (p © q)) using assms(1) by auto
also have ... = (p © ¢) using p ¢ L by auto
finally have /: L (p'© ¢') = ((L p') © (L ¢')) using p ¢ L by
auto

hence linear L by auto

thus ?thesis using L by auto
qged

end

end

90

20 Affine

This theory defines affine transformations and established their
key properties.

theory Affine
imports Translations LinearMaps
begin

class Affine = Translations + LinearMaps
begin

abbreviation affine :: (a Point = 'a Point) = bool
where affine A =3 L T . (linear L) A (translation T) AN (A= T o
L)

abbreviation afffnvertible :: (‘a Point = 'a Point) = bool
where affInvertible A = affine A N invertible A

abbreviation isLinearPart :: (‘a Point = 'a Point) = ('a Point =
'a Point) = bool
where isLinearPart A L = (affine A) A (linear L) A
(3 T. (translation T N A =T o L))

abbreviation isTranslationPart :: ('a Point = 'a Point) = ('a Point
= 'a Point) = bool
where isTranslationPart A T = (affine A) A (translation T) A
(3 L. (linear LA A= T o L))

20.1 Affine approximation

A key concept in the proof is affine approximation. We will even-
tually assert that worldview transformation can be approximated
by invertible affine transformations.

abbreviation affineApproz :: ('a Point = 'a Point) =
('a Point = 'a Point => bool) =
'a Point = bool
where affineApproz A f x = (isFunction f) A
(affInvertible A) A (diffApprox (asFunc A) fx)

fun applyAffineToLine :: ('a Point = 'a Point)
= 'a Point set = 'a Point set = bool
where applyAffineToLine A 11" +— (affine A) A

91

(3 TLbd. ((linear L) A (translation T) N (A =T o L) A
(I =line b d) A (I'= (line (A D) (L d)))))

abbreviation affConstantOn :: (‘a Point = 'Point) = 'a Point =
‘a Point set = bool
where affConstantOn A x© s = (Fe>0. V y€s. (y within € of) —

(A y) = (4 2)))

lemma lemTranslationPartlsUnique:
assumes isTranslationPart A T1

and isTranslationPart A T2
shows T = T2
proof —

obtain LI where T1: linear LI N A = T1 o L1 using assms(1)
by auto

obtain L2 where T2: linear L2 N A = T2 o L2 using assms(2)
by auto

obtain t/ where t1:V z. T1 z = (z & t1) using assms(1) by auto

obtain t2 where t2:V z. T2 z = (z @ t2) using assms(2) by auto

have T1 origin = A origin using T1 assms(1) by auto
also have ... = T2 origin using T2 assms(2) by auto
finally have T'1 origin = T2 origin by auto
hence t1 = t2 using t1 t2 by auto
hence V z. (T1 x = T2 z) using t! t2 by auto
thus ?thesis by auto

qed

lemma lemLinearPartlsUnique:

assumes isLinearPart A L1
and isLinearPart A L2
shows L1 =12
proof —

obtain T1 where T1: translation T1 AN A
assms(1) by auto

obtain T2 where T2: translation T2 N A = T2 o L2 using
assms(2) by auto

T1 o L1 using

have 1: isTranslationPart A T1 using assms(1) T1 by auto
have 2: isTranslationPart A T2 using assms(2) T2 by auto

92

hence T1T2: T1 = T2 using 1 2 lemTranslationPartlsUnique[of A
T1 T2] by auto

obtain ¢ where ¢: V z. T1 z = (x @ t) using T1 by auto

define T where T = mkTranslation (origin © t)

hence 3: T o A = L1 using T'1 t lemInverseTranslation by auto

have T o A = L2 using T-def T2 t T1T2 lemInverseTranslation
by auto

thus “thesis using 3 by auto
qed

lemma lemLinearImpliesAffine:
assumes linear L
shows affine L
proof —
have 1: L = id o L by fastforce
thus ?thesis using assms lemlIdlsTranslation by blast
qed

lemma lem TranslationImpliesAffine:
assumes translation T
shows affine T
proof —
have T' = T o id by force
thus ?thesis using assms lemldIsLinear by blast
qed

lemma lemAffineDiff:
assumes linear L
and 3 T . ((translation T) A (A= T o L))
shows ((Ap)© (A q)=L(poq)
proof —
obtain T where T: (translation T) A (A = T o L) using assms(2)
by auto
thus ?thesis using assms(1) by auto
qed

lemma lemAffineImplies TotalFunction:
assumes affine A
shows isTotalFunction (asFunc A)
by simp

lemma lemAffineEqualAtBase:

93

assumes affineApproz A f x
shows Vy. (fzy) «— (y=Ax)
proof —
have diff: diffApprox (asFunc A) f x using assms(1) by simp
{fix y
assume y: fzy
hence fz y A (asFunc A) z (A z) by auto
hence A z = y using diff lemApproxEqualAtBase|of f x asFunc A

y]
by auto

}

hence I2r:Vy . fzy — y = A x by auto

{ obtain y where y: f z y using diff by auto
hence y = A z using [2r by auto
hence [z (A z) using y by auto
}
thus ?thesis using [2r by blast
qed

lemma lemAffineOfPointOnLine:
assumes (linear L) A (translation T) AN (A = T o L)
and z = (b @ (a®d))
shows Az=((Ab)® (a® (Ld)))
proof —
have (Lz=((Lb) @ (L (a® d)))) A (L (a® d) = (a® (Ld)))
using assms by blast
hence Az =T ((Lb) ® (a ® (L d))) using assms(1) by auto
also have ... = ((T (L b)) & (a ® (L d)))
using assms(1) lemTranslationSumlof T L b a ® (L d)] by auto
finally show ?thesis using assms(1) by auto
qed

lemma lemAffineOfLinelsLine:
assumes isLine [
shows (applyAffineToLine A 11') +— (affine A A l' = applyToSet
(asFunc A) 1)
proof —
{ assume lhs: applyAffineToLine A 11’
hence affA: affine A by fastforce
have 3 T L b d . (linear L) A (translation T) A (A =T o L) A
(I = line b d) A (I'= (line (A b) (L d))) using lhs by auto
then obtain T L b d where TL: (linear L) A (translation T) A
(A=ToL)A
(Il =line b d) A (I’ = (line (A b) (L d)))

94

using lhs by blast
{ fix p’
{ assume p’ € I
then obtain ¢ where a: p’ = ((A b) ® (a ® (L d))) using
TL by auto
define p where p: p = (b ® (a®d))
hence p’ € applyToSet (asFunc A) | using a TL lemAffineOf-
PointOnLine by auto
}
hence (p’ € ') — (p’ € applyToSet (asFunc A) 1) by auto

}

hence 2r: I’ C (applyToSet (asFunc A) 1) by auto

{ fix p’
{ assume p’ € applyToSet (asFunc A) |
then obtain p where p: p € [A p’ = A p by auto
then obtain ¢ where a: p = (b ® (a®d)) using TL by auto
hence A p = (A b) ® (a ® (L d))) using TL lemAffineOf-
PointOnLine by auto
hence p’ € I’ using TL p by auto
}
hence (p’ € applyToSet (asFunc A) 1) — (p’ € ') using 12r
by auto
}
hence (applyToSet (asFunc A) l) C I’ by auto
hence affine A A 1l' = applyToSet (asFunc A) | using affA 12r by
auto
}
hence rip1: (applyAffineToLine A 11"y — (affine A A I' = apply-
ToSet (asFunc A) 1)
by blast

{ assume rhs: (affine A) A (I’ = applyToSet (asFunc A) 1)

obtain b d where bd: | = line b d using assms(1) by auto
obtain T L where TL: (linear L) A (translation T) AN (A =T o
L)
using rhs by auto

{ fix p’
assume p’ € [
then obtain p where p: (p €) A (4 p = p’) using rhs by auto
then obtain ¢ where a: p = (b ® (a®d)) using bd by auto
hence A p=((Ab) ® (a ® (L d)))
using TL lemAffineOfPointOnLine by auto
hence p’ € line (4 b) (L d) using p by auto
}
hence 2r: I’ C line (A b) (L d) by force

95

{ fix p’

assume p’ € line (A b) (L d)

then obtain a where a: p’ = ((A b) & (a ® (L d))) using
TL by auto

define p where p: p = (b @ (a®d))

hence A p = ((A b)) ® (a ® (L d)))

using TL lemAffineOfPointOnLine by auto
hence A p = p’ using a by simp
hence p’ € applyToSet (asFunc A) | using p bd by auto

}
hence line (A b) (L d) = I’ using rhs 12r by blast

hence applyAffineToLine A 11’ using TL bd by auto
}
hence (affine A) A (I’ = applyToSet (asFunc A) 1)
— (applyAffineToLine A 1 1)
by blast

thus ?thesis using rip! by blast
qed

lemma lemOnLineUnderAffine:

assumes (affine A) A (onLine p)
shows onLine (A p) (applyToSet (asFunc A) 1)
proof —

define !’ where [I”: I’ = applyToSet (asFunc A) |
have lineL: isLine | using assms by auto

hence TIl": applyAffineToLine A 11’
using lemAffineOfLinelsLine[of | A l'] assms I’
by blast
hence 3 T/ L b d . (linear L) A (translation T') N (A= T'o L) A
(I =line b d) A (I'= (line (A b) (L d))) by force
then obtain T/ L b d
where TLbd: (linear L) A (translation T') A (A = T'o L) A
(I =line b d) AN (I’ = (line (A b) (L d))) by blast
then obtain ¢ where a: p = (b ® (a®d)) using assms by auto

hence A p = ((A b) & (a ® (L d))) using lemA ffineOfPointOnLine
TLbd by auto

thus ?thesis using [’ TLbd by blast
qed

lemma lemLineJoiningUnderAffine:

96

assumes affine A

shows applyToSet (asFunc A) (lineJoining p q) = lineJoining (A
p) (4 g)
proof —

obtain T L where TL: translation T A linear L N A = TolL using
assms(1) by auto

hence ((4 q) © (4 p)) = L (¢&p) by auto

{fixa
have (a®((4 q) © (A p))) = L (a ® (¢5p))
using TL lemLinearProps[of L a qSp] by force

}
hence as: Va. (a®((4A ¢) © (A p))) = L (a ® (¢©p)) by auto

{ fix z’
assume z’ € applyToSet (asFunc A) (lineJoining p q)
then obtain z where z: = € (lineJoining p q) N 2’ = A z by
force
then obtain ¢ where a: z = (p @ (a®(¢Sp))) by force

have expandL: L (p & (a®(¢Sp))) = (L p) & (L (a®(¢Sp))))
using TL lemLinearProps[of L 0 p (a®(¢Sp))]

by fast
have 2’ = A (p @ (a®(¢Sp))) using z a by fast
also have ... = (T (L (p @ (a®(¢op))))) using TL by force
also have . =T ((L p) ® (L (a®(¢Sp)))) using expandL by

force
finally have 2z’ = ((T (L p)) @ (L (a®(¢Sp))))
using TL lemTranslationSum[of T L p L (a®(qSp))]
by auto
hence z’ € lineJoining (A p) (A q) using TL as by auto
}
hence 2r: applyToSet (asFunc A) (lineJoining p q) C lineJoining
(A p) (A q)
by force

{ fix z’
assume z’ € lmeJommg (A p) (A q)
hence 3a . 2’ = (T (L p)) & (a2((4 q)o(4 p)))
using TL by auto
then obtain a where a: 2/ = ((T (L p)) ® (a®((A ¢)©(4 p))))
using TL by fast
hence z' = ((T (L p)) ® (L (a®(¢Ep)))) using as by force
also have ... = T ((L p) ® (L (a®(¢Sp))))
using TL lemenslatwnSum[of TLplL (a®(qop))] by simp
also have ... =T (L (p ® (a®(q6p))))
using TL lemLinearProps[of L 0 p a®(qSp)] by auto
finally have 2’ = A (p @ (a®(¢Sp))) using TL by auto

97

hence z’ € applyToSet (asFunc A) (lineJoining p q) by auto
}
thus ?thesis using [2r by auto
qed

lemma lemAffinelsCts:
assumes affine A
shows cts (asFunc A)
proof —

have 3 T L . (translation T)A(linear L)AN(A = T o L) using assms
by auto

then obtain T L where TL: (translation T)A(linear L)N(A = T o
L) by auto

define f where f: f = asFunc L

define g where ¢: ¢ = asFunc T

have 1: cts f x using f TL lemLinearIsCts[of L x] by auto

have 2: Vy. (fzy) — (cts g y)

using [g TL lemTranslationIsCts[of T z| by auto

have cts (composeRel g f) x using 1 2 lemCtsOfCtsIsCts[of [z g]
by simp

thus ?thesis using f g TL by auto
qed

lemma lemAffineContinuity:

assumes affine A

shows V z. Ve>0.35>0 . Vp. (p within § of) — ((A p) within
 of (A 1))
proof —

{ fix z

{ fix e
assume epos: e > (

have (asFunc A) z (A z) A (cts (asFunc A) z)
using assms lemAffinelsCts[of A z] by auto
hence u: (Ve>0. 35>0. (applyToSet (asFunc A) (ball z 0)) C
ball (A z) €)
by force
then obtain d where d: (d > 0) A
(applyToSet (asFunc A) (ball x d)) C ball (A
z) e
using epos by force

{fixp

98

assume p within d of =
hence (4 p) within e of (A z) using d lemSep2Symmetry by
force

}

hence 3d>0 . Vp. (p within d of x) — ((A p) within e of (A
z))
using d by auto

}

hence Ve>0. 3d>0 .V p. (p within d of) — ((A p) within e of
(4 z))

by auto
}
thus ?thesis by auto
qed

lemma lemAffOfAffIsAff:
assumes (affine A) A (affine B)
shows affine (B o A)
proof —
obtain TA LA TB LB where props:
translation TA A linear LA A translation TB A linear LB A
A=TAo LA N B = TB o LB using assms by blast
then obtain ta tb where ts: (Vp. TA p = (p ® ta)) A (Vp. TBp
= (p ® tb)) by auto

{ fixp
have (Bo A) p = ((LB ((LA p) @ ta)) @ tb) using props ts by
force

also have ... = (((LB (LA p)) ® (LB ta)) @ tb) using props by
force

also have ... = (((LBoLA) p) & ((LB ta)®tb)) using add-assoc
by force

finally have (B o A) p = ((mkTranslation ((LB ta)®tb)) o (LBoLA))
p by force

}
hence BA: (B o A) = (mkTranslation ((LB ta)®tb)) o (LBoLA) by

auto

define T where T: T = mkTranslation ((LB ta)®tb)

hence trans: translation T using lemMkTrans by blast

define L where L: L = (LBoLA)

hence lin: linear L using lemLinOfLinlsLin[of LA LB] props by
auto

hence (translation T) A (linear L) A ((BoA) = (ToL)) using T L
trans lin BA by auto

thus ?thesis by auto
qed

99

lemma lemlInverseAffine:
assumes affinvertible A
shows 3A'. (affine ANV pq.Ap=qg+— A qg=1p)
proof —
obtain A’ where A (V pq. Ap=qg+— A" q=1p)
using assms by metis

obtain T L where TL: translation T A linear L N (A = T o L)
using assms(1) by auto

obtain T/ where T (translation TY N (V pq. Tp=q+— T’
q=7p)
using TL lemInverseTrans[of T| by auto

{fixp
{fix ¢
assume Ap: A p = gq
hence T (L p) = ¢ using TL by auto
hence L p = T’ q using T' by auto
hence L p = (T'o A) p using Ap by auto
}
}

hence L: L = (T’ o A) by auto

{fix ¢
obtain r where r: (T’ r = ¢) using T’ by auto
then obtain p where p: (A p=1r) A Vz. Az =r — 2 =p)
using A’ by auto
hence 1: L p = q using L r by auto
{ fix z
assume L x = ¢
hence T’ (A z) = ¢ using L by auto
hence A z = r using r T’ lemTranslationInjective[of T'] by
force
hence =z = p using p A’ by blast
} hence 3p. (Lp=q) AN (Vz. Lz =q — z = p) using I by
auto

}

hence invL: invertible L by blast
then obtain L’ where L’ (linear L) N (N pq.Lp=q+— L'q

=p)
using TL lemInverseLinear|[of L] by blast

100

{fixpygq
have A’ ¢=p «— T (L p) = qusing A’ TL by auto
also have ... «+— T’ q= L p using T' by auto
also have ... «+— L p= T’ q by auto
also have ... +— L' (T'q) = p using L' by auto
finally have A’ ¢ = p +— (LT') ¢ = p by auto
}
hence A’ = L’ o T’ by auto
hence affine A’ using lemAffOfAffIsAff[of T' L’
lemTranslationImpliesAffine[of T' T’
lemLinearImpliesAffine[of L'] L’
by auto

thus ?thesis using A’ by auto
qed

lemma lemAffine ApproxDomainTranslation:
assumes translation T
and affineApprox A f x
and Vpq. Tp=q +— T'q=p
shows affineApprox (AoT) (composeRel f (asFunc T)) (T’ x)
proof —

define A0 where A0: A0 = Ao T
define g where g: g = composeRel f (asFunc T)

have ToT" V¥V p . T (T' p) = p using assms(3) by force

have T'oT:V p. T' (T p) = p using assms(3) by force
obtain ¢ where &: V p. T p = (p @ t) using assms(1) by force
hence mkT: T = mkTranslation t by force

{fixpgq
have T' p = ¢ +— T q = p using assms(3) by auto
also have ... +— (¢ ® t) = p using t by auto
also have ... +— ¢ = (p @ (origin © t)) by force
finally have T’ p = q +— q = (p @ (origin © t)) by force
hence T'p = ¢ +— ¢q = mkTranslation (origin © t) p by force
}
hence mkT" T' = mkTranslation (origin © t) by force
hence transT’: translation T' using lemMkTrans by blast

have funcF: isFunction f using assms(2) by auto
hence rtp3a: isFunction g using g by auto

have affA: affine A using assms(2) by auto

101

hence rtp3b: affine A0
using lemAffOfAffIsAff[of T A] lemTranslationImpliesAffinelof T
A0 affA assms(1)
by blast

{fix ¢
obtain p where p: (Ap=¢) A (Vz. Az = ¢ — = = p) using
assms(2) by blast
define p0 where p0: p0 = T’ p
hence Tp0: T p0 = p using assms(3) by blast
hence 1: A0 p0 = q using A0 p by auto
{ fix z
assume A0z = g
hence T z = p using A0 p by fastforce

hence z = p0 using Tp0 assms(1) lemTranslationInjective|of
T] by force

}

hence Vz. A0z = ¢ — = = p0 by auto

hence 3p0. (A0 p0 = q) N Va. A0Dx = ¢ — x = p0) using 1
by auto

}

hence rtp3c: invertible A0 by auto

have diffApproz (asFunc A) f z using assms(2) by auto
hence dAz: (definedAt fx) A

VMe>0.36>0.Nvy.
((y within § of x)
e
((definedAt fy) ANV wov. (fyuA (asFunc A) yv) —
(sep2vu) < (sqre)xsep2yz))))
)) by blast
hence (definedAt fz) A (x = T (T’ z)) using assms(1) ToT' by

auto
hence rip3d1: (definedAt g (T' z)) using g by auto

{ fix e
assume epos: e > ()
then obtain d where d: (d > 0) A (V y .
((y within d of x)
H
((definedAt fy) NV wvov. (fyuA (asFunc A) yv) —
(sep2vu) < (sqre)*sep2yz))))
using dAx by force
{fixy
assume y within d of (T z)
hence (T y) within d of (T (T’ z)) using assms(1) lemBall-

102

Translation by auto
hence (T y) within d of x using ToT’ by auto
hence (definedAt f (T y)) A (Y vv. (f (Ty) uA (asFunc A)
(T y) v) —
(sep2vu) < (sqre)*sep2 (Ty) x)
using d by blast
hence (definedAt g y) A (V wv. (gyuA (asFunc A0) y v) —
(sep2vu) < (sqre)*sep2 (T y) z) using g A0 by auto
hence (definedAt g y) A (V wv. (gyuA (asFunc A0) y v) —
(sep2vu) < (sqre)*sep2y (T z))
using transT’ lemTranslationPreservesSep2[of T' Ty x] T'oT
by auto
}

hence 3d > 0. Vy . (y
(definedAt g y) A
(sep2uvu)

using d by fast

within d of (T' z)) —
M uv.(gyuA (asFunc A0) y v) —
< (sgre) *xsep2y (T x))

}
hence rtp3d2: Vex>0.3d > 0.Vy . (y within d of (T' z)) —

)
(definedAt g y) A (V wv. (9gyuA (asFunc A0) y v) —
(sep2vu) < (sqre)«sep2y (T x))
by auto
hence rtp3d: diffApprox (asFunc A0) g (T’ z) using rtp3d1 by fast

have rtp3: affineApprox A0 g (T') using rtp3a rtp3b rtpSc rtp3d
by blast

thus ?thesis using A0 g by fast
qed

lemma lemAffineApprozRange Translation:
assumes translation T
and affineApprox A f x
shows affineApprox (ToA) (composeRel (asFunc T) f) x
proof —

define A0 where A0: A0 = T o A
define g where g: g = composeRel (asFunc T) f

obtain T/ where T (translation TY N (VY pq. Tp=q+— T’
q=p)
using assms(1) lemInverseTrans[of T] by auto

have ToT"V p . T (T' p) = p using T’ by force
have T'oT:V p. T' (T p) = p using T’ by force
obtain ¢t where t:V p. T p = (p ® t) using assms(1) by auto

103

hence mkT: T = mkTranslation t by auto

{fixpgq
have T'p=q +— T q = p using T’ by auto
also have ... +— (¢ @ t) = p using t by auto
also have ... «+— ¢ = (p @ (origin © t)) by force
finally have T’ p = q <— ¢ = (p @ (origin © t)) by force
hence T'p = q +— q = mkTranslation (origin © t) p by force
}
hence mkT" T’ = mkTranslation (origin © t) by auto
hence transT": translation T' using lemMkTrans by blast

have funcF: isFunction f using assms(2) by auto
hence rtp3a: isFunction g using g by auto

have affA: affine A using assms(2) by auto
hence rtp3b: affine A0
using lemAffOfAffIsAff[of A T] lemTranslationImpliesAffine[of T)
A0 affA assms(1)
by blast

{fix ¢
obtain p where p: (Ap=T'g) AN(NVz. Az =T q— x=1p)
using assms(2) by blast
hence T' ¢ = A p by auto
hence T (A4 p) = q using T’ ToT’ by auto
hence 1: A0 p = q using A0 by auto

{fixz
assume A0z = q
hence T (A z) = q using A0 by auto
hence T'(T (A z)) = T’ q by auto
hence Az = T’ qusing T'oT by auto
hence z = p using p by auto

}

hence Vz. A0 x = ¢ — = = p by auto

hence 3p0. (A0 p0 = q) N Vz. AOx = ¢ — = = p0) using 1
by auto

}

hence rtp3c: invertible A0 by auto

have diffApprox (asFunc A) f x using assms(2) by auto
hence dAz: (definedAt f) A
VMe>0.36>0.NMvy.

104

((y within § of x)
BN
((definedAt fy) NV wov. (fyuA (asFunc A) y v) —
(sep2vu) < (sqre)xsep2yz))))
)) by blast
hence rtp3d1: definedAt g x using g by auto

{fixe
assume epos: e > 0
then obtain d where d: (d > 0) A (V y .
((y within d of z)
.
((definedAt fy) NV wov. (fyuA (asFunc A) y v) —
(sep2vu) < (sqre)*sep2yzx))))
using dAz by auto
{fixy
assume y within d of ©
hence (definedAt fy) AN (VY wov. (fyuA (asFunc A) y v) —
(sep2uvu) < (sqre)* sep2yx) using d by force
hence (definedAt g y) A (VY vwv . (fyuA (asFunc A) y v) —
(sep2vu) < (sqre) * sep2y x) using g by force
hence (definedAt g y) A (Y wv. (gyuA (asFunc AOQ) yv) —
(sep2vu) < (sqre)*sep2yz)
using g A0 assms(1) lemBallTranslation by force
}
hence 3d>0. Vy . (y within d of) —
(definedAt g y) A (VY wv . (gyuA (asFPunc A0) y v) —
(sep2vu) < (sqre)«*seplyzx)
using d by force
}
hence rtp3d2: Ve>0.3d > 0. Vy . (y within d of x) —
(definedAt g y) A (V wv. (gyuA (asFunc AO) y v) —
(sep2vu) < (sqre)*sep2yzx)
by auto
hence rtp3d: diff Approx (asFunc A0) g x using rtp3d1 by auto

hence rtp3: affineAppror A0 g x using rtpS3a ritp3b rtpSc rtp3d by
auto

thus ?thesis using g A0 mkT by best

qed

lemma lemAffineldentity:
assumes affine A
and e>0

105

and YV y . (y within e of 1) — (A y = y)
shows A=1id
proof —

obtain T L where TL: translation T A linear L N A = TolL using
assms(1) by auto

have = within e of © using assms(2) by auto
hence zfired: A x = z using assms(3) by auto

{ fixp
define d where d: d = (p ©)
then obtain a where a: (a > 0) A (norm?2 (a®d) < sqr e)
using assms(2) lemSmallPoints[of e d] by auto

define p’ where p”: p’ = ((a®@d)®z)
hence p'fized: A p’ = p’ using a assms(3) lemSep2Symmetry by
auto

have p'z: (p' © z) = (a ® (p © z)) using p’ d by auto

hence ((1/a)®(p'cx)) = (pSz) using a lemScaleAssoc[of 1/a a
pOx]| by auto

hence p: p = (((1/a)®(p'©x)) ® z) by auto

hence L p = L (((1/a)®(p'cx)) @ z) by auto
also have ... = ((L ((1/a)®(p'©x))) @ (L z)) using TL by blast
- al§o have ... = (L z) @ (L ((1/a)®(p’©x)))) using add-commute
y simp

finally have A p = ((4 z) ® (L ((1/a)®(p'ex))))
using TL lemTranslationSum by auto

hence 1: Ap = (z ® (L ((1/a)®(p'©x)))) using zfized by auto

y have (L ((1/a)®(p'ex))) = ((1/a) @ (L (p'©x))) using TL by
ast

also have ... = ((1/a) ® ((L p) © (L z))) using TL by auto
also have ... = ((1/a) ® ((A p") © (4 z))) using TL by auto
also have ... = ((1/a) ® (p’ © z)) using p'fized zfired by auto
finally have (L ((1/a)®(p'ez))) = (pSz) using p by auto

hence A p = (z & (p © z)) using 1 by auto
hence A p = p using add-diff-eq by auto

thus ?thesis by auto
qed

end

106

end

21 Sublemma4

This theory shows that functions with affine approximations are
continuous where approximated.

theory Sublemma
imports Affine AxTriangleInequality
begin

Our naming of lemmas, propositions, etc., is sometimes coun-
terintuitive. This is because the proof follows a hand-written
proof, and we need to maintain the link between the paper-based
and Isabelle versions. We will specifically be discussing how we
translated from one to the other in a forthcoming paper (under
construction). In fact, sublemmas 1 and 2 were eventually found
to be unnecessary during construction of the Isabelle proof, and
so do not appear in this documentation.

class Sublemma4 = Affine + AzTriangleInequality
begin

lemma sublemma:

assumes affineApproz A [z

shows (36>0. V p. (p within 6 of x) — (definedAt f p)) A (cts f x)
proof —

have diff: (definedAt f) A
VMe>0.36d>0.(y.
((y within § of x)
_>
(definedAt fy) AN (VY uwv. (fyuA (asFunc A) yv) —
(sep2vu) < (sqre)xseplyzx)))
)) using assms by simp

have 0 < 1 by simp
then obtain d where d: (d > 0) A (V y .
((y within d of z)

RN

((definedAt fy) N (Y vv. (fyuA (asFunc A) yv) —

(sep2vu < (sqr1)x*sep2yx))))) using diff by blast
hence V p . (p within d of x) — (definedAt f p) by blast
hence rtp1: 3 § > 0 .V p . (p within 0 of) — (definedAt f p)

using d by auto

107

have funcF': isFunction f using assms by simp
have affA: affine A using assms by simp
have funcA: isFunction (asFunc A) using assms by simp

{ fix z’
assume z”: fz x’
hence az: z' = A z
using assms lemAffineEqualAtBase|of f A z] by blast

{ fix e
assume epos: e > 0
hence e2pos: e¢/2 > 0 by simp

obtain di where dI: (d1 > 0) A (V y .
((y within d1 of x) — ((A y) within (e¢/2) of (A x))))
using e2pos affA lemAffineContinuity by blast

obtain d2’ where d2": (d2' > 0) A (V y .
((y within d2' of x) — ((definedAt fy) A
(Y fy Ay . (fyfy A (asFunc A) y Ay) —
(sep2 Ay fy) < (sar (e/2)) * sep2 y 3))))
using e2pos assms by auto
then obtain d2
where d2: (d2 > 0) A (d2 < d2') A (sqrd2 < d2) A (d2 < 1)
using lemReducedBound|of d2'] by auto

define d where d: d = min d1 d2
have dd1: d < dI using d by auto
have dd2: d < d2 using d by auto
have dpos: d > 0 using dI d2 d by auto

{ fix y’
assume y”: y’ € applyToSet [(ball x d)
then obtain y where y: (y € ball z d) A (fy y') by auto
hence y-near-z: y within d of z using lemSep2Symmetry by
auto

have y within d1 of using lemBalllnBall y-near-x dpos dd1
by auto
hence dist1: (A y) within (e/2) of (A z) using dI by auto

have yd2'z: y within d2' of z using lemBallInBall y-near-x
dpos d2 dd2 by auto
hence V fy Ay . (f vy fy N (asFunc A) y Ay) —

108

(sep2 Ay fy < (sqr (e/2)) = sep2y x)
using d2’ by auto
hence conc2: sep2 (A y) y' < (sqr (e/2)) * sep2 y z using y
by auto

have y within d2 of r using lemBalllnBall y-near-x dpos d2
dd2 by auto
hence yz1: y within 1 of x using lemBalllnBall d2 by auto

have sqr (e/2) > 0 using e2pos lemSqrMonoStrict[of 0 e/ 2]
by auto
hence (sqr (e/2)) * sep2 y x < sqr (e/2)
using mult-strict-left-monolof sep2 y x 1 sqr (e/2)]
lemNorm2NonNeg|of ySx] yxl
by auto
hence dist2: sep2 (A y) y’' < sqr (e/2) using conc2 by auto

define p where p: p = (4 z)
define ¢ where ¢: ¢ = (A y)
define r where r: r = 3’

have tri: axTriangleInequality (¢Sp) (r&q)
using AzTriangleInequality by blast
have Distl: p within (e/2) of q
using dist1 p q lemSep2Symmetry by auto
have Dist2: r within (e/2) of q
using dist2 q r lemSep2Symmetry by auto

have r within ((e/2)+(e/2)) of p
using e2pos Distl Dist2 tri
lemDistancesAdd[of g p 7 e/2 e/ 2]
by blast
hence r within e of p using lemSumOfTwoHalves by auto
hence y' € ball z’ e using p r ax lemSep2Symmetry by auto
}
hence 3d>0. applyToSet f (ball z d) C (ball 2’ €) using dpos
by auto
}
hence (Ve>0. 3d>0. applyToSet f (ball x d) C (ball 2’ ¢))
by auto
}
hence Vz' (fz 2') — (Vex>0. 3d>0. applyToSet f (ball z d) C
(ball 2’ €))
by auto
hence rtp2: cts f x by simp

thus ?thesis using rtp! by auto
qed

109

end

end

22 MainLemma

This theory establishes conditions under which a function maps
tangent lines to tangent lines.

theory MainLemma
imports Sublemma3d Sublemmay
begin

class MainLemma = Sublemma8 + Sublemmay
begin

lemma lemMainLemmaBasic:
assumes tgt: tangentLine | wl origin
and mnjf: injective f
and affapp: affineApprox A f origin
and f00: f origin origin
and ctsf'0: cts (invFunc f) origin
and affline: applyAffineToLine A 11’
shows tangentLine I’ (applyToSet f wl) origin
proof —

define goall where

goall: goall = origin € (applyToSet f wl)
define goal2 where

goal2: goal2 = onLine origin 1’
define goal3 where

goal3: goal3 = accPoint origin (applyToSet f wl)
define subgoalja where

subgoalja: subgoalja = (X p' . onLine p’ 1)
define subgoal/b where

subgoallb: subgoalib = (X p’' . p’ # origin)
define subgoaljcl where

subgoaljcl: subgoaljcl = (A p' de.

(V y" € (applyToSet f wl) . (y" within d of origin) A (y' # origin)

— (3r. (onLine r (lineJoining origin y')) A (r within e of p"))))
define subgoaljc where

subgoaljc: subgoaljc = (X p’ N ex>0.3d>0 . subgoaljcl p' d e)
define goalj where

110

goall: goaly = (p'. (subgoalja p’) N (subgoalib p’) N (subgoalic
A

")

have GOAL: goall A goal2 N goal3 N goal/
— tangentLine 1’ (applyToSet f wl) origin
using goall goal2 goal3 goal4 subgoalja subgoalsb subgoaljcl sub-
goal4c
by force

have affA: affine A using affapp by auto

then obtain 7' L where TL: translation T A linear L N A=ToL
by auto

then obtain ¢ where ¢: Vu. T u = (u ® t) by auto

define Tinv where Tinv: Tinv = mkTranslation (origin & t)

hence transTinv: translation Tinv using lemMkTrans by blast

have linel: isLine | using tgt by auto

hence linel’: isLine I’
using affA affline lemAffineOfLinelsLine
by auto

have funcF': isFunction f using affapp by auto

have A00: A origin = origin
using lemAffineEqualAtBase|of f A origin] affapp f00
by auto

have A origin = ((L origin) @ t) using TL t by auto
also have ... = (origin @ t) using TL by auto
finally have origin = ¢t using A00 by auto

hence Vp. T p = p using t by auto

hence T = id by auto

hence A = L using TL by auto

hence linA: linear A using TL by auto

have ((invFunc f) origin origin)
A Yz . ((invFunc) origin) — (Ve>0. 36>0.
(applyToSet (invFunc f) (ball origin 6)) C ball €))
using f00 ctsf'0 by auto

111

hence ctsfinv: (Ve>0. 35>0.
(applyToSet (invFunc f) (ball origin §)) C ball origin €)
by blast

have ctsA: V z. Ve>0.30>0 . Vp.
(p within § of) — ((A p) within € of (A x))
using affA lemAffineContinuity by auto

have tgt1: origin € wl using tgt by auto

have tgt2: onLine origin | using tgt by auto

have tgt3:V ¢ > 0. 3 q € wl. (origin # q) N (inBall q € origin)
using tgt by auto

have subj: (36>0. Vp. (p within § of origin)
— (definedAt f p)) A (cts f origin)
using affapp sublemmad[of f A origin] by auto

hence ctsfr: (Ve>0. 36>0. (applyToSet f (ball origin J)) C ball
origin €)
using f00 by auto

obtain ddef where ddef: (ddef > 0) A
(¥ p. (p within ddef of origin) — (definedAt f
p))
using sub4 by auto

have rip1: goall using tgtl f00 goall by auto

have [’-from-l: I’ = applyToSet (asFunc A) 1

using tgt affline lemAffineOfLinelsLine by auto

have (asFunc A) origin origin using linA by auto
hence rtp2: goal2 using l’-from-l tgt2 affline goal2 by auto

{ fixe
assume epos: e > (
then obtain dd’
where dd”: (dd’ > 0) N ((applyToSet f (ball origin dd’)) C ball

112

origin e)
using ctsfr by auto

define dd where dd: dd = min dd’ ddef
hence ddpos: dd > 0 using dd’ ddef by simp
then obtain ¢ where ¢: (¢ € wl) A (origin # q) A (q within dd
of origin)
using tgt3 by auto

have dd < ddef using dd by auto
hence q within ddef of origin

using ddpos q lemBalllnBalllof q origin dd ddef] by auto
then obtain ¢’ where ¢” (f ¢ ¢’) using ddef by auto

hence fact3a: q' € (applyToSet f) wl using ¢ by auto

have ¢ # origin using ¢ by auto
hence fact3b: ¢’ # origin using injf ¢’ f00 by auto

have dd < dd’ using dd by auto
hence ¢ € ball origin dd’
using ¢ lemBalllnBalllof q origin dd dd’] ddpos by auto
hence ¢’ € ball origin e using dd’ ¢’ by auto
hence fact3c: q' within e of origin using lemSep2Symmetry by
auto
hence 3 y’ € ((applyToSet) wl) . (origin # y’) A (y" within e of
origin)
using fact3a fact3b ¢’ by auto
}

hence rtp3: goal3 using goal3 by auto

obtain P where P: (onLine P 1) A (P # origin) A
Vex>0.35§>0.V yewl(
((y within 0 of origin) A (y # origin))
H
(3 r. ((onLine r (lineJoining origin y)) A (r within € of P)))))
using tgt by auto

define nP where nP: nP = norm P
have P # origin using P by auto
hence nPpos: nP > 0 using P nP lemNotOriginImpliesPositiveNorm[of
P]
by auto
define a where a: a = 1/nP
hence apos: a > 0 using nPpos by auto

113

define p where p: p = (a®P)
{ assume p = origin
hence (a®P) = origin using p by auto
hence (nP®(a®P)) = (nPRorigin) by simp
hence P = origin using a apos lemScaleAssoc by auto

}

hence p-not-0: p # origin using P by auto

define p’ where p: p'= A p
obtain A’ where A" (affine A") A ((affine A) ANV pqg.Ap=q
— A’ q=p))
using affapp lemInverseAffine[of A] by auto
hence A’ origin = origin AN A’ p’ = p using A00 p’ by blast
hence p’-not-0: p’ # origin using p-not-0 by auto

have (onLine origin) A (onLine P 1) A (origin # P) using P tgt2
by auto
hence [-is-0P: | = lineJoining origin P
using lemLineAndPoints|of origin P l] by auto

have p = (origin ® (a®(P © origin))) using p by auto
hence onLine p (lineJoining origin P) by blast

hence p-on-l: onLine p | using l-is-0P by auto
moreover have [’ = applyToSet (asFunc A) | A isLine I’
using lemAffineOfLinelsLine [of | A 1]
affline
by auto
ultimately have p’-on-l": onLine p’ I’ using p-on-l p’ by auto

have p = (a®P) using p by auto
hence norm2 p = (sqr a)*(norm2 P)
using lemNorm20fScaled|of a P] by auto
hence norm2 p = (sqr a)*(sqr nP)
using nP lemNormSqrisNorm2|of P] by auto
hence np1: norm2p = 1 using a nPpos apos mult-assoc mult-commute
by auto

have (onLine p 1) A (norm2 p = 1) A (tangentLine | wl origin)
using p-on-l npl tgt by auto
hence sub3: Ve > 0.3 6> 0.V yny . (
((y within & of origin) A (y # origin) A (y € wl) A (norm y =
ny))
H
((((1/ny)®y) within € of p) V (((—1/ny)@y) within & of p)))

114

using sublemma3|of | p wl]
by auto

{ fix e
assume epos: e > ()
define el where e1: el = nP x e
hence elpos: el > 0 using nPpos epos by auto
define e¢2 where e2: e2 = ¢/2
hence e2pos: €2 > 0 using epos by auto

obtain dctsA0 where (dctsA0 > 0) A (Vq.
(q within dctsA0 of origin) — ((A q) within e2 of (A origin)))
using ctsA e2pos A00 by blast
hence dctsA0: (dctsA0 > 0) A (V q.
(q within dctsAO of origin) — ((A q) within e2 of origin))
using A00 by auto

obtain dctsAp where dctsAp: (dctsAp > 0) A (¥ q.
(q within dctsAp of p) — ((A q) within e2 of (A p)))
using ctsA e2pos by blast

obtain dsub where dsub: (dsub > 0) A (¥ y ny .
((y within dsub of origin) A (y # origin) A (y € wl) A (norm y
ny))
H
(((1/ny)®y) within (dctsAp) of p)
V (((=1/ny)®y) within (dctsAp) of p))
using apos dctsAp sub3 by blast

obtain daff where daff: (daff > 0) A (V y .
((y within daff of origin)
H
((definedAt fy) NV fy Ay . (fy fy A (asFunc A) y Ay) —
((sep2 Ay fy) < (sqr e2) * sep2 y origin))))
using e2pos affapp by auto

define dmin where dmin: dmin = min dsub daff

hence dminsub: dmin < dsub by auto

have dminaff: dmin < daff using dmin by auto

have dminpos: dmin > 0 using dmin dsub daff by auto

obtain dfinv

where dfinv: (dfinv > 0)
A ((applyToSet (invFunc f) (ball origin dfinv))

115

C ball origin dmin)
using ctsfinv dminpos by auto

{ fix y’
assume y" (y’ € (applyToSet f wl)) A (y' # origin)
then obtain y where y: (fy y’) A (v € wl) by auto

have y-not-0: y # origin using y y' f00 funcF by auto
obtain ny where ny: norm y = ny by auto

hence nypos: ny >0
using y-not-0 lemNotOriginImpliesPositiveNorm[of y| ny by
auto

define p1 where p1: p1 = ((1/ny)®y’)
define ¢qI where q1: g1 = (A ((1/ny)®y))
define p2 where p2: p2 = ((—1/ny)®y’)
define ¢2 where ¢2: ¢2 = (4 ((—1/ny)®y))
define r where r: r = (4 p)

assume y'2: (y' within dfinv of origin)

hence y’ € ball origin dfinv using lemSep2Symmetry by auto

hence y € applyToSet (invFunc f) (ball origin dfinv) using y by
auto

hence ydmin: y € ball origin dmin using dfinv by auto

have dmin < dsub using dmin by auto

hence ydsub: y within dsub of origin
using lemBalllnBall[of y origin dmin dsub] dminpos ydmin
by auto

hence (y within dsub of origin) A (y # origin)
A (y € wl) A (norm y = ny)
using ydsub y-not-0 y ny by force
hence cases: (((1/ny)®y) within dctsAp of p)
V (((=1/ny)®y) within dctsAp of p)
using dsub by blast

hence casesA: (q1 within e2 of r) V (¢2 within e2 of r)
using dctsAp q1 ¢2 r by auto

have dmin < daff using dmin by auto

hence y within daff of origin
using lemBalllnBall[of y origin dmin daff] dminpos ydmin
by auto

116

hence (definedAt fy) AN (V fy Ay . (fy fu A (asFunc A) y Ay)
.
(sep2 Ay fy) < (sqr e2) x sep2 y origin)
using daff by auto
hence sep2 (A y) y’' < (sqr ny) * (sqr e2)
using y ny lemNormSqrlsNorm2 mult-commute by auto
hence sep?2 (A y) y' < sqr (nyxe2)
using lemSqrMult[of ny e2] by auto
hence sep2 ((1/ny)®(A v)) ((1/ny)Ry’) < sqr e2
using nypos
lemScaleBallAndBoundary[of A y y’ nyxe2 1/ny|
by auto
hence partl: sep2 (A ((1/ny)®y)) ((1/ny)Ry’) < sqr e2
using linA lemLinearProps[of A 1/ny y] by auto

{

assume casel: gl within e2 of r

have pq: sep2 pl q1 < sqr e2
using part! lemSep2Symmetrylof p1 q1] pl g1 by auto
hence rq: sep2 r ql < sqr e2 using casel lemSep2Symmetry
r q1 by auto

{ define pp where pp: pp = (¢1Spl1)
define ¢q where qq: qq = (rSql)
have tri1: axTriangleInequality pp qq using Az Trianglelnequal-
ity by simp
hence r within (e2 + e2) of p1
using pp qq pq rq e2pos lemDistancesAddStrictR[of q1 p1 7]
by blast

}

hence donel: p1 within e of r using lemSep2Symmetry lem-
SumOfTwoHalves e2 by auto

have p! = (origin @ ((1/ny)®(y'Sorigin))) using p1 by auto
hence onLine p1 (lineJoining origin y') by fastforce
hence onLine p1 (lineJoining origin y') A (pl within e of p’)
using p’ r donel by blast
}

hence casel: (q1 within e2 of r)
— (onLine p1 (lineJoining origin y') A (p1 within

e of p’))
by blast

{

assume case?2: q2 within e2 of r

have p2 = (((—1)*(1/ny))®y’) using p2 by auto

117

hence p2": p2 = ((—1)®pl1) using lemScaleAssoc[of —1 1/ny
y’] pl by auto
have g2 = (4 (((—1)x(1/ny))®y)) using ¢2 by auto
hence ¢2¢1: ¢2 = ((—1)®q1)
using linA lemLinearPropslof A —1 ((1/ny)®y)] q1
by auto
hence sep2 p2 q2 = sep2 pl q1 using lemScaleSep2[of —1]
p2' by auto
hence pq: sep2 p2 q2 < sqr e2
using part! lemSep2Symmetrylof p1 q1] pl g1 by auto

hence rq: sep2 r q2 < sqr e2 using case2 lemSep2Symmetry
r q¢2 by auto

{ define pp where pp: pp = (¢26p2)
define ¢q where qq: qq = (r6q2)
have tri2: axTriangleInequality pp qq using Az Trianglelnequal-
ity by simp
hence r within (e2 + e2) of p2
using pp qq pq rq e2pos lemDistancesAddStrictR[of q2 p2 r]
by blast
}
hence p2 within e of r using lemSep2Symmetry lemSumOfT-
woHalves e2 by auto
hence done2: p2 within e of p’ using r p’ by simp

have p2 = (origin ® ((—1/ny)(y'©origin))) using p2 by
auto
hence onLine p2 (lineJoining origin y’) by blast
hence onLine p2 (lineJoining origin y’) A (p2 within e of p’)
using p’ done2 by blast
}

hence case2: (q2 within e2 of r)
— (onLine p2 (lineJoining origin y') A (p2 within e of p’))
by blast

hence 3r. (onLine r (lineJoining origin y")) A (r within e of p’)
using casesA casel case2 by blast

hence ((y' € applyToSet f wl) A (y’ within dfinv of origin) A (y’
origin))
— (3r. (onLine r (lineJoining origin y')) A (r within e of p’))
using dfinv by blast

}

hence subgoaljcl p’ dfinv e using dfinv subgoaljcl by blast
hence 3d>0 . subgoaljcl p' d e using dfinv by auto

}

hence Ve>0 . 3d>0 . subgoalfcl p' d e by auto

118

hence subgoaljc p’ using subgoaljc subgoaljcl by force

hence (subgoalja p") A (subgoalsb p’) A (subgoaljc p’)
using p’-not-0 p’-on-1" subgoalja subgoaljb by auto

hence rtp4: goal) using goals subgoalja subgoallb subgoaljc by blast

thus ?thesis using rtpl rtp2 rtp8 GOAL by fastforce
qged

lemma lemMainLemmaOrigin:
assumes tgtz: tangentLine | wl x
and mnjf: injective f
and affappz: affineApprox A fx
and fx0: f x origin
and ctsf'0: cts (invFunc f) origin
and affline: applyAffineToLine A 11’
shows tangentLine I’ (applyToSet f wl) origin
proof —

define T where T: T = mkTranslation x

hence transT: translation T using lemMkTrans by blast
define T’ where T": T' = mkTranslation (origin © x)
hence transT’: translation T' using lemMkTrans by blast

have TT .V pq. Tp=q <— T'q= pusing T T' by auto

define g where g: g = composeRel f (asFunc T)

define 10 where 10: 10 = applyToSet (asFunc T') 1
define wl0 where wl0: wl0 = applyToSet (asFunc T') wl
define A0 where A0: A0 = Ao T

have T' x = origin using T’ by auto

hence rip1: tangentLine 10 wl0 origin
using [0 wl0 transT' tgtx lem TangentLine Translation]of T' © wl]
by auto

have rtp2: injective g
using transT lemTranslationInjective[of T| lemInjOfInjlsInj|of
asFunc T f]

119

injf g
by blast

have T' x = origin using T’ by auto
hence rtp3: affineAppror A0 g origin
using transT TT'
lemAffineApproxDomainTranslation[of T f A x T
affappr g A0
by auto

have (T origin = z) A (f z origin) using T fz0 by auto
hence 3z . ((asFunc T) origin x) A (f z origin) by auto
hence rip4: g origin origin using g T fr0 by auto

define h where h: h = (invFunc (asFunc T))
hence invcomp: composeRel h (invFunc f) = invFunc g
using lemInverseComposition[of g asFunc T f] g by auto

{fixpr
have invl: invFunc (asFunc T) p r +— (ToT) r=T'p
using transT' lemTranslationInjective by auto
henceinvFunc (asFunc T) pr«—r=T'p
using T T’ lemInverseTranslation[of T x T'] by auto
}
hence hT: h = asFunc T' using h by force
hence Vy. cts h y
using transT’ lemTranslationImpliesAffine[of T
lemAffinelsCts[of T
by blast
hence ctsh: Vy. (invFunc f) origin y — cts h y by auto

define ¢’ where ¢": ¢’ = composeRel h (invFunc f)
hence invg: ¢’ = invFunc g using hT invcomp by simp
have cts g’ origin
using ctsf’0 ctsh lemCtsOfCtslsCts|of invFunc f origin h] g’
by auto
hence rtp5: cts (invFunc g) origin using invg by auto

have affA: affine A using assms(3) by auto
hence rip3b: affine A0
using lemAffOfAffIsAff[of T A] lemTranslationImpliesAffine[of T)
A0 affA transT

120

by auto
define 10’ where 10" 10’ = applyToSet (asFunc A0) 10
hence rtp6: applyAffineToLine A0 10 10’
using rtp! rtp3b lemAffineOfLinelsLine[of 10 A0 10]
by auto

have (tangentLine 10 wl0 origin) — (

(injective g) —>
(affineApproz A0 g origin) —
(g origin origin) —
((cts (invFunc g) origin) —
((applyAffineToLine A0 10 10") —
(tangentLine 10’ (applyToSet g wl0) origin))))

using lemMainLemmaBasiclof wl0 10 g A0 10

by blast

hence basic: (tangentLine 10’ (applyToSet g wl0) origin)
using rtpl rtp2 rip3 rip4 ripd rip6 by meson

obtain A’ where A"V pqg. Ap=q+— A" qg=1p
using affappxr by metis

have ToT" T o T' = id using TT' by auto

have 40 o T'= (A o T) o T’ using A0 by auto
also have ... = A o (T o T’) by auto

finally have A0T" A0 o T' = A using ToT’ by auto

have 10’ = applyToSet (asFunc (A0 o T")) | using [0 10’ by auto

hence [0’ = applyToSet (asFunc A) | using AOT' by auto

hence [0'l: 10’ = 1’ using tgtz affline lemAffineOfLinelsLine[of | A
U] by auto

have applyToSet g wl0 = applyToSet (composeRel f (asFunc (ToT")))
wl using wl0 g by auto

also have ... = applyToSet (composeRel f (asFunc id)) wl using
ToT’ by auto
also have ... = applyToSet f wl by auto

finally have applyToSet g wl0 = applyToSet f wl by auto
hence tangentLine I’ (applyToSet f wl) origin using basic 10l by

auto
thus ?thesis by auto

121

qed

lemma lemMainLemma:
assumes tgiz: tangentLine | wl x

and njf: injective f

and affappz: affineAppror A fx

and fry: fzy

and ctsf'y: cts (invFunc f) y

and affline: applyAffineToLine A 11’

shows tangentLine I’ (applyToSet f wl) y

proof —
define Ty where Ty: Ty = mkTranslation y
hence transTy: translation Ty using lemMkTrans by auto
define Ty’ where Ty": Ty’ = mkTranslation (origin © y)
hence transTy': translation Ty' using lemMkTrans by blast
define g where g: g = composeRel (asFunc Ty') f
define Ay where Ay: Ay = Ty’ o A

define ly’ where ly" ly’ = applyToSet (asFunc Ty") I’

have lineL: isLine | using tgtx by auto
have affA: affine A using affappz by auto

have TT"V pq. Typ=q <— Ty’ q = p using Ty Ty' by auto

have rip1: tangentLine | wl z by (rule tgtx)

have rtp2: injective g
using transTy’ lemTranslationInjective|of Ty'] lemInjOfInjIsIng[of
f asFunc Ty’
injf g
by blast

have (translation Ty') — (affineApproz A f x)
— (affineApproz (Ty' o A) (composeRel (asFunc Ty') f) x)
using lemAffineApprozRange Translation|of Ty’ f A x)
by blast
hence rip3: affineAppror Ay g x using Ay g transTy’ affappr by
meson

have rtpj: g = origin using g Ty’ fry by auto

122

define f’ where f”: ' = invFunc f
define h where h: h = (invFunc (asFunc Ty'))
define g’ where g”: ¢’ = invFunc g

hence invcomp: g’ = composeRel f' h
using lemInverseComposition g f' h by auto

{fixpr
have inv!: invFunc (asFunc Ty') p r <— (TyoTy") r = Ty p
using transTy lemTranslationInjective by auto
hence invFunc (asFunc Ty') p r +— r = Ty p using Ty Ty’ by
auto

}

hence hT: h = asFunc Ty using h by force

hence ctsh0: cts h origin
using transTy lemTranslationImpliesAffine[of Ty
lemAffinelsCts[of Ty)
by blast

{fixp
assume h origin p
hence (asFunc Ty) origin p using hT by auto
hence p = y using Ty by auto
hence cts (invFunc f) p using ctsf’y by auto

}

hence ctsf: Vp. h origin p — cts f' p using f’ by auto

have cts g’ origin
using invcomp ctsh0 ctsf lemCtsOfCtslsCts[of h origin f]
by blast

hence rip5: cts (invFunc g) origin using ¢’ by auto

have affAy: affine Ay

using affA lemTranslationImpliesAffine[of Ty'] transTy’

lemAffOfAffIsAff[of A Ty'] Ay

by auto
have I’ = applyToSet (asFunc A) |

using affline lineL affA lemAffineOfLinelsLine[of | A l'] by auto
hence ly’ = applyToSet (asFunc Ay) | using ly’ Ay by auto
hence rtp6: applyAffineToLine Ay 1 ly’

using lineL affAy lemAffineOfLinelsLine[of | Ay ly]

by auto

123

have (tangentLine | wl z) —
(injective g) —>
(affineApproz Ay g x) —
(g z origin) —
(cts (invFunc g) origin) —
(applyAffineToLine Ayl ly") —
(tangentLine ly’ (applyToSet g wl) origin)
using lemMainLemmaOrigin|of z wll g Ay ly]
by fastforce

hence tgt” tangentLine ly’ (applyToSet g wl) origin
using rtpl rtp2 rip3 rip4 ripd rip6 by meson

define wl’ where wl”: wl’ = (applyToSet g wl)

define Term! where Term1: Term! = applyToSet (asFunc Ty) ly’
define Term?2 where Term2: Term2 = applyToSet (asFunc Ty) wl’
define Term3 where Term3: Term3 = Ty origin

have tangentLine ly’ wl’ origin using tgt’ wl’ by auto

hence goal: tangentLine (applyToSet (asFunc Ty) ly")
(applyToSet (asFunc Ty) wl’)
(Ty origin)
using transTy lemTangentLine Translation[of Ty origin wl’ ly]
by fastforce
hence goal: tangentLine Term1 Term2 Term3
using Term1 Term2 Term3 by auto

have ToT" Ty o Ty’ = id using TT' by auto
have Terml = applyToSet (asFunc Ty) (applyToSet (asFunc Ty')
"
using ly’ Terml1 by auto
also have ... = applyToSet (asFunc (Ty o Ty’)) I’ by auto
also have ... = applyToSet (asFunc id) I’ using ToT’ by auto
finally have terml1: Terml = I’ by auto

have composeRel (asFunc Ty) g = composeRel (asFunc Ty) (composeRel
(asFunc Ty") f)
using g by auto
also have ... = composeRel (asFunc (TyoTy')) f by auto
also have ... = composeRel (asFunc id) f using ToT' by auto
finally have Tog: composeRel (asFunc Ty) g = f by auto

have Term2 = applyToSet (asFunc Ty) (applyToSet g wl)

using wl’ Term2 by auto
also have ... = applyToSet (composeRel (asFunc Ty) g) wl by auto
finally have term2: Term2 = applyToSet f wl using Tog by auto

have term3: Term3 = y using Ty Term3 by auto

124

thus ?thesis using goal terml1 term2 term3
by fastforce

qged

end

end

23 AXIOM: AxDiff

This theory declares the axiom AxDiff.

theory AxzDiff
imports Affine World View
begin

AxDiff: Worldview transformations are differentiable wherever
they are defined - they can be approximated locally by affine
transformations.

class axDiff = Affine + WorldView
begin
abbreviation azDiff :: Body = Body = 'a Point = bool
where azDiff m k p = (definedAt (wvtFunc m k) p)
— (3 A . (affineApproxz A (wvtFunc m k) p))
end

class AxzDiff = azxDiff +

assumes AzDiff: ¥V mkp . axDiff m k p
begin
end

end

24 TangentLineLemma

This theory shows that affine approximations map tangent lines
to tangent lines.

theory TangentLineLemma
imports MainLemma AzDiff Cones
begin

class TangentLineLemma = MainLemma + AzDiff + Cones

125

begin

lemma lem WV TImpliesFunction: isFunction (wvtFunc k h)
proof —

{fixzpq
assume hyp: wutFunc k h x p A\ wutFunc k h z g

have azDiff k h z using AzDiff by blast
hence azxdiff: (3 r . wotFunc k h z)
— (3 A . (affineApprox A (wvtFunc k h) z)
by auto

then obtain A where A: affineApprox A (wvtFunc k h) z using
hyp by auto
hence Vz. (wvtFunc k h z z) «— (z = A z)
using lemAffineEqualAtBase[of wvtFunc k h A x]
by auto
hence p = A z A ¢ = A = using hyp by blast
moreover have affine A using A by auto
ultimately have p = ¢ by auto

thus ?thesis by force
qed

lemma lem WV TCts:

assumes definedAt (wvtFunc h k) p

shows cts (wvtFunc h k) p
proof —

have azDiff h k p using AzDiff by blast

hence azdiff: (3 r . wutFunc hkpr) — (3 A . (affineApproz A
(wvtPunc h k) p))

by auto

then obtain A where A: affineApprox A (wvtFunc h k) p using
assms by auto

thus ?thesis using sublemma[of wvtFunc h k A p] by auto
qed

lemma lem WV TInverse: invFunc (wvtFunc k h) = wotFunc h k
by force

lemma lem WV TInverseCts:
assumes wvtFunc k h p q
shows cts (wvtFunc h k) q
proof —

126

define whk where whk: whk = wvtFunc h k
have definedAt whk ¢ — cts whk g
using lemWVTCts[of h k q] whk by fast
moreover have definedAt whk q using whk assms by auto
ultimately have cts whk ¢ by auto
thus ?thesis using whk by auto
qed

lemma lem WV TInjective: injective (wvtFunc k h)
proof —
define wkh where wkh: wkh = wvtFunc k h
define inv where inv: inv = invFunc wkh
define inv2 where nv2: inv2 = invFunc inv
define whk where whk: whk = wvtFunc h k

have 1: inv = whk using inv whk wkh by force
have 2: inv2 = wkh using inv2 inv wkh by force

haveisFunction whk using lem WV TImpliesFunction whk by auto
hence isFunction inv using 1 by auto
hence injective inv2 using inv2 by auto
hence injective wkh using 2 by auto
thus ?thesis using wkh by auto
qed

lemma lemPresentation:
assumes z € wline m b

and tangentLine | (wline m b) x
and affineApproz A (wvtFunc m k) x
and wutFunc m k x y

and applyAffineToLine A 11’
shows tangentLine I’ (wline k b) y
proof —

have main: (tangentLine | (wline m b)) —
(injective (wvtFunc m k)) —
(affineApproz A (wvtFunc m k)) —
((wvtFunc m k) z y) —
(cts (invFunc (wutFunc m k)) y) —
(applyAffineToLine A 11') —
(tangentLine I’ (applyToSet (wvtFunc m k) (wline m b)) y)
using lemMainLemma[of z wline m b | wvtFunc m k A y U]
by blast

have 1: (tangentLine | (wline m b) z) using assms(2) by auto
have 2: injective (wvtFunc m k) using lem WV TInjective by auto

127

have 3: affineApprox A (wvtFunc m k) z using assms(3) by auto
have 4: (wvtFunc m k) z y using assms(4) by auto

have invFunc (wvtFunc m k) = wotFunc k m using lem WV TInverse
by auto
moreover have cts (wotFunc k m) y
using assms(4) lem WV TInverseCts[of y m k z] by auto
ultimately have 5: cts (invFunc (wotFunc m k)) y by force

have 6: applyAffineToLine A 11’ using assms(5) by auto

hence tgt: tangentLine I’ (applyToSet (wvtFunc m k) (wline m b)) y
using main 1 2 3 4 5 by meson

have azdiff: axDiff k m y using AzDiff by blast
hence (3 r . wvtFunc k m y r)
— (3 A’ . (affineApproz A’ (wvtFunc k m) y)) by blast
then obtain A’ where A" affineApprox A’ (wvtFunc k m) y using
assms(4) by auto
hence (30>0. Vp. (p within 6 of y) — (definedAt (wvtFunc k m)
p))
using sublemmad [of wutFunc k m A’ y] by auto
then obtain d where d: (d > 0) A (Vp.
(p within d of y) — (definedAt (wvtFunc k
m) 7))

by auto
hence dpos: d > 0 by auto

define Ball where Ball: Ball = ball y d

have 2r: (applyToSet (wvtFunc m k) (wline m b)) N Ball C (wline
k b) N Ball

using Ball by auto

{fix ¢
assume ¢: q € (wline k b) N Ball
hence q within d of y using Ball lemSep2Symmetry by auto
hence definedAt (wvtFunc k m) g using d by auto
hence gset: q € applyToSet (wvtFunc m k) (wvt k m q) by auto

have wvt k m g C applyToSet (wvtFunc k m) (wline k b) using ¢
by auto

hence wvt k m q C wline m b by auto

hence applyToSet (wvtFunc m k) (wvt k m q)

128

C applyToSet (wvtFunc m k) (wline m b) by auto
hence ¢ € applyToSet (wvtFunc m k) (wline m b) using gset by
auto
hence ¢ € (applyToSet (wvtFunc m k) (wline m b)) N Ball using
gset q by auto
}
hence r2l: (wline k b) N Ball C (applyToSet (wvtFunc m k) (wline
m b)) N Ball
by auto

define [Ball where [Ball: [Ball = (applyToSet (wvtFunc m k) (wline
m b)) N Ball
define rBall where rBall: rBall = (wline k b) N Ball

hence equ: [Ball = rBall using [2r r2l [Ball rBall by auto

have yinBall: y € Ball using Ball d by auto

have tgt1: y € (applyToSet (wvtFunc m k) (wline m b)) using tgt
by auto

hence y € [Ball using yinBall [Ball by auto

hence rtp1: y € wline k b using equ rBall by auto

have rtp2: onLine y I’ using tgt by auto

have tgt3: accPoint y (applyToSet (wvtFunc m k) (wline m b)) using
tgt by auto
hence tgt3":V ¢ > 0. 3 q € (applyToSet (wvtFunc m k) (wline m
b)) . (y # q) A (inBall q € y)
by auto
{ fixe
assume epos: e > 0
define dI where d": dI = min d e
have dd: d1 < d using d’ by auto
have de: d1 < e using d’ by auto
have d’pos: d1 > 0 using dpos epos d’ by auto

then obtain ¢
where ¢: ¢ € (applyToSet (wvtFunc m k) (wline m b)) A (y #
q) A (inBall q d1 y)
using tgt3’ by blast
hence ¢ € (applyToSet (wvtFunc m k) (wline m b)) A (inBall g d
y) A (y # q)
using lemBallInBall[of q y d1 d] d'pos dd by auto
hence ¢ € Ball A (y # q) A (inBall ¢ d1 y)

129

using ¢ Ball lemSep2Symmetry [Ball by auto
hence ¢ € rBall A (y # ¢) A (inBall q e y)
using lemBalllnBall[of q y d1 €] d’'pos de equ by auto

hence 3 ¢ € rBall . (y # q) A (inBall q e y) by auto

}
hence rip3:V e > 0.3 q € wline kb . (y # q) A (inBall q e y)

using rBall by auto

have tgt/: (3 p . ((onLine p I') A (p # y) A
Ve>0.36d>0.V y € (applyToSet (wvtFunc m k) (wline

m B)). (
((y" within & of y) A (y" # y))
H
: (3 r. ((onLine r (lineJoining y y')) A (r within € of p))))

)) using tgt by auto
then obtain p where p: ((onLine p I') A (p # y) A
Ve>0.36§>0.VY y € (applyToSet (wvtFunc m k) (wline

m b)). (
(y" within & of y) N (y" # y))
s
(3 7. ((onLine r (lineJoining y y')) A (r within € of p))))
)) by auto
have p1: onLine p I’ using p by auto
have p2: p # y using p by auto
{ fix e
assume epos: e > ()
then obtain d2 where d2: (d2 > 0) A
(V y' € (applyToSet (wvtFunc m k) (wline m b)). (
((y" within d2 of y) N (y' # y))
H
(3 7. ((onLine r (lineJoining y y')) A (r within e of p))))
) using p by auto
hence d2pos: d2 > 0 by auto

define dm where dm: dm = min d2 d

have dmd2: dm < d2 using dm by auto

have dmd: dm < d wusing dm by auto

have dmpos: dm > 0 using dpos d2pos dm by auto

{ fix y’
assume y" (y’' € wline k b) A (y" within dm of y) A (y' # v)
hence ydm: y' within dm of y by auto
hence y’ within d of y using dmpos dmd lemBallInBalllof y' y
dm d] by auto
hence y’ € Ball using Ball lemSep2Symmetry by auto
hence y’ € rBall using y’ rBall by auto

130

hence yL: y’ € [Ball using equ by auto

have y’ within d2 of y
using ydm dmpos dmd2 lemBalllnBall[of y' y dm d2] by auto

hence y’ € (applyToSet (wvtFunc m k) (wline m b)) A (y’ within
d2 of y) N (y" # y)
using y’ yL [Ball by auto
hence 3 r . ((onLine r (lineJoining y y')) A (r within e of p))
using d2 by auto
}

hence 3 dm > 0.V y’' € (wline k b) .
(y" within dm of y) A (y' # y)
— (3 r . ((onLine r (lineJoining y y)) A (r within e

of p)))
using dmpos by blast
}

henceV ¢ > 0.3 dn > 0.V y' € (wline k b) .
(' within dm of 4) A (y' £ 1)
— (3 r. ((onLine r (lineJoining y y')) N (r within e
of 1))
by auto
hence rtp4: 3p . ((onLinep) N(p#y) A (¥ e> 0.3 dmn >
0.V y' € (wline k b) .
(y" within dm of y) A (y' # y)
— (3 r. ((onLine r (lineJoining y y')) A (r within e

of p)))))

using p! p2 by auto

hence tangentLine I’ (wline k b) y using rtp! rtp2 rtp3 rtp) by
blast

thus ?thesis by auto
qed

lemma lemTangentLines:
assumes affineApprox A (wvtFunc m k) x

and ttimbzx

and applyAffineToLine A 11’
and wutFunc m k x y

shows tll'kby

proof —

have pres: x € wline m b
— tangentLine | (wline m b) z
— affineApproz A (wvtFunc m k) z
— wvtFunc mkzy
— applyAffineToLine A 11’
— tangentLine I’ (wline k b) y

131

using lemPresentation[of x m b 1k A y 1]
by blast

have 1: z € wline m b using assms(2) by auto

have 2: tangentLine | (wline m b) = using assms(2) by auto
have 3: affineApproz A (wvtFunc m k) z using assms(1) by simp
have 4: wvtFunc m k z y using assms(4) by simp

have 5: applyAffineToLine A 11’ using assms(3) by simp

have tangentLine I’ (wline k b) y using pres 1 2 3 4 5 by meson
thus ?thesis by auto
qed

lemma lemSelfTangentlsTimeAxis:
assumes tangentLine | (wline k k)
shows l = timeAuxis
proof —
define s where s: s = wline k k
hence s C timeAxis using s AzSelfMinus by blast
hence zOnAzis: onTimeAxis © using assms(1) s by auto

have z: (z € s) A (onLine z 1) A (accPoint x s)

A3 p.((onLinepl) A (p#x)A
VMe>0.306>0.V zes (
((z within 6 of x) A (2 # z))

.
3 r . ((onLine r (lineJoining x z)) A (r within € of
p))))
))) using s assms(1) by auto
then obtain p where
p: (((onLine p 1) A (p #) A
VMe>0.36>0.Y z€es (
((z within 6 of x) N (2 #))

—
(3 r. ((onLine r (lineJoining © z)) A (r within € of p))))
)) by auto

have acczs: accPoint x s using = by auto
define p0 where

p0: p0 = (tval = tval p, zval = 0, yval = 0, zval = 0)
hence p00OnAxis: onTimeAxis p0 by auto

define dp where dp: dp = sep2 p p0

132

have pp0: dp = sqr (tval p0 — tval p) + sqr (azval p0 — zval p) +
sqr (yval p0 — yval p) + sqr (zval p0 — zval p)

using dp p0 by simp

moreover have ... = sqr (zval p) + sqr (yval p) + sqr (zval p)
using p0 by auto

ultimately have dpval: dp = sqr (zval p) + sqr (yval p) + sqr (zval

p)

using dp by simp

define e where e: e = (min dp 1) / 2
define e2 where €2: e2 = sqr e
have e2ledp: e2 < dp
proof —
have msmall: 0 < (min dp 1) < 1 using lemNorm2NonNeg dp
by auto
hence esmall: 0 < e < 1 using e lel by force
hence e2lte: e2 < e using e2 mult-left-le by force

have mrange: 0 < (min dp 1) < dp using lemNorm2NonNeg dp
by auto
hence e < dp/2 using e divide-right-mono zero-le-numeral by
blast
hence e < dp using msmall e add-increasing2 divide-nonneg-nonneg

le-cases lemSumOfTwoHalves min-def zero-le-numeral
by metis

thus ?thesis using e2lte by auto
qed

have offaris: ¥V z . (dp > 0) A onTimeAxis z — — (z within e of
p)
proof —
{ fix 2z
{ assume z: (dp > 0) A onTimeAxis z

have sep2 z p = sqr (tval z — tval p)
+ sqr (zval z — zval p)
+ sqr (yval z — yval p)
+ sqr (zval z — zval p) using p0 by simp
moreover have ... = sep2 z p0
+ sqr (aval p) + sqr (yval p) + sqr (zval p)
using p0 z by auto
moreover have ... = sep2 z p0 + dp
using dpval add-assoc
by presburger
moreover have ... > dp using lemNorm2NonNeg by simp
ultimately have sep2 z p > e2

133

using e2ledp dual-order.trans by presburger

}

hence (0 < dp) A onTimeAxis z — — (z within e of p)
using e2 by auto

thus ?thesis by auto
qed

{ assume dpnz: dp > 0

hence enz: e > 0 using e by auto
then obtain d where d: (d > 0) A (V z € 5. (
((z within d of) N (2 #))
H
(3 r. ((onLine r (lineJoining © z)) A (r within e of p)))))

using p by blast

obtain ¢ where ¢: (¢ € s) A (x # ¢q) A (inBall q d x)
using acczs dpnz enz d by blast

hence ¢OnAxis: q € timeAxis using s AzSelfMinus by blast

have gprops: (q within d of) A (¢ # z) using ¢ by auto
then obtain r where r: (onLine r (lineJoining x q)) A (r within

e of p)
using d ¢ by blast

have z # ¢ using ¢ by auto
moreover have onLine z timeAxis using xOnAzis lemTimeAxi-

slsLine by auto
moreover have onLine q timeAxis using qOnAzis lemTimeAxi-

slsLine by auto
ultimately have timeAzis = lineJoining x q
using lemLineAndPoints[of x q timeAwis]

by auto
hence rOnAxis: (onTimeAzis r) using r by auto

hence — (r within e of p) using offazis dpnz by blast

hence Fulse using r by blast

}

hence — (dp > 0) A (dp > 0) using lemNorm2NonNeg dp by auto

hence dp = 0 by auto
hence p = p0 using dp lemNullImpliesOrigin[of p © p0] by auto

hence onLine p timeAxis using p0OnAxis lemTimeAxislsLine by

auto

134

moreover have onLine x timeAxis using tOnAxis lemTimeAxisls-
Line by auto
moreover have pnotr: p # = using p by blast
ultimately have zp: timeAxis = lineJoining x p
using lemLineAndPoints[of x p timeAxis)
by auto

have onLine p [using p by auto
moreover have onLine z | using x by auto
ultimately have [= lineJoining x p
using lemLineAndPoints[of z p I] pnotz
by auto

hence timeAxis = | using xp by auto
thus ?thesis using s by blast
qed

lemma lemTangentLineUnique:
assumes tl Il m k x
and ti2mkzx

and affineApproz A (wvtFunc m k) x
and wutFunc m k x y

and x € wline m k

shows 1 =12

proof —

define L1 where L1: L1 = applyToSet (asFunc A) 1
define L2 where L2: L2 = applyToSet (asFunc A) 2

define p! where pIl: pl = (z € wline m k)

define p2a where p2a: p2a = tangentLine 11 (wline m k) z
define p2b where p2b: p2b = tangentLine 12 (wline m k) x
define p3 where p3: p3 = affineApprox A (wvtFunc m k) x
define p4 where pj: p4/ = wvtFunc mkx y

define p5a where pSa: psa = applyAffineToLine A 11 L1
define p5b where p5b: p5b = applyAffineToLine A 12 L2

define tgt! where tgtl: tgt1 = tangentLine L1 (wline k k) y
define tgt2 where tgt2: tgt2 = tangentLine L2 (wline k k) y

have prel: pl using p! assms(5) by auto
have pre2a: p2a using p2a assms(1) by auto
have pre2b: p2b using p2b assms(2) by auto
have pre3: p3 using p3 assms(4) using assms(3) by auto
have pre/: pj using p/ assms(4) by auto

have isLine 1 using assms(1) by auto
hence preba: pba using pba L1 assms(8) lemAffineOfLinelsLine|of

135

i1 A L1] by auto

have isLine 12 using assms(2) by auto
hence pre5b: p5b using p5b L2 assms(3) lemAffineOfLinelsLine[of
12 A L2] by auto

have [pl; p2a; p3; p4; pba | = tgtl
using p1 p2a p3 p4 pba tgtl lemPresentation[of x m k11 k A y L1]
by fast
hence tgt! using prel pre2a pre3 pre4 preba by auto
hence Llaxis: L1 = timeAuxis using tgtl lemSelfTangentls TimeAxis
by auto

have [p1; p2b; p3; p4; pob | = tgt2
using p1 p2b p3 p4 p5b tgt2 lemPresentation[of x m k12 k A y L2]
by fast

hence tgt2 using prel pre2b pre3 pre4 pre5b by auto

hence L2 = timeAxzis using tgt2 lemSelfTangentlsTimeAzis by auto

hence L1L2: L1 = L2 using Llazis by auto

obtain A’ where A" (affine AY ANV pq. Ap=qg+— A q=1p)
using assms(3) lemInverseAffine[of A] by auto

{ fixp
define ¢ where ¢: ¢ = A p
hence A’'q: A’ ¢ = p using A’ by auto

{ assume p € [I
hence ¢ € L2 using ¢ L1 L1L2 by auto
then obtain p2 where p2: ¢ = A p2 A p2 € (2 using L2 by
auto
hence A’ ¢ = p2 using A’ by auto
hence p = p2 using A’q by auto
hence p € [2 using p2 by auto

}

hence 2r: p € I1 — p € 12 by blast

{ assume p € 12
hence ¢ € L1 using ¢ L2 L1L2 by auto
then obtain p! where pi: ¢ = A pl A pl € Il using L1 by
auto
hence A’ ¢ = p1 using A’ by auto
hence p = p! using A’q by auto
hence p € 1 using p! by auto

}

hence p € [2 — p € II by blast

136

hence p € l1 <— p € [2 using [2r by auto

}

thus ?thesis by blast
qed

end

end

25 Proposition2

This theory shows that affine approximations map surfaces of
cones to (subsets of) surfaces of cones.

theory Proposition2
imports TangentLineLemma
begin

class Proposition2 = TangentLineLemma
begin

lemma lemProposition2:

assumes affineApprox A (wvtFunc m k) x

shows applyToSet (asFunc A) (coneSet m z) C coneSet k (A z)
proof —

define y where y: y = A z
define [hs where lhs: lhs = applyToSet (asFunc A) (coneSet m x)
define rhs where rhs: rhs = coneSet k y

have mkzry: wvtFunc m k z y
using assms lemAffineEqualAtBase[of wvtFunc m k A x| y
by auto

have affA: affine A using assms by auto

{ fix ¢
{ assume ¢: ¢ € lhs
hence 3 p . (p € coneSet m x) A (asFunc A) p q using lhs by
auto
then obtain p where
p: (p € coneSet m x) A (asFunc A) p q
by presburger

137

hence ¢Ap: ¢ = A p using affA by auto

have cone m z p using p by auto

then obtain [where
I: (onLine p 1) A (onLine z 1) A (3 ph . Phph A tl 1l m ph x)
by auto

then obtain ph where ph: Ph ph A tll m ph © by auto

have lineL: isLine | using [by auto

have tll: tl | m ph x using ph by auto

define !’ where [": I’ = applyToSet (asFunc A) |
hence aatl: applyAffineToLine A 11’
using lineL affA lemAffineOfLinelsLine[of I A 1]
by simp

hence tll”: tl 1’ k ph y
using assms(1) tll mkzy
lemTangentLines[of m k A z ph 11’ y]
by simp

hence (Ph ph A tl 1" k ph y)
using ph by auto

hence exPh: 3 ph . (Ph ph At k ph y)
using exI[of X b. (Ph b A tL1' kb y) ph]
by auto

have p € [using [by auto

hence ¢ € [’ using qAp ¢ I’ by auto

moreover have linel’: isLine |’ using tll’ by auto
ultimately have qonl”: onLine q I’ by auto

hence (onLine ¢ 1) A (onLine y ') A (3 ph . Ph ph A L1’ k ph

y)
using exPh tll’ by blast

hence ¢q € rhs using y tll’ rhs by auto

}

hence ¢ € lhs — ¢ € rhs by auto

}

hence [2r: lhs C rhs by auto
thus ?thesis using lhs rhs y by auto
qed

end

138

end

26 AXIOM: AxEventMinus

This theory declares the axiom AxEventMinus

theory AxEventMinus
imports WorldView
begin

AxEventMinus: An observer encounters the events in which they
are observed.

class axFventMinus = World View
begin

abbreviation azEventMinus :: Body = Body = 'a Point = bool
where azEventMinus m k p = (m sees k at p)
— (Fqg. YV b.((mseesbatp) < (kseesbatq)))

end

class AzFEventMinus = axEventMinus +

assumes AzxFEventMinus: ¥ m k p . axEventMinus m k p
begin
end

end

27 Proposition3

This theory collects together earlier results to show that world-
view transformations can be approximated by affine transforma-
tions that have various useful properties.

theory Proposition3
imports Proposition! Proposition2 AzFEventMinus
begin

class Proposition3 = Propositionl + Proposition2 + AxFEventMinus
begin

139

lemma lemProposition3:
assumes m sees k at ©
shows 3 Ay . (wvtFunc mk zy)
A (affineApproz A (wvtFunc m k) x)
A (applyToSet (asFunc A) (coneSet m) C coneSet k y)
A (coneSet k y = reqularConeSet y)
proof —
define g1 where g1: g1 = (A y . wvtFunc m k z y)
define g2 where ¢2: g2 = (A A . affineApproz A (wvtFunc m k) x)
define g3 where g3: g8 = (A A y . applyToSet (asFunc A) (coneSet
m) C coneSet k y)
define ¢/ where ¢4: g/ = (A y . coneSet k y = reqularConeSet y)

have azFEventMinus m k x using AxzEventMinus by simp
hence (3 ¢ .V b.((m sees b at) +— (k sees b at q)))
using assms by simp

then obtain y where y: V b . ((m sees b at z) «— (k sees b at
y)) by auto

hence ev m z = ev k y by blast

hence goall: g1 y using assms g1 by auto

have azDiff m k xz using AxzDiff by simp

hence 3 A . affinedApproz A (wvtFunc m k) z using gI goall by
blast

then obtain A where goal2: g2 A using g2 by auto

have applyToSet (asFunc A) (coneSet m x) C coneSet k (A x)
using ¢2 goal2 lemProposition2[of m k A]
by auto
moreover have A © = y
using goall goal2 g1 g2 lemAffineEqualAtBase[of wvtFunc m k A
7]
by blast
ultimately have goal3: ¢3 A y using g3 by auto

have k sees k at y using assms(1) g1 goall by fastforce
hence V p . cone k y p = regularCone y p

using lemProposition! [of y k] by auto
hence goalj: g4 y using g4 by force

hence 3 A y. (g1 y) A (92 A) A (93 A y) A (94 y)
using goall goal2 goal3 goals by blast

140

thus ?thesis using g1 g2 g3 g4 by fastforce
qed

end

end

28 ObserverConeLemma

This theory gives sufficient conditions for an observed observer’s
cone to appear upright to that observer.

theory ObserverConeLemma
imports Proposition3
begin

class ObserverConeLemma = Proposition3
begin

lemma lemConeOfObserved:
assumes affineApprox A (wvtFunc m k)

and m sees k at
shows coneSet k (A x) = reqularConeSet (A x)
proof —

have Az: Vy. (wvtFunc mk z y) «— (y = A 1)
using assms(1) lemAffineEqualAtBase[of (wvtFunc m k) A z]
by auto

define set! where setl: setl = coneSet k (A z)
define set2 where set2: set2 = regularConeSet (A x)
define P where P: P = (A A’ y . (wvtFunc m k x y)
A (affineApprox A’ (wvtFunc m k) x)
A (applyToSet (asFunc A') (coneSet m z) C coneSet k
y)
A (coneSet k y = reqularConeSet y))
have m sees k at x using assms(2) by auto
hence 3 A’y . P A’ y using P lemProposition3[of m k z] by fast
then obtain A’ y where A’y: P A’ y by auto

have wvtFunc m k x y using P A’y by auto

hence y = A z using Az by auto

moreover have coneSet k y = reqularConeSet y using A’y P by
auto

ultimately show ?thesis using set! set2 by auto
qed

141

end

end

29 Quadratics

This theory shows how to find the roots of a quadratic, assuming
that roots exist (AxEField).

theory Quadratics
imports Functions AxzEField
begin

class Quadratics = Functions + AzEField
begin

abbreviation quadratic :: 'a = 'a = 'a = ('a = 'a)
where quadratic a b ¢ = X z . ax(sqr z) + bxz + ¢

abbreviation qroot :: 'a = 'a = 'a = ’a = bool
where groot a b ¢ r = (quadratic a b ¢) r = 0

abbreviation groots :: ‘a = 'a = 'a = 'a set
where groots abc={r . grootabcr}

abbreviation discriminant :: 'a = 'a = 'a = 'a
where discriminant a b ¢ = (sqr b) — 4*axc

abbreviation gcasel :: 'a = 'a = 'a = bool

where gcasel abec=(a=0Nb=0ANc=0)
abbreviation gcase2 :: 'a = 'a = 'a = bool

where gcase2 abc=(a=0ANb=0ANc#0)
abbreviation gcase :: 'a = ‘a = 'a = bool

where gease3 abc=(a=0ANb# 0N (c=0V c#0))
abbreviation gcase4 :: 'a = 'a = 'a = bool

where gcasef a b ¢ = (a # 0 N discriminant a b ¢ < 0)
abbreviation gcase5 :: 'a = 'a = 'a = bool

where gcase5 a b ¢ = (a # 0 N discriminant a b ¢ = 0)
abbreviation gcase6 :: 'a = 'a = 'a = bool

where gcase6 a b ¢ = (a # 0 A discriminant a b ¢ > 0)

lemma lemQuadRootCondition:
assumes a # 0
shows (sqr (2xaxr + b) = discriminant a b ¢) «— qroot a b ¢ r

142

proof —
have sqr (2xaxr) = (4*a) x (a x sqrr)
using lemSqrMult local.numeral-sqr mult-assoc sqr.simps(1) sqr.simps(2)
by metis
moreover have 2x(2xaxr)xb = (4xa) * (b*r)
by (metis dbl-def dbl-simps(5) mult.left-commute mult-2 mult-2-right
mult-assoc)
ultimately have s: sqr (2xa*r) + 2x(2xaxr)xb = (4x*a) * ((a *
sqrr) + b *r)
by (simp add: local.distrib-left)

have sqr(2xaxr + b) = sqr (2xaxr) + 2x(2xa*xr)xb + sqr b
using lemSqrSum by auto

moreover have ... = (4xa) * ((a *x sqr r) + b *r) + sqr b using
s by auto

moreover have ... = (4xa) * ((a * sqrr) + b xr + ¢) — (4*a)*c
+ sqr b

by (simp add: distrib-left)
ultimately have eqnl: sqr(2xaxr + b) = (4*a)*(quadratic a b ¢ 1)
+ (discriminant a b c)
by (simp add: add-diff-eq diff-add-eq)

{ assume groot a b ¢ r
hence sqr (2xaxr + b) = discriminant a b ¢ using eqnl by simp
}
hence 2r: qroot a b ¢ r — sqr (2xaxr + b) = discriminant a b ¢
by auto

{ assume sqr (2xaxr + b) = discriminant a b c
hence 0 = (4x*a)x(quadratic a b ¢ r) using eqnl by auto
hence groot a b ¢ r by (metis assms divisors-zero zero-neg-numeral)
}
hence (sqr (2xaxr + b) = discriminant a b ¢) — qroot a b ¢ r by
blast

thus ?thesis using [2r by blast
qged

lemma lemQuadraticCasesComplete:
shows gqcasel a b cV qcase2 a b cV qcase3 a b cV qcased a b cV
gcased a b ¢ V qcaseb a b ¢
using not-less-iff-gr-or-eq by blast

lemma lem@QCasel:
assumes qcasel a b ¢
shows VY r . qroot a b cr
using assms by simp

143

lemma lem@QCase2:
assumes qcase2 a b ¢
shows — (3 r . groot a b ¢ 1)
by (simp add: assms)

lemma lem@QCases:
assumes gcase3 a b ¢

shows groot a b cr «— r = —c¢/b
proof —

have groot a b cr — r = —c¢/b

proof —

{ assume hyp: qroot a b c r
hence bxr + ¢ = 0 using assms by auto
hence bxr = —c by (simp add: local.eg-neg-iff-add-eq-0)
hence r = —c¢/b by (metis assms local.nonzero-mult-div-cancel-left)

}

thus ?thesis by auto

qed
moreover have r = —¢/b — qroot a b ¢ v by (simp add: assms)
ultimately show ¢thesis by blast

qed

lemma lem@QCases:
assumes qcasej a b ¢
shows — (3 r . groot a b ¢ 1)
proof —
have props: (a # 0 A discriminant a b ¢ < 0) using assms by auto
{ assume hyp: 3 r . groot a b c r
then obtain r» where r: qroot a b ¢ r by auto
hence sqr (2 * a x r + b) = discriminant a b ¢
using props lemQuadRootCondition[of a T b c] by auto
hence sqr (2xaxr + b) < 0 using props by auto
hence Fulse using lemSquaresPositive by auto
}
thus ?thesis by auto
qed

lemma lem@QCase5:

assumes qcased a b ¢

shows groot a b ¢ r «— r = —b/(2xa)
proof —

144

have groot a b ¢ r — r = —b/(2%a)
proof —
{ assume hyp: gqroot a b c r
hence sqr (2 x axr + b) =0
using assms lemQuadRootCondition|of a r b ¢] by auto
hence 2xaxr + b = 0 by simp
hence 2xaxr = —b using local.eq-neg-iff-add-eq-0 by auto
moreover have 2xa # 0 using assms by auto
ultimately have r = ((—b)/(2xa)) by (metis local.nonzero-mult-div-cancel-left)

thus ?thesis by auto
qed
moreover have r = —b/(2xa) — qroot a b c r
proof —
{ assume hyp: r = —b/(2xa)
hence (2xa)xr + b = discriminant a b ¢ by (simp add: assms)
hence groot a b ¢ r using lemQuadRootCondition|of a r b (]
assms by auto
}
thus ?thesis by auto
qed
ultimately show ?thesis by blast
qed

lemma lem@QCaseb:
assumes qcaseb a b ¢
and rd = sqrt (discriminant a b c)
and rp = ((—b) + rd) / (2*a)
and rm = ((—b) — rd) / (2xa)
shows (rp # rm) A groots a b ¢ = { rp, rm }
proof —
define d where d: d = discriminant a b ¢

have dpos: d > 0 using assms d by auto

hence rootd: hasUniqueRoot d using AzEField lemSqrtlof d] by
auto

hence rdprops: 0 < rd A d = sqr rd

using assms(2) d thel[of isNonNegRoot d] by auto

hence rdnot0: rd # 0 using assms dpos mult-nonneg-nonpos by
auto

hence rdpos: rd > 0 using rdprops by auto

define pp where pp: pp = (—b) + rd

define mm where mm: mm = (—b) — rd

have rd # —rd using rdnot0 by simp

hence pp # mm using pp mm add-left-imp-eqlof —b rd —rd] by

145

auto

moreover have aa: 2xa # 0 using assms by auto
ultimately have pp/(2xa) # mm/(2xa) by auto

hence conji: rp # rm using assms pp mm by simp
have conj2: qroots a b ¢ = {rp, rm}
proof —

{ fix r assume r € groots a b ¢

hence sqr (2xaxr + b) = d

using assms lemQuadRootCondition d by auto
hence sqrt d = abs (2xaxr + b) using lemSqrtOfSquare by blast
moreover have sqrt d = rd using d assms by auto
ultimately have rdprops: rd = abs (2xaxr + b) by auto

define v :: ‘a where v: v = 2xaxr + b
hence vnot0: v # 0 using rdprops rdnot0 by simp
hence cases: (v < 0) V (v > 0) by auto

{ assume v < 0
hence 2xaxr + b = —rd using v rdprops
by (metis local.abs-if local.minus-minus)
hence 2xaxr = (=b) — rd
by (metis local.add-diff-cancel-right’ local.minus-diff-commute)
hence r = rm using aa assms(4)
by (metis local.nonzero-mult-div-cancel-left)
}

hence casel: v < 0 — r = rm by auto

{ assume v > 0
hence 2xaxr + b = rd using v rdprops by simp
hence 2xaxr = (—=b) + rd by auto
hence r = rp using aa assms(3)
by (metis local.nonzero-mult-div-cancel-left)
}

hence v > 0 — r = rp by auto

hence r = rm V r = rp using casel cases by blast
hence r € { rm, mp } by blast

}

hence V r . r € groots a b ¢ — r € { rm, rp } by blast
hence [2r: gqroots a b ¢ C {rm, rp} by auto

have rootm: qroot a b ¢ rm
proof —

have rm = ((—b) — rd) / (2xa) using assms by auto

hence (2xa)xrm = (—b) — rd using aa by simp

hence (2xa)xrm + b = — rd by (simp add: local.diff-add-eq)
hence sqr((2xa)xrm + b) = sqr rd by simp

moreover have ... = discriminant a b c

146

using assms(2) rootd d lemSquareOfSqrt|of discriminant a b ¢

rd] by auto

ultimately show ?thesis
using assms lemQuadRootCondition[of a rm b c] by auto

qed

have rootp: qroot a b ¢ rp

proof —

have mp = ((—b) + rd) / (2xa) using assms by auto
hence (2xa)*xrp = (—b) + rd using aa by simp
hence (2xa)xrp + b = rd by (simp add: local.diff-add-eq)
hence sqr((2xa)xrp + b) = sqr rd by simp
moreover have ... = discriminant a b c
using assms(2) rootd d lemSquareOfSqrt[of discriminant a b c

rd] by auto

ultimately show ?thesis
using assms lemQuadRootCondition[of a mp b ¢] by auto

qed

hence {rm, rp} C groots a b ¢ using rootm rootp by auto
thus “thesis using [2r by blast

qed

thus ?thesis using conj! by blast

qed

lemma lemQuadraticRootCount:
assumes —(gcasel a b c)
shows finite (qroots a b ¢) A card (groots a b ¢) < 2

proof —

define d where d: d = discriminant a b ¢

have casel: qcasel a b ¢ — ?thesis using assms by auto

moreover have case2:

by auto

moreover have case3:

by auto

moreover have cases:

by auto

moreover have cased:

by auto

moreover have case6:

card-2-iff by auto

gcase2 a b ¢ —> ?thesis using lem@QCase2
gcased a b ¢ — ?thesis using lem@Q)Case3
qeased a b ¢ — ?thesis using lem@QCase/,
gcases a b ¢ — Pthesis using lem@QCases

gcaseb a b ¢ —> ?thesis using lemQCase6

ultimately show ?thesis using lemQuadraticCasesComplete by

blast
qed

147

end

end

30 Classification

This theory explains how to establish whether a point lies inside,
on or outside a cone.

theory Classification
imports Cones Quadratics CauchySchwarz
begin

We want to establish where a point lies in relation to a cone, and
will later show that this relationship is preserved under relevant
affine transformations. We therefore need a classification scheme
that relies on purely affine concepts. To do this we consider lines
that can be drawn through the point, and ask how many points
lie in the intersection of such a line and the cone.

class Classification = Cones + Quadratics + CauchySchwarz
begin

abbreviation vertez :: ‘a Point = 'a Point = bool
where vertex x p = (z = p)

abbreviation insideRegularCone :: 'a Point = 'a Point = bool
where insideRegularCone z p =
(slopeFinite x p) A (3 v € lineVelocity (lineJoining x p) . sNorm2
v< 1)

abbreviation outsideRegularCone :: 'a Point = 'a Point = bool
where outsideRegularCone z p =
(z #p) A
((slopelnfinite = p) V (3 v € lineVelocity (lineJoining = p) .
sNorm2 v > 1))

abbreviation onRegularCone :: 'a Point = 'a Point = bool
where onRegularCone z p = (z = p) V (3 v € lineVelocity (lineJoining
zp).sNorm2v=1)

148

lemma lemDrtnLineJoining:
assumes | = lineJoining x p

and T FED
shows (p © z) € drtn |
proof —

define d where d: d = (p © x)
have lprops: onLine z I A onLine p |
using assms(1) lemLineJoiningContainsEndPoints by blast

hence 3 zp . (z # p) A (onLine z 1) A (onLinep) A (d = (p ©

z))
using assms(2) d by blast

thus ?thesis using d by auto

qed

lemma lem VelocityLineJoining:
assumes [= lineJoining x p
and v = velocityJoining origin (p ©)
and T #ED
shows v € lineVelocity 1
proof —
define d where d: d = (p © x)
hence d € drin | using assms lemDrtnLineJoining by auto
hence 3 d € drin | . v = velocityJoining origin d using assms d
by blast
thus ?thesis by auto
qed

lemma lemSlopeLineJoining:
assumes [= lineJoining p q
and p#q
shows lineSlopeFinite | «+— slopeFinite p q
proof —
have pql: onLine p I N\ onLine q 1
using assms(1) lemLineJoiningContainsEndPoints by auto

have [12r: lineSlopeFinite | — slopeFinite p q
proof —
{ assume lineSlopeFinite |
then obtain z y
where zy: (onLine © 1) A (onLine y 1) A (z # y) A (slopeFinite
z y) by blast
hence lzy: | = lineJoining z y using lemLineAndPoints[of = y]

149

by auto

define tdiff where tdiff: tdiff = tval y — tval z
hence tdnot0: tdiff # 0 using zy by auto

obtain a where a: p = (z @ (a ® (yoz))) using pql lry by auto
hence tvalp: tval p = tval x + ax(tval y — tval x) by simp

obtain b where b: ¢ = (z & (b ® (ySx))) using pql lry by auto
hence tvalg: tval ¢ = tval © 4+ bx(tval y — tval x) by simp

have anotb: b — a # 0 using a b assms(2) by auto

have tval ¢ — tval p = (b — a)*tdiff
using tdiff tvalp tvalg
by (simp add: local.left-diff-distrib’)
hence slopeFinite p q using anotb tdnot0
by (metis local.diff-self local.divisors-zero)

thus ?thesis by auto
qed

have r2l: slopeFinite p ¢ — lineSlopeFinite | using pql assms(2)
by blast

thus ?thesis using [2r by blast
qged

lemma lem VelocityJoining UsingPoints:

assumes p # ¢

shows velocityJoining p q = velocityJoining origin (¢g©p)
proof —

define t1 where t1: t1 = tval p — tval q

define t2 where t2: t2 = tval origin — tval (¢Sp)

define v1 where v1: vl = (pOq)

define v2 where v2: v2 = (origin©(qSp))

have ts: t1 = t2 using t1 t2 by simp

{ assume slopeFinite p q
hence (tval origin) — (tval (¢Sp)) # 0 by simp
hence sf2: slopeFinite origin (¢Sp) using diff-self by metis
hence sloper p q = sloper origin (¢Sp) using t2 v2 sloper.simps
by auto
hence ?thesis by auto
}
hence sf: slopeFinite p ¢ — ?thesis by auto
{ assume hyp: — (slopeFinite p q)

150

hence — (slopeFinite origin (¢Sp)) using t1 t2 ts by simp
hence sloper p q = sloper origin (¢©p) using hyp by simp
hence ?thesis by auto
}
thus ?thesis using sf by blast
qed

lemma lemLineVelocityNonZerolmpliesFinite:
assumes u € lineVelocity |
and sNorm2 u # 0
shows lineSlopeFinite [
proof —
have v € { u .3 d € dritn | . u = velocityJoining origin d } using
assms(1) by auto
then obtain d where d: d € drtn | A u = velocityJoining origin d
by blast
hence d € {d.3 pq.(p# q) AN (onLine pl) A (onLine g 1) A (d
=(@ep)}
by auto
then obtain p ¢ where pg: (p # q) A (onLine p 1) A (onLine g 1)
A(d= (g5 p))
by blast

hence upq: u = velocityJoining p q using lem VelocityJoiningUsing-
Points d by auto

{ assume slopelnfinite p q
hence sloper p q = origin by simp
hence u = sOrigin using upq by simp
hence Fulse using assms(2) by auto

}

hence slopeFinite p q by auto

thus ?thesis using pq by blast

qed

lemma lemLineVelocity UsingPoints:
assumes slopeFinite p q

and onLine p Il A onLine ql
shows lineVelocity | = { velocityJoining p q }
proof —

define v where v: v = velocityJoining p q
hence v": v = velocityJoining origin (¢Sp)
using lem VelocityJoining UsingPoints[of p q] assms(1) by blast

have pnotq: p # q using assms(1) by auto

hence I: | = lineJoining p q using lemLineAndPoints[of p q l] assms
by auto

151

hence vinlv: v € lineVelocity |
using lem VelocityLineJoining[of I p q v] v’ assms by blast
hence r2l: {v} C lineVelocity | by blast

{ fix u assume u: u € lineVelocity
hence u = v
using vinlv pnotq assms lemFiniteLineVelocityUnique[of u | v] by
blast

}

hence lineVelocity I C {v} by blast
thus ?thesis using r2l v by blast
qed

lemma lemSNorm?2VelocityJoining:
assumes slopeFinite = p

and v = velocityJoining © p

shows sqr (tval p — tval) * sNorm2 v = sNorm2 (sComponent
(po1))
proof —

have sloper zp = ((1 / (tval z — tval p)) ® (z © p)) using assms(1)
by auto
hence v = ((1/(tval z — tval p))®s (sComponent(z © p))) using
assms(2) by simp
hence sNorm2 v = sqr (1/ (tval z — tval p)) * sNorm2 (sComponent
(z6p))
using lemSNorm20fScaled assms(1) by blast
also have ... = sqr (1/ (tval p — tval x)) * sNorm2 (sComponent
(vou))
using lemSSep2Symmetry assms(1) lemSqrDiffSymmetrical by
simp
finally show ?thesis using assms(1) by simp
qed

lemma lemOrthogalSpaceVectorFExists:
shows 3 w. (w # sOrigin) A (w ©s v) = 0
proof —
obtain z y z where zyz: v = mkSpace x y z using Space.cases by
blast
define w where w: w = (if x = 0 then (mkSpace 1 0 0)
else (mkSpace (y/z) (—1) 0))

have wnot0: (w # sOrigin) using w by simp
moreover have orth: (w ©s v) = 0

proof —

152

{ assume z0: z = 0
hence w = mkSpace 1 0 0 using w by simp
hence (w ®s v) = 0 using 20 zyz by simp

hence case0: © = 0 —> ?thesis by blast

{ assume znot0: © # 0
hence w = mkSpace (y/z) (—1) 0 using w by simp
hence (w ©s v) = 0 using znot0 zyz by simp

hence z # 0 — ?thesis by blast
thus ?thesis using case0 by blast
qed
ultimately show #thesis by force
qed

lemma lemNonParallelVectorsExist:

shows 3 w . ((w # origin) A (tval v = tval w)) A (- (3 « .

0) Av= (a0 w)
proof —
have cases: zval v = 0 V zval v # 0 by auto
{ assume casel: zval v = 0

(a #

define diff where diff: diff = (if ((v @ zUnit) = origin) then

(2@zUnit) else xUnit)
define w where w: w = (v ® diff)
hence wi: (zval w) = 1 using casel diff by auto

{assume I a. (a# 0) Av=(a® w)

then obtain a where a: (¢ # 0) A v = (a ® w) by auto

hence zval v = a * zval w by simp

hence 0 = a * 1 using casel w1 by auto

hence a = 0 by auto

hence Fualse using a by blast
}
hence (- (3 a. (e« # 0) AN v =(a ® w))) by auto
moreover have tval v = tval w using w diff by auto

ultimately have (w # origin) A (tval v = tval w) A (- (3 « .

#0) Ao =(a® w)))
using w! by auto
}

hence (hs: zval v = 0 — ?thesis by blast
{ assume case2: zval v # 0
define w where w: w = (v ® yUnit)
hence wx: zval w = zval v using case2 by auto

have wy: yval w = yval v + 1 using w by auto

{assume 3 a. (a #Z 0) A v=(a® w)

153

(a

then obtain a where a: (a # 0) A v = (a ® w) by auto

hence zv: zval v = a * zval w by simp

hence al: zval v = a * 2val v using wx by simp

hence a = 1 using case2 by simp

hence yval v = yval w using a by auto

hence Fulse using wy by auto
}
hence (- (3 a. (a # 0) A v=(a ® w))) by auto
moreover have tval v = tval w using w by auto
moreover have zval w # 0 using w case2 by auto
ultimately have (w # origin) A(tval v = tval w) A (- (3 a . («

£0)Av=(a® w)
by auto

}

hence rhs: zval v # 0 — ?thesis by blast

thus ?thesis using cases [hs by auto
qed

lemma lemConeContainsVertexz:
shows regularCone z x
proof —
define d where d: d = (tUnit ® xUnit)
define p where p: p = (d @ z)
define [where I: [= lineJoining = p
define v where v: v = velocityJoining origin d

have znotp: © # p
proof —
{ assume z = p
hence (d @ z) = = using p by auto
hence d = origin using add-cancel-left-left
by (metis dot.simps lemDotSumRight lemNullImpliesOrigin)
hence False using d by auto

thus ?thesis by auto
qed
moreover have d = (p © z) using p by auto
ultimately have vel: v € lineVelocity [

using [v d lemVelocityLineJoining[of | x p v] by blast

have Ilprops: onLine I A onLine p |
using znotp | lemLineAndPoints[of z p I] by auto

have slope: sNorm2 v = 1

proof —
define sz where sz: sz = (svalr = 1, svaly = 0, svalz = 0)
have slopeFinite origin d using d by auto

154

hence sloper origin d = ((1 / ((tval origin) — (tval d))) ® (origin
© d)) by simp
moreover have ... = ((—1) ® (origin © d)) using d by auto
moreover have ... = d by auto
ultimately have sloper origin d = d by simp
hence velocityJoining origin d = sComponent d by simp
hence v = sz using v d sz by auto
thus ?thesis using sz by auto
qed

hence v € lineVelocity | A sNorm2 v = 1 using vel by auto
hence 3 [. (onLine z 1) A(3 v € lineVelocity | . sNorm2 v = 1)
using Iprops by blast
thus ?thesis by blast
qed

lemma lemConesExist:
shows regularConeSet © # {}

proof —
have z € regularConeSet x using lemConeContainsVertexr by auto
thus ?thesis by blast

qed

lemma lemRegularCone:
shows ((z = p) V onRegularCone z p) +— regularCone x p
proof —
define [where I: | = lineJoining = p
hence lprops: onLine p Il N\ onLine x|
using lemLineJoiningContainsEndPoints by auto

define LHS where LHS: LHS = ((z = p) V (onRegularCone x p))
define RHS where RHS: RHS = (regularCone z p)

have LHS — RHS
proof —
{ assume z = p
hence ?thesis using RHS lemConeContainsVertex by auto
}
hence casel: © = p — regularCone x p using LHS RHS by auto
{ assume z#p A onRegularCone x p
then obtain v where v: v € lineVelocity I A sNorm2 v = 1
using [by blast
hence 3 [. (onLine p 1) A (onLine 1) A (3 v € lineVelocity | .
sNorm2 v = 1)
using Iprops by blast

thus ?thesis using casel LHS RHS by blast

155

qed

moreover have RHS — LHS
proof —
{ assume rhs: RHS
have cases: © = p V © # p by auto
have casel: x = p — (z = p V onRegularCone z p) by auto

{ assume znotp: z # p
then obtain [/ where
I1: (onLine z 11) A (onLine p 11)
A (3 v € lineVelocity 11 . sNorm2 v = 1)
using rhs RHS by blast
hence l1 = | using xnotp | I1 lemLineAndPoints[of = p 1] by
auto
hence 3 v € lineVelocity | . sNorm2 v = 1 using [1 by blast
hence onRegularCone z p using [by blast
hence (z = p V onRegularCone z p) by blast
}
hence case2: © # p — LHS
using [Iprops LHS by blast

hence (z = p V onRegularCone z p) using cases casel LHS by
blast

thus “thesis using LHS RHS by auto
qed

ultimately have LHS +— RHS by blast
thus ?thesis using LHS RHS by fastforce
qed

lemma lemSlopelnfiniteImpliesOutside:

assumes z # p
and slopelnfinite x p
shows 3 Ip'. (p'# p) A onLine p’ I A onLine p |

A (1 N regularConeSet x = {})

proof —

define dxp where dzp: dxp = (z © p)

hence z = (dzp ® p) by simp

hence zdzp: x = (p © dazp) using add-commute by blast

have zp: tval z = tval p using assms(2) by blast
hence tvaldzp: tval dep = 0 using dxp by simp

obtain dnew where

dnew: (dnew # origin) A (tval dnew = tval dzp) A =(3 a. a # 0
A dzp = (o ® dnew))

156

using lemNonParallel VectorsEzist[of dxp)
by auto

hence tvaldnew: tval dnew = 0 using tvaldxp by simp

define w where w: w = (p @ dnew)
hence wmp: (w & p) = dnew by simp

have wz: tval w = tval z

proof —
have tval dnew = tval x — tval p using dnew dzp by auto
hence tval w = tval p + (tval x — tval p) using w by auto
thus ?thesis using add-commute diff-add-cancel by auto

qed

define lw where lw: lw = lineJoining w p

have zNotOnLw: — (z € lw)
proof —
{ assume z € lw

then obtain a where a: z = (v @ (¢ ® (pOw))) using lw by
auto

hence (p @ dzp) = ((p @ dnew) ® (a ® (pSw))) using zdxp w
by auto

hence dzp = (dnew @ (a ® (pOw))) using add-assoc by auto

moreover have (pow) = ((—1) ® (wSp)) by simp

hence (¢ ® (pow)) = ((—a) ® (wOp)) using lemScaleAssoc[of
a —1 wop| by simp

ultimately have dzp = (dnew ® ((—a) ® (wSp))) by auto

hence dip = ((I ® dnew) & ((—a) ® dnew)) using wmp by
auto

hence dzp = ((1—a) ® dnew) using left-diff-distrib’ by fastforce

hence (1—a) = 0 using dnew by blast

hence a = 1 by simp

hence z = (w ® (p © w)) using a by auto

hence z = p by (simp add: local.add-diff-eq)

thus ?thesis using assms(1) by auto
qed

have dnew # origin using dnew by auto
hence wiNotp: w # p using w diff-self wmp by blast
hence pwOnLw: onLine p lw A onLine w lw

using lw lemLineAndPoints[of w p lw] by auto

hence targetl: w # p A onLine w lw A onLine p lw using wNotp
by auto

define MeetW where MeetW: MeetW = lw N reqularConeSet x
{ assume nonempty: = (MeetW = {})

157

then obtain z where 2: z € MeetW by blast

have zz: tval z = tval x

proof —
have z € lineJoining w p using z MeetW lw by auto
then obtain a where a: z = (w & (a ® (pSw))) by blast

have tval (pOw) = 0 using w tvaldnew by auto
hence tval z = tval w using a by auto
thus ?thesis using wx by auto

qed

have reqularCone x z using z MeetW by auto
then obtain /1 where [1: (onLine z 11) A (onLine z 11)
A (3 v € lineVelocity 11 . sNorm2 v =

1) by blast

then obtain v where v: v € lineVelocity I1 A sNorm2 v = 1 by
blast

hence 3 d € drin l1 . v = velocityJoining origin d A sNorm2 v =
1 by auto

then obtain di where d1: di € drtn 1 N v = velocityJoining
origin d1 N\ sNorm2 v = 1

by blast

hence v # sOrigin by fastforce

hence velocityJoining origin d1 # sOrigin using d1 by auto

hence drtnNotZero: tval d1 # 0 by auto

define d2 where d2: d2 = (z ©)

hence tvald2: tval d2 = 0 using zx by simp

have zNotz: © # z using xNotOnLw z MeetW by blast

hence (z # 2) A (onLine z11) A (onLine z 11) A (d2 = (z © z))

using (1 d2 by auto

hence 3 z 2z . (z # z) A (onLine z 1) A (onLine z11) A (d2 = (z
© z)) by blast

hence d2 € drin l1 by auto

then obtain b where b: b # 0 A dI = (b ® d2)
using lemDrin[of d2 d1 11] d1 by blast

hence tval d1 = b x tval d2 by simp

hence tval d1 = 0 using tvald2 by simp

hence Fulse using dritnNotZero by auto

}
hence MeetW = {} by auto

hence (w # p) A onLine w lw A onLine p lw A (lw N regularConeSet

z=1{})

using target! MeetW by auto

158

thus ?thesis by blast
qed

lemma lemClassification:
shows (insideRegularCone x p) V (vertex x p V outsideRegularCone
z p V onRegularCone z p)
proof —
define [where I: | = lineJoining = p
define v where v: v = velocityJoining origin (pSx)
{ assume znotp: z # p
hence vel: v € lineVelocity 1
using [v lemVelocityLineJoining[of | p v] by auto
have (sNorm2 v < 1) V (sNorm2 v > 1) V (sNorm2 v = 1) by
auto
hence ?thesis using znotp [v vel by blast
}
hence z # p — ?thesis by auto
moreover have © = p — ?thesis by auto
ultimately show ?thesis by blast
qed

lemma lemQuadCoordinates:

assumes p = (B @ (o ® D))
and a = mNorm2 D
and b = 2x(tval (Box))*(tval D) — 2%((sComponent D) @s (sComponent
(Box))
and ¢ = mNorm?2 (BSx)
shows sqr (tval (pozx)) — sNorm2 (sComponent (pOx)) = ax(sqr «)
+ bxa + ¢
proof —

define X where X: X = (Box)

have pmz: (p © z) = (X @ (o ® D)) using diff-add-eq assms X by
simp

have pmat: tval p — tval x = tval X + axtval D using pmz by simp
have pmzs: sComponent (pSx) = ((sComponent X) @s (o ®s (sComponent

D))

using pmx by simp

have tsqr: sqr (tval (pSx))
= sqr (tval X) + ax(2x(tval X)*(tval D)) + (sqr o)*(sqr
(tval D))
using pmazt lemSqrSum][of tval X ax(tval D)] mult-assoc mult-commute
by auto

159

have ssqr: sNorm2 (sComponent (pSz))
= (sNorm2 (sComponent X))
+ ax(2x((sComponent X) ®s (sComponent D)))
+ (sqr a)x(sNorm2 (sComponent D))
using lemSDotScaleRight lemSNorm20fScaled lemSNorm20fSum
mult.left-commute pmxs
by presburger

hence sqr (tval (pSz)) — sNorm2 (sComponent (pSzx))
= (sqr (tval X) + ax(2x(tval X)*(tval D)) + (sqr a)*(sqr (tval
D))
— ((sNorm2 (sComponent X))
+ ax(2x((sComponent X) ®s (sComponent D)))
+ (sqr a)x(sNorm2 (sComponent D)))
using tsqr by auto
also have ...
= (sqr (tval X) + ax(2x(tval X)*(tval D)))
+ ((sgr a)x(sgr (tval D)) — (sqr a)x(sNorm2 (sComponent
D))
— ((sNorm2 (sComponent X))
+ ax(2x((sComponent X) ©s (sComponent D))))
using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap by fastforce
also have ...
= sqr (tval X) +
(ax(2x(tval X)x(tval D)) — ax(2x((sComponent X) ©s
(sComponent D))))
+ ((sgr a)x(sqr (tval D)) — (sqr a)x(sNorm2 (sComponent
D))

— (sNorm2 (sComponent X))
using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap add-commute
by simp
also have ...
= sqr (tval X) + axb + (sqr a)x a — (sNorm2 (sComponent
X))
using right-diff-distrib’ assms(2) assms(3) X lemSDotCommute
by presburger
also have ... = ¢ + axb + (sqr a)xa
using right-diff-distrib’ assms(4) X add-commute add-diff-eq by
simp

finally show f?thesis using add-commute mult-commute add-assoc
by auto
qed

lemma lemConeCoordinates:
shows (onRegularCone = p +— sqr (tval p — tval) = sNorm2
(sComponent (pot)))

160

A (insideRegularCone x p <— sqr (tval p — tval) > sNorm2
(sComponent (pot)))
A (outsideRegularCone x p «— sqr (tval p — tval) < sNorm2
(sComponent (pOr)))
proof —
define tdiff where tdiff: tdiff = tval p — tval
define sdiff where sdiff: sdiff = sComponent (pSzx)

have cases: © = p V z # p by simp

have casel: © = p — ?thesis

proof —

{ assume zisp: © = p
hence on: onRegularCone = p by auto
moreover have both0: sqr tdiff = 0 N sNorm?2 sdiff = 0
using zisp tdiff sdiff by simp
ultimately have onRegularCone x p <— sqr tdiff = sNorm?2
sdiff by simp

moreover have outsideRegularCone x p <— sqr tdiff > sNorm2
sdiff
proof —
have —outsideRegularCone x p using zisp by simp
moreover have — (sqr tdiff > sNorm2 sdiff) using both0 by
s1mp
ultimately show ?thesis by blast
ged

moreover have insideRegularCone x p <— sqr tdiff < sNorm2
sdiff
proof —
have —insideRegularCone = p using zisp by simp
moreover have - (sqr tdiff < sNorm2 sdiff) using both0 by
stmp
ultimately show ¢thesis by blast
qed

ultimately have ?thesis using tdiff sdiff by blast

thus ?thesis by blast
qed

have case2: © # p — %thesis
proof —
define [where I: [= lineJoining z p
hence onl: onLine x I A onLine p | using lemLineJoiningContain-
sEndPoints by blast
define v where v: v = velocityJoining x p

161

{ assume znotp: z # p
{ assume sinf: slopelnfinite x p

hence t0: sqr tdiff = 0 using tdiff by simp
hence sdiff # sOrigin using znotp sdiff tdiff by auto
hence sNorm2 sdiff # 0 using lemSpatialNulllmpliesSpatialO-
rigin by blast
moreover have sNorm2 sdiff > 0 by simp
ultimately have sNorm2 sdiff > 0 using lemGENZGT by
auto

hence egn: sqr tdiff < sNorm2 sdiff using t0 by auto
have out: outsideRegularCone x p using sinf xnotp by blast

have notin: = insideRegularCone z p using sinf by blast
have notgt: = (sqr tdiff > sNorm?2 sdiff) using eqn by auto

have noton: = onRegularCone x p
proof —
{ assume onRegularCone z p
then obtain u where u: u € lineVelocity | N sNorm2 u =

using [znotp by blast
hence slopeFinite x p
using znotp lemLineVelocityNonZeroImpliesFinite[of u |
zero-neq-one |
by fastforce
hence Fulse using sinf by auto
}
thus “thesis by blast
qed
have noteq: — (sqr tdiff = sNorm2 sdiff) using eqn by auto

have outs: (outsideRegularCone x p) <— (sqr tdiff < sNorm2

sdiff)
using out eqn by blast
have ins: (insideRegularCone © p) «— (sqr tdiff > sNorm2

sdiff)
using notin notgt by blast
have ons: (onRegularCone x p) +— (sqr tdiff = sNorm2 sdiff)

using noton noteq by blast
hence ?thesis using ins outs ons tdiff sdiff by blast

}

hence ifsinf: slopelnfinite © p — %thesis by blast

162

{ assume sf: slopeFinite = p
hence [v: lineVelocity | = {v}
using lemLineVelocityUsingPoints[of x p I] v onl znotp by
auto
have formula: sqr tdiff *(sNorm2 v) = sNorm2 sdiff
using lemSNorm2VelocityJoining[of = p v| sf v tdiff sdiff by
auto

{ assume onRegularCone z p
hence (3 v € lineVelocity I . sNorm2 v = 1) using znotp [
by auto
then obtain u where u: u € lineVelocity | A sNorm2 u = 1
by blast
hence v = v using lv by blast
hence sNorm2 v = 1 using u by auto
hence sqr tdiff = sNorm2 sdiff using formula by auto
}
hence onl: (onRegularCone x p) — (sqr tdiff = sNorm?2 sdiff)
by auto

{ assume insideRegularCone z p
hence (3 v € lineVelocity | . sNorm2 v < 1) using znotp [
by auto
then obtain u where u: u € lineVelocity | A sNorm2 u < 1
by blast
hence u = v using v by blast
hence vit1: sNorm2 v < 1 using u by auto

{ assume sNorm2 v = 0
hence v0: v = sOrigin using lemSpatialNullImpliesSpa-
tialOrigin by auto
have sloper x p = ((1/(tval x — tval p))@(zSp)) using sf
by auto
hence v = ((1/(tval — tval p))®s (sComponent (zOp)))
using v by simp
hence sOrigin = ((1/(tval z — tval p))®s (sComponent

(zop)))
using v0 by force
hence ((tval z — tval p) ®s sOrigin) = sComponent (xSp)
using lemSScaleAssoc[of (tval x — tval p) 1/(tval x — tval
p)

(sComponent (zSp))] sf
mult-eq-0-iff right-minus-eq by auto
hence s0: sComponent (z©p) = sOrigin by auto
hence pmzs: sNorm2 sdiff = 0 using sdiff lemSSep2Symmetry
by auto

have tdiff # 0 using tdiff znotp sO by auto

163

hence sqr tdiff > sNorm?2 sdiff using pmazs lemSquaresPositive
by auto

}

hence ifv0: sNorm2 v = 0 — sqr tdiff > sNorm?2 sdiff by
blast

{ assume vne0: sNorm2 v # 0
hence sNorm2 v > 0 using lemGENZGT by auto
moreover have tpos: sqr tdiff > 0
using sf lemSquaresPositive tdiff by auto
ultimately have lpos: (sqr tdiff)x(sNorm2 v) > 0 by auto
hence rpos: sNorm2 sdiff > 0 using formula by auto

hence (sqr tdiff)x(sNorm2 v) < (sqr tdiff) using tpos lpos
vlt1
using lemMultPosLT1[of sqr tdiff sNorm2 v] tpos by auto
hence sqr tdiff > sNorm2 sdiff using formula by auto

}

hence sNorm2 v # 0 — sqr tdiff > sNorm2 sdiff by auto

hence sqr tdiff > sNorm2 sdiff using ifv0 by blast
}
hence in1: insideRegqularCone x p — sqr tdiff > sNorm2 sdiff
by auto

{ assume out: outsideRegularCone x p
have znotp: (z # p) using out by simp
have (3 v € lineVelocity (lineJoining x p) . sNorm2 v > 1)
using sf out by blast
then obtain u where w: u € lineVelocity (lineJoining © p) A
(sNorm2 u > 1)
by blast
hence u = v using lv [by blast
hence sNorm2 v > 1 using u by auto
moreover have sqr tdiff > 0 using sf tdiff lemSquaresPositive
by auto
ultimately have (sqr tdiff)x(sNorm2 v) > (sqr tdiff)
using local.mult-strict-left-mono by fastforce
hence sqr tdiff < sNorm2 sdiff using formula by auto
}
hence out!: (outsideRegularCone z p) — (sqr tdiff < sNorm2
sdiff) by auto

have in2: (sqr tdiff > sNorm2 sdiff) — (insideRegularCone x

p)
proof —

{ assume lhs: sqr tdiff > sNorm2 sdiff
{ assume — insideRegularCone z p

164

hence options: onRegularCone © p V outsideRegularCone

rp
using lemClassification znotp by blast
{ assume onRegularCone z p
hence sqr tdiff = sNorm2 sdiff using znotp onl by blast
hence Fulse using lhs by auto
}
hence notOn: —onRegularCone = p by blast
{ assume outsideRegularCone = p
hence sqr tdiff < sNorm2 sdiff using znotp outl by
blast
hence Fulse using lhs by auto
}
hence notin: —outsideRegularCone x p by blast
hence Fulse using notOn options by blast
}
hence insideRegularCone x p by blast
thus ?thesis by blast
qed
have out2: (sqr tdiff < sNorm2 sdiff) — (outsideRegularCone
z p)
proof —
{ assume lhs: sqr tdiff < sNorm2 sdiff
{ assume — outsideRegularCone z p
hence options: onRegularCone x p V insideRegularCone x
p

using lemClassification znotp by blast

{ assume onRegularCone x p
hence sqr tdiff = sNorm2 sdiff using znotp onl by blast
hence Fulse using lhs by auto

}

hence notOn: =onRegularCone = p by blast

{ assume insideRegularCone x p
hence sqr tdiff > sNorm2 sdiff using znotp in1 by blast
hence Fulse using lhs by auto

}

hence notiIn: —insideRegularCone = p by blast

hence Fulse using notOn options by blast

}

hence outsideRegularCone = p by blast

}

165

thus ?thesis by blast
qed

have on2: (sqr tdiff = sNorm2 sdiff) — (onRegularCone x p)
proof —
{ assume lhs: sqr tdiff = sNorm2 sdiff
{ assume — onRegularCone z p
hence options: outsideRegularCone x p V insideRegularCone

Tp
using lemClassification znotp by blast
{ assume outsideRegularCone z p
hence sqr tdiff < sNorm?2 sdiff using znotp outl by
blast
hence Fulse using lhs by auto
}
hence notOut: —outsideRegularCone x p by blast
{ assume insideRegularCone x p
hence sqr tdiff > sNorm?2 sdiff using znotp inl by blast
hence Fulse using lhs by auto
}
hence notin: —insideRegularCone x p by blast
hence Fulse using notOut options by blast
}
hence onRegularCone x p by blast
}
thus ?thesis by blast
qed
hence ?thesis using inl in2 outl out2 onl on2 tdiff sdiff by
blast

}

hence slopeFinite x p — ?thesis by blast

hence ?thesis using ifsinf by blast

}

thus ?thesis by blast
qed

thus ?thesis using cases casel by blast

qed

lemma lemConeCoordinates!:
shows p € regularConeSet © +— norm2 (pSx) = 2xsqr (tval p —
tval x)

166

proof —
define tdiff where tdiff: tdiff = tval p — tval x
hence tdiff ": tdiff = tval (pSz) by simp
define sdiff where sdiff: sdiff = (sComponent (pSzx))

have n: norm2 (poz) = sqr tdiff + sNorm2 sdiff
using lemNorm2Decomposition sdiff tdiff' by blast

have reg: onRegularCone x p <— sqr tdiff = sNorm?2 sdiff
using lemConeCoordinates tdiff sdiff by blast

{ assume p € regularConeSet x
hence onRegularCone z p using lemRegularCone[of x p] by auto
hence sqr tdiff = sNorm2 sdiff using reg by blast
hence norm2 (pox) = 2xsqr tdiff using n mult-2 by force
}
hence 12r: p € regularConeSet x — norm2 (pSz) = 2xsqr tdiff
by auto

{ assume norm2 (pozx) = 2xsqr tdiff
hence sqr tdiff + sNorm2 sdiff = 2xsqr tdiff using n by auto
hence sNorm2 sdiff = sqr tdiff using mult-2 add-diff-eq by auto
hence onRegularCone x p using reg by auto
hence p € regularConeSet x
using lemConeContains Vertex lemRegularConelof x p] by blast
}

hence norm2 (poz) = 2xsqr tdiff — p € regularConeSet x by
blast

thus ?thesis using (2r tdiff by blast
qed

lemma lem WhereLineMeetsCone:
assumes g = mNorm2 D
and b = 2x(tval (Boz))*(tval D) — 2x((sComponent D) ©s
(sComponent (BO)))
and ¢ = mNorm2 (BSx)
shows groot a b ¢ a <— regularCone z (B @ (a®D))
proof —
{ fix o assume a: groot a b ¢ «
define p where p: p = (B @ (a®D))
hence mNorm2 (pSz) = ax(sqr a) + bxa + ¢
using lemQuadCoordinates[of p B a D a b x ¢] assms by auto
hence sqr (tval (pozx)) — sNorm2 (sComponent (pSz)) = 0 using
a by auto
hence onRegularCone z p using lemConeCoordinates|of x p] by
auto
hence regularCone z (B & (a®D)) using lemRegularCone p by

167

blast

}

hence 2r: qroot a b ¢ o« — reqularCone x (B & (a®D)) by blast

{ assume reg: reqgularCone z (B & (a®D))
define p where p: p = (B @ (a®D))
hence onRegularCone x p using lemRegularCone reg by blast
hence sqr (tval (pozx)) — sNorm2 (sComponent (pozx)) = 0

using lemConeCoordinates|of = p| by auto

hence ax(sqr a) + bxa + ¢ = 0

using lemQuadCoordinates[of p B o D a b x c| p assms
by auto

hence groot a b ¢ a by auto

}

he

nce regularCone x (B @ (a®D)) — qroot a b ¢ a by auto

thus ?thesis using [2r by blast

qed

lemma lemLineMeetsConel:
assumes — (z € [)

and
and
and
and
and
and
X))

and

isLine [

S = 1N regularConeSet x
I: 1 =1line BD
X: X =(Boux

a: a = mNorm2 D
b: b = 2x(tval X)*(tval D) — 2x((sComponent D) @s (sComponent

c: ¢ = mNorm2 X

shows (gcasel a b ¢ — S = {B})
proof —
{ assume hyp1: gcasel a b ¢

have impa: norm2 D = 2xsqr (tval D)
proof —

have a = 0 using hyp1 by simp
hence sqr (tval D) = sNorm2 (sComponent D) using a by auto
hence onRegularCone origin D

using lemConeCoordinates|of origin D] by auto
hence regularCone origin D using lemRegularCone by blast
thus “thesis using lemConeCoordinatesl by auto

qed

have impb: (DOX) = 2 * tval X * tval D
proof —

X))

have 2x(tval X)*(tval D) = 2x((sComponent D) ®s (sComponent

using hypl b by auto

168

hence (tval X)*(tval D) = ((sComponent D) ©s (sComponent

X))
by (simp add: mult-assoc)
thus ?thesis using mult-2 lemDotDecomposition[of X D]
lemSDotCommute mult-assoc lemDotCommute by metis

qed

have impc: norm2 X = 2xsqr (tval X)
proof —
have sqr (tval X) = sNorm2 (sComponent X) using hyp! ¢ by

auto
hence onRegularCone z B using X lemConeCoordinates by auto
hence regularCone x B using lemReqularCone by blast
thus ?thesis using X lemConeCoordinatesl by auto

qed

have allOnCone: ¥V « . regularCone z (B @ (o ® D))
proof —
{ fix a
define y where y: y = (B @ (a« ® D))
have groot a b ¢ o using hyp! by simp
hence regularCone z y
using lem WhereLineMeetsConelof a D b B = ¢ «] using y

assms by auto

thus “thesis by auto
qed

have tval D = 0
proof —
{ assume Dnot0: tval D # 0
define a where «a: o = (tval x — tval B)/(tval D)
define y where y: y = (B & (a®D))
hence yOnl: y € [using [by blast

hence ty0: tval y = tval x

proof —

have tval y = tval ((B @ (a®D))) using y by auto

also have ... = tval B + ax(tval D) by simp

also have ... = tval B + (tval x — tval B)/(tval D)*(tval D)
using « by simp

also have ... = tval B + (tval x — tval B) using Dnot0 by
simp

finally show ?thesis using add-commute local.diff-add-cancel
by auto

qed

have regularCone z y using y allOnCone by blast
hence norm2 (yoz) = 2xsqr (tval y — tval x)

169

using lemConeCoordinates! by auto
hence norm?2 (yoz) = 0 using ty0 by auto
hence (ySz) = origin using lemNulllmpliesOrigin by blast
hence y = = by simp

hence Fulse using yOnl assms by blast
}
thus ?thesis by blast
qed

hence norm2 D = 0 using impa by auto
hence D0: D = origin using lemNulllmpliesOrigin by auto

have B0: B = (B ® (0®D)) by simp

have regularCone z (B @ (0®D)) using allOnCone by blast
hence BonCone: reqularCone x B

using B0 by (metis (mono-tags, lifting))
hence BinS: B € S using assms BonCone B0 [by blast

hence SisB: S = {B}
proof —
{ fix y assume y: y € S
then obtain o where y = (B @ (a®D)) using assms | by
blast
hence y = B using D0 by simp
hence y € {B} by blast
}
hence S C {B} by blast
thus ?thesis using BinS by blast
qed

thus ?thesis by auto
qed

lemma lemLineMeetsCone2:
assumes — (z € [)

and isLine |

and S = 1N reqularConeSet x

and [: [= line BD

and X: X = (Box)

and a = mNorm2 D

and b = 2x(tval (Box))*(tval D) — 2%((sComponent D) ®s (sComponent

(Bow)))

and ¢ = mNorm2 (BSx)

shows gcase2 a b ¢ — S = {}

170

proof —
{ assume hyp2: gcase2 a b ¢
{ assume S # {}
then obtain y where y: y € S by auto
then obtain a where a: y = (B @ (a®D)) using assms by
blast
hence regularCone x (B & (a®D)) using y assms by blast
hence groot a b ¢ «
using lem WhereLineMeetsConelof a D b B x ¢ «] assms
by auto
hence Fulse using lem@QCase2[of a b c] hyp2 by auto

}
hence S = {} by auto

thus ?thesis by auto
qed

lemma lemLineMeetsConeS:

assumes — (z € [)
and isLine |
and S = 1N regularConeSet x
and [: [= line B D
and X: X = (Box)
and a: a = mNorm2 D
and b: b = 2x(tval X)«(tval D) — 2+((sComponent D) ®s (sComponent
X))
and c¢: ¢ = sqr (tval X) — sNorm2 (sComponent X)
and y3: y3 = (B @ ((—¢/b)®D))
shows gcase3 a b ¢ — S = {y3}
proof —

{ assume hyp3: gcase3 a b ¢

define T where T: T = {y3}

have SC T
proof —
{ fix y assume y: y € S
then obtain r where r: y = (B @ (r®D)) using [assms by
blast
hence regularCone z y using y assms by auto
hence aber: qroot a b c r
using abcr X
lemWhereLineMeetsCone[of a D b B x ¢ 7]
by auto
hence r = —c¢/b using lemQCase3[of a b ¢ r] aber hypS by
blast
hence y = y3 using y3 r by auto

171

hence y € T using T by blast
}
thus ?thesis by auto
qed

moreover have T C §
proof —
{ fix y assume y € T
hence y: y = (B @ ((—¢/b)®D)) using T assms by blast
have groot a b ¢ (—c/b) using lemQCase3 hyp3 by auto

hence rc: regularCone = y
using hyp3 assms y lemWhereLineMeetsConelof a D b B x ¢
(—c/b)]

by auto
have y € [using assms y by blast
hence y € S using rc assms by auto

thus ?thesis by blast
qed

ultimately have S = {y3} using T by auto

thus ?thesis by blast
qed

lemma lemLineMeetsCone4:
assumes - (z € [)
and isLine [
and S = 1N reqularConeSet x
and [: [= line BD
and X: X = (Box)
and a: a = mNorm2 D
and b: b = 2x(tval X)x(tval D) — 2x((sComponent D) ®s (sComponent
X))
and ¢ ¢ = sqr (tval X) — sNorm2 (sComponent X)
shows (gcase4 a b ¢ — S = {})
proof —
{ assume hyp/: qcasel a b ¢
{ assume S # {}
then obtain y where y: y € S by blast
then obtain r where r: y = (B @ (r®D)) using [assms by
blast
hence regularCone z y using y assms by auto
hence abcr: qroot a b ¢ r
using a bcr X
lemWhereLineMeetsCone[of a D b B x ¢ 1]

172

by auto

hence Fulse using lemQCase4 hyp4 by auto

hence S = {} by auto

thus ?thesis by blast

qed

lemma lemLineMeetsConed:
assumes — (z € 1)

and
and
and
and
and
and
X))

and

isLine [

S = 1N reqularConeSet x
I:l=1line BD
X: X =(Boux)

a: a = mNorm2 D
b: b = 2x(tval X)*(tval D) — 2x((sComponent D) @s (sComponent

c: ¢ = sqr (tval X) — sNorm2 (sComponent X)

and y5: y5 = (B @ ((—=b/(2%a))®D))
shows (gcase5 a bc — S = {y5})
proof —
{ assume hyp5: qcased a b ¢
define T where T: T = {y5}

have SC T
proof —

blast

{ fix y assume y: y € S

then obtain r where r: y = (B @ (r®D)) using [assms by

hence regularCone z y using y assms by auto
hence abcer: qroot a b c r

using abcr X

lem WhereLineMeetsConelof a D b B z ¢ 7]

by auto
hence r = —b/(2xa) using lemQCase5 aber hyp5 by blast
hence y = y5 using r y5 by auto
hence y € T using T by blast

}

thus %thesis by blast

qed

moreover have T C S
proof —

{ fix y assume y € T

hence y: y = (B @ ((—b/(2*a))®D)) using T assms by blast
have groot a b ¢ (—b/(2xa)) using lemQCase5 hyp5 by blast
hence rc: regularCone z y

173

using hypd assms y lemWhereLineMeetsConelof a D b B x ¢
(~b/(2+a))
by auto
have y € [using assms y by blast
hence y € S using rc assms by auto
}
thus ?thesis by blast
qed

ultimately have S = {y5} using T by auto
}
thus ?thesis by blast
qed

lemma lemLineMeetsCone6:
assumes - (z € [)
and isLine |
and S = 1N reqularConeSet x
and [: [= line BD
and X: X = (Box)
and a: a = mNorm2 D
and b: b = 2x(tval X)x(tval D) — 2x((sComponent D) ®s (sComponent
X))
and c¢: ¢ = sqr (tval X) — sNorm2 (sComponent X)
and ym: ym = (B @ (((—b — (sgrt (discriminant a b c))) / (2%a)) ®
D))
and yp: yp = (B & (((—b + (sgrt (discriminant a b ¢))) / (2xa)) ®
D))
shows (gcase6 a b ¢ — (ym # yp) A S = {ym, yp})
proof —
{ assume hyp6: gcase6 a b ¢

define T where T: T = {ym, yp}

define rm where rm: rm = (=b — (sqrt (discriminant a b c))) /
(2xa)

define rp where rp: p = (=b + (sqrt (discriminant a b c))) /
(2xa)

have ymnotyp: ym # yp

proof —
define d where d: d = discriminant a b ¢
define sd where sd: sd = sqrt d

have sdnot0: sqrt d # 0

proof —
have dpos: d > 0 using d hyp6 by simp

174

hence hasRoot d using AzEField by auto
thus %thesis using lemSquareOfSqrt[of d] dpos by auto
qed

have Dnot0: D # origin
proof —
{ assume D = origin
hence a = 0 using a by simp
hence Fulse using hyp6 by simp

thus ?thesis by auto
qed

have rmnotrp: rm # rp
proof —
{ assume rm = p
hence (—b — sd) / (2xa) = (=b + sd)/(2xa) using sd d rm
rp by simp
hence —b—sd = —b+sd using hyp6 by simp
hence —sd = sd using add-left-imp-eq diff-conv-add-uminus
by metis
hence Fulse using sdnot0 sd by simp

thus ?thesis by auto
qed

{ assume ym = yp
hence (B @ (rm ® D)) = (B @ (rp ® D)) using ym yp rm rp
by auto
hence (rm ® D) = (rp ® D) by simp
hence ((rm — m)®D) = origin by auto
hence rm — rp = 0 using Dnot0 by auto
hence Fualse using rmnotrp by auto
}
thus ?thesis by auto
qed

have S C T
proof —
{ fix y assume y: y € S
then obtain r where r: y = (B & (r®D)) using [assms by
blast
hence regularCone = y using y assms by auto
hence aber: qroot a b c r
using abcr X
lemWhereLineMeetsCone[of a D b B x ¢ 1]
by auto
hence groots a b ¢ = {rp, rm}

175

using lemQCaseblof a b ¢ sqrt (discriminant a b ¢) rp rm)
rp rm hyp6 by auto
hence rchoice: (r = rm V r = rp) using aber by blast
hence ychoice: (y = ym V y = yp) using r ym yp rm rp by
blast

hence yinT: y € T using T by blast

}

thus ?thesis by auto

qed

moreover have T C §
proof —
{ fix y assume y € T
hence y: y = ym V y = yp using T assms by blast

have groot a b ¢ rm using rm lem@QCase6 hyp6 by blast
hence rem: reqularCone x ym
using hyp6 assms ym rm lemWhereLineMeetsCone[of a D b
B x ¢ rm)
by auto
have groot a b ¢ rp using rp lem@QCase6 hyp6 by blast
hence rcp: reqularCone x yp
using hyp6 assms yp rp lem WhereLineMeetsConelof a D b B
z ¢ rp]
by auto
hence regularCone x y using rcm y by blast
moreover have y € [using assms y by blast
ultimately have y € S using assms by blast
}
thus ?thesis by blast
qed

ultimately have (ym # yp) A S = {ym, yp} using T ymnotyp
by auto

}

thus ?thesis by blast
qed

lemma lemConeLemmal :
assumes — (z € [)

and isLine [

and S = 1N regularConeSet x
shows finite S A\ card S < 2
proof —

obtain B D where BD: | = line B D using assms(2) by auto

define X where X: X = (B © z)
define a where a: a = mNorm2 D

176

define b where b: b = 2x(tval X)*(tval D) — 2x((sComponent D)
©s (sComponent X))
define ¢ where c: ¢ = sqr (tval X) — sNorm2 (sComponent X)

have qcasel a b ¢ — ?thesis
using assms X a b ¢ lemLineMeetsConel[of 21 S B D X a b ¢] BD
by auto
moreover have qcase2 a b ¢ — ?thesis
using assms X a b ¢ lemLineMeetsCone2[of 1S BD X a b ¢|] BD
by auto
moreover have qcased a b ¢ — ?thesis
using assms X a b ¢ lemLineMeetsCone3[of xt1S B D X a b ¢|] BD
by auto
moreover have qcase/ a b ¢ — ?thesis
using assms X a b ¢ lemLineMeetsCone4[of xt1S B D X a b ¢|] BD
by auto
moreover have qcase5 a b ¢ — ?thesis
using assms X a b ¢ lemLineMeetsCone5[of t 1S BD X a b ¢|] BD
by auto
moreover have qcase6 a b ¢ — ?thesis
proof —
{ assume hyp6: qcase6 a b ¢
define ym where ym: ym = (B @ (((—b — (sgrt (discriminant
ab)/ (25a)) @ D))
define yp where yp: yp = (B & (((=b + (sqrt (discriminant a
b))/ (2xa)) @ D))

have (ym # yp) A S = { ym, yp }
using assms X a b ¢ ym yp hypb
lemLineMeetsCone6lof z 1S B D X a b ¢ ym yp| BD
by auto
hence card S = 2 using card-2-iff by blast
hence finite S A card S < 2 using card.infinite by fastforce
}
thus ?thesis by auto
qed

ultimately show ?thesis using lemQuadraticCasesComplete by
blast
qed

lemma lemConeLemmaZ2:

assumes — (regularCone z w)

shows 3 [. (onLinewl) A (= (z € 1)) A (card (I N (regularConeSet
7)) = 2)
proof —

have znotw: © # w using assms lemConeContainsVertex by blast

177

have iftvalsequal: tval © = tval w —> ?thesis
proof —
{ assume ts: tval z = tval w
define [where [: | = line w tUnit

hence wonl: onLine w1

proof —
have w = (w @ (0®tUnit)) by simp
thus ?thesis using [by blast

qged

have znotinl: =(z € 1)
proof —
{ assume z € |
then obtain a where a: © = (w @ (a®tUnit)) using | by
blast

hence tval x = tval w + a by simp
hence a = 0 using ts by simp
hence z = w using a by simp
hence Fulse using rnotw by simp

thus ?thesis by blast
qed

have card (I N (regularConeSet x)) = 2
proof —
define S where S: S = [N reqularConeSet z
hence cardS: finite S A\ card S < 2
using znotinl | lemConeLemmal[of x| S] by blast

have (sNorm2 (sComponent (wSx))) > 0 by simp
hence sFEzists: hasRoot (sNorm2 (sComponent (wSx))) using
AzEField by auto

define s where s: s = sqrt (sNorm2 (sComponent (wSzx)))
define yp where yp: yp = (w @ (s®tUnit))
define ym where ym: ym = (w © (s®tUnit))

have ypnotym: yp # ym
proof —
{ assume yp = ym
hence (v & (s®tUnit)) = (w © (s®tUnit)) using yp ym
by auto
hence tval w + s = tval w — s by simp
hence s = 0
by (metis local.add-cancel-right-right
local.double-zero-sym local.lemDiffSum CancelMiddle)

hence sNorm2 (sComponent (wSz)) = sqr 0
using s lemSquareOfSqrt[of sNorm2 (sComponent (wSzx))

178

s] sExists
by auto
hence norm?2 (woz) = 0 using lemNorm2Decomposition
ts by auto
hence (wSz) = origin using lemNullImpliesOrigin by blast
hence w = z by simp
hence Fulse using znotw by simp

thus ?thesis by auto
qed

have ypinl: yp € | using yp | by blast

have yminl: ym € 1

proof —
have ym = (w ® ((—s)®tUnit)) using ym by simp
thus ?thesis using [by blast

qed

have ypcone: yp € regularConeSet x
proof —
have (yp © z) = ((w ® (s®tUnit)) © z) using yp by auto
hence tval (yp © =) = s using ts by simp
hence tsqr: sqr (tval (ypoz)) = (sNorm2 (sComponent
(wor)))
using s sEzists lemSquareOfSqrt AxEField by blast
hence sComponent (ypSz) = sComponent ((w & (s®tUnit))
© z) using yp by auto

also have ... = ((sComponent (w @ (s®@tUnit))) ©s (sComponent
z)) by simp
also have ... = (((sComponent w) ®s (sComponent (sxtUnit)))
©s (sComponent x)) by simp
also have ... = ((sComponent w) ©s (sComponent z)) by
stmp
finally have sComponent (ypoz) = sComponent (wSz) by
simp

hence ssqr: sNorm2 (sComponent (ypSz)) = (sNorm2

(sComponent (wST)))

by auto

hence sqr (tval (ypozx)) = (sNorm2 (sComponent (ypSz)))
using tsqr by auto

hence onRegularCone x yp using lemConeCoordinates|of
yp] by auto

thus ?thesis using lemRegularCone by blast

qed

have ymcone: ym € regularConeSet x

proof —
have (ym © z) = ((w © (s®tUnit)) © z) using ym by auto

179

hence tval (ym © z) = tval (w © (s@tUnit)) — tval © by
stmp
also have ... = (twal w — tval(s®tUnit)) — tval x by simp
also have ... = (tval w — s) — tval w using ts by simp
finally have tval (ymSzx) = —s using diff-right-commute
by (metis local.add-implies-diff local.uminus-add-conv-diff)
hence sqr (tval (ymOx)) = sqr s by simp
hence tsqr: sqr (tval (ymox)) = (sNorm2 (sComponent
(wen)))
using s sEzists lemSquareOfSqrt AxEField by force

hence sComponent (ymex) = sComponent ((w © (s®tUnit))
© z) using ym by auto

also have ... = ((sComponent (w © (s®tUnit))) ©s (sComponent
z)) by simp
also have ... = (((sComponent w) ©s (sComponent (s@tUnit)))
©s (sComponent x)) by simp
also have ... = ((sComponent w) &s (sComponent z)) by
simp

finally have sComponent (ymez) = sComponent (wSz) by
simp
hence ssqr: sNorm2 (sComponent (ymoz)) = (sNorm2
(sComponent (wox)))
by auto
hence sqr (tval (ymoz)) = (sNorm2 (sComponent (ymOt)))
using tsqr by auto
hence onRegularCone z ym using lemConeCoordinates|of ©
ym] by auto
thus ?thesis using lemRegularCone by blast
qed

define T where T: T = {yp, ym}

hence T C § using ypinl ypcone yminl ymcone S by auto
hence TleS: card T < card S using cardS card-mono by blast
have cardT: card T = 2 using T ypnotym card-2-iff by blast

hence (2 < card S) A finite S A card S < 2 using TleS cardS
by auto
thus ?thesis using S by simp
qed

hence ?thesis using znotinl wonl by blast
}
thus ?thesis by auto
qed

have iftvalsne: tval x # tval w — ?thesis

180

proof —
{ assume ts: tval z # tval w

define z0 where z0: 0 = mkPoint (tval w) (zval z) (yval x)
(zval)
have znotz0: x # 20 using z0 ts by (metis Point.select-convs(1))
have tdiff0: tval w = tval 20 using z0 by simp

define dir where dir: dir = (if (w#z0) then (wSz0) else xUnit)

hence tdir0: tval dir = 0
proof —
{ assume w#z0
hence dir = (wSz0) using dir by simp
}
hence wnotz0: (w#x0) — ?thesis using tdiff0 by auto
{ assume w = z0
hence dir = zUnit using dir by simp
}
hence (w=z0) — ?thesis by simp
thus ?thesis using wnotx0 by auto
qged

define | where [: | = lineJoining z0 (dir®z0)
hence Ilprops: | = line 20 dir using dir by auto

hence wonl: onLine w1
proof —
{ assume wnotz0: w # z0
hence dir = (wSz0) using dir by simp
hence (dir®z0) = ((woz0)®20) by simp
hence w = (dir ® z0) using diff-add-eq by auto
hence ?thesis using dir lemLineJoiningContainsEndPoints |
by blast
}
moreover have (w=x0) — ?thesis using lemLineJoining-
ContainsEndPoints | by blast
ultimately show #thesis by auto
qed

then obtain A where 4: w = (20 ® (A ® dir)) using [by
auto

have znotinl: =(z € 1)
proof —
{ assume z € |
then obtain ¢ where a: z = (20 @© (a®dir)) using ! by auto
hence tval r = tval 0 using tdir0 by simp
hence Fulse using ts tdiff0 by auto

181

}

thus ?thesis by blast
qed

have card (I N (regularConeSet z)) = 2
proof —
define S where S: S = [N reqularConeSet z
hence cardS: finite S N card S < 2
using znotinl | lemConeLemmal [of z 1 S] by blast

have (sNorm2 (sComponent (wSz0))) > 0 by simp

hence sEzists: hasRoot (sNorm2 (sComponent (wSz0))) using
AzEField by auto

define s where s: s = sgrt (sNorm2 (sComponent (wSx0)))

define unit where unit: unit = (if (w = x0) then xUnit else
((1/s)@(wez0)))

have tunit0: tval unit = 0
proof —
{ assume w = z0
hence unit = xUnit using unit by simp
}
hence w=z0 — ?thesis by auto
moreover have w#x0 — ?thesis
proof —
{ assume wnotz0: w # z0
hence unit = ((1/s)®dir) using unit dir by simp
}
thus ?thesis using tdir0 by auto
qed
ultimately show %thesis by auto
qed

have snot0: w # 20 — s # 0
proof —
{ assume wnotz0: w # z0
hence norm2 (woz0) > 0
using local.lemNotEquallmpliesSep2Pos by presburger
also have norm2 (woz0) = sNorm2 (sComponent (wSz0))
using tdiff0 lemNorm2Decomposition|of wSz0] by auto
finally have s2pos: sNorm2 (sComponent (wSz0)) > 0 by
auto
{ assume s = 0
hence Fulse using lemSquareOfSqrt[of sNorm2 (sComponent
(wes0)) o]

}

hence s # 0 by auto

s2pos s skxists by auto

182

}

thus ?thesis by auto
qed

hence unit!: sNorm2 (sComponent unit) = 1
proof —
have case0: w=z0 — ?thesis using unit by auto
have casel: w#x0 — ?thesis
proof —
{ assume casel: w # z0
have unit = ((1/s)®@(wox0)) using unit casel by simp
hence sComponent unit = ((1/s) ®s (sComponent (wSz0)))
by simp
hence sNorm2 (sComponent unit) = sqr (1/s) * sNorm2
(sComponent (woz0))
using lemSNorm20fScaled[of (1/s) sComponent (wSz0)]
by auto
also have ... = sqr (1/s) * sqr s
using lemSquareOfSqrt[of sNorm2 (sComponent (wSz0))
s] sExists s
by auto
finally have sNorm2 (sComponent unit) = 1 using snot0
casel by simp
}
thus ?thesis by auto
qged
thus ?thesis using case0 by blast
qed

define dt where dt: dt = tval w — tval x

define mdt where mdt: mdt = —dt

define yp where yp: yp = (20 & (dt ® unit))

define ym where ym: ym = (20 & (dt ® unit))

hence ymalt: ym = (20 ® (mdt ® unit)) using mdt by simp

have ypnotym: yp # ym
proof —
{ assume yp = ym
hence (20 & (dt®unit)) = (20 & (dt®unit)) using yp ym by
auto
hence ((z0 & (dt®@unit)) & (dt®unit)) = 20 by auto
hence (20 @ (2®(dt®unit))) = z0 using add-assoc mult-2
by auto
hence ((z0 @ (2®(dt®unit))) © z0) = origin by simp
hence (2®(dt®unit)) = origin using add-diff-eq by auto
hence Fulse using unit! ts dt by simp
}
thus ?thesis by auto
qed

183

have ypinl: yp € 1
proof —
{ assume w = z0
hence yp = (w & (dt®dir)) using dir unit yp by simp
hence 3 a . yp = (w ® (a ® dir)) using yp by auto

}

hence wz0: w=z0 — ?thesis using [by auto

{ assume wnotz0: w # z0
hence w: unit = ((1/s)®dir) using unit dir by auto
hence yp = (20 & ((dt/s)®@dir)) using lemScaleAssoc yp by
auto

hence 3 a . yp = (20 ® (a®dir)) using snot0 by blast
}
hence w#x0 — ?thesis using | by auto
thus ?thesis using wz0 by blast
qged

have yminl: ym € 1
proof —
{ assume w = z0
hence ym = (20 ® (mdt®dir)) using dir unit ymalt by simp
hence 3 a . ym = (20 @ (a ® dir)) using ym by auto

}

hence wz0: w=x0 — “thesis using | by auto

{ assume wnotz0: w # z0
hence u: unit = ((1/s)®dir) using unit dir by auto
hence ym = (20 & ((mdt/s)®dir)) using lemScaleAssoc ymalt
by auto

hence 3 a . ym = (20 @ (a®dir)) using snot0 by blast
}
hence w#x0 — ?thesis using [by auto
thus ?thesis using wz0 by blast
qed

have ypcone: yp € regularConeSet x
proof —
have sNorm2 (sComponent (ypoz0)) = sqr dt
proof —
have yp = (20 &
hence (yp © 20)
by auto
hence sComponent (yp © z0) = (dt ®s (sComponent unit))
by auto
thus Zthesis

using lemSNorm20fScaled|of dt sComponent unit] unit! by

(dt ® unit)) using yp by simp
= (dt ® unit) using add-diff-eq diff-add-eq

auto

184

qed
hence sNorm2 (sComponent (ypOz)) = sqr dt using z0 by
stmp
also have ... = sqr (tval (ypSx)) using dt tunit0 yp tdiff0 by
simp
finally have sNorm2 (sComponent (ypSz)) = sqr (tval (ypSzx))
by blast
hence onRegularCone x yp using lemConeCoordinates|of x yp)
by auto
thus ?thesis using lemRegularCone by blast
qed

have ymcone: ym € reqularConeSet x
proof —
have sNorm2 (sComponent (ymoz0)) = sqr dt
proof —
have ym = (20 @ (mdt ® unit)) using ymalt by simp
hence (ym © z0) = (mdt ® unit) using add-diff-eq diff-add-eq
by auto
hence sComponent (ym © z0) = (mdt ®s (sComponent unit))
by auto
thus ?thesis
using lemSNorm20fScaled[of mdt sComponent unit] unit!
mdt by auto
qed
hence sNorm2 (sComponent (ymOx)) = sqr dt using z0 by
simp
also have ... = sqr (tval (ymox)) using ym mdt dt tunit0
tdiff0 by auto
finally have sNorm2 (sComponent (ymoz)) = sqr (tval
(ymoz)) by blast
hence onRegularCone x ym using lemConeCoordinates|of
ym] by auto
thus ?thesis using lemRegularCone by blast
qed

define T where T: T = {yp, ym}

hence T C § using ypinl ypcone yminl ymcone S by auto
hence TleS: card T < card S using cardS card-mono by blast
have cardT: card T = 2 using T ypnotym card-2-iff by blast

hence (2 < card S) A finite S A card S < 2 using TleS cardS
by auto
thus ?thesis using S by simp
qed

hence ?thesis using xnotinl wonl by blast

}

185

thus ?thesis by auto

qed
thus ?thesis using iftvalsequal by blast
qed

lemma lemLinelnsideReqularConeHasFiniteSlope:
assumes insideRegularCone = p

and I = lineJoining = p
shows lineSlopeFinite [
proof —

{ assume converse: = (lineSlopeFinite 1)
hence slope: slopelnfinite x p
using assms lemSlopeLineJoining|of I by blast
hence Fulse using assms(1) assms(2) slope by simp

thus ?thesis by auto
qed

lemma lemInvertibleOnMeet:
assumes invertible f
and S=ANnBSB
shows applyToSet (asFunc f) S = (applyToSet (asFunc f) A) N
(applyToSet (asFunc f) B)
proof —
define S’ where S”: S’/ = applyToSet (asFunc f) S
define A’ where A" A’ = applyToSet (asFunc f) A
define B’ where B’: B’ = applyToSet (asFunc f) B

have S’ C A'N B’
proof —
{ fix s’ assume s’ € 5’
then obtain s where s: s € S A fs = s’ using S’ by auto
have inA: s' € A’
proof —
have s € A using assms s by auto
thus ?thesis using s A’ by auto
qed
have inB: s’ € B’
proof —
have s € B using assms s by auto
thus ?thesis using s B’ by auto
qed
hence s’ € A’ N B’ using inA by auto

}

186

thus ?thesis by auto
qed

moreover have A’'N B’ C S’
proof —
{ fix s’ assume s s'€ A'N B’
then obtain a where a: a € A A fa = s’ using A’ by auto
obtain b where b: b € B A fb = s’ using s’ B’ by auto

have (3 p. (fp=8) AN (Va. fo =s"— x = p)) using assms(1)
by auto
then obtain p where p: (fp =) A (Vz. fz =5 — z = p)
by auto
hence a = b using a b by blast
hence a € S A fa = s' using a b assms(2) by auto
hence s’ € S’ using S’ by auto
}
thus ?thesis by auto
qed

ultimately show ?thesis using S’ A’ B’ by auto
qed

lemma lemlinsideCone:
shows insideRegularCone © p +—
—(vertex x p V outsideRegularCone z p V onRegularCone x
p)
proof —
{ assume lhs: insideRegularCone z p
hence (slopeFinite x p) A (3 v € lineVelocity (lineJoining x p) .
sNorm2 v < 1)
by auto
hence rtp1: —(vertex = p) by blast

define | where [: [= lineJoining © p

obtain vin where vin: vin € lineVelocity | A sNorm2 vin < 1
using [lhs by blast
hence vs: V v . v € lineVelocity | — sNorm2 v < 1
proof —
{ fix v assume v: v € lineVelocity
have slopeFinite = p using lhs by blast
moreover have onLine x | A onLine p | using [lemLineJoin-
ingContainsEndPoints
by auto
ultimately have v = vin
using rtpl v vin lemFiniteLineVelocityUnique[of v | vin] by
blast

187

}

thus ?thesis using vin by blast
qed

{ assume outsideRegularCone z p
then obtain v where v: v € lineVelocity I A sNorm2 v > 1
using [lhs by blast
hence sNorm2 v < 1 using vs by blast
hence Fulse using v by force
}
hence rtp2: = outsideRegularCone = p by blast
{ assume onRegularCone z p
then obtain v where v: v € lineVelocity I A sNorm2 v = 1
using [lhs by blast
hence sNorm2 v < 1 using vs by blast
hence Fulse using v by force
}
hence rtp3: - onRegularCone x p by blast
hence —(vertex p V outsideRegularCone z p V onRegularCone

)

}

hence 2r: insideRegularCone x p —
—(vertex z p V outsideRegularCone z p V onRegularCone x

using ripl rtp2 by blast

p)
by blast

{ assume rhs: =(vertex z p V outsideRegularCone x p V onRegular-
Cone z p)
define v where v: v = (insideRegularCone x p)
define z where z: z = (vertex z p V outsideRegularCone z p V
onRegularCone x p)
hence v V z using v z lemClassification[of x p] by auto
hence insideRegularCone x p using rhs v z by blast
}
thus ?thesis using [2r by blast
qged

lemma lemOnRegularConelff:
assumes | = lineJoining x p
shows onRegularCone x p «— (I N regularConeSet x = 1)
proof —
{ assume rc: onRegularCone x p
hence reg: reqgularCone = p using lemReqularCone by blast
define S where S: S = [N regularConeSet x

have SinL: S C [using S by blast

188

have [C S
proof —
{ fix ¢ assume ¢: ¢ € [
then obtain o« where a: ¢ = (z ® (a ® (pSx))) using assms
by blast
hence gmz: (¢oz) = (a ® (pSx)) by simp

hence sqr (tval (¢oz)) = sqr (tval (a ® (pOzx))) by auto

also have ... = (sqr a)*(sqr (tval p — tval z)) using lemSqrMult
by auto
also have ... = (sqr a)*(sNorm2 (sComponent (pSx)))
using rc lemConeCoordinates[of x p] by auto
also have ... = sNorm2 (a ®s (sComponent (pSzx)))
using lemSNorm20fScaled|of a (sComponent (po))] by auto
also have ... = sNorm2 (sComponent (a @ (pSz))) by simp

finally have sqr (tval (¢©z)) = sNorm2 (sComponent (¢Sx)
) using gmz by simp
hence onRegularCone z q using lemConeCoordinates|of x ¢|
by auto
hence regularCone ¢ q using lemRegularCone by blast
hence ¢ € S using S ¢ by auto
}
henceV ¢q. g€l — g € S by blast
thus ?thesis by blast
qed

hence (I N regularConeSet © = 1) using S SinL by blast
}
hence 2r: onRegularCone x p — (I N reqularConeSet z = 1) by
blast

{ assume rhs: (I N reqgularConeSet © = 1)
have p € |
using lemLineJoiningContainsEndPoints[of | z p] assms(1) by
auto
hence regularCone x p using rhs by blast
hence onRegularCone x p using lemRegularCone by blast

thus ?thesis using [2r by blast
qed

lemma lemOutside ReqularConelmplies:
shows outsideRegularCone x p
— (3 1p'. (p'# p) A onLine p’ I A onLine p |
A (I N regularConeSet x = {}))
proof —
{ assume lhs: outsideRegularCone p

189

hence znotp: (z # p) by auto
hence formula: sqr (tval p — tval) < sNorm2 (sComponent

(po1))
using lemConeCoordinates|of = p] using lhs by auto

have cases: (slopelnfinite x p) V
((slopeFinite x p) A
(3 v € lineVelocity (lineJoining z p) . sNorm2 v >

1))

using lhs by blast

have casel: slopelnfinite x p —>
(3 lp' . (p'# p) A onLine p’' Il A onLine p
A (I N regularConeSet x = {}))
using znotp lemSlopelnfiniteImpliesOutside
by blast

have case2:
((slopeFinite x p) A (3 v € lineVelocity (lineJoining x p) . sNorm?2
v> 1))
— (3 lp'. (p' # p) A onLine p’ I A onLine p 1
A (I N regularConeSet © = {}))
proof —
define [where [: [= lineJoining = p
hence onl: onLine z I N\ onLine p [using lemLineJoiningCon-
tainsEndPoints by blast

{ assume hyp: (slopeFinite © p) A
(3 v € lineVelocity (lineJoining © p) . sNorm2 v
> 1)
then obtain v where v: v € lineVelocity | A sNorm2 v > 1
using [by blast

define 20 where z0: 20 = mkPoint (tval p) (zval x) (yval)
(zval)

define dsqr where dsqr: dsqr = norm2 (p © z0)

define d where d: d = sqrt dsqr

have dEzists: hasRoot dsqr using dsqr lemNorm2NonNeg
AzEField by auto

have znotp: © # p using hyp by auto
have dnot0: d # 0

proof —
{ assume d0: d = 0

190

hence dsqr = 0 using lemSquareOfSqrt|of dsqr d] dEzists
d by auto
hence (p©z0) = origin using dsqr lemNulllmpliesOrigin|of
(pSz0)] by auto
hence p = z0 by simp
hence sloper z p = ((1/(tval z — tval p))®(2O20)) using
z0 by auto
moreover have sComponent (x©z0) = sOrigin using z0
by simp
ultimately have velocityJoining © p = sOrigin using hyp
by auto
hence sOrigin € lineVelocity [
using lemLineVelocity UsingPoints[of x p l| | hyp znotp onl
by auto
hence sOrigin = v
using lemFiniteLineVelocity Unique[of sOrigin [v]
hyp v onl znotp by blast
hence sNorm2 v = 0 by auto
hence Fulse using v by auto

thus ?thesis by auto
qed

hence dsqrnot0: dsqr # 0
using d dEzists lemSquareOfSqrt[of dsqr d] lemZeroRoot by
blast

have dpos: d > 0
using d thel’[of isNonNegRoot dsqr] lemSqrt dEzists dnot0

by auto

define T where T T = tval p
define radius where radius: radius = tval p — tval x
define R0 where R0O: RO = sComponent (pSx)

have ROgtRadius: sqr radius < sNorm2 R0 using formula
radius RO by auto

have dsqr’: dsqgr = sNorm2 R0

proof —
have sComponent © = sComponent z0 using z0 by simp
hence R0 = sComponent (p © z0) using R0 by auto
moreover have tval (pSz0) = 0 using z0 by simp
ultimately show ?thesis using lemNorm2Decomposition dsqr

by auto
qed

hence radialnot0: RO # sOrigin using dsqrnot0 by auto

191

obtain D0 where D0: D0 # sOrigin A (D0 ©s R0) = 0)
using lemOrthogalSpaceVectorExists[of R0O] by auto

define D where D: D = stPoint 0 D0
define L where L: L = line p D

hence pOnLine: onLine p L
using lemLineJoiningContainsEndPoints[of L p (p®D)] by
auto

have meetEmpty: L N reqularConeSet © = {}
proof —
{ assume L N regularConeSet = # {}
then obtain @ where @Q: @ € L N regularConeSet © by

blast
then obtain o where a: @ = (p ® (o« ® D)) using L by
blast
have ((p & (0 ® D))Sa) = (p&x) & (a®D))
using add-diff-eq diff-add-eq by auto
hence Qmz: (Q © z) = ((poz) @ (a®D)) using a by
simp

hence Qmat: tval Q — tval x = tval (pSzx) using D by simp

have sComponent (QSx) = sComponent ((pSz) & (a®D))
using Qmz by simp
also have ... = ((sComponent (pox)) ®s (sComponent
(a®D))) by simp
finally have sNorm2 (sComponent (QSz))
= sNorm2 ((sComponent (pox)) ®s (sComponent (a®D)))
by simp
also have ... = sNorm2 (R0 ®s (o ®s D0)) using R0 D
by auto
also have ... = sNorm2 R0 + 2x(R0 ©s (o ®s D0)) +
sNorm2 (a ®s DO)
using lemSNorm20fSum[of RO (o ®s D0)] by auto
finally have
sNorm2 (sComponent (Qox)) = sNorm2 RO + 2x(R0 ©s
(o ®s DO)) + sNorm2 (o ®s DO)
by auto

moreover have (R0 ©s (o« ®s D0)) = 0
using D0 lemSDotCommute lemSDotScaleRight by simp

192

moreover have sNorm2 (a ®s D0) > 0 by simp
ultimately have sNorm2 (sComponent (Q©z)) > sNorm2
RO by simp

hence Qmazs: sNorm2 (sComponent (QSz)) > sqr radius
using R0OgtRadius by simp

hence sqr (tval Q — tval z) < sNorm2 (sComponent (QSt))
using radius Qmazxt by simp
hence — (onRegularCone z Q)
using lemConeCoordinates[of ()] by force
hence — (reqularCone x Q) using lemRegularCone by blast
hence Fulse using @ by blast

thus ?thesis by blast
qed

define p’ where p: p' = (p ® D)
have Dnot0: D # origin using D D0 by auto

hence p’ # p
proof —
{ assume p’ = p
hence (p @ D) = p using p’ by auto
hence ((p ® D) © p) = origin by simp
hence D = origin using add-diff-cancel by auto
hence Fulse using Dnot0 by auto
}
thus “thesis by blast
qed
moreover have onLine p’ L using L p’ by auto
ultimately have target!: p’ # p A onLine p’ L by blast

hence (3 1 p’. (p’ # p) A onLine p’ Il A onLine p |
A (I N regularConeSet © = {})) using meetEmpty
pOnLine by blast
}
thus ?thesis by blast
qed

hence (3 1 p'. (p’' # p) A onLine p’ I A onLine p 1
A (I N regularConeSet x = {}))
using cases casel by blast
}
hence (2r: outsideRegularCone © p —
(3 lp' . (p'# p) A onLine p' Il A onLine p
A (I N regularConeSet x = {}))

193

by blast

thus ?thesis by blast
qed

lemma lem TimelikelnsideCone:
assumes insideRegularCone = p
shows timelike (p © x)
proof —
have tval p — tval x # 0 using assms by auto
hence tdiffpos: sqr (tval p — tval x) > 0 using lemSquaresPositive
by auto

define [where I: | = lineJoining = p
hence slopeFinite x p A (3 v . v € lineVelocity I A sNorm2 v < 1)
using assms by auto
then obtain v where v: v € lineVelocity | A sNorm2 v < 1
using assms by blast
have lineVelocity | = { velocityJoining = p }
using lemLineVelocityUsingPoints[of x p I] assms
lemLineJoiningContainsEndPoints |
by blast
hence vv: v = velocityJoining x p A sNorm2 v < 1 using v by auto
hence formula: sqr (tval p — tval)x(sNorm2v) = sNorm2 (sComponent
(pow))
using lemSNorm2VelocityJoining[of = p v] assms by blast

have cases: sNorm2 v = 0 V sNorm2 v > 0
using local.add-less-zeroD local.not-less-iff-gr-or-eq
local.not-square-less-zero
by blast

have casel: sNorm2 v > 0 — timelike (p © x)
proof —
define snv where snv: snv = sNorm2 v
{ assume sNorm2 v > 0
hence 0 < snv < 1 using vv snv by auto
moreover have sqr (tval p — tval x)xsnv = sNorm2 (sComponent
(pSz))
using formula snv by simp
ultimately have sqr (tval p — tval) > sNorm2 (sComponent
(poz))
using lemMultPosLT[of sqr (tval p — tval x) snv)
tdiffpos by force
hence timelike (poz) by auto
}
thus ?thesis using snv by auto
qed

194

{ assume sNorm2 v = 0
hence sNorm2 (sComponent (p © z)) = 0 using formula by auto
hence timelike (pOz) using tdiffpos by auto

}

hence case2: sNorm2 v = 0 — timelike (p©z) by auto

thus ?thesis using casel cases by auto
qed

end
end

31 ReverseCauchySchwarz

This theory defines and proves the "reverse" Cauchy-Schwarz in-
equality for timelike vectors in the Minkowski metric.

theory ReverseCauchySchwarz
imports CauchySchwarz
begin

Rather than construct the proof, one could simply have asserted
the claim as an axiom. We did this during development of the
main proof, and then returned to this section later. In practice
the axiom we chose to assert contained far more information than
required, because we eventually found a proof that only required
consideration of timelike vectors (our axiom considered lightlike
vectors as well).

class ReverseCauchySchwarz = CauchySchwarz

begin

lemma lemTimelikeNotZeroTime:
assumes timelike v
shows tval v # 0
proof —
{ assume converse: tval v = 0
have sNorm2 (sComponent v) < sqr (tval v) using assms by auto
hence sNorm2 (sComponent v) < 0 using converse by auto
hence Fulse using local.add-less-zeroD local.not-square-less-zero
by blast
}
thus ?thesis by auto
qed

195

lemma lemOrthogmTo Timelike:
assumes timelike u
and orthogm u v
and v # origin
shows spacelike v
proof —
have tvalu: tval v # 0 using assms(1) lemTimelikeNotZeroTime
by auto

define us where us: us = sComponent u

define vs where vs: vs = sComponent v

have sqr ((tval u) * (tval v)) = sqr (us @s vs) using assms(2) us
vs by auto

also have ... < sNorm2 us x sNorm2 vs using lemCauchySchwarzSqr
by auto

finally have inequ: sqr (tval u) * sqr (tval v) < sNorm2 us * sNorm?2
Vs

using mult-assoc mult-commute by auto

have ifvsnz: vs # sOrigin — sNorm2 vs > 0
by (meson local.add-less-zeroD local.antisym-convd
local.lemSpatial NulllmpliesSpatialOrigin local.not-square-less-zero)

have iftv0: tval v = 0 — spacelike v
proof —
{ assume v0: tval v = 0
hence vs # sOrigin using assms vs by auto
hence sNorm2 vs > 0 using ifvsnz by auto
hence spacelike v using v0 vs
by (metis local.less-iff-diff-less-0 local.mult-not-zero)

thus ?thesis by auto
qed

moreover have (tval v # 0 A vs # sOrigin) — spacelike v
proof —
{ assume vnz: (tval v # 0 A vs # sOrigin)

have utpos: sqr (tval v) > 0 using tvalu lemSquaresPositive by
stmp
have vspos: sNorm2 vs > 0 using vnz ifvsnz by auto

have sqr (tval u) * sqr (tval v) < sNorm?2 us * sNorm?2 vs using
inequ by simp
hence sqr (tval v) < sNorm2 us * sNorm2 vs / sqr (tval u)
using utpos
by (metis local. divide-right-mono local. divisors-zero local.dual-order. strict-implies-order

196

local.nonzero-mult-div-cancel-left tvalu)
hence sqr (tval v) / sNorm2 vs < sNorm2 us / sqr (tval)
using vspos mult-commute by (simp add: local.mult-imp-div-pos-le)

moreover have sNorm2 us / sqr (tval u) < 1 using assms(1)
us utpos by auto
ultimately have sqr (tval v) / sNorm2 vs < 1 by simp
hence spacelike v using vs vspos by auto
}
thus ?thesis by auto
qed

moreover have — (tval v # 0 A vs = sOrigin)
proof —
{ assume (tval v # 0 A vs = sOrigin)
hence (u ©m v) # 0 using tvalu vs by auto
hence Fulse using assms by auto

thus ?thesis by auto
qed

ultimately show ?thesis by blast
qed

lemma lemNormalise Timelike:
assumes timelike v
and s = sComponent ((1/tval v)@v)
shows (0 < sNorm2 s < 1) A (tval ((1/tval v)®@v) = 1)
proof —
have sqr (tval v) > sNorm2 (sComponent v) using assms by auto
hence 1 > sqr (1/tval v) x sNorm2 (sComponent v)
using local.divide-less-eq by force
hence sNorm2 s < 1 using lemSNorm20fScaled|of 1/tval v sCom-
ponent v] assms
by auto
hence (0 < sNorm2 s < 1) by simp
moreover have (tval ((1/tval v)®@v) = 1)
proof —
have sqr (tval v) > sNorm2 (sComponent v) using assms by auto
hence sqr (tval v) # 0
by (metis local.add-less-zeroD local.not-square-less-zero)
hence tval v # 0 by auto
thus ?thesis by auto
qed
ultimately show ?thesis by blast
qed

197

lemma lemReverseCauchySchwarz:
assumes timelike X A timelike D
shows sqr (X @m D) > (mNorm2 X)x(mNorm2 D)
proof —
have casel: parallel X D — %thesis
proof —
{ assume parallel X D
then obtain ¢ where a: X = (a ® D) by auto
hence (X ®@m D) = a x mNorm2 D using lemMDotScaleLeft by
auto
moreover have mNorm2 X = (sqr a) * mNorm2 D using
lemMNorm20fScaled a by auto
ultimately have s¢r (X ©m D) = (mNorm2 X)x(mNorm2 D)
using local.lemSqrMult mult-assoc by auto

thus ?thesis by simp
qed

have (- parallel X D) — ?thesis
proof —
{ assume case2: - (parallel X D)
define u where u: v = ((1/tval X)®X)
define v where v: v = ((1 /tval D)®D)
define su where su: su = (sComponent u)
define sv where sv: sv = (sComponent v)

have sphere: (0 < sNorm2 su < 1) A (0 < sNorm2 sv < 1)
using lemNormalise Timelike u su v sv assms by blast
have tvalsi: tval u = 1 A tval v = 1
using lemNormalise Timelike u su v sv assms by blast

have worksuv: sqr (u @m v) > (mNorm2 u)x(mNorm2 v)
proof —

have uupos: mNorm2 v > 0 using assms u lemNormalise Time-
like by auto
have vupos: mNorm2 v> 0 using assms v lemNormalise Timelike
by auto
have uvpos: (v ©m v) > 0
proof —
have sqr (sdot su sv) < (sNorm2 su) * (sNorm2 sv)
using lemCauchySchwarzSqr by auto
also have ... < 1
using mult-le-one sphere local.mult-strict-mono by fastforce
finally have sqr (sdot su sv) < 1 by auto
hence (sdot su sv) < 1
using local.less-1-mult local.not-less-iff-gr-or-eq by fastforce
thus ?thesis using u v su sv tvalsl by auto

198

qed

define a where a: a = (v ©@m v)/(mNorm2 v)
define up where up: up = (a ® v)
define uo where wo: uo = (u © up)

have apos: a > 0 using a uvpos vvpos by auto

have updotup: mNorm2 up > 0
proof —
have mNorm2 up = (sqr a) * mNorm2 v using up lemM-
Norm20fScaled by auto
thus ?thesis using apos lemSquaresPositive vvpos by auto
qed

have uparts: u = (up ® wo) A parallel up v A orthogm wo v A
(up ©@m v) = (u Om v)
using lemMDecomposition a up uo vvpos uvpos by auto

have updotuo: (up ©m wo) = 0
proof —
have (up ©®m uwo) = ax(v ®m wo) using up lemMDotScaleLeft
by auto
moreover have (v ©m uo) = (vo ®m v) using mult-commute
by auto
ultimately have (up ®m wo) = 0 using uparts by force
thus ?thesis by auto
qed

have udotu: mNorm2 v = mNorm2 up + mNorm?2 uo
proof —
have mNorm2 u = mNorm2 (up ® wo) using uparts by auto
also have ... = mNorm2 up + 2%(up @m uo) + mNorm2 uo
using lemMNorm20fSum by auto
finally show ?thesis using updotuo by auto
qed

moreover have uodotuo: mNorm2 uo < 0
proof —
have timelike up using updotup by auto
moreover have orthogm up uo using updotuo by auto
moreover have uo # origin
proof —
define a where «: a = (tval X)xax(1/tval D)
have apos: o # 0 using apos lemTimelikeNotZeroTime
assms o by simp

{ assume uo = origin
hence v = (¢ ® v) using wo up by auto

199

moreover have X = ((tval X)®u)
using u lemScaleAssoc assms lemTimelikeNotZero Time
by auto
ultimately have X = ((tval X)®(a®v)) by auto
hence X = ((tval X)®(a®((1/tval D)®D))) using v by
auto
hence X = (o ® D) using a lemScaleAssoc mult-assoc
by (metis Point.select-convs(3—4))
hence Fualse using case2 apos by blast

thus ?thesis by auto
qed
ultimately show ?thesis using lemOrthogmTo Timelike by
auto
qed

ultimately have upgeu: mNorm2 up > mNorm2 u by auto

have (u ®m v) = (up ®m v) using uparts by auto
also have ... = a * mNorm2 v using up lemMDotScaleLeft by
auto
finally have final: sqr (v ©m v) = ((sqr a)*mNorm2 v) x*
(mNorm2 v)
using lemSqrMult[of a mNorm2 v] mult-assoc by auto

hence sqr (v ®m v) = (mNorm2 up)*(mNorm2 v) using
lemMNorm20fScaled up by auto
thus ?thesis
using upgeu vvpos local.mult-strict-right-mono by simp
qed

have (v ©@m v) = (((1/tval X)®X) &m ((1/tval D)®D)) using
u v by auto
hence udotv: (v @m v) = (1 /tval X)*(1/tval D) * (X @m D)
using lemMDotScaleRight lemMDotScaleLeft mult-assoc mult-commute
by metis

have udotu: mNorm2 v = sqr (1/tval X) * mNorm2 X using u
lemMNorm20fScaled by blast
moreover have vdotv: mNorm2 v = sqr (1 /tval D) * mNorm2
D using v lemMNorm20fScaled by blast
ultimately have (mNorm2 u)x(mNorm2 v) = sqr ((1/tval
X)*(1/tval D)) * mNorm2 X x mNorm2 D
using mult-commute mult-assoc by auto

hence

sqr ((1/tval X)*(1/tval D) * (X ®m D)) >
sqr ((1/tval X)x(1/tval D)) x* mNorm2 X x

200

mNorm2 D
using worksuv udotv by auto
moreover have sqr ((1/tval X)x(1/tval D)) > 0
using lemTimelikeNotZeroTime
by (metis calculation local.lemSquaresPositive local.mult-cancel-left1)
ultimately have ?thesis
using mult-less-cancel-left-pos[of sqr ((1/tval X)x(1/tval D))]
by auto

}

thus ?thesis by auto
qed

thus ?thesis using casel by auto
qed

end

end

32 KeyLemma

This theory establishes a "key lemma": if you draw a line through
a point inside a cone, that line will intersect the cone in no fewer
than 1 and no more than 2 points.

theory KeyLemma
imports Classification ReverseCauchySchwarz
begin

class KeyLemma = Classification + ReverseCauchySchwarz
begin

lemma lemlInside ReqularConelmplies:
assumes insideRegularCone = p
and D # origin

and l=linep D
shows 0 < card (I N regularConeSet) < 2
proof —

define S where S: S = (I N regularConeSet x)

define X where X: X = (p © z)

define o where a: a = mNorm2 D

define b where b: b = 2x(tval X)*(tval D) — 2x((sComponent D)
©s (sComponent X))

201

define ¢ where c¢: ¢ = mNorm2 X
define d where d: d = (sqr b) — (4*axc)

have tX: timelike X using lemTimelikeInsideCone assms(1) X by
auto
hence cpos: ¢ > 0 using ¢ by auto

have znotp: © # p using assms(1) by auto

have aval: a = mNorm2 D using a by auto
have bval: b = 2%(X ©m D)
using b local.lemSDotCommute local.right-diff-distrib’ mult-assoc
using local.mdot.simps by presburger
have cval: ¢ = mNorm2 X using ¢ by auto
have dval: d = 4 = ((sqr (X ®m D)) — (mNorm2 X)x(mNorm2
D))
proof —
have d = (sqr b) — (4*ax*c) using d by simp
moreover have (sqr b) = /x(sqr (X ©m D))
using lemSqrMult[of 2 (X ©m D)] buval by auto
moreover have /xaxc = 4+(mNorm2 X)x(mNorm2 D)
using aval cval mult-commute mult-assoc by auto
ultimately show ?thesis using right-diff-distrib’ mult-assoc by
metis
qed

define r2p where r2p: r2p = (A r . (p®(r®D)))
define p2r where p2r: p2r = (A ¢ . (THE a . ¢ = (p®(a®D))))

have bij: V rq.m2pr=q+— F w.(r2pw=q) AN (p2rq=r)
proof —
have uniqueroots: ¥ ar . r2pa=12%pr — a=r
proof —
{ fix a r assume r2p a = r2p r
hence (a®D) = (r®D) using r2p add-diff-eq by auto
hence ((a—7)®D) = origin using lemScaleDistrib Diff by auto
hence (a—r) = 0 using assms(2) by auto
hence a = r by simp
}
thus %thesis by blast
qed
{ fix ¢ r assume lhs: r2p r = ¢
have (THE a . ¢ =12pa) =71
proof —
{ fix a assume ¢ = 2p a
hence a = r using uniqueroots lhs r2p by blast

}

henceV a . qg= 120 a — a = r by auto

202

thus %thesis using lhs the-equality[of Aa . ¢ = m2p a 7]
by force
qed
}
hence 2r:V gr . m2pr=q — (3 w. (r2p w=q)) A (p2rq=
r)

using p2r r2p by blast

{ fix r ¢ assume ass: (3 w. (r2p w=q)) A (p2rq=r)
then obtain w where w: r2p w = ¢q by blast
hence unique: ¥V a . ¢ = r2p a — a = w using uniqueroots by
auto
have rdef: r = (THE a . ¢ = r2p a) using ass r2p p2r by simp

have ¢ = r2p w using w by simp
hence ¢ = r2p r using thel[of X a. ¢ = r2p a w] rdef unique
by blast
}
henceV gr. (3 w.(r2pw=q) AN p2rq=71)— q=12pr
by blast

thus ?thesis using [2r by blast
qed

have equalr2p: ¥V xy . r2p x = r2p y — = = y using bij by metis

have SbijRoots: S ={y.3 x € qrootsabc.y=1r2pz}
proof —
{ fix y assume y: y € S
then obtain r where r: y = r2p r using r2p S assms by blast
hence regularCone z (p @ (r®D)) using r2p y S by auto
hence r € qroots a b ¢
using lem WhereLineMeetsCone[of a D b p x c 7]
a b c X by auto
hence 3 r € qroots a b ¢ . y = r2p r using r by blast

hence 2r: SC{y.3 x € qrootsabc.y=r2p x} by blast
{fixyassume y: y€ {y.I x € qgrootsabc.y=r2 z }
then obtain r where r: r € groots a b ¢ A y = r2p r by blast
hence regularCone x (r2p r)
using lem WhereLineMeetsCone[of a D b p x ¢ 7]
abc X r2p by auto
moreover have r2p r € | using assms(3) r2p by auto
ultimately have y € S using S r by auto
}
thus ?thesis using (2r by blast
qed

203

have equalcard: ((card (groots a b ¢) = 1) V (card (groots a b ¢) =
2))
— (card S = card (qroots a b ¢))
proof —
{ assume cases: card (qroots a b ¢) = 1 V card (groots a b ¢) = 2

have casel: card (qroots a b ¢) = 1 — (card S = card (groots
abc))
proof —
{ assume cardl: card (qroots a b ¢) = 1
hence 3 r . (groots a b ¢) = {r} by (meson card-1-singletonFE)
then obtain r where r: (groots a b ¢) = {r} by blast
hence 2r: { r2p r } C S using SbijRoots by auto
{ fix y assume y: y € S
then obtain r where z: x € qrootsa bc AN y=1r2pzx
using SbijRoots by blast
hence r2p r = y using bij using r by auto
}
henceV y.ye S — y e {r2 r} by auto
hence S = { r2p r } using 2r by blast
hence 3 r . S = {r} by blast
hence card S = 1
using card-1-singleton-iff[of S| by auto
}
thus ?thesis by auto
qged

have case2: card (qroots a b ¢) = 2 — (card S = card (groots
abc))
proof —
{ assume card2: card (qroots a b ¢) = 2
hence 3 r1 r2 . (qroots a b ¢) = {r1, r2} A rl # r2
using card-2-iff by blast
then obtain rI 72 where rs: (groots a b ¢) = {ri,r2} A
ri1#r2 by blast
hence 2r: { r2p r1, r2p 12} C S using SbijRoots by auto
{ fix y assume y: y € S
then obtain x where z: x € gqroots a bc N y=r2pz
using SbijRoots by blast
hence z = r1 V z = r2 using rs by auto
hence r2p r1 = y V r2p r2 = y using z by blast
}
henceV y.ye S — ye {r2pri, r2p r2 } by auto
hence S2: S = { r2p r1, r2p r2 } using [2r by blast
moreover have r2p r1 # r2p r2 using rs bij by metis
ultimately have 3 yI y2 . S = {yI, y2} A yl#y2 by blast
hence card S = 2 using card-2-iff by blast

thus ?thesis by auto

204

qed

hence (card S = card (groots a b c)) using casel cases by auto
}
thus ?thesis by auto
qed

have qc1: — gcasel a b ¢ using cpos by auto

have ¢c2: = qcase2 a b ¢
proof —
{ assume qcase2 a b ¢
hence ¢c2: a = 0 ANb =0 A ¢ > 0 using d cpos by auto

have [ID: lightlike D using qc2 aval assms(2) by simp

have s¢r (X @m D) = (mNorm2 X)+(mNorm2 D)
using ¢c2 bval aval by simp
hence orthogm X D using [ID lemSqrt0 by auto
hence parXD: parallel X D
using lemCausalOrthogmToLightlikeImpliesParallel tIX 11D by
auto

then obtain « where a: a # 0 A X = (o ® D) by blast

have Dnot0: origin # D using assms(2) by simp
hence lightlike X
proof —
have tsqr: sqr (tval X) = (sqr a)x sqr (tval D)
using lemSqrMult o by simp
have sComponent X = (a ®s (sComponent D)) using o by
stmp
hence sNorm2 (sComponent X) = (sqr «) * sNorm2 (sComponent
D)
using lemSNorm20fScaled|of o sComponent D] by auto
hence mNorm2 X = (sqr o) * mNorm2 D
using lemMNorm2Decomposition|of X| tsqr
by (simp add: local.right-diff-distrib’)
thus ?thesis using [ID gc2 znotp X by auto
qged

hence Fualse using tIX by auto

thus ?thesis by auto
qed

205

have q¢c3: gease3 a b ¢ — card S = 1
proof —

{

assume gcase3 a b ¢
hence gc3: groots a b ¢ = {(—c/b)} using lem@QCase3 by auto
hence 3 wval . (groots a b ¢ = {val}) by simp

hence card (groots a b ¢) = 1 using card-1-singleton-iff by auto

}

hence card S = 1 using equalcard by auto

thus ?thesis by auto
qed

have gc4: — qcase4 a b c
proof —

{

D)

assume qgcase4 a b ¢
hence gqc4: a # 0 N d < 0 using d by auto
{ assume a > 0

hence tID: timelike D using aval by auto

hence sqr (X @m D) > (mNorm2 X)*(mNorm2 D)
using lemReverse CauchySchwarzlof X D] t1X
using local.dual-order.order-iff-strict by blast
hence EQN: jxsqr (X ©m D) > jx(mNorm2 X)x(mNorm2

using qgc4 d dval local.leD by fastforce

have (sqr b) < 4+*axc using d gc/ by simp
hence 4xsqr (X @m D) < 4x(mNorm2 X)x(mNorm2 D)
using aval bval cval mult-assoc mult-commute
lemSqrMult[of 2 (X ®m D)] by auto

hence Fulse using FQN by force
}
hence aneg: a < 0 using qcj by force
hence 4x*axc < 0 using cpos
by (simp add: local.mult-pos-neg local.mult-pos-neg2)
hence d > sqr b using d
by (metis add-commute local.add-less-same-cancel? local. diff-add-cancel)
hence d > 0
using local.less-trans local.not-square-less-zero qc4 by blast
hence Fulse using gcj by auto

thus ?thesis by auto
qed

have ¢gc5: qecase5 abc — card S = 1
proof —

{

206

assume qc5: qcaseb a b ¢
hence groots a b ¢ = {(—b/(2%a))} using lemQCase5 by auto
hence 3 wval . groots a b ¢ = {val} by simp
hence card (groots a b ¢) = 1 using card-1-singleton-iff by auto
hence card S = 1 using equalcard by simp

}

thus ?thesis by simp

qed

have gc6: qcase6 a b ¢ — card S = 2
proof —
{ define rd where rd: rd = sqrt (discriminant a b c)
define mp where rp: rp = (—=b + rd) / (2 * a)
define rm where rm: rm = (—=b — rd) / (2 * a)

assume qc6: qcaseb a b ¢

hence mp # rm A groots a b ¢ = {rp, rm}
using lemQCase6lof a b ¢ rd rp rm] a b ¢ rd rm 1p
by auto

hence 3 vl v2 . groots a b ¢ = { vl, v2 } A (vl # v2) by blast

hence card (qroots a b ¢) = 2 using card-2-iff [of groots a b c]
by blast

hence card S = 2 using equalcard by simp

thus ?thesis by simp
qed

define n where n: n = card S
hence (n =1V n=2)
using gcl qc2 qc8 qc4 qed qeb lemQuadraticCasesComplete
by blast
hence 0 < n < 2 by auto
thus ?thesis using n S by auto
qed

end
end

33 Cardinalities

For our purposes the only relevant cardinalities are 0, 1, 2 and
more-than-2 (a proxy for "infinite"). We will use these cardinal-
ities when looking at how lines intersect cones, using the size of
the intersection set to characterise whether points are inside, on
or outside of lightcones.

theory Cardinalities
imports Functions

207

begin

class Cardinalities = Functions
begin

lemma lemlInjectiveValueUnique:
assumes injective f

and isFunction f

and fzy

shows {q¢ fzqg}={y}
using assms(2) assms(3) by force

lemma lemBijectionOnTwo:
assumes bijective f

and isFunction f

and s C domain f

and card s = 2

shows card (applyToSet f s) = 2
proof —

obtain z y where zy: s = {z,y} A © # y using assms(4)

by (meson card-2-iff)
obtain fr where fr: f x fr using xy assms(1) assms(3) by blast
obtain fy where fy: fy fy using zy assms(1) assms(3) by blast
have applyToSet fs={q. I pe€s.fpq} by simp
moreover have ... ={ ¢. fz q V fy q } using zy by auto
moreover have ... ={ ¢. fz ¢ } U{ q. fy q } by auto
ultimately have applyToSet fs={ fr } U{ fy }

using fr fy assms(1) assms(2) lemInjectiveValue Unique by force
moreover have fr # fy using fr fy assms(1) xzy by blast
thus ?thesis using calculation by force

qed

lemma lemFElementsOfSet2:
assumes card S = 2
showsI pqg.(p# g ApeESANgGgeS
by (meson assms card-2-iff”’)

lemma lemThirdElementOfSet?2:
assumes (p Z) ApeESAqgeSA (card §=2)
and res
shows p=rVqg=r
proof —
have card S = 2 using assms(1) by auto

208

then obtain z y where zy: (z € S) A (y € S) A (z # y) A (Vz2€S8.

z=zVz=y)
using card-2-iff '[of S] by auto

have p: p = 2 V p = y using zy assms(1) by auto

have ¢: ¢ = = V ¢ = y using zy assms(1) by auto

hence pg: (p =2z AN g=y)V (p =y A ¢ = z) using assms(1) p
by blast

moreover have r = z V r = y using zy assms(2) by auto

ultimately show ?thesis by auto
qed

lemma lemSmallCardUnderInvertible:
assumes invertible f

and 0 < cardS < 2
shows card S = card (applyToSet (asFunc f) S)
proof —

have cases: card S = 1 V card S = 2 using assms(2) by auto

have casel: card S = 1 — ?thesis
proof —
{ assume card!: card S = 1
hence 3 a . § = {a} by (meson card-1-singletonE)
then obtain ¢ where a: S = {a} by blast
define b where b: b = fa
hence applyToSet (asFunc f) S ={ b}
proof —
have {b} C applyToSet (asFunc f) S using a b by auto
moreover have applyToSet (asFunc f) S C {b}
proof —
{ fix ¢ assume c: ¢ € applyToSet (asFunc f) S
hence c€ { ¢.3 a’ € S . (asFunc f) a’ ¢ } by auto
then obtain a’ where a”: ¢’ € S A (asFunc f) a’ ¢ by blast
hence a’ = a A fa = ¢ using a by auto
hence ¢ € {b} using b by auto

thus ?thesis by blast
qed
ultimately show ¢thesis by blast
qed
hence 3 b . applyToSet (asFunc f) S = { b } by blast
hence card (applyToSet (asFunc f) S) = 1 by auto
}
thus ?thesis by auto
qed

have case2: card S = 2 — ?thesis
proof —

209

{ assume card2: card S = 2
hence 3 a u . a#u A S = {a, u} by (meson card-2-iff)
then obtain a u where au: au A S = {a, u} by blast
define b where b: b = fa
define v where v: v = fu
hence applyToSet (asFunc f) S ={b, v}
proof —
have {b, v} C applyToSet (asFunc f) S using au b v by auto
moreover have applyToSet (asFunc f) S C {b, v}
proof —
{ fix ¢ assume c: ¢ € applyToSet (asFunc f) S
hence c€ { ¢.3 a’ € S . (asFunc f) a’ ¢ } by auto
then obtain a’ where o a’ € S A (asFunc f) a’ ¢ by blast
hence (a'=a ANfa=c¢)V (a'=uA fu= c) using au
by auto
hence ¢ € {b, v} using b v by auto

thus ?thesis by blast
qed
ultimately show ?thesis by blast
qged
moreover have b # v
proof —
{ assume b = v
hence f a = fu using b v by simp
hence ¢ = u using assms(1) by blast
hence Fulse using au by auto

thus ?thesis by auto
qed
ultimately have 3 b v . b#v A applyToSet (asFunc f) S = { b,
v } by blast

hence card (applyToSet (asFunc f) S) = 2 using card-2-iff by
auto

thus ?thesis by auto
qed

thus ?thesis using cases casel by blast
qed

lemma lemCardOfLinelsBig:
assumes z # p
and onLine x I A onLine p 1
shows 3 pl p2p3 . (onLine p1 I A onLine p2 1 A onLine p3 1)
A (p1#p2 N p2#p3 N p3#pl)
proof —

210

obtain b d where bd: | = line b d using assms(2) by blast

hence dnot0: d # origin using assms by auto

have Ipd: | = line p d using lemSameLine[of p b d] bd assms(2) by
auto

define p! where p1: pl = (p ® (I ® d))
define p2 where p2: p2 = (p & (2 ® d))
define p3 where p3: p3 = (p ® (3 ® d))

have onl: onLine p1 I A onLine p2 1 N\ onLine p3 | using Ipd p1 p2
p3 by auto

have psdiff: p1 # p2 N p2 # p3 N p3 # pl

proof —
have p! # p2 using p1 p2 dnot0 by auto
moreover have p2 # p3 using p2 p3 dnot0 by auto
moreover have p3 # pl using p3 pl dnot0 by auto
ultimately show ?thesis by blast

qed

hence (onLine p1 I A onLine p2 1 A onLine p8 DA(p1#p2 N p2+#p3
A p3#pl)
using onl by blast
thus ?thesis using p1 p2 p3 by meson
qed

end
end

34 AffineConeLemma

This theory shows that affine approximations preserve "inside-
ness" of points relative to cones.

theory AffineConeLemma
imports KeyLemma TangentLineLemma Cardinalities
begin

class AffineConeLemma = KeyLemma + TangentLineLemma + Car-
dinalities
begin

lemma lemInverseOfAffInvertiblelsAffInvertible:
assumes affInvertible A

and Vey. Az=y<+— Aly==z

shows affInvertible A’

proof —

211

have invA’” invertible A’ using assms(2) by force
moreover have affine A’
proof —
obtain L T where LT: (linear L) A (translation T) AN (A =T o
L)
using assms(1) by blast
then obtain ¢ where ¢:V ¢ . Tz = (z & t) using LT by auto
have invertible L
proof —
{ fix ¢
define p where p: p = A’ (T q)
hence Lpg: (L p = q)
proof —
have A p = T q using p assms(2) by simp
thus ?thesis using LT by auto
qed
moreover have (Vz. Lz = ¢ — z = p)
proof —
{ fix z assume L z = ¢
hence L z = L p using Lpq by simp
hence A z = A p using LT by auto
hence z = p using assms(2) by force

}

thus ?thesis by auto
ged

ultimately have 3 p . (Lp=¢) A Vz. Lx = ¢ — z = p)
by blast

}

thus ?thesis by blast
qed

then obtain L' where L.V zy. Lz =y +— L'y = z by metis

have linL: linear L using LT by auto
have linL’” linear L'
proof —

have partl: L' origin = origin using linL L’ by auto
have part2: ¥V ap . L' (a®p) = (a @ (L' p))
proof —
{fixap
have L (L’ p) = p using L’ by auto
hence L (a ® (L'p)) = (a ® p)
using linL lemLinearProps[of L a (L' p)] by auto
hence (¢ ® (L' p)) = (L' (a ® p)) using L’ by auto
}
thus ?thesis by auto
qed

haveV pq. (L' (p@q)=((L'p)® (L') AN (L' (pSq) =
((L"p) © (L' 9)))

212

proof —
{fixpgq
have (L ((L"p) & (L' q)) = (L (L"p)) & (L (L))))
A (L ((L7p) & (L' q) = (L (L' p)) & (L (L"q)))
using linL lemLinearProps[of L 0 (L' p) (L' q)] by auto
moreover have L (L' p) = p A L (L' q) = q using L’ by
auto
ultimately have (L ((L'p) ® (L' q)) = (p © ¢)) A (L ((L’
p)o (L' q) = (peq)
using L’ by auto
hence (L' p) & (L' q)) =L" (p & q) A (L' p) & (L' q)) =
L' (peq)
, using L’ by force
thus ?thesis by force
qged

thus ?thesis using part! part2 by blast
qed

define ¢’ where t": t' = (origin © (L' t))
define T’ where T T' = mkTranslation t’

have transT’: translation T' using T' t' by fastforce

have A’'=T'o L’
proof —
{ fix ¢ define p where p: p = A’ ¢
hence A p = ¢ using assms(2) by force
hence ((L p) ® t) = q using LT t by auto
hence L p = (¢ © t) using add-diff-eq by auto
hence p = L' (¢ © t) using L’ by auto
hence p = ((L' ¢) © (L' t)) using lemLinearProps|of L] linL’
by auto
hence p = T’ (L' q) using T’ t’ by auto
hence A’ ¢ = (T’ 0 L’) q using p by auto
}
thus ?thesis by blast
qed

thus ?thesis using linL’ transT’ by blast
qed

ultimately show ¢thesis by blast
qed

213

lemma lemlInside RegularConeUnderAffInvertible:
assumes affInvertible A

and insideRegularCone z p

and regularConeSet (A z) = applyToSet (asFunc A) (regularConeSet
z)

shows insideRegularCone (A z) (A p)

proof —

define y where y: y = Az
define ¢ where ¢: ¢ = A p
define cx where cz: cx = regularConeSet x
define cy where cy: cy = regularConeSet y

obtain A’ where A"V zy. Az =y +— A’y =z using assms(1)
by metis
hence invA’: invertible A’ by force
have affA’”: affine A’
using A’ assms(1) lemInverseOfAffInvertibleIsAffInvertible
by auto

have p”: A’ ¢ = p using A’ q by auto
have z”: A’ y = z using A’ y by auto

have znotp: © # p using assms(2) by auto
have ynotq: y # q using p’ ' Tnotp by auto

have cy”: cy = applyToSet (asFunc A) cz using y czx cy assms(3)
by auto
have cz”: cx = applyToSet (asFunc A') cy
proof —
{ fix z assume z € cx
hence (A4 2) € cy using cy’ by auto
hence A’ (A z) € applyToSet (asFunc A’) cy by auto
hence z € applyToSet (asFunc A’) cy using A’ by metis
}
hence 2r: cx C applyToSet (asFunc A') cy by blast
{ fix z assume rhs: z € applyToSet (asFunc A’) cy
hence z € { 2.3 2'. 2" € ey A (asFunc A') 2’ z } by auto
then obtain z! where z1: z1 € cy A (asFunc A’) z1 z by blast
hence z1 € { z1 . 3 22 . 22 € cx A (asFunc A) 22 z1 } using
cy’ by auto
then obtain 22 where 22: 22 € cz A (asFunc A) 22 z1 by blast
hence z = 22 using z1 A’ by auto
hence z € cz using 22 by auto
}
thus ?thesis using (2r by blast
qed

214

have noton: = onRegularCone y q
proof —
{ assume on: onRegularCone y q

define Iz where Iz: [z = lineJoining = p
define ly where ly": ly = applyToSet (asFunc A) lx
have onlz: onLine z lx A onLine p lx
using lemLineJoiningContainsEndPoints|of Iz = p| lx by auto

have linelz: isLine Iz using [z by blast
have linely: applyAffineToLine A lx ly
using lemAffineOfLinelsLine[of lx A ly] assms(1) ly’ linelz by
auto

have 4 D . lz = linep D

proof —
obtain b d where Ix = line b d using linelx by blast
hence Iz = line p d using lemSameLine[of p b d] onlz by auto
thus ?thesis by auto

qed

then obtain D where D: [z = line p D by auto

have Dnot0: D # origin
proof —
{ assume D = origin
hence Fulse using D onlz znotp by auto
}
thus ?thesis by auto
qed

have ly: ly = lineJoining y q
proof —
have applyToSet (asFunc A) {z,p} C applyToSet (asFunc A)
lz using onlx by auto
hence {y,q} C ly using y ¢ ly’ by auto
moreover have isLine ly using linely by auto
ultimately show ?thesis using lemLineAndPoints[of y q ly]
by (simp add: ynotq)
qed

hence only: { y, ¢ } C ly
using lemLineJoiningContainsEndPoints[of ly y q] ly’ by auto

have SzSy: applyToSet (asFunc A) (lx N cz) = (ly N cy)
using lemInvertibleOnMeet[of A Iz N cz lz cx] assms(1) ly' cy’
by auto

have cardz: 0 < card (Ix N cz) < 2

215

using lemInsideRegularConelmplies[of x p D lx]
assms(2) Dnot0 lz D cx
by fastforce

hence cardy: card (ly N cy) = card (lx N cx)
using lemSmallCardUnderInvertible[of A lx N cxz] assms(1)
SzSy by auto

hence lycy: ly N cy = ly

using lemOnRegularConelff[of ly y q] ly ynotq cy on

by blast
hence 3 pI p2p3 . (pl € ly A p2 € ly A p3 € ly)

N (p1#p2 N p2#p3 N pS8#pl)

using lemCardOfLinelsBig[of y q ly] ynotq only linely by auto
then obtain p! p2 p3

where ps: (pl € ly A p2 € ly A p3 € ly) A (pl#p2 A p2+#p3

A p3#pl)
by auto

have notl: card ly # 1 using ps card-1-singleton-iff [of ly] by
auto

have not2: card ly # 2 using ps card-2-iff [of ly] by auto

hence — (0 < card (ly N cy) < 2) using lycy not! by auto

hence Fulse using cardy cardx by auto

thus “thesis by blast
qed

have notout: = outsideRegularCone y q
proof —
{ assume out: outsideRegularCone y g
hence (3 1 ¢’ . (¢’ # q) N onLine ¢’ I A onLine ¢l
AN ey = 1{1)
using lemOutsideRegularConelmplies[of y q] cy
by auto
then obtain [¢’
where I: (¢' # q) A onLine ¢’ I A onLine gl A (IN cy = {})
by blast

define Iz where Iz: lx = applyToSet (asFunc A') |
have (lz N cz) = applyToSet (asFunc A') (I N cy)
using lemInvertibleOnMeet[of A" I N cy | cy]
mnvA’ Iz cx’ by auto
hence (iz N cz) = applyToSet (asFunc A'){} using | by auto
hence int0: (Iz N cx) = {} by simp

hence card0: card (lx N cx) = 0 by simp

216

auto

have linelz: isLine lx
proof —
have isLine [using [by blast
thus ?thesis using lemAffineOfLinelsLinelof | A lz] lx affA’
by auto
qed

have ponlx: onLine p Iz
proof —

have ¢ € [using [by simp

thus ?thesis using Iz p’ linelr by auto
qed

have 3 D . lx = linep D

proof —
obtain b d where Ix = line b d using linelx by blast

hence Iz = line p d using lemSameLine[of p b d] ponlz by auto
thus ?thesis by auto

qged

then obtain D where D: Iz = line p D by auto

have Dnot0: D # origin
proof —
{ assume D0: D = origin
have allp: V pt. onLine pt lv — pt = p
proof —
{ fix pt assume onLine pt Iz
then obtain a where pt = (p ® (¢ ® D)) using D by

hence pt = p using D0 by simp

thus ?thesis by blast
qed

define p! where p1: p1 = A’ ¢’
have AA" YV pt . A (A’ pt) = pt by (simp add: A’)

hence p1 # p
proof —
{ assume pp: pI = p
hence A (A’ ¢') = A (A’ q) using p’ p1 by auto
hence ¢’ = ¢q using AA’ by simp
hence Fulse using [by auto

thus ?thesis by auto
qed

217

moreover have onLine pl Iz
proof —
have p1 = A’ ¢/ using | p1 by blast
hence p! € applyToSet (asFunc A’) I using [by auto
hence p! € Iz by (simp add: lz)
thus ?thesis using linelx by auto
qed

ultimately have Fulse using [allp by blast

thus ?thesis by auto
qed

have 0 < card (lx N cz) < 2
using lemlInsideRegularConelmplies[of © p D lz]
assms(2) Dnot0 D cz
by blast

hence Fulse using card0 by simp

thus “thesis by blast
qed

hence — (vertez y q) A —~(onRegularCone y q) A —~(outsideRegularCone

yq)
using ynotq noton notout by blast

hence insideRegularCone y q using lemInside Cone[of y ¢]
by fastforce

thus ?thesis using y ¢ by blast
qed

end
end

35 NoFTLGR

This theory completes the proof of NoFTLGR.

theory NoFTLGR
imports ObserverConeLemma AffineConeLemma
begin

class NoFTLGR = ObserverConeLemma + AffineConeLemma
begin

The theorem says: if observer m encounters observer k (so that

218

they are both present at the same spacetime point x), then k
is moving at sub-light speed relative to m. In other words, no
observer ever encounters another observer who appears to be
moving at or above lightspeed.

theorem lemNoFTLGR:

assumes assl: x € wline m m N wline m k
and ass2: tllmkx
and ass3: v € lineVelocity [
and ass{: A p.(p#zx)AN(pel
shows (lineSlopeFinite [) A (sNorm2 v < 1)
proof —

define s where s: s = (wline k k)

have azEventMinus m k xz using AxzFEventMinus by force
hence (3 ¢ .V b.((m sees b at) +— (k sees b at q)))
using ass! by blast
then obtain y where y: V b . ((m sees b at) «— (k sees b at
y)) by auto
hence mkxy: wvtFunc m k x y using ass1 by auto

have axDiff m k x using AxDiff by simp
hence 3 A . (affineApproz A (wvtFunc m k) x) using mkzy by fast
then obtain A where A: affineApprox A (wvtFunc m k) z by auto

hence affA: affine A by auto
have lineL: isLine | using ass2 by auto

define [’ where [": I’ = applyToSet (asFunc A) 1

hence lineL’: isLine I’
using lineL affA lemAffineOfLinelsLine[of I A 1]
by auto

have tgtl": tangentLine 1’ s y
proof —
define g1 where g1: g1
define g2 where ¢g2: g2

x € wline m k

tangentLine | (wline m k)
define g3 where ¢3: g3 = affineApproz A (wvtFunc m k) z
define g/ where ¢g4: g4 = wvtFunc mkz y

define g5 where ¢5: ¢5 = applyAffineToLine A 11’

define g6 where ¢6: g6 = tangentLine I’ (wline k k) y

have z € wline m k
— tangentLine | (wline m k) z
— affineApproz A (wvtFunc m k) x
— wvtFunc mk z y
— applyAffineToLine A 11’

219

— tangentLine I’ (wline k k) y
using lemPresentation[of t m k1 k A y]
by blast

hence pres: g1 — g2 — g3 — g4 — g5 — g6
using g1 g2 g3 g4 g5 g6 by fastforce

have 1: g1 using ass1 g1 by auto
have 2: g2 using ass2 g2 by fast
have 3: g3 using A g3 by fast

have 4: g4 using mkzy g4 by fast

have 5: g5 using 1 lineL I’ offA lemAffineOfLinelsLine[of | A 1]

gd
by auto

hence g6 wusing 1 2 3 4 5 pres by meson
thus ?thesis using s g6 by auto
qed

have ykk: y € wline k k using ass! y by auto

have ¢2: I’ = timeAxis
proof —
have tl I’ k k y using tgtl’ I’ s by auto
thus “thesis
using lemSelfTangentlsTimeAzis[of y k 1] by auto
qed

have yOnAuzis: onLine y timeAxis
using lemTimeAxislsLine ykk AzSelfMinus by blast

hence yOnl’”: onLine y I’ using c2 by auto

have V p . cone k y p <— regularCone y p
using ykk lemProposition! [of y k] by auto
hence ycone: coneSet k y = reqularConeSet y by auto

have zcone: coneSet m © = regularConeSet x
proof —
have z € wline m m using ass! by auto
hence V p . cone m z p +— reqularCone x p
using lemPropositionl[of © m] by auto
thus ?thesis by auto
qed

220

have assm1” y € wline k k N wline k m
using ass! y by auto
have azFEventMinus k m y using AzEventMinus by force
hence (3 ¢ .V b. ((ksees b aty) «— (m sees b at q)))
using assml1’ by blast
then obtain z where 2: V b . ((k sees b at y) «— (m sees b at z))
by auto
hence kmyz: wvtFunc k m y z using assml1’ by auto

have azDiff k m y using AxzDiff by simp

hence 3 A . (affineApproz A (wvtFunc k m) y) using kmyz by fast

then obtain Akmy where Akmy: affineApprox Akmy (wvtFPunc k
m) y by auto

hence affA’”: affine Akmy by auto
have invA’: invertible Akmy using Akmy by auto

then obtain Amkz where
Amkz: (affine Amkz) N (Y p g . Akmy p = q +— Amkx q¢ = p)
using lemInverseAffine[of Akmy] offA’ by blast

have wvtFunc m k x y using mkzy by auto
hence kmyx: wvtFunc k m y © by auto
hence zisz: x = z using kmyz lem WV TImpliesFunction by blast

moreover have z = Akmy y
using lemAffineEqualAtBase|of wutFunc k m Akmy y] Akmy kmyz
by blast

ultimately have zA'y: © = Akmy y by auto

hence p35a: applyToSet (asFunc Akmy) (coneSet k y) C coneSet m
x
using Akmy lemProposition2[of k m Akmy y]
by simp

have p35aRegular: applyToSet (asFunc Akmy) (regularConeSet y)
= reqularConeSet x
proof —
have applyToSet (asFunc Akmy) (regularConeSet y) C coneSet m

using ycone p35a by auto

hence 12r: applyToSet (asFunc Akmy) (regularConeSet y) C regu-
larConeSet

221

using zcone by auto

have 72l: reqularConeSet x C applyToSet (asFunc Akmy) (reqularConeSet

)
proof —

{ assume converse: —(reqularConeSet © C applyToSet (asFunc
Akmy) (regularConeSet y))
then obtain z where
z: z € regularConeSet x N —(z € applyToSet (asFunc Akmy)
(regularConeSet y))
by blast
define z’ where 2": 2’ = Amkx 2

have z'NotOnCone:—(z' € regularConeSet y)
proof —
{ assume conv: z’ € regularConeSet y
have Akmy z' = z using Amkz 2’ by auto
hence (asFunc Akmy) 2z’ z by auto
hence 3 2’ € regularConeSet y . (asFunc Akmy) 2z’ z using
conv by blast
hence z € applyToSet (asFunc Akmy) (regularConeSet y)
by auto
hence Fulse using z by blast
}
thus ?thesis by blast
qged

hence — (regularCone y z') by auto
then obtain | where
I: (onLine z' 1) A (= (y € 1)) A (card (I N (regularConeSet y))
~ 2)
using lemConeLemmaZ2]of z' y] by blast
then obtain p ¢ where
pg: (p # q) AN p € (I N (regularConeSet y)) A ¢ € (I N
(regularConeSet y))
using lemFElementsOfSet2[of | N (regularConeSet y)] by blast

have lineL: isLine | using [by auto

define p’ where p": p' = Akmy p
define ¢’ where ¢": ¢/ = Akmy q
have p’inv: Amkz p’ = p using Amkz p’ by auto
have q’inv: Amkz q¢' = q using Amkz q' by auto

have pOnCone: p € reqularConeSet y using pq by blast

moreover have (asFunc Akmy) p p’ using p’ by auto

ultimately have 3 p € regularConeSet y . (asFunc Akmy) p
p’ by blast

hence p’ € applyToSet (asFunc Akmy) (regularConeSet y) by

222

auto
hence Ap: p’ € regularConeSet x using 12r by blast

have ¢OnCone: q € regularConeSet y using pq by blast

moreover have (asFunc Akmy) ¢ q' using ¢’ by auto

ultimately have 3 ¢ € regularConeSet y . (asFunc Akmy) q
q’ by blast

hence ¢’ € applyToSet (asFunc Akmy) (regularConeSet y) by

hence Aq: ¢’ € regularConeSet x using [2r by blast

have p'q" p' # ¢’
proof —
{ assume p’ = ¢’
hence Akmy p’' = Akmy q' by auto
hence p = ¢q by (metis p’ ¢/ Amkx)
hence Fulse using pq by simp

thus ?thesis by auto
qed

have p'z: p' # 2
proof —
{ assume p’ = 2
hence p = 2’ using p’inv 2z’ by auto
hence Fualse using pOnCone z'NotOnCone by auto
}
thus ?thesis by auto
qed

have ¢'z: ¢’ # 2
proof —
{ assume ¢’ = 2
hence ¢ = 2’/ using ¢inv 2’ by auto
hence Fulse using qOnCone 2'NotOnCone by auto

thus ?thesis by auto
qed

define !’ where I”: I’ = applyToSet (asFunc Akmy) |
have affine Akmy using Akmy by auto
hence All": applyAffineToLine Akmy 11’
using !’ lineL lemAffineOfLinelsLinelof | Akmy]
by blast

have lineL’: isLine ' using All’ by auto

define S where S: S = I’ N regularConeSet x

223

have zNotInL’: = (z € 1)
proof —
{ assume z € I’
hence 3 y1 € | . (asFunc Akmy) y1 z using I’ by auto
then obtain y! where yI: (yI € l) A (Akmy yI = z) by
auto
hence Akmy y1 = Akmy y using zA'y by auto
hence y! = y using invA’ by auto
hence y € [using y! by auto
hence Fulse using [by auto
}
thus ?thesis by auto
qed

have p'InMeet: p’ € S
proof —
have p € | A (asFunc Akmy) p p’ using p’ pq by auto
hence 3 p € | . (asFunc Akmy) p p’ by auto
hence p’ € I’ using I’ by auto
thus “thesis using Ap S by blast
qed

have ¢'InMeet: ¢’ € S
proof —
have ¢ € | A (asFunc Akmy) q ¢’ using ¢’ pq by auto
hence 3 ¢ € | . (asFunc Akmy) q ¢’ by auto
hence ¢’ € I’ using I’ by auto
thus ?thesis using Aq S by blast
qed

have zInMeet: z € S
proof —
have Akmy 2z’ = 7 using 2’ Amkxz by blast
moreover have 2z’ € [using [by auto
ultimately have 2z’ € [A (asFunc Akmy) 2z’ z by auto
hence 3 2z’ € 1. (asFunc Akmy) 2z’ z by auto
hence z € |’ using I’ by auto
thus ?thesis using z S by blast
qed

have finite S N\ card S < 2
using zNotInL' linel’ S lemConeLemmal [of z 1’ S]
by auto

moreover have S # {} using zInMeet by auto

ultimately have card S = 1 V card S = 2
using card-0-eq by fastforce

224

moreover have card S # 2
proof —
{ assume card S = 2
hence p’ =z V ¢' = 2
using p’q’ p'InMeet q'InMeet zInMeet
lem ThirdElementOfSet2|of p’ q' S 7]
by auto
hence Fulse using p’z ¢’z by auto

thus ?thesis by auto
qed

moreover have card S # 1
using p’'InMeet q'InMeet p'q’ card-1-singletonE by force
ultimately have Fulse by blast
thus ?thesis by blast

qed
thus ?thesis using [2r by blast

qed

have Iprops: | = applyToSet (asFunc Akmy) timeAxis
proof —

define ¢’ where t" t' = applyToSet (asFunc Akmy) timeAxis

define p! where pi1: pl = (y € wline k k)

define p2 where p2: p2 = tangentLine timeAxis (wline k k) y
define p& where p3: p3 = affineApprox Akmy (wvtFunc k m) y
define p4 where p4: p4 = wvtFunc km y x

define p5 where pd: p5 = applyAffineToLine Akmy timeAzis t’

define tgt where tgt: tgt = tangentLine t' (wline m k) z

have prel: pl using pl ykk by auto

have pre2: p2

proof —
have tangentLine I’ (wline k k) y using tgtl’ s by auto
hence tangentLine timeAxis (wline k k) y using ¢2 by meson
thus ?thesis using p2 by blast

qed

have pre3: p3 using p3 Akmy by auto

have pre/: p4 using pj kmyz by auto

have pres: p5

225

using pd affA’ lemTimeAxislsLine t' Akmy
lemAffineOfLinelsLine|of timeAxis Akmy t']
by blast

have p! — p2 — p3 — p4 — p5 — tgt

using pI p2 p3 p4 ps tgt

lemPresentation|of y k k timeAxzis m Akmy x t']

by fast
hence tl t' m k z using tgt prel pre2 pred pred pred5 by auto
moreover have tl | m k z using ass2 by auto
moreover have affineApproz A (wvtFunc m k) z using A by auto
moreover have wvtFunc m k r y using mkzy by auto
moreover have z € wline m k using ass! by auto
ultimately have ¢t/ = |

using lemTangentLineUnique[of x m k t' 1 A y]

by fast
thus ?thesis using t’ by blast

qed

{ fix py assume py: onTimeAxis py N py # y

have pylnsideCone: insideRegularCone y py

proof —

have pyOnAxis: onLine py timeAxis using py lemTimeAxisIsLine
by blast

hence pyprops: timeAxis = lineJoining y py
using py yOnAxis lemLineAndPoints[of y py timeAzis] by auto

define d where d: d = (y © py)
hence 3 py y . (py # y) A (onLine py timeAzis)
A (onLine y timeAzis) A (d = (y © py))
using py pyOnAxis yOnAuxis by blast
hence ddrtn: d € drtn timeAzis by simp

have scomp0: sComponent d = sOrigin using d py yOnAxis by
auto

have sf: slopeFinite py y using py yOnAuzis by force

hence sloper py y = ((—1) ® ((1 / (tval py — tval y)) ® d))
using d by auto

hence velocityJoining py y = sOrigin using scomp0 by simp

hence velocityJoining origin d = sOrigin using d by auto

hence (d € drtn timeAxis) A (sOrigin = velocityJoining origin

d)
using ddrin by auto

226

hence 3 d . (d € drin timeAwxis) A (sOrigin = velocityJoining
origin d)
by blast
hence (sOrigin € lineVelocity timeAxis) by auto

hence (sOrigin € lineVelocity timeAwis) N (sNorm2 sOrigin <

1)
by auto
hence 3 v . (v € lineVelocity timeAxis) A (sNorm2 v < 1)
by blast
thus ?thesis using pyprops sf by auto
qed

define pr where pz: pr = Akmy py

have insideRegularCone x pz
proof —
have insideRegularCone y py using pylnsideCone by blast
moreover have affInvertible Akmy using affA’ invA’ by blast
moreover have z = Akmy y by (simp add: zA'y)
moreover have pr = Akmy py by (simp add: px)
moreover have reqularConeSet x = applyToSet (asFunc Akmy)
(regularConeSet y)
using p35aReqular by simp
ultimately show ?thesis
using lemInsideRegularConeUnderAffInvertible[of Akmy y py]
by auto
qed

moreover have z # pzx
proof —
{ assume zispz:x = px
hence Fulse using zispz invA’ px xA’y py by auto
}
thus “thesis by auto
qed

ultimately have insideRegularCone x (Akmy py) N x # (Akmy

Py)
using px by blast

}

hence result: ¥V py . (onTimeAxis py A\ py # y)
— insideRegularCone x (Akmy py) N = # (Akmy

Py)
by blast

227

obtain p where p: (p # z) A (p € 1) using assms(4) by blast

have [= applyToSet (asFunc Akmy) timeAzis using Iprops by
stmp

hence p € { p . 3 py € timeAuxis . (asFunc Akmy) py p } using
p by auto

then obtain py where py: py € timeAzis A (asFunc Akmy) py p
by blast

hence onTimeAzis py by blast
moreover have py # y
proof —
{ assume py = y
hence Fualse using py p by (simp add: zA'y)

thus ?thesis by auto
qed
ultimately have onTimeAxis py A py # y by blast

hence inside: insideRegularCone © p N\ x # p using result py by
auto

have onl: onLine z I A onLine p | using ass2 using p by blast

have pnotzr: p # z using inside by auto

hence znotp: © # p by simp

hence [j: | = lineJoining = p
using lemLineAndPoints[of z p I] xnotp onl by auto

hence lineSlopeFinite | using onl inside by blast

moreover have (sNorm2 v < 1)
proof —
have (3 v € lineVelocity | . sNorm2 v < 1) using [j inside by
auto
then obtain « where u: u € lineVelocity | A sNorm2 v < 1 by
blast
hence u = v
using lemFiniteLineVelocity Unique|of u | v] ass3 calculation
by presburger
thus “thesis using u by auto
qed

ultimately have (lineSlopeFinite [) A (sNorm2 v < 1) by auto

thus ?thesis by auto
qed

228

end

end

References

[1] M. Stannett and I. Németi. Using Isabelle/HOL to verify first-order
relativity theory. Journal of Automated Reasoning, 52(4):361-378,
2014.

[2] M. Stannett and I. Németi. No faster-than-light observers. Archive
of Formal Proofs, April 2016. https://isa-afp.org/entries/No__
FTL_ observers.html, Formal proof development.

229

	Sorts
	Bodies
	Quantities

	Points
	Squared norms and separation functions
	Topological concepts
	Lines
	Directions
	Slopes and slopers

	WorldView
	Functions
	Differentiable approximation
	lemApproxEqualAtBase

	WorldLine
	Translations
	AXIOM: AxSelfMinus
	TangentLines
	Cones
	AXIOM: AxLightMinus
	Proposition1
	AXIOM: AxEField
	Norms
	axTriangleInequality

	AxTriangleInequality
	Sublemma3
	Vectors
	CauchySchwarz
	Matrices
	LinearMaps
	Affine
	Affine approximation

	Sublemma4
	MainLemma
	AXIOM: AxDiff
	TangentLineLemma
	Proposition2
	AXIOM: AxEventMinus
	Proposition3
	ObserverConeLemma
	Quadratics
	Classification
	ReverseCauchySchwarz
	KeyLemma
	Cardinalities
	AffineConeLemma
	NoFTLGR

