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Abstract

We have previously verified, in the first order theory SpecRel of
Special Relativity, that inertial observers cannot travel faster than light
[1, 2]. We now prove the corresponding result for GenRel, the first-order
theory of General Relativity. Specifically, we prove that whenever an
observer m encounters another observer k (so that m and k are both
present at some spacetime location x), k will necessarily be observed
by m to be traveling at less than light speed.
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1 Sorts

GenRel is a 2-sorted first-order logic. This theory introduces
the two sorts and proves a number of basic arithmetical results.
The two sorts are Bodies (things that can move) and Quantities
(used to specify coordinates, masses, etc).

theory Sorts

imports Main

begin

1.1 Bodies

There are two types of Body: photons and observers. We do not
assume a priori that these sorts are disjoint.

record Body =
Ph :: bool

Ob :: bool

1.2 Quantities

The quantities are assumed to form a linearly ordered field. We
may sometimes need to assume that the field is also Euclidean,
i.e. that square roots exist, but this is not a general requirement
so it will be added later using a separate axiom class, AxEField.

class Quantities = linordered-field

begin

abbreviation inRangeOO :: ′a ⇒ ′a ⇒ ′a ⇒ bool (- < - < -)
where (a < b < c) ≡ (a < b) ∧ (b < c)

abbreviation inRangeOC :: ′a ⇒ ′a ⇒ ′a ⇒ bool (- < - ≤ -)
where (a < b ≤ c) ≡ (a < b) ∧ (b ≤ c)

abbreviation inRangeCO :: ′a ⇒ ′a ⇒ ′a ⇒ bool (- ≤ - < -)
where (a ≤ b < c) ≡ (a ≤ b) ∧ (b < c)

abbreviation inRangeCC :: ′a ⇒ ′a ⇒ ′a ⇒ bool (- ≤ - ≤ -)
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where (a ≤ b ≤ c) ≡ (a ≤ b) ∧ (b ≤ c)

lemma lemLEPlus: a ≤ b + c −→ c ≥ a − b

by (simp add: add-commute local.diff-le-eq)

lemma lemMultPosLT1 :
assumes (a > 0 ) ∧ (b ≥ 0 ) ∧ (b < 1 )
shows (a ∗ b) < a

using assms local.mult-less-cancel-left2 local.not-less by auto

lemma lemAbsRange: e > 0 −→ ((a−e) < b < (a+e)) ←→ (abs

(b−a) < e)
by (simp add: local.abs-diff-less-iff )

lemma lemAbsNeg: abs x = abs (−x)
by simp

lemma lemAbsNegNeg: abs (−a−b) = abs (a+b)
using add-commute local.abs-minus-commute by auto

lemma lemGENZGT : (x ≥ 0 ) ∧ (x 6= 0 ) −→ x > 0

by auto

lemma lemLENZLT : (x ≤ 0 ) ∧ (x 6= 0 ) −→ x < 0

by force

lemma lemSumOfNonNegAndPos: x ≥ 0 ∧ y > 0 −→ x+y > 0

by (simp add: local.add-strict-increasing2 )

lemma lemSumOfTwoHalves: x = x/2 + x/2

using mult-2 [of x/2 ] by force

lemma lemDiffDiffAdd: (b−a)+(c−b) = (c−a)
by (auto simp add: field-simps)

lemma lemSumDiffCancelMiddle: (a − b) + (b − c) = (a − c)
by (auto simp add: field-simps)

lemma lemDiffSumCancelMiddle: (a − b) + (b + c) = (a + c)
by (auto simp add: field-simps)

lemma lemMultPosLT : ((0 < a) ∧ (b < c)) −→ (a∗b < a∗c)
using mult-strict-left-mono by auto

lemma lemMultPosLE : ((0 < a) ∧ (b ≤ c)) −→ (a∗b ≤ a∗c)
using mult-left-mono by auto
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lemma lemNonNegLT : ((0 ≤ a) ∧ (b < c)) −→ (a∗b ≤ a∗c)
using mult-left-mono by auto

lemma lemMultNonNegLE : ((0 ≤ a) ∧ (b ≤ c)) −→ (a∗b ≤ a∗c)
using mult-left-mono by auto

abbreviation sqr :: ′a ⇒ ′a

where sqr x ≡ x∗x

abbreviation hasRoot :: ′a ⇒ bool

where hasRoot x ≡ ∃ r . x = sqr r

abbreviation isNonNegRoot :: ′a ⇒ ′a ⇒ bool

where isNonNegRoot x r ≡ (r ≥ 0 ) ∧ (x = sqr r)

abbreviation hasUniqueRoot :: ′a ⇒ bool

where hasUniqueRoot x ≡ ∃ ! r . isNonNegRoot x r

abbreviation sqrt :: ′a ⇒ ′a

where sqrt x ≡ THE r . isNonNegRoot x r

lemma lemAbsIsRootOfSquare: isNonNegRoot (sqr x) (abs x)
by simp

lemma lemSqrt:
assumes hasRoot x

shows hasUniqueRoot x

proof −
obtain r where x = sqr r using assms(1 ) by auto

define rt where rt = (if (r ≥ 0 ) then r else (−r))
hence rt: rt ≥ 0 ∧ sqr rt = x using rt-def ‹x = sqr r› by auto

hence rtroot: isNonNegRoot x rt by auto

{ fix y

assume yprops: isNonNegRoot x y

hence y = rt

using local.square-eq-iff rt by auto

hence (( y ≥ 0 ) ∧ (x = sqr y)) −→ (y = rt) by auto

}
hence rtunique: ∀ y . isNonNegRoot x y −→ (y = rt) by auto

thus ?thesis using rtroot by auto

qed

lemma lemSqrMonoStrict: assumes (0 ≤ u) ∧ (u < v)
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shows (sqr u) < (sqr v)
proof −

have 1 : (u∗u) ≤ (u∗v) using assms comm-mult-left-mono by auto

have (u∗v) < (v∗v)
using assms mult-commute comm-mult-strict-left-mono by auto

thus ?thesis using 1 le-less-trans by auto

qed

lemma lemSqrMono: (0 ≤ u) ∧ (u ≤ v) −→ (sqr u) ≤ (sqr v)
by (simp add: local.mult-mono ′)

lemma lemSqrOrderedStrict: (v > 0 ) ∧ (sqr u < sqr v) −→ (u < v)
using mult-mono[of v u v u] by force

lemma lemSqrOrdered: (v ≥ 0 ) ∧ (sqr u ≤ sqr v) −→ (u ≤ v)
using mult-strict-mono[of v u v u] by force

lemma lemSquaredNegative: sqr x = sqr (−x)
by auto

lemma lemSqrDiffSymmetrical: sqr (x − y) = sqr (y − x)
using lemSquaredNegative[of y−x] by auto

lemma lemSquaresPositive: x 6= 0 −→ sqr x > 0

by (simp add: lemGENZGT )

lemma lemZeroRoot: (sqr x = 0 ) ←→ (x = 0 )
by simp

lemma lemSqrMult: sqr (a ∗ b) = (sqr a) ∗ (sqr b)
using mult-commute mult-assoc by simp

lemma lemEqualSquares: sqr u = sqr v −→ abs u = abs v

by (metis local.abs-mult-less local.abs-mult-self-eq local.not-less-iff-gr-or-eq)

lemma lemSqrtOfSquare:
assumes b = sqr a

shows sqrt b = abs a

proof −
have b ≥ 0 using assms by auto

hence conj1 : hasUniqueRoot b using lemSqrt[of b] assms by auto

moreover have isNonNegRoot b (abs a) using lemAbsIsRootOf-

Square assms by auto

ultimately have sqrt b = abs a

using theI [of λ r . 0 ≤ r ∧ b = sqr r abs a] by blast

thus ?thesis by auto
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qed

lemma lemSquareOfSqrt:
assumes hasRoot b

and a = sqrt b

shows sqr a = b

proof −
obtain r where r : isNonNegRoot b r using assms(1 ) lemSqrt[of b]

by auto

hence ∀ x. 0 ≤ x ∧ b = sqr x −→ x = r using lemSqrt by blast

hence a = r using r assms(2 ) the-equality[of isNonNegRoot b r ] by
blast

thus ?thesis using r by auto

qed

lemma lemSqrt1 : sqrt 1 = 1

proof −
have isNonNegRoot 1 1 by auto

moreover have ∀ r . isNonNegRoot 1 r −→ r = 1

proof −
{ fix r assume isNonNegRoot 1 r

hence r : (r ≥ 0 ) ∧ (1 = sqr r) by simp

hence r = 1 using calculation lemSqrt by blast

}
thus ?thesis by blast

qed
ultimately show ?thesis using the-equality[of isNonNegRoot 1 1 ]

by blast

qed

lemma lemSqrt0 : sqrt 0 = 0

using lemZeroRoot local.mult-cancel-right1 by blast

lemma lemSqrSum: sqr (x + y) = (x∗x) + (2∗x∗y) + (y∗y)
proof −

have x∗y + y∗x = x∗y + x∗y using mult-commute by simp

also have ... = (x+x)∗y using distrib-right by simp

finally have xy: x∗y + y∗x = 2∗x∗y using mult-2 by auto

have sqr (x+y) = x∗(x+y) + y∗(x+y) using distrib-right by auto

also have ... = x∗x + x∗y + y∗x + y∗y using distrib-left add-assoc

by auto

finally have sqr (x+y) = (sqr x) + x∗y + y∗x + (sqr y)
using distrib-left add-assoc by auto
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thus ?thesis using xy add-assoc by auto

qed

lemma lemQuadraticGEZero:
assumes ∀ x. a∗(sqr x) + b∗x + c ≥ 0

and a > 0

shows (sqr b) ≤ 4∗a∗c
proof −

{ fix x :: ′a

have a ∗ sqr (x + (b/(2∗a))) = a ∗ ((sqr x) + 2∗(b/(2∗a))∗x +
(sqr (b/(2∗a))))

using lemSqrSum[of x (b/(2∗a))] mult-assoc

mult-commute[of x (b/(2∗a))]
by auto

hence 1 : a ∗ sqr (x + (b/(2∗a)))
= (a ∗ (sqr x)) + (a∗(2∗(b/(2∗a))∗x)) + (a ∗ sqr (b/(2∗a)))

using distrib-left by auto

have a∗(2∗(b/(2∗a))∗x) = b∗x using mult-assoc assms(2 ) by
simp

hence 2 : a ∗ sqr (x + (b/(2∗a))) = a∗(sqr x) + (b∗x) + (a ∗ sqr

(b/(2∗a)))
using 1 by auto

have (a ∗ sqr (b/(2∗a))) = c + ((a ∗ sqr (b/(2∗a))) − c)
using add-commute diff-add-cancel by auto

hence (a ∗ sqr (x + (b/(2∗a))))
= (a∗(sqr x) + (b∗x) + c) + ((a ∗ sqr (b/(2∗a))) − c) using 2

add-assoc by auto

hence 3 : (a ∗ sqr (x + (b/(2∗a)))) ≥ ((a ∗ sqr (b/(2∗a))) − c)
using assms(1 ) by auto

}
hence ∀ x . (a ∗ sqr (x + (b/(2∗a)))) ≥ ((a ∗ sqr (b/(2∗a))) − c)

by auto

hence (a ∗ sqr ((−b/(2∗a)) + (b/(2∗a)))) ≥ ((a ∗ sqr (b/(2∗a)))
− c) by fast

hence ((a ∗ sqr (b/(2∗a))) − c) ≤ 0 by simp

hence 4∗a∗((a ∗ sqr (b/(2∗a))) − c) ≤ 0

using local.mult-le-0-iff assms(2 ) by auto

hence 4∗a∗((a ∗ sqr (b/(2∗a)))) − 4∗a∗c ≤ 0

using right-diff-distrib mult-assoc by auto

hence 4 : 4∗a∗((a ∗ sqr (b/(2∗a)))) ≤ 4∗a∗c by simp

have sqr (b/(2∗a)) = (sqr b)/(4∗a∗a)
using mult-assoc mult-commute by simp

hence 4∗a∗((a ∗ sqr (b/(2∗a)))) = 4∗a∗((a ∗ (sqr b)/(4∗a∗a))) by
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auto

hence 4∗a∗((a ∗ sqr (b/(2∗a)))) = (4∗a∗a)∗(sqr b)/(4∗a∗a)
using mult-commute by auto

hence 4∗a∗((a ∗ sqr (b/(2∗a)))) = (sqr b)
using assms(2 ) by simp

thus ?thesis using 4 by auto

qed

lemma lemSquareExistsAbove:
shows ∃ x > 0 . (sqr x) > y

proof −
have cases: (y ≤ 0 ) ∨ (y > 0 ) by auto

have one: 1 ≥ 0 by simp

have onestrict: 0 < 1 by simp

{ assume yle0 : y ≤ 0

hence y < sqr 1 using yle0 le-less-trans by simp

hence ?thesis using onestrict by fast

}
hence case1 : (y ≤ 0 ) −→ ?thesis by auto

{ assume ygt0 : y > 0

{ assume ylt1 : y < 1

hence sqr y < y using ygt0 mult-strict-left-mono[of y 1 ] by auto

hence sqr y < sqr 1 using ylt1 by simp

hence y < 1 using ygt0 lemSqrOrderedStrict[of 1 y] by auto

hence y < sqr 1 by simp

hence ?thesis using onestrict by best

}
hence a: (y < 1 ) −→ ?thesis by auto

{ assume y = 1

hence b1 : y < sqr 2 by simp

have 2 > 0 by simp

hence ?thesis using b1 by fast

}
hence b: (y = 1 ) −→ ?thesis by auto

{ assume ygt1 : y > 1

hence yge1 : y ≥ 1 by simp

have yge0 : y ≥ 0 using ygt0 by simp

have y ≤ y by simp

hence sqr y > y∗1 using lemMultPosLT ygt0 ygt1 by blast

hence sqr y > y by simp

hence ?thesis using ygt0 by bestsimp

}
hence (y > 1 ) −→ ?thesis by simp

hence ((y<1 )∨(y=1 )∨(y>1 )) −→ ?thesis using a b by auto
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hence ?thesis by fastforce

}
hence ypos: (y > 0 ) −→ ?thesis by auto

thus ?thesis using cases case1 by auto

qed

lemma lemSmallSquares:
assumes x > 0

shows ∃ y > 0 . (sqr y < x)
proof −

have invpos: 1/x > 0 using assms(1 ) by auto

then obtain z where z: (z > 0 ) ∧ ((sqr z) > (1/x))
using lemSquareExistsAbove by auto

define y where y: y = 1/z

hence ypos: y > 0 using z by auto

have 1 : 1/(sqr z) < 1/(1/x) using z invpos

by (meson local.divide-strict-left-mono

local.mult-pos-pos local.zero-less-one)
hence (sqr y) < x using z y by simp

thus ?thesis using ypos by auto

qed

lemma lemSqrLT1 :
assumes 0 < x < 1

shows 0 < (sqr x) < x

using assms lemMultPosLT1 [of x x] by auto

lemma lemReducedBound:
assumes x > 0

shows ∃ y > 0 . (y < x) ∧ (sqr y < y) ∧ (y < 1 )
proof −

have x2 : x > x/2

using assms lemSumOfTwoHalves[of x] add-strict-left-mono[of 0

x/2 x/2 ]
by auto

have x2pos: x/2 > 0 using assms by simp

define y where y = min (x/2 ) (1/2 )
hence y: (y ≤ x/2 ) ∧ (y ≤ 1/2 ) ∧ (y > 0 ) using x2pos by auto

have yltx: y < x using y x2 le-less-trans by auto

have ylt1 : y < 1 using y le-less-trans by auto

hence sqr y < y using lemSqrLT1 y by simp
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thus ?thesis using yltx ylt1 y by auto

qed

end

end

2 Points

This theory defines (1+3)-dimensional spacetime points. The
first coordinate is the time coordinate, and the remaining three
coordinates give the spatial component.

theory Points

imports Sorts

begin

record ′a Point =
tval :: ′a

xval :: ′a

yval :: ′a

zval :: ′a

record ′a Space =
svalx :: ′a

svaly :: ′a

svalz :: ′a

abbreviation tComponent :: ′a Point ⇒ ′a where
tComponent p ≡ tval p

abbreviation sComponent :: ′a Point ⇒ ′a Space where
sComponent p ≡ (| svalx = xval p, svaly = yval p, svalz = zval p |)

abbreviation mkPoint :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ ′a Point where
mkPoint t x y z ≡ (| tval = t, xval = x, yval =y, zval = z |)

abbreviation stPoint :: ′a ⇒ ′a Space ⇒ ′a Point where
stPoint t s ≡ mkPoint t (svalx s) (svaly s) (svalz s)

abbreviation mkSpace :: ′a ⇒ ′a ⇒ ′a ⇒ ′a Space where
mkSpace x y z ≡ (| svalx = x, svaly =y, svalz = z |)

Points have coordinates in the field of quantities, and can be
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thought of as the end-points of vectors pinned to the origin. We
can translate and scale them, define accumulation points, etc.

class Points = Quantities

begin

abbreviation moveBy :: ′a Point ⇒ ′a Point ⇒ ′a Point (- ⊕ -)
where
(p ⊕ q) ≡ (| tval = tval p + tval q,

xval = xval p + xval q,
yval = yval p + yval q,
zval = zval p + zval q |)

abbreviation movebackBy :: ′a Point ⇒ ′a Point ⇒ ′a Point (- ⊖ -)
where
(p ⊖ q) ≡ (| tval = tval p − tval q,

xval = xval p − xval q,
yval = yval p − yval q,
zval = zval p − zval q |)

abbreviation sMoveBy :: ′a Space ⇒ ′a Space ⇒ ′a Space (- ⊕s -)
where
(p ⊕s q) ≡ (| svalx = svalx p + svalx q,

svaly = svaly p + svaly q,
svalz = svalz p + svalz q |)

abbreviation sMovebackBy :: ′a Space ⇒ ′a Space ⇒ ′a Space (- ⊖s

-) where
(p ⊖s q) ≡ (| svalx = svalx p − svalx q,

svaly = svaly p − svaly q,
svalz = svalz p − svalz q |)

abbreviation scaleBy :: ′a ⇒ ′a Point ⇒ ′a Point (- ⊗ -) where
scaleBy a p ≡ (| tval = a∗tval p, xval = a∗xval p,

yval = a∗yval p, zval = a∗zval p|)

abbreviation sScaleBy :: ′a ⇒ ′a Space ⇒ ′a Space ( - ⊗s -) where
sScaleBy a p ≡ (| svalx = a∗svalx p,

svaly = a∗svaly p,
svalz = a∗svalz p|)

abbreviation sOrigin :: ′a Space where
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sOrigin ≡ (| svalx = 0 , svaly = 0 , svalz = 0 |)

abbreviation origin :: ′a Point where
origin ≡ (| tval = 0 , xval = 0 , yval = 0 , zval = 0 |)

abbreviation tUnit :: ′a Point where
tUnit ≡ (| tval = 1 , xval = 0 , yval = 0 , zval = 0 |)

abbreviation xUnit :: ′a Point where
xUnit ≡ (| tval = 0 , xval = 1 , yval = 0 , zval = 0 |)

abbreviation yUnit :: ′a Point where
yUnit ≡ (| tval = 0 , xval = 0 , yval = 1 , zval = 0 |)

abbreviation zUnit :: ′a Point where
zUnit ≡ (| tval = 0 , xval = 0 , yval = 0 , zval = 1 |)

abbreviation timeAxis :: ′a Point set where
timeAxis ≡ { p . xval p = 0 ∧ yval p = 0 ∧ zval p = 0 }

abbreviation onTimeAxis :: ′a Point ⇒ bool

where onTimeAxis p ≡ (p ∈ timeAxis)

2.1 Squared norms and separation functions

This theory defines squared norms and separations. We do not
yet define unsquared norms because we are not assuming here
that quantities necessarily have square roots.

abbreviation norm2 :: ′a Point ⇒ ′a where
norm2 p ≡ sqr (tval p) + sqr (xval p) + sqr (yval p) + sqr (zval p)

abbreviation sep2 :: ′a Point ⇒ ′a Point ⇒ ′a where
sep2 p q ≡ norm2 (p ⊖ q)

abbreviation sNorm2 :: ′a Space ⇒ ′a where
sNorm2 s ≡ sqr (svalx s)

+ sqr (svaly s)
+ sqr (svalz s)

abbreviation sSep2 :: ′a Point ⇒ ′a Point ⇒ ′a where
sSep2 p q ≡ sqr (xval p − xval q)

+ sqr (yval p − yval q)
+ sqr (zval p − zval q)

abbreviation mNorm2 :: ′a Point ⇒ ′a (‖ - ‖m)
where ‖ p ‖m ≡ sqr (tval p) − sNorm2 (sComponent p)
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2.2 Topological concepts

We will need to define topological concepts like continuity and
affine approximation later, so here we define open balls and ac-
cumulation points.

abbreviation inBall :: ′a Point ⇒ ′a ⇒ ′a Point ⇒ bool

(- within - of -)
where inBall q ε p ≡ sep2 q p < sqr ε

abbreviation ball :: ′a Point ⇒ ′a ⇒ ′a Point set

where ball q ε ≡ { p . inBall q ε p }

abbreviation accPoint :: ′a Point ⇒ ′a Point set ⇒ bool

where accPoint p s ≡ ∀ ε > 0 . ∃ q ∈ s. (p 6= q) ∧ (inBall q ε p)

2.3 Lines

A line is specified by giving a point on the line, and a point
(thought of as a vector) giving its direction. For these purposes
it doesn’t matter whether the direction is "positive" or "negative".

abbreviation line :: ′a Point ⇒ ′a Point ⇒ ′a Point set

where line base drtn ≡ { p . ∃ α . p = (base ⊕ (α⊗drtn)) }

abbreviation lineJoining :: ′a Point ⇒ ′a Point ⇒ ′a Point set

where lineJoining p q ≡ line p (q⊖p)

abbreviation isLine :: ′a Point set ⇒ bool

where isLine l ≡ ∃ b d . (l = line b d)

abbreviation sameLine :: ′a Point set ⇒ ′a Point set ⇒ bool

where sameLine l1 l2 ≡ ((isLine l1 ) ∨ (isLine l2 )) ∧ (l1 = l2 )

abbreviation onLine :: ′a Point ⇒ ′a Point set ⇒ bool

where onLine p l ≡ (isLine l) ∧ (p ∈ l)

2.4 Directions

Given any two distinct points on a line, the vector joining them
can be used to specify the line’s direction. The direction of a
line is therefore a set of points/vectors. By lemDrtn these are
all parallel

fun drtn :: ′a Point set ⇒ ′a Point set

where drtn l = { d . ∃ p q . (p 6= q) ∧ (onLine p l) ∧ (onLine q l)
∧ (d = (q ⊖ p)) }

abbreviation parallelLines :: ′a Point set ⇒ ′a Point set ⇒ bool

where parallelLines l1 l2 ≡ (drtn l1 ) ∩ (drtn l2 ) 6= {}
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abbreviation parallel :: ′a Point ⇒ ′a Point ⇒ bool ( - ‖ - )
where parallel p q ≡ (∃ α 6= 0 . p = (α ⊗ q))

The "slope" of a line can be either finite or infinite. We will often
need to consider these two cases separately.

abbreviation slopeFinite :: ′a Point ⇒ ′a Point ⇒ bool

where slopeFinite p q ≡ (tval p 6= tval q)

abbreviation slopeInfinite :: ′a Point ⇒ ′a Point ⇒ bool

where slopeInfinite p q ≡ (tval p = tval q)

abbreviation lineSlopeFinite :: ′a Point set ⇒ bool

where lineSlopeFinite l ≡ (∃ x y . (onLine x l) ∧ (onLine y l)
∧ (x 6= y) ∧ (slopeFinite x y))

2.5 Slopes and slopers

We specify the slope of a line by giving the spatial component
("sloper") of the point on the line at time 1. This is defined
if and only if the slope is finite. If the slope is infinite (the
line is "horizontal") we return the spatial origin. This avoids
using "option" but means we need to consider carefully whether
a sloper with value sOrigin indicates a truly zero slope or an
infinite one.

fun sloper :: ′a Point ⇒ ′a Point ⇒ ′a Point

where sloper p q = (if (slopeFinite p q) then ((1 / (tval p − tval

q)) ⊗ (p ⊖ q))
else origin)

fun velocityJoining :: ′a Point ⇒ ′a Point ⇒ ′a Space

where velocityJoining p q = sComponent (sloper p q)

fun lineVelocity :: ′a Point set ⇒ ′a Space set

where lineVelocity l = { v . ∃ d ∈ drtn l . v = velocityJoining origin

d }
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lemma lemNorm2Decomposition:
shows norm2 u = sqr (tval u) + sNorm2 (sComponent u)
by (simp add: add-commute local.add.left-commute)

lemma lemPointDecomposition:
shows p = (((tval p)⊗tUnit) ⊕ (((xval p)⊗xUnit)

⊕ (((yval p)⊗yUnit) ⊕ ((zval p)⊗zUnit))))
by force

lemma lemScaleLeftSumDistrib: ((a + b) ⊗ p) = ((a⊗p) ⊕ (b⊗p))
using distrib-right by auto

lemma lemScaleLeftDiffDistrib: ((a − b) ⊗ p) = ((a⊗p) ⊖ (b⊗p))
using left-diff-distrib by auto

lemma lemScaleAssoc: (α ⊗ (β ⊗ p)) = ((α ∗ β) ⊗ p)
using semiring-normalization-rules(18 ) by auto

lemma lemScaleCommute: (α ⊗ (β ⊗ p)) = (β ⊗ (α ⊗ p))
using mult.left-commute by auto

lemma lemScaleDistribSum: (α ⊗ (p ⊕ q)) = ((α⊗p) ⊕ (α⊗q))
using distrib-left by auto

lemma lemScaleDistribDiff : (α ⊗ (p ⊖ q)) = ((α⊗p) ⊖ (α⊗q))
using right-diff-distrib by auto

lemma lemScaleOrigin: (α ⊗ origin) = origin

by auto

lemma lemMNorm2OfScaled: mNorm2 (scaleBy α p) = (sqr α) ∗
mNorm2 p

using lemSqrMult distrib-left right-diff-distrib ′ by simp

lemma lemSNorm2OfScaled: sNorm2 (sScaleBy α p) = (sqr α) ∗
sNorm2 p

using lemSqrMult distrib-left by auto

lemma lemNorm2OfScaled: norm2 (α ⊗ p) = (sqr α) ∗ norm2 p

using lemSqrMult distrib-left by auto
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lemma lemScaleSep2 : (sqr a) ∗ (sep2 p q) = sep2 (a⊗p) (a⊗q)
using lemNorm2OfScaled[of a p⊖q] lemScaleDistribDiff by auto

lemma lemSScaleAssoc: (α ⊗s (β ⊗s p)) = ((α ∗ β) ⊗s p)
using semiring-normalization-rules(18 ) by auto

lemma lemScaleBall:
assumes x within e of y

and a 6= 0

shows (a⊗x) within (a∗e) of (a⊗y)
proof −

have a2pos: sqr a > 0 using assms(2 ) lemSquaresPositive by auto

have sep2 (a⊗x) (a⊗y) = (sqr a) ∗ (sep2 x y) using lemScaleSep2

by auto

hence sep2 (a⊗x) (a⊗y) < (sqr a) ∗ (sqr e)
using assms mult-strict-left-mono a2pos by auto

thus ?thesis using mult-commute mult-assoc by auto

qed

lemma lemScaleBallAndBoundary:
assumes sep2 x y ≤ sqr e

and a 6= 0

shows sep2 (a⊗x) (a⊗y) ≤ sqr (a∗e)
proof −

have a2pos: sqr a > 0 using assms(2 ) lemSquaresPositive by auto

have sep2 (a⊗x) (a⊗y) = (sqr a) ∗ (sep2 x y) using lemScaleSep2

by auto

hence sep2 (a⊗x) (a⊗y) ≤ (sqr a) ∗ (sqr e)
using assms mult-left-mono a2pos by auto

thus ?thesis using mult-commute mult-assoc by auto

qed

lemma lemTimeAxisIsLine: isLine timeAxis

proof −
{ fix p

{ assume p: p ∈ timeAxis

hence p = (origin ⊕ ((tval p) ⊗ tUnit)) by auto

}
hence l2r : onTimeAxis p −→ (∃ v . (p = (origin ⊕ (v ⊗ tUnit))))

by blast

{ assume v: ∃ v . p = (origin ⊕ (v ⊗ tUnit))
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hence onTimeAxis p by auto

}
hence (∃ v . (p = (origin ⊕ (v ⊗ tUnit)))) ←→ onTimeAxis p

using l2r by blast

}
hence timeAxis = line origin tUnit by blast

thus ?thesis by blast

qed

lemma lemSameLine:
assumes p ∈ line b d

shows sameLine (line b d) (line p d)
proof −

define l1 where l1 : l1 = line b d

define l2 where l2 : l2 = line p d

have lines: isLine l1 ∧ isLine l2 using l1 l2 by blast

obtain A where p: p = (b ⊕ (A ⊗ d)) using assms by auto

hence b: b = (p ⊖ (A ⊗ d)) by auto

{ fix x

{ assume x: x ∈ l1

then obtain a where a: x = (b ⊕ (a⊗d)) using l1 by auto

hence x = ((p ⊖ (A ⊗ d)) ⊕ (a⊗d)) using b by simp

also have . . . = (p ⊕ ((a⊗d)⊖(A⊗d)))
using add-diff-eq diff-add-eq add-commute add-assoc by simp

finally have x = (p ⊕ ((a−A)⊗d))
using lemScaleLeftDiffDistrib by presburger

hence x ∈ l2 using l2 by auto

}
hence l2r : (x ∈ l1 ) −→ (x ∈ l2 ) using l2 by simp

{ assume x: x ∈ l2

then obtain a where a: x = (p ⊕ (a ⊗ d)) using l2 by auto

hence x = (b ⊕ ((A+ a)⊗d))
using p add-assoc lemScaleAssoc distrib by auto

hence x ∈ l1 using l1 by auto

}
hence (x ∈ l1 ) ←→ (x ∈ l2 ) using l2r by auto

}
thus ?thesis using lines l1 l2 by auto

qed
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lemma lemSSep2Symmetry: sSep2 p q = sSep2 q p

using lemSqrDiffSymmetrical by simp

lemma lemSep2Symmetry: sep2 p q = sep2 q p

using lemSqrDiffSymmetrical by simp

lemma lemSpatialNullImpliesSpatialOrigin:
assumes sNorm2 s = 0

shows s = sOrigin

using assms local.add-nonneg-eq-0-iff by auto

lemma lemNorm2NonNeg: norm2 p ≥ 0

by simp

lemma lemNullImpliesOrigin:
assumes norm2 p = 0

shows p = origin

proof −
have norm2 p = sqr (tval p) + sNorm2 (sComponent p) using

add-assoc by simp

hence a: sqr (tval p) + sNorm2 (sComponent p) = 0 using assms

by auto

{ assume b: sNorm2 (sComponent p) > 0

have sqr (tval p) + sNorm2 (sComponent p) > 0

using b lemSumOfNonNegAndPos by auto

hence False using a by auto

}
hence c: ¬(sNorm2 (sComponent p) > 0 ) by auto

have d: sNorm2 (sComponent p) ≥ 0 by auto

have ∀ x . (¬(x > 0 )) ∧ (x ≥ 0 ) −→ x = 0 by auto

hence e: sNorm2 (sComponent p) = 0 using c d by force

hence f : sComponent p = sOrigin

using lemSpatialNullImpliesSpatialOrigin by blast

have norm2 p = sqr (tval p) using e add-assoc by auto

hence sqr (tval p) = 0 using assms by simp

hence (tval p) = 0 using lemZeroRoot by simp

thus ?thesis using f by auto

qed

lemma lemNotOriginImpliesPosNorm2 :
assumes p 6= origin
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shows norm2 p > 0

proof −
have 1 : norm2 p ≥ 0 by simp

have 2 : norm2 p 6= 0 using assms(1 ) lemNullImpliesOrigin by force

thus ?thesis using 1 2 dual-order .not-eq-order-implies-strict by fast

qed

lemma lemNotEqualImpliesSep2Pos:
assumes y 6= x

shows sep2 y x > 0

proof −
have (y⊖x) 6= origin using assms by auto

hence 1 : norm2 (y⊖x) > 0 using lemNotOriginImpliesPosNorm2

by fast

have sep2 y x = norm2 (y⊖x) by auto

thus ?thesis using 1 by auto

qed

lemma lemBallContainsCentre:
assumes ε > 0

shows x within ε of x

proof −
have sep2 x x = 0 by auto

thus ?thesis using assms by auto

qed

lemma lemPointLimit:
assumes ∀ ε > 0 . (v within ε of u)
shows v = u

proof −
define d where d: d = sep2 v u

{ assume v 6= u

hence d > 0 using lemNotEqualImpliesSep2Pos d by auto

then obtain s where s: (0 < s) ∧ (sqr s < d) using lemSmall-

Squares by auto

hence v within s of u using d assms(1 ) by auto

hence sep2 v u < sep2 v u using s d by auto

hence False by auto

}
thus ?thesis by auto

qed

lemma lemBallPopulated:
assumes e > 0

shows ∃ y . (y within e of x) ∧ (y 6= x)
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proof −
obtain e1 where e1 : (0 < e1 ) ∧ (e1 < e) ∧ (sqr e1 < e1 )

using assms lemReducedBound by auto

hence e2 : sqr e1 < sqr e using lemSqrMonoStrict[of e1 e] by auto

define y where y: y = (x ⊕ (| tval = e1 , xval=0 , yval=0 , zval=0

|))
hence (y ⊖ x) = (| tval = e1 , xval=0 , yval=0 , zval=0 |) by auto

hence sep2 y x = sqr e1 by auto

hence 1 : y within e of x using e2 by auto

have tval y = tval x + e1 using y by simp

hence y 6= x using e1 by auto

thus ?thesis using 1 by auto

qed

lemma lemBallInBall:
assumes p within x of q

and 0 < x ≤ y

shows p within y of q

proof −
have sqr x ≤ sqr y using assms(2 ) lemSqrMono by auto

thus ?thesis using le-less-trans using assms(1 ) by auto

qed

lemma lemSmallPoints:
assumes e > 0

shows ∃ a > 0 . norm2 (a⊗p) < sqr e

proof −

{ assume po: p = origin

define a where a: a = 1

hence apos: a > 0 by auto

have norm2 (a⊗p) < sqr e using a po assms by auto

hence ?thesis using apos by auto

}
hence case1 : p = origin −→ ?thesis by auto

{ assume pnoto: p 6= origin

obtain e1 where e1 : (e1 > 0 ) ∧ (e1 < e) ∧ (sqr e1 < e1 )
using lemReducedBound assms by auto

hence e1sqr : 0 < (sqr e1 ) < (sqr e) using lemSqrMonoStrict by
auto

define n2 where n2 : n2 = norm2 p

hence n2pos: n2 > 0 using pnoto lemNotOriginImpliesPosNorm2
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by auto

then obtain s where s: (s > 0 ) ∧ (sqr s > n2 )
using lemSquareExistsAbove by auto

hence 0 < (n2/(sqr s)) < 1 using n2pos by auto

hence (sqr e1 )∗(n2/(sqr s)) < sqr e1

using lemMultPosLT1 [of sqr e1 (n2/(sqr s))] e1sqr by auto

hence ineq: (sqr e1 )∗(n2/(sqr s)) < sqr e using e1sqr by auto

define a where a: a = e1/s

have e1 > 0 ∧ s > 0 using e1 s by auto

hence apos: a > 0 using a by auto

have norm2 (a⊗p) = (sqr e1 )∗(n2/(sqr s))
using lemNorm2OfScaled[of a] a n2 by auto

hence norm2 (a⊗p) < sqr e using ineq by auto

hence ?thesis using apos by auto

}
hence p 6= origin −→ ?thesis by auto

thus ?thesis using case1 by auto

qed

lemma lemLineJoiningContainsEndPoints:
assumes l = lineJoining x p

shows onLine x l ∧ onLine p l

proof −
have line: isLine l using assms(1 ) by blast

have p: x = (x ⊕ (0 ⊗ (p⊖x))) by simp

have x: p = (x ⊕ (1 ⊗ (p⊖x))) using add-commute diff-add-cancel

by fastforce

thus ?thesis using p line assms(1 ) by blast

qed

lemma lemLineAndPoints:
assumes p 6= q

shows (onLine p l ∧ onLine q l) ←→ (l = lineJoining p q)
proof −

define lj where lj : lj = lineJoining p q

define lhs where lhs: lhs = (onLine p l ∧ onLine q l)
define rhs where rhs: rhs = (l = lj)

{ assume hyp: lhs

then obtain b d where bd: l = { x. ∃ a. x = (b ⊕ (a⊗d)) }
using lhs by auto

obtain ap where ap: p = (b ⊕ (ap ⊗ d)) using hyp lhs bd by
auto
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obtain aq where aq: q = (b ⊕ (aq ⊗ d)) using hyp lhs bd by
auto

hence (q⊖p) = ((b ⊕ (aq ⊗ d)) ⊖ (b ⊕ (ap ⊗ d))) using ap by
fast

also have ... = ((aq ⊗ d) ⊖ (ap ⊗ d)) using add-diff-cancel by
auto

finally have qdiffp: (q⊖p) = ((aq − ap) ⊗ d)
using lemScaleLeftDiffDistrib[of aq ap d] by auto

define R where R: R = aq − ap

hence Rnz: R 6= 0 using assms(1 ) qdiffp by auto

define r where r : r = 1/R

hence (r⊗(R ⊗ d)) = (r ⊗ (q⊖p)) using R qdiffp by auto

hence d: d = (r ⊗ (q⊖p)) using lemScaleAssoc[of r R d] r Rnz

by force

have b = (p ⊖ (ap ⊗ d)) using ap by auto

also have ... = (p ⊖ (ap ⊗ (r ⊗ (q⊖p)))) using d by auto

finally have b: b = (p ⊖ ( (ap∗r) ⊗ (q⊖p)))
using lemScaleAssoc[of ap r q⊖p] by auto

{ fix x

assume x ∈ l

then obtain a where x = (b ⊕ (a ⊗ d)) using bd by auto

hence x = ((p ⊖ ((ap∗r) ⊗ (q⊖p))) ⊕ ((a∗r) ⊗ (q⊖p)))
using b d lemScaleAssoc[of a r q⊖p] by fastforce

also have ... = (p ⊕ ( ((a∗r)⊗(q⊖p)) ⊖ ((ap∗r)⊗(q⊖p)) ))
using add-diff-eq diff-add-eq by force

also have ... = (p ⊕ (((a∗r)−(ap∗r))⊗(q⊖p)))
using left-diff-distrib by force

finally have x ∈ lj using lj by auto

}
hence l2r : l ⊆ lj by auto

{ fix x

assume x ∈ lj

then obtain a where a: x = (p ⊕ (a ⊗(q⊖p))) using lj by auto

hence x = ((b ⊕ (ap ⊗ d)) ⊕ (a ⊗(R ⊗ d))) using ap qdiffp R

by auto

also have ... = (b ⊕ ((ap + a∗R)⊗d))
using add-assoc distrib-right lemScaleAssoc

by auto

finally have onLine x l using bd by auto

}
hence lj ⊆ l by auto

hence l = lj using l2r by auto

}
hence L2R: lhs −→ rhs using rhs by auto
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{ assume l: rhs

hence line: isLine l using rhs lj by blast

have p: p = (p ⊕ (0 ⊗ (q⊖p))) by simp

have q: q = (p ⊕ (1 ⊗ (q⊖p))) using add-commute diff-add-cancel

by fastforce

hence lhs using p line l lhs rhs lj by blast

}
hence rhs −→ lhs by auto

hence lhs ←→ rhs using L2R by auto

thus ?thesis using lhs rhs lj by auto

qed

lemma lemLineDefinedByPair :
assumes x 6= p

and (onLine p l1 ) ∧ (onLine x l1 )
and (onLine p l2 ) ∧ (onLine x l2 )

shows l1 = l2

proof −
have l1 = lineJoining x p

using lemLineAndPoints[of x p l1 ] assms(1 ) assms(2 ) by auto

also have ... = l2

using lemLineAndPoints[of x p l2 ] assms(1 ) assms(3 ) by auto

finally show l1 = l2 by auto

qed

lemma lemDrtn:
assumes { d1 , d2 } ⊆ drtn l

shows ∃ α 6= 0 . d2 = (α ⊗ d1 )
proof −

have d1d2 : {d1 ,d2} ⊆ { d . ∃ p q . (p 6= q) ∧ onLine p l ∧ onLine

q l ∧ (d = (q ⊖ p)) }
using assms(1 ) by auto

have d1 : ∃ p1 q1 . (p1 6= q1 ) ∧ (onLine p1 l) ∧ (onLine q1 l) ∧
(d1 = (q1 ⊖ p1 ))

using d1d2 by auto

then obtain p1 q1

where pq1 : (p1 6= q1 ) ∧ (onLine p1 l) ∧ (onLine q1 l) ∧ (d1 =
(q1 ⊖ p1 ))

by blast

hence l1 : l = lineJoining p1 q1 using lemLineAndPoints[of p1 q1

l] by auto

have d2 : ∃ p2 q2 . (p2 6= q2 ) ∧ (onLine p2 l) ∧ (onLine q2 l) ∧
(d2 = (q2 ⊖ p2 ))
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using d1d2 by auto

then obtain p2 q2

where pq2 : (p2 6= q2 ) ∧ (onLine p2 l) ∧ (onLine q2 l) ∧ (d2 =
(q2 ⊖ p2 ))

by blast

hence (p2 ∈ lineJoining p1 q1 ) ∧ (q2 ∈ lineJoining p1 q1 ) using
l1 by blast

then obtain ap aq

where apaq: (p2 = (p1 ⊕ (ap⊗(q1⊖p1 )))) ∧ ((q2 = (p1 ⊕
(aq⊗(q1⊖p1 )))))

by blast

define diff where diff : diff = aq − ap

hence diffnz: diff 6= 0 using apaq pq2 by auto

have d2 = (q2 ⊖ p2 ) using pq2 by simp

also have ... = ((p1 ⊕ (aq⊗(q1⊖p1 ))) ⊖ (p1 ⊕ (ap⊗(q1⊖p1 ))))
using apaq by force

also have ... = ((aq⊗(q1⊖p1 )) ⊖ (ap⊗(q1⊖p1 ))) by auto

also have ... = ((aq − ap) ⊗ d1 )
using pq1 lemScaleLeftDiffDistrib[ of aq ap d1 ] by auto

finally have (d2 = (diff ⊗ d1 )) ∧ (diff 6= 0 ) using diff diffnz by
auto

thus ?thesis by auto

qed

lemma lemLineDeterminedByPointAndDrtn:
assumes (x 6= p) ∧ (p ∈ l1 ) ∧ (onLine x l1 ) ∧ (onLine x l2 )

and drtn l1 = drtn l2

shows l1 = l2

proof −
define d1 where d1 : d1 = drtn l1

define d2 where d2 : d2 = drtn l2

hence dd: d1 = d2 using assms(2 ) d1 by auto

define px where px: px = (p ⊖ x)

have l1 : (x 6= p) ∧ (onLine p l1 ) ∧ (onLine x l1 ) using assms(1 )
by auto

hence ∃ p q . (p 6= q) ∧ onLine p l1 ∧ onLine q l1 ∧ (px = (q ⊖
p)) using px by blast

hence px ∈ { d . ∃ p q . (p 6= q) ∧ onLine p l1 ∧ onLine q l1 ∧ (d
= (q ⊖ p)) }

by blast

hence px ∈ d1 using d1 subst[of d1 drtn l1 λs. px ∈ s] by auto

hence px ∈ d2 using dd by simp
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hence pxonl2 : px ∈ drtn l2 using d2 by simp

hence ∃ u v . (u 6= v) ∧ onLine u l2 ∧ onLine v l2 ∧ (px = (v ⊖
u)) by auto

then obtain u v where uv: (u 6= v) ∧ onLine u l2 ∧ onLine v l2

∧ (px = (v ⊖ u)) by blast

hence (x 6= u) ∨ (x 6= v) by blast

then obtain w where w: ((w = u) ∨ (w = v)) ∧ (x 6= w) by blast

hence xw: (x 6= w) ∧ (onLine x l2 ) ∧ (onLine w l2 ) using uv

assms(1 ) by blast

hence l2 : l2 = lineJoining x w using lemLineAndPoints[of x w l2 ]
by auto

hence (w ⊖ x) ∈ drtn l2 ∧ px ∈ drtn l2 using xw pxonl2 by auto

then obtain a where a: (a 6= 0 ) ∧ (p ⊖ x) = (a ⊗ (w ⊖ x))
using lemDrtn[of w⊖x p⊖x l2 ] px xw pxonl2 by blast

hence p = (x ⊕ (a ⊗ (w ⊖ x))) by (auto simp add: field-simps)
hence onLine p (lineJoining x w) by blast

hence l2lj: l2 = lineJoining x p

using lemLineAndPoints[of x p l2 ] assms(1 ) l2 xw

by auto

have l1lj: l1 = lineJoining x p

using lemLineAndPoints[of x p l1 ] assms(1 )
by auto

thus ?thesis using l2lj by blast

qed

end

end

3 WorldView

This theory defines worldview transformations. These form the
ultimate foundation for all of GenRel’s axioms.

theory WorldView

imports Points

begin

class WorldView = Points +
fixes

W :: Body ⇒ Body ⇒ ′a Point ⇒ bool (- sees - at -)

26



begin

abbreviation ev :: Body ⇒ ′a Point ⇒ Body set

where ev h x ≡ { b . h sees b at x }

fun wvt :: Body ⇒ Body ⇒ ′a Point ⇒ ′a Point set

where wvt m k p = { q. (∃ b . (m sees b at p)) ∧ (ev m p = ev k q)
}

abbreviation wvtFunc :: Body ⇒ Body ⇒ ( ′a Point ⇒ ′a Point ⇒
bool)

where wvtFunc m k ≡ (λ p q . q ∈ wvt m k p)

abbreviation wvtLine :: Body ⇒ Body ⇒ ′a Point set ⇒ ′a Point

set ⇒ bool

where wvtLine m k l l ′ ≡ ∃ p q p ′ q ′ . (
(wvtFunc m k p p ′) ∧ (wvtFunc m k q q ′) ∧
(l = lineJoining p q) ∧ (l ′ = lineJoining

p ′ q ′))

end

end

4 Functions

This theory characterises the various types of function (injective,
bijective, etc).

theory Functions

imports Points

begin

We do not assume a priori that all of the functions we define are
well-defined or total. We therefore need to allow for functions
which are only partially defined, and also for "functions" which
might be multi-valued. For example, we cannot say in advance
whether one observer might see another’s worldline as a bifur-
cating structure rather than a basic single-valued trajectory.

To achieve this we’ll often think of functions as relations and
write "f x y = true" instead of "f x = y". Similarly, a spacetime set
S will be sometimes be expressed as its characteristic function.

class Functions = Points

begin

abbreviation bounded :: ( ′a Point ⇒ ′a Point) ⇒ bool
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where bounded f ≡ ∃ bnd > 0 . (∀ p . (norm2 (f p) ≤ bnd ∗
(norm2 p)))

abbreviation composeRel ::
( ′a Point ⇒ ′a Point ⇒ bool)
⇒( ′a Point ⇒ ′a Point ⇒ bool)
⇒( ′a Point ⇒ ′a Point ⇒ bool)

where (composeRel g f ) p r ≡ (∃ q . ((f p q) ∧ (g q r)))

abbreviation injective :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ bool

where injective f ≡ ∀ x1 x2 y1 y2 .
(f x1 y1 ∧ f x2 y2 ) ∧ (x1 6= x2 ) −→ (y1 6= y2 )

abbreviation definedAt :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ ′a Point

⇒ bool

where definedAt f x ≡ ∃ y . f x y

abbreviation domain :: ( ′a Point => ′a Point ⇒ bool) ⇒ ′a Point

set

where domain f ≡ { x . definedAt f x }

abbreviation total :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ bool

where total f ≡ ∀ x . (definedAt f x)

abbreviation surjective :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ bool

where surjective f ≡ ∀ y . ∃ x . f x y

abbreviation bijective :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ bool

where bijective f ≡ (injective f ) ∧ (surjective f )

abbreviation invertible :: ( ′a Point ⇒ ′a Point) ⇒ bool

where invertible f ≡ ∀ q . (∃ p . (f p = q) ∧ (∀ x. f x = q −→ x =
p))

fun applyToSet :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ ′a Point set ⇒ ′a

Point set

where applyToSet f s = { q . ∃ p ∈ s . f p q }

abbreviation singleValued :: ( ′a Point ⇒ ′a Point ⇒ bool)⇒ ′a Point

⇒ bool

where singleValued f x ≡ ∀ y z . (((f x y) ∧ (f x z)) −→ (y = z))
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abbreviation isFunction :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ bool

where isFunction f ≡ ∀ x . singleValued f x

abbreviation isTotalFunction :: ( ′a Point ⇒ ′a Point ⇒ bool)⇒ bool

where isTotalFunction f ≡ (total f ) ∧ (isFunction f )

fun toFunc:: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ ′a Point ⇒ ′a Point

where toFunc f x = (SOME y . f x y)

fun asFunc :: ( ′a Point ⇒ ′a Point) ⇒ ( ′a Point ⇒ ′a Point ⇒ bool)
where (asFunc f ) x y = (y = f x)

4.1 Differentiable approximation

Here we define differentiable approximation. This will be used
later when we define what it means for a worldview transforma-
tion to be "approximated" by an affine transformation.

abbreviation diffApprox :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒
( ′a Point ⇒ ′a Point ⇒ bool) ⇒
′a Point ⇒ bool

where diffApprox g f x ≡ (definedAt f x) ∧
(∀ ε > 0 . (∃ δ > 0 . (∀ y .
( (y within δ of x)
−→
( (definedAt f y) ∧ (∀ u v . (f y u ∧ g y v) −→
( sep2 v u ) ≤ (sqr ε) ∗ sep2 y x ))) )

))

abbreviation cts :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ ′a Point ⇒ bool

where cts f x ≡ ∀ y . (f x y) −→ (∀ ε>0 . ∃ δ>0 .
(applyToSet f (ball x δ)) ⊆ ball y ε)

fun invFunc :: ( ′a Point ⇒ ′a Point ⇒ bool) ⇒ ( ′a Point ⇒ ′a Point

⇒ bool)
where (invFunc f ) p q = f q p

lemma lemBijInv: bijective (asFunc f ) ←→ invertible f

by (metis asFunc.elims(1 ))
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4.2 lemApproxEqualAtBase

The following lemma shows (as one would expect) that when
one function differentiably approximates another at a point, they
take equal values at that point.

lemma lemApproxEqualAtBase:
assumes diffApprox g f x

shows (f x y ∧ g x z) −→ (y = z)
proof −

{ fix y z

assume hyp: f x y ∧ g x z

have lt01 : 0 < 1 by auto

then obtain d where dprops: (d > 0 ) ∧ (∀ y .
( (y within d of x)
−→
( ∀ u v . (f y u ∧ g y v) −→
( sep2 v u ) ≤ (sqr 1 ) ∗ sep2 y x )) )

using assms(1 ) by best

hence x within d of x by auto

hence ∀ u v . (f x u ∧ g x v) −→ (sep2 v u) ≤ (sqr 1 ) ∗ sep2 x x

using dprops by blast

hence sep0 : (sep2 z y) ≤ 0 using hyp by auto

{ assume z 6= y

hence sep2 z y > 0 using lemNotEqualImpliesSep2Pos[of z y]
by auto

hence False using sep0 by auto

}
hence z = y by auto

}
thus ?thesis by auto

qed

lemma lemCtsOfCtsIsCts:
assumes cts f x

and ∀ y . (f x y) −→ (cts g y)
shows cts (composeRel g f ) x

proof −
{ fix z

assume z: (composeRel g f ) x z

then obtain y where y: f x y ∧ g y z by auto

{ fix e

assume epos: e > 0

have (∀ ε>0 . ∃ δ>0 .(applyToSet g (ball y δ)) ⊆ ball z ε)
using assms(2 ) y by auto
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then obtain dy

where dy: (dy > 0 ) ∧ ((applyToSet g (ball y dy)) ⊆ ball z e)
using epos y by auto

have (∀ ε>0 . ∃ δ>0 .(applyToSet f (ball x δ)) ⊆ ball y ε)
using y assms(1 ) by auto

then obtain d

where d: (d > 0 ) ∧ ((applyToSet f (ball x d)) ⊆ ball y dy)
using dy by auto

{ fix w

assume w: w ∈ applyToSet (composeRel g f ) (ball x d)
then obtain u v

where v: (u ∈ ball x d) ∧ (f u v) ∧ (g v w) by auto

hence v ∈ ball y dy using d by auto

hence w ∈ ball z e using v dy by auto

}
hence applyToSet (composeRel g f ) (ball x d) ⊆ ball z e by auto

hence ∃ d>0 . (applyToSet (composeRel g f ) (ball x d) ⊆ ball z

e)
using d by auto

}
hence ∀ e>0 . ∃ d>0 . applyToSet (composeRel g f ) (ball x d) ⊆ ball

z e by auto

}
thus ?thesis by auto

qed

lemma lemInjOfInjIsInj:
assumes injective f

and injective g

shows injective (composeRel g f )
proof −

{ fix x1 z1 x2 z2

assume hyp: (composeRel g f ) x1 z1 ∧ (composeRel g f ) x2 z2 ∧
(x1 6= x2 )

then obtain y1 y2

where ys: (f x1 y1 ) ∧ (g y1 z1 ) ∧ (f x2 y2 ) ∧ (g y2 z2 ) by auto

hence y1 6= y2 using hyp assms(1 ) by auto

hence z1 6= z2 using assms(2 ) ys by auto

}
thus ?thesis by auto

qed

lemma lemInverseComposition:
assumes h = composeRel g f

shows (invFunc h) = composeRel (invFunc f ) (invFunc g)
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proof −
{ fix p r

{ assume hyp: h p r

then obtain q where f p q ∧ g q r using assms by auto

hence (invFunc g) r q ∧ (invFunc f ) q p by force

hence (composeRel (invFunc f ) (invFunc g)) r p by blast

}
hence l2r : (invFunc h) r p −→ (composeRel (invFunc f ) (invFunc

g)) r p by auto

{ assume (composeRel (invFunc f ) (invFunc g)) r p

then obtain q where (invFunc g) r q ∧ (invFunc f ) q p by
auto

hence (invFunc h) r p using assms by auto

}

hence (composeRel (invFunc f ) (invFunc g)) r p ←→ (invFunc

h) r p

using l2r by auto

}
thus ?thesis by fastforce

qed

lemma lemToFuncAsFunc:
assumes isFunction f

and total f

shows asFunc (toFunc f ) = f

proof −
{ fix p r

{ assume (asFunc (toFunc f )) p r

hence f p r using someI [of f p] assms(2 ) by auto

}
hence l2r : (asFunc (toFunc f )) p r −→ f p r by auto

{ assume fpr : f p r

hence (asFunc (toFunc f )) p r using someI [of f p] assms(1 ) by
auto

}

hence f p r ←→ (asFunc (toFunc f )) p r using l2r by auto

}
thus ?thesis by blast

qed

lemma lemAsFuncToFunc: toFunc (asFunc f ) = f

by fastforce
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end

end

5 WorldLine

This theory defines worldlines.

theory WorldLine

imports WorldView Functions

begin

class WorldLine = WorldView + Functions

begin

abbreviation wline :: Body ⇒ Body ⇒ ′a Point set

where wline m k ≡ { p . m sees k at p }

lemma lemWorldLineUnderWVT :
shows applyToSet (wvtFunc m k) (wline m b) ⊆ wline k b

by auto

lemma lemFiniteLineVelocityUnique:
assumes (u ∈ lineVelocity l) ∧ (v ∈ lineVelocity l)

and lineSlopeFinite l

shows u = v

proof −
have ∃ d1 ∈ drtn l . u = velocityJoining origin d1 using assms by

simp

then obtain d1

where d1 : d1 ∈ drtn l ∧ u = velocityJoining origin d1 by blast

have ∃ d2 ∈ drtn l . v = velocityJoining origin d2 using assms by
simp

then obtain d2

where d2 : d2 ∈ drtn l ∧ v = velocityJoining origin d2 by blast

hence (d1 ∈ drtn l) ∧ (d2 ∈ drtn l) using d1 d2 by auto

then obtain a where a: (a 6= 0 ) ∧ (d2 = (a ⊗ d1 ))
using lemDrtn[of d1 d2 l] by blast

have slopes: (tval d1 6= 0 ) ∧ (tval d2 6= 0 )
∧ (slopeFinite origin d1 ) ∧ (slopeFinite origin d2 )
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proof −
obtain x y where xy: (x 6= y) ∧ (onLine x l) ∧ (onLine y l) ∧

(slopeFinite x y)
using assms(2 ) by blast

hence slopeFinite x y by blast

hence tvalnz: tval y − tval x 6= 0 by simp

define yx where yx = (y⊖x)
hence (x 6= y) ∧ (onLine x l) ∧ (onLine y l) ∧ (yx = (y ⊖ x))

using xy by simp

hence ∃ x y . (x 6= y) ∧ (onLine x l) ∧ (onLine y l) ∧ (yx = (y
⊖ x)) by blast

hence (y ⊖ x) ∈ drtn l using yx-def by auto

then obtain b where b: (b 6= 0 ) ∧ (d2 = (b ⊗ (y⊖x)))
using d2 lemDrtn[of y⊖x d2 l] by blast

hence tval2 : tval d2 6= tval origin using tvalnz b by simp

hence tval1 : tval d1 6= tval origin using a by auto

hence finite: (slopeFinite origin d1 ) ∧ (slopeFinite origin d2 )
using tval2 by auto

have tval origin = 0 by simp

thus ?thesis using tval1 tval2 finite by blast

qed

have t1nz: tval d1 6= 0 using slopes by auto

have anz: a 6= 0 using a by blast

hence equ: 1/(tval d1 ) = (1/(a∗tval d1 ))∗a by simp

hence sloper origin d1 = (((1/(a∗tval d1 ))∗a) ⊗ d1 ) using slopes

by auto

also have ... = ((1/(tval d2 )) ⊗ d2 )
using lemScaleAssoc[of 1/(a∗tval d1 ) a d1 ] a by auto

finally have equalslopers: sloper origin d1 = sloper origin d2 using
slopes by auto

thus ?thesis using d1 d2 by auto

qed

end

end

6 Translations

This theory describes translation maps.

theory Translations

imports Functions

begin
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class Translations = Functions

begin

abbreviation mkTranslation :: ′a Point ⇒ ( ′a Point ⇒ ′a Point)
where (mkTranslation t) ≡ (λ p . (p ⊕ t))

abbreviation translation :: ( ′a Point ⇒ ′a Point) ⇒ bool

where translation T ≡ ∃ q . ∀ p . ((T p) = (p ⊕ q))

lemma lemMkTrans: ∀ t . translation (mkTranslation t)
by auto

lemma lemInverseTranslation:
assumes (T = mkTranslation t) ∧ (T ′ = mkTranslation (origin ⊖

t))
shows (T ′ ◦ T = id) ∧ (T ◦ T ′ = id)

using assms by auto

lemma lemTranslationSum:
assumes translation T

shows T (u ⊕ v) = ((T u) ⊕ v)
proof −

obtain t where t: ∀ x. T x = (x ⊕ t) using assms(1 ) by auto

thus ?thesis using add-commute add-assoc t by auto

qed

lemma lemIdIsTranslation: translation id

proof −
have ∀ p . (id p) = (p ⊕ origin) by simp

thus ?thesis by blast

qed

lemma lemTranslationCancel:
assumes translation T

shows ((T p) ⊖ (T q)) = (p ⊖ q)
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proof −
obtain t where t: ∀ x. T x = (x ⊕ t) using assms(1 ) by auto

hence ((p ⊕ t) ⊖ (q ⊕ t)) = (p ⊖ q) by simp

thus ?thesis using t by auto

qed

lemma lemTranslationSwap:
assumes translation T

shows (p ⊕ (T q)) = ((T p) ⊕ q)
proof −

obtain t where t: ∀ x . T x = (x ⊕ t) using assms(1 ) by auto

thus ?thesis using add-commute add-assoc by simp

qed

lemma lemTranslationPreservesSep2 :
assumes translation T

shows sep2 p q = sep2 (T p) (T q)
proof −

obtain t where ∀ x. T x = (x ⊕ t) using assms(1 ) by auto

thus ?thesis by force

qed

lemma lemTranslationInjective:
assumes translation T

shows injective (asFunc T )
proof −

obtain t where t: ∀ x . T x = (x ⊕ t) using assms(1 ) by auto

define Tinv where Tinv: Tinv = mkTranslation (origin ⊖ t)
{ fix x y

assume T x = T y

hence (Tinv ◦ T ) x = (Tinv ◦ T ) y by auto

hence x = y using Tinv t by auto

}
thus ?thesis by auto

qed

lemma lemTranslationSurjective:
assumes translation T

shows surjective (asFunc T )
proof −

obtain t where t: ∀ x . T x = (x ⊕ t) using assms(1 ) by auto

hence mkT : T = mkTranslation t by auto
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define Tinv where Tinv: Tinv = mkTranslation (origin ⊖ t)
hence ∀ y . y = T (Tinv y) using mkT lemInverseTranslation by

auto

thus ?thesis by auto

qed

lemma lemTranslationTotalFunction:
assumes translation T

shows isTotalFunction (asFunc T )
by simp

lemma lemTranslationOfLine:
assumes translation T

shows (applyToSet (asFunc T ) (line B D)) = line (T B) D

proof −
define l where l: l = line B D

{ fix q ′

{ assume q ′ ∈ (applyToSet (asFunc T ) l)
then obtain q where q: q ∈ l ∧ (asFunc T ) q q ′ by auto

then obtain α where α: q = (B ⊕ (α⊗D)) using l by auto

have q ′ = T q using q by auto

also have . . . = ((T B) ⊕ (α⊗D)) using α assms lemTransla-

tionSum by blast

finally have q ′ ∈ line (T B) D by auto

}
hence l2r : q ′ ∈ (applyToSet (asFunc T ) l) −→ q ′ ∈ line (T B) D

by auto

{ assume q ′ ∈ line (T B) D

then obtain α where α: q ′ = ((T B) ⊕ (α⊗D)) by auto

hence q ′ = T (B ⊕ (α⊗D)) using assms lemTranslationSum[of

T B (α⊗D)] by auto

moreover have (B ⊕ (α⊗D)) ∈ l using l by auto

ultimately have q ′ ∈ (applyToSet (asFunc T ) l) by auto

}
hence q ′ ∈ line (T B) D ←→ q ′ ∈ (applyToSet (asFunc T ) l)

using l2r by auto

}
thus ?thesis using l by auto

qed

lemma lemOnLineTranslation:
assumes (translation T ) ∧ (onLine p l)

shows onLine (T p) (applyToSet (asFunc T ) l)
proof −

obtain B D where BD: l = line B D using assms by auto

hence (applyToSet (asFunc T ) l) = line (T B) D using assms
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lemTranslationOfLine by auto

moreover have T p ∈ (applyToSet (asFunc T ) l) using assms by
auto

ultimately show ?thesis by blast

qed

lemma lemLineJoiningTranslation:
assumes translation T

shows applyToSet (asFunc T ) (lineJoining p q) = lineJoining (T
p) (T q)
proof −

define D where D: D = (q⊖p)
hence lineJoining p q = line p D by auto

hence applyToSet (asFunc T ) (lineJoining p q) = line (T p) D

using assms lemTranslationOfLine by auto

moreover have ((T q) ⊖ (T p)) = (q⊖p) using assms lemTrans-

lationCancel by auto

ultimately show ?thesis using D by auto

qed

lemma lemBallTranslation:
assumes translation T

and x within e of y

shows (T x) within e of (T y)
proof −

have sep2 (T x) (T y) = sep2 x y

using assms(1 ) lemTranslationPreservesSep2 [of T ] by auto

thus ?thesis using assms(2 ) by auto

qed

lemma lemBallTranslationWithBoundary:
assumes translation T

and sep2 x y ≤ sqr e

shows sep2 (T x) (T y) ≤ sqr e

proof −
have sep2 (T x) (T y) = sep2 x y

using assms(1 ) lemTranslationPreservesSep2 [of T x y] by simp

thus ?thesis using assms(2 ) by auto

qed

lemma lemTranslationIsCts:
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assumes translation T

shows cts (asFunc T ) x

proof −
{ fix x ′

assume x ′: x ′ = T x

{ fix e

assume epos: e > 0

{ fix p ′

assume p ′: p ′ ∈ applyToSet (asFunc T ) (ball x e)
then obtain p where p: (p ∈ ball x e) ∧ p ′ = T p by auto

hence sep2 p x < sqr e using lemSep2Symmetry by force

hence sep2 p ′ x ′ < sqr e using assms(1 ) p x ′ lemBallTranslation

by auto

}
hence applyToSet (asFunc T ) (ball x e) ⊆ ball x ′ e

using lemSep2Symmetry by force

hence ∃ d>0 . applyToSet (asFunc T ) (ball x d) ⊆ ball x ′ e

using epos lemSep2Symmetry by auto

}
hence ∀ e>0 . ∃ d>0 . applyToSet (asFunc T ) (ball x d) ⊆ ball x ′ e

by auto

}
thus ?thesis by auto

qed

lemma lemAccPointTranslation:
assumes translation T

and accPoint x s

shows accPoint (T x) (applyToSet (asFunc T ) s)
proof −

{ fix e

assume e > 0

then obtain q where q: q ∈ s ∧ (x 6= q) ∧ (inBall q e x)
using assms(2 ) by auto

have acc1 : q ∈ s using q by auto

have acc2 : x 6= q using q by auto

have acc3 : inBall q e x using q by auto

define q ′ where q ′: q ′ = T q

have rtp1 : q ′ ∈ applyToSet (asFunc T ) s using q ′ acc1 by auto

have rtp2 : T x 6= q ′ using assms(1 ) acc2 lemTranslationInjective[of

T ] q ′ by force

have rtp3 : inBall q ′ e (T x)
using assms(1 ) acc3 q ′ lemBallTranslation[of T q x e] by auto
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hence ∃ q ′ . (q ′ ∈ applyToSet (asFunc T ) s) ∧ (T x 6= q ′)
∧ (inBall q ′ e (T x))

using rtp1 rtp2 by auto

}
thus ?thesis by auto

qed

lemma lemInverseOfTransIsTrans:
assumes translation T

and T ′ = invFunc (asFunc T )
shows translation (toFunc T ′)

proof −
obtain t where t: ∀ p . T p = (p ⊕ t) using assms(1 ) by auto

hence mkT : T = mkTranslation t by auto

define T1 where T1 : T1 = mkTranslation (origin ⊖ t)
hence transT1 : translation T1 using lemMkTrans by blast

have TT1 : (T ◦ T1 = id) ∧ (T1 ◦ T = id) using t T1 lemInver-

seTranslation by auto

{ fix p r

{ assume invFunc (asFunc T ) p r

hence T r = p by simp

hence T1 p = (T1◦T ) r by auto

hence T1 p = r using TT1 by simp

}
hence l2r : invFunc (asFunc T ) p r −→ (asFunc T1 ) p r by auto

{ assume (asFunc T1 ) p r

hence T ′p: T1 p = r by simp

have (T ◦ T1 ) p = T r using T ′p by auto

hence p = T r using TT1 by auto

}
hence (asFunc T1 ) p r ←→ invFunc (asFunc T ) p r using l2r

by force

}
hence (asFunc T1 ) = T ′ using assms(2 ) by fastforce

hence toFunc T ′= toFunc (asFunc T1 ) using assms(2 ) by fastforce

hence toFunc T ′ = T1 by fastforce

thus ?thesis using transT1 by auto

qed

lemma lemInverseTrans:
assumes translation T

shows ∃T ′ . (translation T ′) ∧ (∀ p q . T p = q ←→ T ′ q = p)
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proof −
obtain t where t: ∀ p . T p = (p ⊕ t) using assms by auto

hence mkT : T = mkTranslation t by auto

define T ′ where T ′: T ′ = mkTranslation (origin ⊖ t)
hence trans ′: translation T ′ using lemMkTrans by blast

have TT ′: (T ′◦T = id) ∧ (T◦T ′ = id) using mkT T ′ lemInverse-

Translation by auto

{ fix p q

{ assume T p = q

hence T ′ q = (T ′ ◦ T ) p by auto

hence T ′ q = p using TT ′ by auto

}
hence l2r : T p = q −→ T ′ q = p by auto

{ assume T ′ q = p

hence T p = (T◦T ′) q by auto

hence T p = q using TT ′ by auto

}
hence T ′ q = p ←→ T p = q using l2r by blast

}
thus ?thesis using trans ′ by blast

qed

end

end

7 AXIOM: AxSelfMinus

This theory declares the axiom AxSelfMinus.

theory AxSelfMinus

imports WorldView

begin

AxSelfMinus: The worldline of an observer is a subset of the time
axis in their own worldview.

class axSelfMinus = WorldView

begin
abbreviation axSelfMinus :: Body ⇒ ′a Point ⇒ bool

where axSelfMinus m p ≡ (m sees m at p) −→ onTimeAxis p

end
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class AxSelfMinus = axSelfMinus +
assumes AxSelfMinus : ∀ m p . axSelfMinus m p

begin
end

end

8 TangentLines

This theory defines tangent lines and establishes their key prop-
erties.

theory TangentLines

imports Translations AxSelfMinus

begin

At each point along the worldline of a body, we can ask what its
instantaneous direction of motion is. Unfortunately we do not
know a priori that the "worldline" actually has tangents. Dealing
with tangent lines is one of the more complicated aspects of the
main proof.

class TangentLines = Translations + AxSelfMinus

begin

abbreviation tangentLine :: ′a Point set ⇒ ′a Point set ⇒ ′a Point

⇒ bool

where tangentLine l s x ≡
(x ∈ s) ∧ (onLine x l) ∧ (accPoint x s)
∧
(∃ p . ( (onLine p l) ∧ (p 6= x) ∧

(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))

)
))

abbreviation tangentLineA :: ′a Point set ⇒ ′a Point set ⇒ ′a Point

⇒ bool

where tangentLineA l s x ≡
(x ∈ s) ∧ (onLine x l) ∧ (accPoint x s)
∧
(∀ p . ( ((onLine p l) ∧ (p 6= x)) −→

(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))
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)
))

abbreviation hasTangent :: ′a Point set ⇒ ′a Point ⇒ bool

where hasTangent s p ≡ ∃ l . tangentLine l s p

The instantaneous velocity of a body is defined to be the velocity
of a co-moving body moving along the tangent line (assuming a
tangent line exists).

fun vel :: ′a Point set ⇒ ′a Point ⇒ ′a Space ⇒ bool

where vel wl p v = ( ∃ l . ( (tangentLine l wl p) ∧ (v ∈ lineVelocity

l) ))

lemma lemTangentLineTranslation:
assumes translation T

and tangentLine l s x

shows tangentLine (applyToSet (asFunc T ) l)
(applyToSet (asFunc T ) s) (T x)

proof −
define x ′ where x ′: x ′ = T x

define l ′ where l ′: l ′ = applyToSet (asFunc T ) l

define s ′ where s ′: s ′ = applyToSet (asFunc T ) s

have tgt1 : x ∈ s using assms(2 ) by simp

have tgt2 : onLine x l using assms(2 ) by simp

hence linel: isLine l by auto

have tgt3 : accPoint x s using assms(2 ) by simp

have tgt4 : ∃ p . ( ((onLine p l) ∧ (p 6= x)) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))

)
) using assms(2 ) by simp

have rtp1 : x ′ ∈ s ′ using x ′ s ′ tgt1 by auto

have rtp2 : onLine x ′ l ′

using lemOnLineTranslation[of T l x] x ′ l ′ assms(1 ) linel tgt2

by auto

have rtp3 : accPoint x ′ s ′

using assms(1 ) tgt3 lemAccPointTranslation x ′ s ′

by simp
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obtain p where p: ((onLine p l) ∧ (p 6= x)) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))

) using tgt4 by auto

define p ′ where p ′: p ′ = (T p)
hence p ′-on-l ′: onLine p ′ l ′ using l ′ rtp2 p by auto

have p ′-not-x ′: p ′ 6= x ′

using p ′ p assms(1 ) x ′ lemTranslationInjective[of T ] by force

{ fix e

assume epos: e > 0

then obtain d where d: (d > 0 ) ∧ (∀ y ∈ s. (
( (y within d of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within e of p))))

) using p by blast

{ fix y ′

assume y ′: (y ′ ∈ s ′) ∧ (y ′ within d of x ′) ∧ (y ′ 6= x ′)
then obtain y where y: y ∈ s ∧ y ′ = T y using s ′ by force

hence y1 : y ∈ s using y by auto

have y2 : y within d of x

using assms(1 ) x ′ y y ′ lemBallTranslation by fastforce

have y3 : y 6= x using y ′ y x ′ assms(1 ) by fastforce

then obtain r

where r : (onLine r (lineJoining x y)) ∧ (r within e of p)
using y1 y2 d by force

define r ′ where r ′: r ′ = T r

hence r ′ ∈ applyToSet (asFunc T ) (lineJoining x y) using r by
auto

hence r1 : onLine r ′ (lineJoining x ′ y ′)
using assms(1 ) lemLineJoiningTranslation[of T x y] x ′ y

by blast

have r2 : r ′ within e of p ′

using assms(1 ) r r ′ p ′ lemBallTranslation by auto

hence ∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of p ′)
using r1 by auto

hence (y ′ within d of x ′) ∧ (y ′ 6= x ′)
−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of

p ′))
using y ′ by blast

}
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hence ∀ y ′ ∈ s ′. (y ′ within d of x ′) ∧ (y ′ 6= x ′)
−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of

p ′))
by auto

hence ∃ d>0 . ∀ y ′ ∈ s ′. (y ′ within d of x ′) ∧ (y ′ 6= x ′)
−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of

p ′))
using d by auto

}
hence ∀ e>0 . ∃ d>0 . ∀ y ′ ∈ s ′. (y ′ within d of x ′) ∧ (y ′ 6= x ′)

−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of

p ′))
by force

hence (onLine p ′ l ′) ∧ (p ′ 6= x ′)
∧ (∀ e>0 . ∃ d>0 . ∀ y ′ ∈ s ′. (y ′ within d of x ′) ∧ (y ′ 6= x ′)
−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of

p ′)))
using p ′-not-x ′ p ′-on-l ′ by auto

hence rtp4 : ∃ p ′ . ( ((onLine p ′ l ′) ∧ (p ′ 6= x ′))
∧ (∀ e>0 . ∃ d>0 . ∀ y ′ ∈ s ′. (y ′ within d of x ′) ∧ (y ′ 6= x ′)
−→ (∃ r ′. (onLine r ′ (lineJoining x ′ y ′)) ∧ (r ′ within e of p ′))))

by auto

hence ?thesis ←→ (x ′ ∈ s ′) ∧ (onLine x ′ l ′) ∧ (accPoint x ′ s ′)
using x ′ s ′ l ′ by simp

thus ?thesis using rtp1 rtp2 rtp3 by blast

qed

lemma lemTangentLineA:
assumes tangentLine l s x

shows tangentLineA l s x

proof −
have 1 : (x ∈ s) ∧ (onLine x l) ∧ (accPoint x s) using assms by

auto

have ∃ P . (onLine P l) ∧ (P 6= x) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of P))))

)
using assms by simp

then obtain P where P: (onLine P l) ∧ (P 6= x) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of P))))
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)
by blast

{ fix p

assume p: onLine p l ∧ p 6= x

hence onLine x l ∧ onLine p l ∧ x 6=p using 1 by auto

hence lxp: l = lineJoining x p

using 1 lemLineAndPoints[of x p l] by auto

then obtain a where a: P = (x ⊕ (a ⊗ (p⊖x))) using P by auto

hence anz: a 6= 0 using P by auto

{ fix e

assume epos: e > 0

hence aenz: a ∗ e 6= 0 using anz by auto

define e1 where e1 : e1 = abs (a∗e)
hence e1pos: e1 > 0 using aenz by auto

then obtain d where d: (d > 0 ) ∧ ( ∀ y ∈ s. (
( (y within d of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within e1 of P))))

)
using P by auto

{ fix y

assume y: (y ∈ s) ∧ (y within d of x) ∧ (y 6= x)
then obtain R

where R: (onLine R (lineJoining x y)) ∧ (R within e1 of P)
using d by blast

define r where r : r = (x ⊕((1/a)⊗(R⊖x)))
hence (r⊖x) = ((x ⊕((1/a)⊗(R⊖x))) ⊖ x) using r by auto

also have ... = ((1/a)⊗(R⊖x))
using add-commute add-assoc diff-add-cancel by auto

finally have nrx: (r⊖x) = ((1/a)⊗(R⊖x)) by metis

define T where T : T = mkTranslation (origin ⊖ x)
hence transT : translation T using lemMkTrans by blast

have R within e1 of P using R by simp

hence (T R) within e1 of (T P)
using transT lemBallTranslation[of T R P e1 ]
by fastforce

hence near1 : ((1/a)⊗(R⊖x)) within (e1/a) of ((1/a)⊗(P⊖x))
using lemScaleBall[of R⊖x P⊖x e1 1/a] anz T

by auto
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define T ′ where T ′: T ′ = mkTranslation x

hence transT ′: translation T ′ using lemMkTrans by blast

hence near2 : (T ′ ((1/a)⊗(R⊖x))) within (e1/a) of (T ′

((1/a)⊗(P⊖x)))
using near1 transT ′

lemBallTranslation[of T ′ (1/a)⊗(R⊖x) (1/a)⊗(P⊖x)
e1/a]

by blast

have term1 : (T ′ ((1/a)⊗(R⊖x))) = r using T ′ add-commute

r by auto

have (P ⊖ x) = (a ⊗ (p⊖x)) using a by auto

hence (T ′ ((1/a)⊗(P⊖x))) = (x ⊕ ((1/a)⊗(a ⊗ (p⊖x))))
using T ′ add-commute by auto

hence (T ′ ((1/a)⊗(P⊖x))) = (x ⊕ (p⊖x))
using lemScaleAssoc[of 1/a a P⊖x] anz by auto

hence term2 : (T ′ ((1/a)⊗(P⊖x))) = p

using diff-add-cancel add-commute by auto

have e1/a = abs (a∗e)/a using e1 by auto

hence sqr (e1/a) = (sqr (abs (a∗e)))/ (sqr a) by auto

hence sqr (e1/a) = (sqr (a∗e))/ (sqr a) by auto

hence sqr (e1/a) = (sqr a)∗(sqr e)/(sqr a) using lemSqrMult

by auto

hence term3 : sqr (e1/a) = (sqr e) using anz by simp

hence r-near-p: r within e of p using near2 term1 term2 term3

by auto

have cases: (R = x) ∨ (R 6= x) by auto

have x-on-xy: onLine x (lineJoining x y)
using y lemLineAndPoints[of x y lineJoining x y] by auto

{ assume R = x

hence r = x using nrx anz by auto

hence onLine r (lineJoining x y) using x-on-xy by blast

}
hence case1 : (R = x) −→ (onLine r (lineJoining x y)) by auto

{ assume R 6= x

hence lineJoining x R = lineJoining x y

using R x-on-xy lemLineAndPoints[of x R lineJoining x y]
by auto

hence onLine r (lineJoining x y) using r by blast

}
hence (R 6= x) −→ (onLine r (lineJoining x y)) by auto

hence onLine r (lineJoining x y) using cases case1 by auto

hence ∃ r . (onLine r (lineJoining x y)) ∧ (r within e of p)
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using r-near-p by auto

}
hence ∀ y ∈ s . (y within d of x) ∧ (y 6= x)
−→ (∃ r . (onLine r (lineJoining x y)) ∧ (r within e of p))

by auto

hence ∃ d>0 . ∀ y ∈ s . (y within d of x) ∧ (y 6= x)
−→ (∃ r . (onLine r (lineJoining x y)) ∧ (r within e of p))

using d by auto

}
hence ∀ e>0 . ∃ d>0 . ∀ y ∈ s . (y within d of x) ∧ (y 6= x)

−→ (∃ r . (onLine r (lineJoining x y)) ∧ (r within e of p))
by blast

}
hence 2 : ∀ p . (onLine p l ∧ p 6= x) −→

(∀ e>0 . ∃ d>0 . ∀ y ∈ s . (y within d of x) ∧ (y 6= x)
−→ (∃ r . (onLine r (lineJoining x y)) ∧ (r within e of

p)))
by blast

thus ?thesis using 1 by auto

qed

lemma lemTangentLineE :
assumes tangentLineA l s x

and ∃ p 6= x . onLine p l

shows tangentLine l s x

proof −
have 1 : (x ∈ s) ∧ (onLine x l) ∧ (accPoint x s) using assms(1 ) by

auto

obtain p where p: (p 6= x) ∧ (onLine p l) using assms(2 ) by auto

hence ∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ s. (
( (y within δ of x) ∧ (y 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))

using assms(1 ) by blast

thus ?thesis using 1 p by auto

qed

end

end

48



9 Cones

This theory defines (light)cones, regular cones, and their prop-
erties.

theory Cones

imports WorldLine TangentLines

begin

class Cones = WorldLine + TangentLines

begin

abbreviation tl :: ′a Point set ⇒ Body ⇒ Body ⇒ ′a Point ⇒ bool

where tl l m b x ≡ tangentLine l (wline m b) x

The cone of a body at a point comprises the set of points that lie
on tangent lines of photons emitted by the body at that point.

abbreviation cone :: Body ⇒ ′a Point ⇒ ′a Point ⇒ bool

where cone m x p

≡ ∃ l . (onLine p l) ∧ (onLine x l) ∧ (∃ ph . Ph ph ∧ tl l

m ph x)

abbreviation regularCone :: ′a Point ⇒ ′a Point ⇒ bool

where regularCone x p ≡ ∃ l . (onLine p l) ∧ (onLine x l)
∧ (∃ v ∈ lineVelocity l . sNorm2 v = 1 )

abbreviation coneSet :: Body ⇒ ′a Point ⇒ ′a Point set

where coneSet m x ≡ { p . cone m x p }

abbreviation regularConeSet :: ′a Point ⇒ ′a Point set

where regularConeSet x ≡ { p . regularCone x p }

end

end

10 AXIOM: AxLightMinus

This theory declares the axiom AxLightMinus.

theory AxLightMinus

imports WorldLine TangentLines
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begin

AxLightMinus: If an observer sends out a light signal, then the
speed of the light signal is 1 according to the observer. Moreover
it is possible to send out a light signal in any direction.

class axLightMinus = WorldLine + TangentLines

begin

The definition of AxLightMinus used in this Isabelle proof is
slightly different to the one used in the paper-based proof on
which it is based. We have established elsewhere, however, that
each entails the other in all relevant contexts.

abbreviation axLightMinusOLD :: Body ⇒ ′a Point ⇒ ′a Space ⇒
bool

where axLightMinusOLD m p v ≡ (m sees m at p) −→ (
(∃ ph . (Ph ph ∧ (vel (wline m ph) p v))) ←→ (sNorm2 v = 1 )

)

abbreviation axLightMinus :: Body ⇒ ′a Point ⇒ ′a Space ⇒ bool

where axLightMinus m p v ≡ (m sees m at p)
−→ ( ∀ l . ∀ v ∈ lineVelocity l .

(∃ ph . (Ph ph ∧ (tangentLine l (wline m ph) p))) ←→
(sNorm2 v = 1 ))

end

class AxLightMinus = axLightMinus +
assumes AxLightMinus: ∀ m p v . axLightMinus m p v

begin
end

end

11 Proposition1

This theory shows that observers consider their own lightcones
to be upright.

theory Proposition1

imports Cones AxLightMinus

begin

class Proposition1 = Cones + AxLightMinus

begin

lemma lemProposition1 :
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assumes x ∈ wline m m

shows cone m x p = regularCone x p

proof −
have mmx: m sees m at x using assms by simp

have axlight: ∀ l . ∀ v ∈ lineVelocity l .
(∃ ph . (Ph ph ∧ (tangentLine l (wline m ph) x))) ←→

(sNorm2 v = 1 )
using AxLightMinus mmx by auto

define axph where axph: axph = (λ l . λ ph . (Ph ph ∧ (tangentLine

l (wline m ph) x)))

define lhs where lhs: lhs = cone m x p

define rhs where rhs: rhs = regularCone x p

{ assume lhs

hence ∃ l . onLine p l ∧ onLine x l ∧ (∃ ph . axph l ph)
using lhs axph by auto

then obtain l

where l: onLine p l ∧ onLine x l ∧ (∃ ph . axph l ph) by auto

have xonl: onLine x l using l by auto

have ponl: onLine p l using l by auto

have exph: ∃ ph . axph l ph using l by auto

then obtain ph where ph: axph l ph by auto

have axlight ′: ∀ v ∈ lineVelocity l . (∃ ph . axph l ph) ←→
(sNorm2 v = 1 )

using axph axlight by force

hence lv1 : ∀ v ∈ lineVelocity l . (sNorm2 v = 1 ) using exph by
blast

have tterm1 : tl l m ph x using ph axph by force

hence ∃ p . ( (onLine p l) ∧ (p 6= x) ∧ (∀ ε > 0 . ∃ δ > 0 . ∀
y ∈ (wline m ph). (

( (y within δ of x) ∧ (y 6= x) ) −→
( ∃ r . ((onLine r (lineJoining x y)) ∧ (r within ε of p))))))
by auto

then obtain q where q: onLine q l ∧ q 6= x by auto

define qx where qx: qx = (q ⊖ x)
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hence (x 6= q) ∧ onLine x l ∧ onLine q l ∧ (qx = (q ⊖ x)) using
q xonl by auto

hence ∃ p q . (p 6= q) ∧ onLine p l ∧ onLine q l ∧ (qx = (q ⊖
p)) by blast

hence qxl: qx ∈ drtn l by auto

define v where v: v = velocityJoining origin qx

hence ∃ d ∈ drtn l . v = velocityJoining origin d using qxl by
blast

hence existsv: v ∈ lineVelocity l by auto

hence norm2v: sNorm2 v = 1 using lv1 by auto

hence ∃ v ∈ lineVelocity l . sNorm2 v = 1 using existsv by force

hence onLine p l ∧ onLine x l ∧ (∃ v ∈ lineVelocity l . sNorm2

v = 1 )
using ponl xonl by auto

hence ∃ l . onLine p l ∧ onLine x l ∧ (∃ v ∈ lineVelocity l .
sNorm2 v = 1 )

by blast

hence regularCone x p by auto

}
hence l2r : lhs −→ rhs using rhs by blast

{ assume rhs

hence ∃ l . onLine p l ∧ onLine x l ∧ (∃ v ∈ lineVelocity l .
sNorm2 v = 1 )

using rhs by auto

then obtain l

where l: (onLine p l) ∧ (onLine x l) ∧ (∃ v ∈ lineVelocity l .
sNorm2 v = 1 )

by blast

have xonl: onLine x l using l by auto

have ponl: onLine p l using l by auto

have ∃ v ∈ lineVelocity l . sNorm2 v = 1 using l by blast

then obtain v where v: (v ∈ lineVelocity l) ∧ (sNorm2 v = 1 )
by blast

define final

where final: final = (λ l . onLine p l ∧ onLine x l ∧ (∃ ph .
axph l ph))

have ∃ ph . axph l ph using v axlight axph by blast

hence final l using ponl xonl final by auto

hence ∃ l . final l by auto

hence cone m x p using final axph by auto

hence lhs using lhs by auto
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}
hence r2l: rhs −→ lhs using lhs by blast

hence lhs ←→ rhs using l2r by auto

thus ?thesis using lhs rhs by auto

qed

end

end

12 AXIOM: AxEField

This theory defines the axiom AxEField, which states that the
linearly ordered field of quantities is Euclidean, i.e. that all non-
negative values have square roots in the field.

theory AxEField

imports Sorts

begin

class axEField = Quantities

begin
abbreviation axEField :: ′a ⇒ bool

where axEField x ≡ (x ≥ 0 ) −→ hasRoot x

end

class AxEField = axEField +
assumes AxEField: ∀ x . axEField x

begin
end

end

13 Norms

This theory defines norms, assuming that roots exist.

theory Norms

imports Points AxEField

begin

class Norms = Points + AxEField
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begin

abbreviation norm :: ′a Point ⇒ ′a (‖ - ‖)
where norm p ≡ sqrt (norm2 p)

abbreviation sNorm :: ′a Space ⇒ ′a

where sNorm p ≡ sqrt (sNorm2 p)

13.1 axTriangleInequality

Given that norms exist, we can define the triangle inequality for
specific cases. This will be asserted more generally as an axiom
later.

abbreviation axTriangleInequality :: ′a Point ⇒ ′a Point ⇒ bool

where axTriangleInequality p q ≡ (norm (p⊕q) ≤ norm p + norm

q)

lemma lemNormSqrIsNorm2 : norm2 p = sqr (norm p)
proof −

have norm2 p ≥ 0 by simp

moreover have axEField (norm2 p) using AxEField by simp

ultimately show ?thesis using lemSquareOfSqrt[of norm2 p norm

p] by force

qed

lemma lemZeroNorm:
shows (p = origin) ←→ (norm p = 0 )

proof −
{ assume p = origin

hence norm2 p = 0 by auto

hence norm p = 0 using lemSquareOfSqrt lemZeroRoot AxEField

by force

}
hence l2r : (p = origin) −→ (norm p = 0 ) by auto

{ assume norm p = 0

hence norm2 p = 0 using lemNormSqrIsNorm2 [of p] by auto

hence p = origin using lemNullImpliesOrigin by auto

}
hence (norm p = 0 ) −→ (p = origin) by auto
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thus ?thesis using l2r by blast

qed

lemma lemNormNonNegative: norm p ≥ 0

proof −
have norm2 p ≥ 0 by auto

hence unique: ∃ !r . 0 ≤ r ∧ norm2 p = sqr r using AxEField

lemSqrt[of norm2 p] by auto

then obtain r where r : 0 ≤ r ∧ norm2 p = sqr r ∧ (∀ x .
isNonNegRoot (norm2 p) x −→ x= r)

by auto

hence r = norm p using the-equality[of isNonNegRoot (norm2 p)
r ] by blast

moreover have r ≥ 0 using r by blast

ultimately show ?thesis by auto

qed

lemma lemNotOriginImpliesPositiveNorm:
assumes p 6= origin

shows (norm p > 0 )
proof −

have 1 : norm p 6= 0 using lemZeroNorm assms(1 )by auto

have norm p ≥ 0 using lemNormNonNegative assms(1 ) by auto

hence 2 : norm p > 0 using 1 by auto

thus ?thesis by auto

qed

lemma lemNormSymmetry: norm (p⊖q) = norm (q⊖p)
proof −

have norm2 (p ⊖ q) = norm2 (q ⊖ p) using lemSep2Symmetry by
simp

thus ?thesis by presburger

qed

lemma lemNormOfScaled: norm (α⊗p) = (abs α) ∗ (norm p)
proof −
have sqr (norm (α⊗p)) = norm2 (α⊗p) using lemNormSqrIsNorm2

by presburger

also have . . . = (sqr α)∗(norm2 p) using lemNorm2OfScaled by
auto

also have . . . = (sqr α)∗(sqr (norm p)) using lemNormSqrIsNorm2

by force
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also have . . . = sqr ( α∗(norm p) ) using lemSqrMult by auto

finally have abs (norm (α⊗p)) = abs ( α ∗(norm p) ) using lemE-

qualSquares by blast

moreover have abs (norm (α⊗p)) = norm (α⊗p)
using lemNormNonNegative[of (α⊗p)] abs-of-nonneg by auto

moreover have abs ( α ∗(norm p) ) = (abs α)∗(abs (norm p))
using abs-mult by auto

ultimately show ?thesis using lemNormNonNegative[of p] abs-of-nonneg

by auto

qed

lemma lemDistancesAdd:
assumes triangle: axTriangleInequality (q⊖p) (r⊖q)

and distances: (x > 0 ) ∧ (y > 0 ) ∧ (sep2 p q < sqr x) ∧ (sep2

r q < sqr y)
shows r within (x+y) of p

proof −
define npq where npq: npq = norm (q⊖p)
hence sqr npq < sqr x

using lemNormSqrIsNorm2 distances lemSep2Symmetry by pres-

burger

hence npqx: npq < x using lemSqrOrderedStrict distances by blast

define nqr where nqr : nqr = norm (r⊖q)
hence sqr nqr < sqr y using lemNormSqrIsNorm2 distances by

presburger

hence nqry: nqr < y using lemSqrOrderedStrict distances by blast

have rminusp: (r⊖p) = ((q⊖p)⊕(r⊖q)) using lemDiffDiffAdd by
fastforce

define npr where npr : npr = norm (r⊖p)

have nx: norm (q⊖p) = npq using npq lemSqrt by fast

have ny: norm (r⊖q) = nqr using nqr lemSqrt by fast

have nz: norm (r⊖p) = npr using npr lemSqrt by fast

have norm (r⊖p) ≤ (norm (q⊖p) + norm (r⊖q)) using triangle

rminusp by fastforce

hence npr ≤ (npq + nqr) using nx ny nz lemSqrt npq nqr npr by
simp

hence npr < x + y using npqx nqry add-strict-mono[of npq x nqr

y]
by simp

hence sqr npr < sqr (x+y) using npr lemNormNonNegative[of

(r⊖p)] lemSqrMonoStrict by auto

hence sep: sep2 r p < sqr (x+y) using npr lemSquareOfSqrt AxE-

Field by auto
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thus ?thesis using npr lemSep2Symmetry by auto

qed

lemma lemDistancesAddStrictR:
assumes triangle: axTriangleInequality (q⊖p) (r⊖q)

and distances: (x > 0 ) ∧ (y > 0 ) ∧ (sep2 p q ≤ sqr x) ∧ (sep2

r q < sqr y)
shows r within (x+y) of p

proof −
define npq where npq: npq = norm (q⊖p)
hence sqr npq ≤ sqr x using lemNormSqrIsNorm2 distances lem-

Sep2Symmetry by presburger

hence npqx: npq ≤ x using lemSqrOrdered[of x npq] distances npq

by auto

define nqr where nqr : nqr = norm (r⊖q)
hence sqr nqr < sqr y using lemNormSqrIsNorm2 distances by

presburger

hence nqry: nqr < y using lemSqrOrderedStrict distances by blast

define npr where npr : npr = norm (r⊖p)

have nx: norm (q⊖p) = npq using npq lemSqrt by blast

have ny: norm (r⊖q) = nqr using nqr lemSqrt by blast

have nz: norm (r⊖p) = npr using npr lemSqrt by blast

have norm (r⊖p) ≤ (norm (q⊖p) + norm (r⊖q)) using triangle

lemDiffDiffAdd by fastforce

hence npr ≤ (npq + nqr) using nx ny nz by simp

hence npr < x + y using npqx nqry add-le-less-mono[of npq x nqr

y]
by auto

hence sqr npr < sqr (x+y) using npr lemNormNonNegative[of

(r⊖p)] lemSqrMonoStrict by auto

hence sep: sep2 r p < sqr (x+y) using npr lemSquareOfSqrt AxE-

Field by auto

thus ?thesis using npr lemSep2Symmetry[of r p] by auto

qed

end

end
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14 AxTriangleInequality

This theory declares the Triangle Inequality as an axiom.

theory AxTriangleInequality

imports Norms

begin

Although AxTriangleInequality can be proven rather than as-
serted we have left it as an axiom to illustrate the flexibility
of using Isabelle for mathematical physics: well-known mathe-
matical results can be asserted, leaving the researcher free to
concentrate on the physics. We can return later to prove the
mathematical results when time permits.

class AxTriangleInequality = Norms +
assumes AxTriangleInequality: ∀ p q . axTriangleInequality p q

begin
end

end

15 Sublemma3

This theory establishes how closely tangent lines approximate
world lines.

theory Sublemma3

imports WorldLine AxTriangleInequality TangentLines

begin

class Sublemma3 = WorldLine + AxTriangleInequality + Tangent-

Lines

begin

lemma sublemma3 :
assumes onLine p l

and norm2 p = 1

and tangentLine l wl origin

shows
∀ ε > 0 . ∃ δ > 0 . ∀ y ny . (

((y within δ of origin) ∧ (y 6= origin) ∧ (y ∈ wl) ∧ (norm y =
ny))

−→
( (((1/ny)⊗y) within ε of p) ∨ (((−1/ny)⊗y) within ε of p))

)
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proof −
{ fix e :: ′a

{ assume epos: e > 0

hence e2pos: e/2 > 0 by simp

have prop1 : origin ∈ wl using assms(3 ) by auto

have prop2 : onLine origin l using assms(3 ) by auto

hence prop3 : ∀ ε > 0 . ∃ q ∈ wl. (origin 6= q) ∧ (inBall q ε
origin)

using assms(3 ) by auto

have prop4 : ∀ p .( ((onLine p l) ∧ (p 6= origin)) −→
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ wl . (
( (y within δ of origin) ∧ (y 6= origin) )
−→
( ∃ r . ((onLine r (lineJoining origin y)) ∧ (r within ε of

p))))
)

) using assms(3 ) lemTangentLineA[of origin]
by auto

have p 6= origin using assms(2 ) lemNullImpliesOrigin by auto

hence ballprops: ∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ wl . (
( (y within δ of origin) ∧ (y 6= origin) )
−→
( ∃ r . ((onLine r (lineJoining origin y)) ∧ (r within ε of

p)))
)
using assms(1 ) prop4 by auto

define eps where eps = (if (e/2 < 1/2 ) then (e/2 ) else (1/2 ))

hence eps-le-e2 : eps ≤ e/2 by auto

have epspos: eps > 0 using e2pos eps-def by simp

{ assume ass1 : e/2 < 1/2

hence eps = e/2 using eps-def by auto

hence eps < 1/2 using ass1 by simp

hence eps ≤ 1/2 by simp

}
hence case1 : (e/2 < 1/2 ) −→ eps ≤ 1/2 by auto

have ¬(e/2 < 1/2 ) −→ eps = 1/2 using eps-def by simp
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hence case2 : ¬(e/2 < 1/2 ) −→ eps ≤ 1/2 by auto

hence (eps ≤ (1/2 )) using case1 case2 by auto

hence eps-lt-1 : eps < 1 using le-less-trans by auto

hence sqr eps < eps using epspos lemMultPosLT1 by auto

hence epssqu: sqr eps < 1 using eps-lt-1 le-less-trans by auto

then obtain d where dprops: (d > 0 ) ∧ (∀ y ∈ wl. (
( (y within d of origin) ∧ (y 6= origin) )
−→
( ∃ r . ((onLine r (lineJoining origin y)) ∧ (r within eps of

p))))
) using epspos ballprops by auto

{ fix y ny assume ny: ny = norm y

{ assume y: (y within d of origin) ∧ (y 6= origin) ∧ (y ∈ wl)

hence ∃ r . ((onLine r (lineJoining origin y)) ∧ (r within eps

of p))
using dprops by blast

then obtain r

where r : (onLine r (lineJoining origin y)) ∧ (r within eps

of p)
by auto

hence ∃ α . r = (α ⊗ y) by simp

then obtain α where alpha: r = (α ⊗ y) by auto

{ assume α = 0

hence rnull: r = origin using alpha by simp

hence one: sep2 r p = 1 using assms(2 ) by auto

have sep2 r p < sqr eps using r by auto

hence not-one: sep2 r p < 1 using epssqu by auto

hence False using one not-one by auto

}
hence anz: α 6= 0 by auto

define np where np = norm p

hence np: np = 1 using assms(2 ) lemSqrt1 by auto

define npr where npr = norm (p ⊖ r)
hence sqr npr = sep2 p r using local.lemNormSqrIsNorm2

by presburger

hence sqr npr < sqr eps using r lemSep2Symmetry by auto

hence sqr npr < sqr eps ∧ eps > 0 using epspos by auto

hence npr : npr < eps

using lemSqrOrderedStrict[of eps npr ] by auto

hence npr1 : 1 − npr > 1 − eps
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using diff-strict-left-mono by simp

have npr-lt-e2 : npr < e/2 using npr eps-le-e2 le-less-trans

by auto

define nr where nr = norm r

hence sqr nr = norm2 (α ⊗ y) using alpha lemNormSqrIs-

Norm2 by presburger

hence nr : sqr nr = (sqr α) ∗ norm2 y using lemNorm2OfScaled

by auto

have axTriangleInequality (p⊖r) r using AxTriangleInequality

by blast

hence (np ≤ npr + nr) using np-def npr-def nr-def by simp

hence nr ≥ 1 − npr using np lemLEPlus by auto

hence triangle1 : nr > 1 − eps using npr1 le-less-trans by
simp

define nrp where nrp = norm (r⊖p)
hence nrppr : nrp = npr using npr-def nrp-def lemSep2Sym-

metry[of p r ] by auto

have axTriangleInequality (r⊖p) p using AxTriangleInequality

by blast

hence (nr ≤ npr + 1 )
using np-def npr-def nr-def np nrp-def nrppr by auto

hence triangle2 : nr < 1 + eps

using npr add-strict-right-mono le-less-trans add-commute

by simp

have range: (1 − eps) < nr < (1 + eps)
using triangle1 triangle2 by simp

have (ny = 0 ) −→ (y = origin)
using ny lemNormSqrIsNorm2 [of y] lemNullImpliesOrigin

by auto

hence nynz: ny 6= 0 using y by auto

have norm ((1/ny)⊗y) = ((abs (1/ny)) ∗ ny) using ny

lemNormOfScaled[of 1/ny y] by auto

hence nyunit: norm ((1/ny)⊗y) = 1 using y nynz ny

lemNormNonNegative by auto

have norm r = ((abs α) ∗ ny) using ny alpha lemNormOfS-

caled[of α y] by auto

hence nr-is-any: nr = ((abs α) ∗ ny) using nr-def lemSqrt

by auto
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hence (1 − eps) < ((abs α) ∗ ny) < (1 + eps) using range

by auto

hence star : abs (((abs α) ∗ ny) − 1 ) < eps

using epspos lemAbsRange[of eps 1 ((abs α) ∗ ny)] by auto

have cases: (α > 0 ) ∨ (α < 0 ) using anz by auto

{ assume apos: α > 0

hence abs α = α by auto

hence case1range: abs ((α ∗ ny) − 1 ) < eps using star by
auto

define w1 where w1 = ((α ⊗ y) ⊖ ((1/ny)⊗y))
define nw1 where nw1 = norm w1

have (α ⊗ y) = ((1/ny) ⊗ ((α ∗ ny) ⊗ y))
using nynz lemScaleAssoc by auto

hence w1 = (((1/ny) ⊗ ((α ∗ ny) ⊗ y)) ⊖ ((1/ny)⊗y))
using w1-def by simp

hence w1 = ((1/ny) ⊗ (((α ∗ ny) ⊗ y) ⊖ y ))
using lemScaleDistribDiff [of 1/ny (α ∗ ny) ⊗ y y] by force

hence w1 = (((α ∗ ny) − 1 ) ⊗ ((1/ny) ⊗ y))
using lemScaleLeftDiffDistrib lemScaleCommute by auto

hence 2 : norm w1 = (abs ((α ∗ ny) − 1 ))
using lemNormOfScaled[of ((α ∗ ny) − 1 ) (1/ny) ⊗ y]

nyunit by auto

{
define pp where pp: pp = (p⊖(α⊗y))
define qq where qq: qq = ((α⊗y) ⊖ ((1/ny)⊗y))

have axTriangleInequality pp qq using AxTriangleInequality

by simp

hence norm (pp ⊕ qq) ≤ norm pp + norm qq by auto

hence norm ((p ⊖ ((1/ny)⊗y))) ≤ norm pp + norm qq

using lemSumDiffCancelMiddle pp qq by simp

hence norm ((p ⊖ ((1/ny)⊗y))) ≤ norm (p⊖r) + norm w1

using alpha w1-def pp qq by auto

}
hence 3 : norm ((p ⊖ ((1/ny)⊗y))) ≤ npr + nw1

using nw1-def npr-def by force

define nminus where nminus = norm ((p ⊖ ((1/ny)⊗y)))

hence almost1 : nminus ≤ npr + nw1 using 3 nminus-def

by auto
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have abs ((ny ∗ α) − 1 ) ≥ 0 by auto

hence nw1 = abs ((α ∗ ny) − 1 ) using nw1-def 2 lemSqrt

by blast

hence nw1 < eps using case1range le-less-trans by auto

hence nw1 < e/2 using eps-le-e2 le-less-trans by auto

hence nminus < (e/2 + e/2 )
using almost1 npr-lt-e2 add-strict-mono le-less-trans by

simp

hence nminus < e using lemSumOfTwoHalves by simp

hence sqr nminus < sqr e

using lemSqrMonoStrict[of nminus e] nminus-def

lemNormNonNegative[of ((p ⊖ ((1/ny)⊗y)))]
by auto

hence norm2 ((p ⊖ ((1/ny)⊗y))) < sqr e

using lemNormSqrIsNorm2 [of ((p ⊖ ((1/ny)⊗y)))]
nminus-def by auto

hence p within e of ((1/ny)⊗y) by auto

hence ((1/ny)⊗y) within e of p

using lemSep2Symmetry[of ((1/ny)⊗y)] by auto

}
hence case1 : (α > 0 ) −→ (((1/ny)⊗y) within e of p) by blast

{ assume aneg: α < 0

hence abs α = −α by auto

hence abs (−(α ∗ ny) − 1 ) < eps using star by auto

hence case2range: abs (α∗ny + 1 ) < eps

using lemAbsNegNeg[of α∗ny 1 ] by auto

define w2 where w2 = ((α⊗y) ⊕ ((1/ny)⊗y))
define nw2 where nw2 = norm w2

have (α ⊗ y) = ((1/ny) ⊗ ((α ∗ ny) ⊗ y))
using nynz lemScaleAssoc by auto

hence w2 = (((1/ny) ⊗ ((α∗ ny) ⊗ y)) ⊕ ((1/ny)⊗y))
using w2-def by simp

also have ... = ((1/ny) ⊗ (((α ∗ ny) ⊗ y) ⊕ y ))
using lemScaleDistribSum[of 1/ny (α ∗ ny) ⊗ y y] by

simp

also have ... = (((α ∗ ny) + 1 ) ⊗ ((1/ny) ⊗ y))
using lemScaleLeftDiffDistrib[where b=−1 ] lemScaleCom-

mute by auto

finally have 4 : norm w2 = (abs ((α ∗ ny) + 1 ))
using lemNormOfScaled[of ((α ∗ ny) + 1 ) (1/ny) ⊗ y]

nyunit by auto
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{
define pp where pp: pp = (p⊖(α⊗y))
define qq where qq: qq = ((α⊗y) ⊕ ((1/ny)⊗y))

have axTriangleInequality pp qq using AxTriangleInequality

by simp

hence norm (pp ⊕ qq) ≤ norm pp + norm qq by auto

hence norm ((p ⊕ ((1/ny)⊗y))) ≤ norm pp + norm qq

using lemDiffSumCancelMiddle pp qq by force

hence norm ((p ⊕ ((1/ny)⊗y))) ≤ norm (p⊖r) + norm

w2

using alpha w2-def pp qq by auto

}
hence 5 : norm ((p ⊕ ((1/ny)⊗y))) ≤ npr + nw2 using

nw2-def npr-def by auto

define nplus where nplus = norm ((p ⊕ ((1/ny)⊗y)))

hence almost2 : nplus ≤ npr + nw2 using 5 nplus-def by
auto

have abs ((ny ∗ α) − 1 ) ≥ 0 by auto

hence nw2 = abs ((α ∗ ny) + 1 ) using nw2-def 4 lemSqrt[of

norm2 w2 ] by auto

hence nw2 < eps using case2range le-less-trans by auto

hence nw2 < e/2 using eps-le-e2 le-less-trans by auto

hence nplus < (e/2 + e/2 )
using almost2 npr-lt-e2 add-strict-mono le-less-trans by

simp

hence nplus < e using lemSumOfTwoHalves by simp

hence sqr nplus < sqr e using
lemSqrMonoStrict[of nplus e] nplus-def

lemNormNonNegative[of ((p ⊕ ((1/ny)⊗y)))]
by auto

hence norm2 ((p ⊕ ((1/ny)⊗y))) < sqr e

using lemNormSqrIsNorm2 [of ((p ⊕ ((1/ny)⊗y)))] nplus-def

by auto

hence sep2 p ((−1/ny)⊗y) < sqr e by simp

hence (((−1/ny)⊗y) within e of p)
using lemSep2Symmetry[of ((−1/ny)⊗y)] by auto

}
hence case2 : (α < 0 ) −→ (((−1/ny)⊗y) within e of p) by

blast
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hence (((1/ny)⊗y) within e of p) ∨ (((−1/ny)⊗y) within e

of p)
using cases case1 by auto

}
hence ((y within d of origin) ∧ (y 6= origin) ∧ (y ∈ wl) ∧

(norm y = ny))
−→ ((((1/ny)⊗y) within e of p) ∨ (((−1/ny)⊗y) within e

of p))
by blast

}
hence ∃ δ > 0 .∀ y ny .((y within δ of origin)

∧ (y 6= origin) ∧ (y ∈ wl) ∧ (norm y = ny))
−→ ((((1/ny)⊗y) within e of p) ∨ (((−1/ny)⊗y) within e

of p))
using dprops by blast

}
hence e > 0 −→
(∃ δ > 0 .∀ y ny .((y within δ of origin) ∧ (y 6= origin) ∧ (y ∈

wl) ∧ (norm y = ny))
−→ ((((1/ny)⊗y) within e of p) ∨ (((−1/ny)⊗y) within e

of p)))
by blast

}
thus ?thesis by blast

qed

lemma sublemma3Translation:
assumes onLine p l

and norm2 (p⊖x) = 1

and tangentLine l wl x

shows ∀ ε > 0 . ∃ δ > 0 . ∀ y nyx .
((y within δ of x) ∧ (y 6= x) ∧ (y ∈ wl) ∧ (norm (y⊖x)

= nyx))
−→

(((1/nyx)⊗(y⊖x)) within ε of (p⊖x))
∨ (((−1/nyx)⊗(y⊖x)) within ε of (p⊖x))

proof −
define pre

where pre: pre = (λ d y nyx . (y within d of x) ∧ (y 6= x) ∧ (y ∈
wl) ∧ (norm (y⊖x) = nyx))

define post

where post: post = (λ e y nyx . (((1/nyx)⊗(y⊖x)) within e of

(p⊖x))
∨ (((−1/nyx)⊗(y⊖x)) within e of (p⊖x)))

define T where T = mkTranslation (origin ⊖ x)
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hence transT : translation T using lemMkTrans by blast

have T : ∀ p. T p = (p ⊕ (origin ⊖ x)) using T-def by simp

define p ′ where p ′: p ′ = T p

define l ′ where l ′: l ′ = (applyToSet (asFunc T ) l)
define x ′ where x ′: x ′ = T x

define wl ′ where wl ′: wl ′ = (applyToSet (asFunc T ) wl)

have 1 : onLine p ′ l ′

using assms(1 ) T p ′ l ′ lemOnLineTranslation[of T l p]
by blast

have x ′0 : x ′ = origin using T x ′ add-diff-eq by auto

hence sep2 p ′ origin = 1

using T assms(2 ) p ′ lemTranslationPreservesSep2 by simp

hence 2 : norm2 p ′ = 1 by auto

have tangentLine (applyToSet (asFunc T ) l)
(applyToSet (asFunc T ) wl) (T x)

using transT assms(3 ) lemTangentLineTranslation[of T x wl l]
by auto

hence 3 : tangentLine l ′ wl ′ origin using l ′ wl ′ x ′ x ′0 by auto

hence conc: ∀ ε > 0 . ∃ δ > 0 . ∀ y ′ ny ′ . (
((y ′ within δ of origin) ∧ (y ′ 6= origin) ∧ (y ′ ∈ wl ′) ∧ (norm y ′

= ny ′))
−→
( (((1/ny ′)⊗y ′) within ε of p ′) ∨ (((−1/ny ′)⊗y ′) within ε of

p ′)))
using 1 2 3 sublemma3 [of l ′ p ′]
by auto

{ fix e

assume epos: e > 0

then obtain d where d: (d > 0 ) ∧ (∀ y ′ ny ′ . (
((y ′ within d of origin) ∧ (y ′ 6= origin) ∧ (y ′ ∈ wl ′) ∧ (norm y ′

= ny ′))
−→
( (((1/ny ′)⊗y ′) within e of p ′) ∨ (((−1/ny ′)⊗y ′) within e of

p ′))))
using conc by blast

{ fix y nyx

assume hyp: pre d y nyx

define y ′ where y ′: y ′ = T y

hence rtp1 : y ′ within d of origin

using transT hyp x ′ x ′0 lemBallTranslation pre by auto
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have p ′px: p ′ = (p ⊖ x) using p ′ T by simp

have y ′yx: y ′ = (y ⊖ x) using y ′ T by simp

hence nyx: norm y ′ = nyx using hyp pre by force

{ have (T x = x ′) ∧ (T y = y ′) ∧ (injective (asFunc T ))
using x ′ y ′ lemTranslationInjective[of T ] transT by blast

moreover have x 6= y using hyp pre by auto

ultimately have y ′ 6= x ′by auto

}
hence rtp2 : y ′ 6= origin using x ′0 by simp

have rtp3 : y ′ ∈ wl ′ using hyp pre y ′ wl ′ by force

hence (y ′ within d of origin) ∧ (y ′ 6= origin) ∧ (y ′ ∈ wl ′) ∧
(norm y ′ = nyx)

using rtp1 rtp2 rtp3 nyx by blast

hence (((1/nyx)⊗y ′) within e of p ′) ∨ (((−1/nyx)⊗y ′) within e

of p ′)
using d by auto

hence post e y nyx using post y ′yx p ′px by auto

}
hence ∀ y nyx . pre d y nyx −→ post e y nyx by auto

hence ∃ δ>0 . ∀ y nyx . pre δ y nyx −→ post e y nyx using d by
auto

}
hence ∀ ε>0 . ∃ δ>0 . ∀ y nyx . pre δ y nyx −→ post ε y nyx by

auto

thus ?thesis using post pre by blast

qed

end

end

16 Vectors

In this theory we define dot-products, and explain what we mean
by timelike, lightlike (null), causal and spacelike vectors.

theory Vectors

imports Norms

begin

class Vectors = Norms

begin
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fun dot :: ′a Point ⇒ ′a Point ⇒ ′a (- ⊙ -)
where dot u v = (tval u)∗(tval v) + (xval u)∗(xval v) +

(yval u)∗(yval v) + (zval u)∗(zval v)

fun sdot :: ′a Space ⇒ ′a Space ⇒ ′a (- ⊙s -)
where sdot u v = (svalx u)∗(svalx v) + (svaly u)∗(svaly v) + (svalz

u)∗(svalz v)

fun mdot :: ′a Point ⇒ ′a Point ⇒ ′a (- ⊙m - )
where mdot u v = (tval u)∗(tval v) − ((sComponent u) ⊙s (sComponent

v))

abbreviation timelike :: ′a Point ⇒ bool

where timelike p ≡ mNorm2 p > 0

abbreviation lightlike :: ′a Point ⇒ bool

where lightlike p ≡ (p 6= origin ∧ mNorm2 p = 0 )

abbreviation spacelike :: ′a Point ⇒ bool

where spacelike p ≡ mNorm2 p < 0

abbreviation causal :: ′a Point ⇒ bool

where causal p ≡ timelike p ∨ lightlike p

abbreviation orthog :: ′a Point ⇒ ′a Point ⇒ bool

where orthog p q ≡ (p ⊙ q) = 0

abbreviation orthogs :: ′a Space ⇒ ′a Space ⇒ bool

where orthogs p q ≡ (p ⊙s q) = 0

abbreviation orthogm :: ′a Point ⇒ ′a Point ⇒ bool

where orthogm p q ≡ (p ⊙m q) = 0

lemma lemDotDecomposition:
shows (u ⊙ v) = (tval u ∗ tval v) + ((sComponent u) ⊙s (sComponent

v))
by (simp add: add-commute local.add.left-commute)

lemma lemDotCommute: dot u v = dot v u

by (simp add: mult-commute)

lemma lemDotScaleLeft: dot (a⊗u) v = a ∗ (dot u v)
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using mult-assoc distrib-left by force

lemma lemDotScaleRight: dot u (a⊗v) = a ∗ (dot u v)
using mult-assoc mult-commute distrib-left by auto

lemma lemDotSumLeft: dot (u⊕v) w = (dot u w) + (dot v w)
using distrib-right add-assoc add-commute by force

lemma lemDotSumRight: dot u (v⊕w) = (dot u v) + (dot u w)
using distrib-left add-assoc add-commute by auto

lemma lemDotDiffLeft: dot (u⊖v) w = (dot u w) − (dot v w)
by (simp add: field-simps)

lemma lemDotDiffRight: dot u (v⊖w) = (dot u v) − (dot u w)
by (simp add: field-simps)

lemma lemNorm2OfSum: norm2 (u ⊕ v) = norm2 u + 2∗(u ⊙ v)
+ norm2 v

proof −
have norm2 (u ⊕ v) = ((u ⊕ v) ⊙ (u ⊕ v)) by auto

also have . . . = (u ⊙ (u ⊕ v)) + (v ⊙ (u ⊕ v))
using lemDotSumLeft[of u v (u ⊕ v)] by auto

also have . . . = (u⊙u) + ((u⊙v) + (v⊙u)) + (v⊙v)
using lemDotSumRight[of u u v] lemDotSumRight[of v u v]

add-assoc by auto

finally show ?thesis using mult-2 lemDotCommute[of u v]
by auto

qed

lemma lemSDotCommute: sdot u v = sdot v u

by (simp add: mult-commute)

lemma lemSDotScaleLeft: sdot (a ⊗s u) v = a ∗ (sdot u v)
using mult-assoc distrib-left by force

lemma lemSDotScaleRight: sdot u (a ⊗s v) = a ∗ (sdot u v)
using mult-assoc mult-commute distrib-left by auto

lemma lemSDotSumLeft: sdot (u ⊕s v) w = (sdot u w) + (sdot v w)
using distrib-right add-assoc add-commute by force

lemma lemSDotSumRight: sdot u ( v⊕s w) = (sdot u v) + (sdot u w)
using distrib-left add-assoc add-commute by auto

lemma lemSDotDiffLeft: sdot (u ⊖s v) w = (sdot u w) − (sdot v w)
by (simp add: field-simps)

69



lemma lemSDotDiffRight: sdot u ( v⊖s w) = (sdot u v) − (sdot u w)
by (simp add: field-simps)

lemma lemMDotDiffLeft: mdot (u⊖v) w = (mdot u w) − (mdot v w)
by (simp add: field-simps)

lemma lemMDotSumLeft: mdot (u ⊕ v) w = (mdot u w) + (mdot v

w)
proof −
have mdot (u⊕v) w = (tval (u⊕v))∗(tval w) − ((sComponent (u⊕v))⊙s(sComponent

w))
by auto

also have . . . = (tval u∗tval w) + (tval v∗tval w)
− ( ((sComponent u)⊙s(sComponent w)) +

((sComponent v)⊙s(sComponent w)))
using distrib lemSDotSumLeft[of (sComponent u) (sComponent v)

(sComponent w)]
by auto

also have . . . = ((tval u∗tval w) − ((sComponent u)⊙s(sComponent

w)))
+ ((tval v∗tval w) − ((sComponent v)⊙s(sComponent

w)))
using add-diff-eq add-commute diff-diff-add by auto

finally show ?thesis by simp

qed

lemma lemMDotScaleLeft: mdot (a ⊗ u) v = a ∗ (mdot u v)
proof −
have mdot (a ⊗ u) v = a∗(tval u∗tval v) − a∗((sComponent u)⊙s(sComponent

v))
using lemSDotScaleLeft[of a sComponent u sComponent v]
by (simp add: mult-assoc)

thus ?thesis by (simp add: local.right-diff-distrib ′)
qed

lemma lemMDotScaleRight: mdot u (a ⊗ v) = a ∗ (mdot u v)
proof −
have mdot u (a ⊗ v) = a∗(tval u∗tval v) − a∗((sComponent u)⊙s(sComponent

v))
using lemSDotScaleRight[of sComponent u a sComponent v]
by (simp add: local.mult.left-commute)

thus ?thesis by (simp add: local.right-diff-distrib ′)
qed
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lemma lemSNorm2OfSum: sNorm2 (u ⊕s v) = sNorm2 u + 2∗(u ⊙s

v) + sNorm2 v

proof −
have sNorm2 (u ⊕s v) = ((u ⊕s v) ⊙s (u ⊕s v)) by auto

also have . . . = (u ⊙s (u ⊕s v)) + (v ⊙s (u ⊕s v))
using lemSDotSumLeft[of u v (u ⊕s v)] by auto

also have . . . = (u ⊙s u) + ((u ⊙s v) + (v ⊙s u)) + (v ⊙s v)
using lemSDotSumRight[of u u v] lemSDotSumRight[of v u v]

add-assoc by auto

finally show ?thesis using mult-2 lemSDotCommute[of u v]
by auto

qed

lemma lemSNormNonNeg:
shows sNorm v ≥ 0

proof −
have hasUniqueRoot (sNorm2 v) using AxEField lemSqrt by auto

thus ?thesis using the1-equality[of isNonNegRoot (sNorm2 v)] by
blast

qed

lemma lemMNorm2OfSum: mNorm2 (u ⊕ v) = mNorm2 u + 2∗(u
⊙m v) + mNorm2 v

proof −
define su where su: su = sComponent u

define sv where sv: sv = sComponent v

have mNorm2 (u ⊕ v) = ((u ⊕ v) ⊙m (u ⊕ v)) by auto

also have . . . = (sqr (tval u) + 2∗(tval u)∗(tval v) + sqr (tval v))
− sNorm2 (su ⊕s sv)

using lemSqrSum su sv by auto

also have . . . = (sqr (tval u) + 2∗(tval u)∗(tval v) + sqr (tval v))
− ( sNorm2 su + 2∗(su ⊙s sv) + sNorm2 sv)

using lemSNorm2OfSum by auto

also have . . . = ( sqr (tval u) − sNorm2 su )
+ ( 2∗(tval u)∗(tval v) − 2∗(su ⊙s sv) )
+ ( sqr (tval v) − sNorm2 sv )

using add-commute add-assoc add-diff-eq diff-add-eq diff-diff-add

by simp

finally show ?thesis using su sv right-diff-distrib ′ mult-assoc by
auto

qed
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lemma lemMNorm2OfDiff : mNorm2 (u ⊖ v) = mNorm2 u − 2∗(u
⊙m v) + mNorm2 v

proof −
define vm where vm: vm = ((−1 )⊗v)
hence mNorm2 (u ⊖ v) = mNorm2 (u ⊕ vm) by auto

hence mNorm2 (u ⊖ v) = mNorm2 u + 2∗(u ⊙m vm) + mNorm2

vm

using lemMNorm2OfSum by auto

moreover have (u ⊙m vm) = −(u ⊙m v)
using lemMDotScaleRight[of u (−1 ) v] vm by auto

moreover have mNorm2 vm = mNorm2 v using vm lemMNorm2Of-

Scaled by auto

ultimately show ?thesis

by (metis local.diff-conv-add-uminus local.mult-minus-right)
qed

lemma lemMNorm2Decomposition: mNorm2 p = (p ⊙m p)
by auto

lemma lemMDecomposition:
assumes (u ⊙m v) 6= 0

and mNorm2 v 6= 0

and a = (u ⊙m v)/(mNorm2 v)
and up = (a ⊗ v)
and uo = (u ⊖ up)

shows u = (up ⊕ uo) ∧ parallel up v ∧ orthogm uo v ∧ (up ⊙m v)
= (u ⊙m v)
proof −

have anz: a 6= 0 using assms by auto

have psum: u = (up ⊕ uo) using assms add-diff-eq by auto

moreover have parallel up v using assms(4 ) anz by auto

moreover have ppdot: (up ⊙m v) = (u ⊙m v)
proof −

have (up ⊙m v) = a∗(v ⊙m v) using assms lemMDotScaleLeft[of

a v v] by auto

thus ?thesis using assms by auto

qed
moreover have orthogm uo v

proof −
have (uo ⊙m v) = (u ⊙m v) − (up ⊙m v) using lemMDotSumLeft

psum by force

thus ?thesis using ppdot by auto

qed
ultimately show ?thesis by blast

qed
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end

end

17 CauchySchwarz

This theory defines and proves the Cauchy-Schwarz inequality
for both spatial and spacetime vectors.

theory CauchySchwarz

imports Vectors

begin

We essentially prove the same result twice, once for 3-dimensional
spatial points, and once for 4-dimensional spacetime points. While
this is clearly inefficient, it keeps things straightforward for non-
Isabelle experts.

class CauchySchwarz = Vectors

begin

lemma lemCauchySchwarz4 :
shows abs (dot u v) ≤ (norm u)∗(norm v)

proof −
have vorigin: v = origin −→ abs (dot u v) ≤ (norm u)∗(norm v)
proof −

{ assume v = origin

hence abs (dot u v) = 0 by simp

also have . . . ≤ (norm u)∗(norm v) using lemNormNonNegative

by simp

finally have abs (dot u v) ≤ (norm u)∗(norm v) by auto

}
thus ?thesis by blast

qed

define a where a = dot v v

define b where b = 2 ∗ dot u v

define c where c = dot u u

{ fix x :: ′a

define w where w = (u ⊕ (x ⊗ v))
have ww: (dot w w) ≥ 0 by simp

define xv where xv: xv = (x ⊗ v)
define middle2 where middle2 = dot u xv + dot xv u
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have dot xv u = dot u xv using lemDotCommute by blast

hence middle2 = dot u xv + dot u xv using middle2-def by simp

also have ... = 2 ∗ dot u xv using mult-2 by simp

finally have bterm: middle2 = b ∗ x

using lemDotScaleRight mult-assoc mult-commute b-def xv by
auto

have vxv: (dot v xv) = (x ∗ dot v v)using xv lemDotScaleRight by
blast

have dot xv xv = x ∗ (dot v xv) using lemDotScaleLeft xv by blast

also have ... = (sqr x)∗(dot v v) using vxv mult-assoc by simp

finally have aterm: dot xv xv = a∗(sqr x) using mult-commute

a-def by simp

have uw: dot u w = dot u u + dot u xv using lemDotSumRight

w-def xv by blast

have vw: dot xv w = dot xv u + dot xv xv using lemDotSumRight

w-def xv by blast

have dot w w = dot u w + dot xv w using lemDotSumLeft w-def

xv by blast

also have ... = (dot u u + dot u xv) + (dot xv u + dot xv xv)
using uw vw by simp

also have ... = (dot u u) + (dot u xv + dot xv u) + dot xv xv

using add-assoc by force

also have ... = (dot u u) + middle2 + dot xv xv

using middle2-def by simp

also have ... = c + b∗x + a∗(sqr x) using c-def bterm aterm by
force

finally have dot w w = a∗(sqr x) + b∗x + c using add-commute

add-assoc by auto

hence a∗sqr(x) + b∗x + c ≥ 0 using ww by simp

}
hence quadratic: ∀ x. a∗sqr(x) + b∗x + c ≥ 0 by auto

{ assume vnot0 : v 6= origin

hence a > 0 using a-def lemNullImpliesOrigin[of v]
by (metis local.AxEField local.not-less local.not-less-iff-gr-or-eq

local.not-sum-squares-lt-zero dot.simps)
hence (sqr b) ≤ 4∗a∗c using lemQuadraticGEZero quadratic by

auto

hence (sqr b) ≤ 4∗(dot v v)∗(dot u u) using a-def c-def by auto

hence sqrle: (sqr (abs b)) ≤ 4∗(dot v v)∗(dot u u) by auto

define nv where nv: nv = norm v

define nu where nu: nu = norm u
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have nvpos: nv ≥ 0 using nv lemNormNonNegative by auto

have nupos: nu ≥ 0 using nu lemNormNonNegative by auto

hence nvnu: 2∗nv∗nu ≥ 0 using nvpos by auto

have n2v: norm2 v = sqr nv using AxEField nv nvpos lemNorm-

SqrIsNorm2 by presburger

have n2u: norm2 u = sqr nu using AxEField nu nupos lemNorm-

SqrIsNorm2 by presburger

have 4∗(dot v v)∗(dot u u) = 4∗(norm2 v)∗(norm2 u) by auto

also have ... = (sqr 2 )∗(sqr nv)∗(sqr nu) using n2u n2v by auto

also have ... = (sqr (2∗ nv))∗(sqr nu) using lemSqrMult[of 2 nv]
by auto

also have ... = sqr (2∗nv∗nu) using lemSqrMult[of 2∗nv nu] by
auto

finally have (sqr (abs b)) ≤ sqr (2∗nv∗nu) using sqrle by auto

hence bnvnu: abs b ≤ 2∗nv∗nu

using nu nv nvnu lemSqrOrdered[of 2∗nv∗nu]
by auto

have pos2 : 0 < 2 by simp

have b = 2∗dot u v using b-def by auto

hence abs b = 2∗abs(dot u v) using abs-mult by auto

hence 2∗abs(dot u v) ≤ 2∗(nv∗nu) using bnvnu mult-assoc by
auto

hence 2∗abs(dot u v) ≤ 2∗(nu∗nv) using mult-commute by simp

hence abs(dot u v) ≤ (nu∗nv) using mult-le-cancel-left[of 2 ] pos2

by blast

hence ?thesis using nu nv by auto

}
hence (v 6= origin) −→ ?thesis by auto

thus ?thesis using vorigin by auto

qed

lemma lemCauchySchwarzSqr4 :
shows sqr(dot u v) ≤ (norm2 u)∗(norm2 v)

proof −
have 1 : abs(dot u v) ≥ 0 by simp

have sqr(dot u v) = sqr(abs(dot u v)) by simp

also have . . . ≤ sqr((norm u)∗(norm v)) using 1 lemCauchySchwarz4

lemSqrMono by blast

also have . . . = sqr(norm u) ∗ sqr(norm v) using lemSqrMult by
auto

also have . . . = norm2 u ∗ norm2 v

using lemSquareOfSqrt lemSqrt AxEField lemNormSqrIsNorm2

by force
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finally show ?thesis by simp

qed

lemma lemCauchySchwarz:
shows abs (sdot u v) ≤ (sNorm u)∗(sNorm v)

proof −
have vorigin: v = sOrigin −→ abs (sdot u v) ≤ (sNorm u)∗(sNorm

v)
proof −

{ assume v = sOrigin

hence abs (sdot u v) = 0 by simp

also have . . . ≤ (sNorm u)∗(sNorm v) using lemSNormNonNeg

by simp

finally have abs (sdot u v) ≤ (sNorm u)∗(sNorm v) by auto

}
thus ?thesis by blast

qed

define a where a = sdot v v

define b where b = 2 ∗ sdot u v

define c where c = sdot u u

{ fix x :: ′a

define w where w = (u ⊕s (x ⊗s v))
have ww: (sdot w w) ≥ 0 by simp

define xv where xv: xv = (x ⊗s v)
define middle2 where middle2 = sdot u xv + sdot xv u

have sdot xv u = sdot u xv using lemSDotCommute by blast

hence middle2 = sdot u xv + sdot u xv using middle2-def by
simp

also have ... = 2 ∗ sdot u xv using mult-2 by simp

finally have bterm: middle2 = b ∗ x

using lemSDotScaleRight mult-assoc mult-commute b-def xv by
auto

have vxv: (sdot v xv) = (x ∗ sdot v v)using xv lemSDotScaleRight

by blast

have sdot xv xv = x ∗ (sdot v xv) using lemSDotScaleLeft xv by
blast

also have ... = (sqr x)∗(sdot v v) using vxv mult-assoc by simp

finally have aterm: sdot xv xv = a∗(sqr x) using mult-commute

a-def by simp
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have uw: sdot u w = sdot u u + sdot u xv using lemSDotSumRight

w-def xv by blast

have vw: sdot xv w = sdot xv u + sdot xv xv using lemSDotSum-

Right w-def xv by blast

have sdot w w = sdot u w + sdot xv w using lemSDotSumLeft

w-def xv by blast

also have ... = (sdot u u + sdot u xv) + (sdot xv u + sdot xv xv)
using uw vw by simp

also have ... = (sdot u u) + (sdot u xv + sdot xv u) + sdot xv xv

using add-assoc by force

also have ... = (sdot u u) + middle2 + sdot xv xv

using middle2-def by simp

also have ... = c + b∗x + a∗(sqr x) using c-def bterm aterm by
force

finally have sdot w w = a∗(sqr x) + b∗x + c using add-commute

add-assoc by auto

hence a∗sqr(x) + b∗x + c ≥ 0 using ww by simp

}
hence quadratic: ∀ x. a∗sqr(x) + b∗x + c ≥ 0 by auto

{ assume vnot0 : v 6= sOrigin

hence a > 0 using a-def lemSpatialNullImpliesSpatialOrigin[of v]
by (metis local.AxEField local.not-less local.not-less-iff-gr-or-eq

local.not-sum-squares-lt-zero sdot.simps)
hence (sqr b) ≤ 4∗a∗c using lemQuadraticGEZero quadratic by

auto

hence (sqr b) ≤ 4∗(sdot v v)∗(sdot u u) using a-def c-def by auto

hence sqrle: (sqr (abs b)) ≤ 4∗(sdot v v)∗(sdot u u) by auto

define nv where nv: nv = sNorm v

define nu where nu: nu = sNorm u

have nvpos: nv ≥ 0 using nv lemSNormNonNeg by auto

have nupos: nu ≥ 0 using nu lemSNormNonNeg by auto

hence nvnu: 2∗nv∗nu ≥ 0 using nvpos by auto

have n2v: sNorm2 v = sqr nv using AxEField lemSquareOfSqrt

nv nvpos by auto

have n2u: sNorm2 u = sqr nu using AxEField lemSquareOfSqrt

nu nvpos by auto

have 4∗(sdot v v)∗(sdot u u) = 4∗(sNorm2 v)∗(sNorm2 u) by
auto

also have ... = (sqr 2 )∗(sqr nv)∗(sqr nu) using n2u n2v by auto

also have ... = (sqr (2∗ nv))∗(sqr nu) using lemSqrMult[of 2 nv]
by auto

also have ... = sqr (2∗nv∗nu) using lemSqrMult[of 2∗nv nu] by
auto
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finally have (sqr (abs b)) ≤ sqr (2∗nv∗nu) using sqrle by auto

hence bnvnu: abs b ≤ 2∗nv∗nu

using nu nv nvnu lemSqrOrdered[of 2∗nv∗nu]
by auto

have pos2 : 0 < 2 by simp

have b = 2∗sdot u v using b-def by auto

hence abs b = 2∗abs(sdot u v) using abs-mult by auto

hence 2∗abs(sdot u v) ≤ 2∗(nv∗nu) using bnvnu mult-assoc by
auto

hence 2∗abs(sdot u v) ≤ 2∗(nu∗nv) using mult-commute by simp

hence abs(sdot u v) ≤ (nu∗nv) using mult-le-cancel-left[of 2 ] pos2

by blast

hence ?thesis using nu nv by auto

}
hence (v 6= sOrigin) −→ ?thesis by auto

thus ?thesis using vorigin by auto

qed

lemma lemCauchySchwarzSqr :
shows sqr(sdot u v) ≤ (sNorm2 u)∗(sNorm2 v)

proof −
have 1 : abs(sdot u v) ≥ 0 by simp

have sqr(sdot u v) = sqr(abs(sdot u v)) by simp

also have . . . ≤ sqr((sNorm u)∗(sNorm v)) using 1 lemCauchySchwarz

lemSqrMono by blast

also have . . . = sqr(sNorm u) ∗ sqr(sNorm v) using lemSqrMult

by auto

also have . . . = sNorm2 u ∗ sNorm2 v using lemSquareOfSqrt

lemSqrt AxEField by auto

finally show ?thesis by simp

qed

lemma lemCauchySchwarzEquality:
assumes sqr (sdot u v) = (sNorm2 u)∗(sNorm2 v)

and u 6= sOrigin ∧ v 6= sOrigin

shows ∃ a 6= 0 . u = (a ⊗s v)
proof −

define a where a: a = (sdot u v)/(sNorm2 v)
have uvnz: sNorm2 u 6= 0 ∧ sNorm2 v 6= 0 using assms lemSpa-

tialNullImpliesSpatialOrigin by blast

hence sqr (sdot u v) 6= 0 using assms by auto
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hence anz: a 6= 0 using assms uvnz a by auto

define upv where upv: upv = (a ⊗s v)
hence sdotupv: sdot upv v = sdot u v

proof −
have sdot upv v = a ∗ sNorm2 v using upv lemSDotScaleLeft by

auto

thus ?thesis using a uvnz by auto

qed
have sn2upv: sNorm2 upv = (sqr a)∗sNorm2 v using upv lem-

SNorm2OfScaled by auto

define uov where uov: uov = (u ⊖s upv)
have usum: u = (upv ⊕s uov) using uov add-diff-eq by auto

hence sdotuov: sdot uov v = 0 using lemSDotSumLeft sdotupv by
force

hence pdoto: sdot uov upv = 0 using upv lemSDotScaleRight lo-

cal.mult-not-zero by metis

have sqr (sdot u v) = sqr (sdot (a ⊗s v) v) using sdotupv upv by
auto

also have . . . = (sqr a) ∗ sqr (sNorm2 v)
using lemSDotScaleLeft[of a v v] lemSqrMult[of a] by auto

finally have lhs: sqr (sdot u v) = (sqr a) ∗ sqr (sNorm2 v) by auto

have sNorm2 u = sNorm2 upv + 2∗(upv ⊙s uov) + sNorm2 uov

using lemSNorm2OfSum usum by auto

also have . . . = (sqr a)∗sNorm2 v + sNorm2 uov using sn2upv

pdoto lemSDotCommute by auto

finally have rhs: (sNorm2 u)∗(sNorm2 v) = (sqr a)∗sqr(sNorm2 v)
+ (sNorm2 uov)∗(sNorm2 v)

using distrib-right[of (sqr a)∗sNorm2 v sNorm2 uov sNorm2 v]
mult-assoc by auto

hence (sqr a) ∗ sqr (sNorm2 v) = (sqr a)∗sqr(sNorm2 v) + (sNorm2

uov)∗(sNorm2 v)
using lhs assms(1 ) by auto

hence (sNorm2 uov)∗(sNorm2 v) = 0 using add-diff-eq by auto

hence uov = sOrigin using uvnz lemSpatialNullImpliesSpatialOrigin

by auto

hence a 6= 0 ∧ u = (a ⊗s v) using anz usum upv by auto

thus ?thesis by auto

qed
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lemma lemCauchySchwarzEqualityInUnitSphere:
assumes (sNorm2 u ≤ 1 ) ∧ (sNorm2 v ≤ 1 )

and sdot u v = 1

shows u = v

proof −
have uvnz: u 6= sOrigin ∧ v 6= sOrigin using assms(2 ) by auto

{ assume ass: (sNorm2 u < 1 ) ∨ (sNorm2 v < 1 )
have (sNorm2 u > 0 ) ∧ (sNorm2 v > 0 )

using uvnz lemSpatialNullImpliesSpatialOrigin add-less-zeroD

less-linear not-square-less-zero

by blast

hence (sNorm2 u)∗(sNorm2 v) < 1

by (metis ass assms(1 ) local.dual-order .not-eq-order-implies-strict

local.leD

local.less-imp-le local.mult-le-one local.mult-less-cancel-left1

local.mult-less-cancel-right1 )
hence False using lemCauchySchwarzSqr assms(2 )

by (metis local.dual-order .strict-iff-not local.mult-cancel-right1 )
}
hence norms1 : sNorm2 u = 1 ∧ sNorm2 v = 1 using assms(1 ) by

force

hence sqr (sdot u v) = (sNorm2 u)∗(sNorm2 v) using assms(2 ) by
auto

hence ∃ a 6= 0 . u = (a ⊗s v) using lemCauchySchwarzEquality

uvnz by blast

then obtain a where a: a 6= 0 ∧ u = (a ⊗s v) by auto

hence sdot u v = a ∗ sNorm2 v using lemSDotScaleLeft by auto

hence a = 1 using assms(2 ) norms1 by auto

thus ?thesis using a by auto

qed

lemma lemCausalOrthogmToLightlikeImpliesParallel:
assumes causal p

and lightlike q

and orthogm p q

shows parallel p q

proof −
have tpnz: tval p 6= 0

proof −
have p 6= origin using assms(1 ) by auto

have case1 : lightlike p −→ ?thesis

by (metis local.diff-add-cancel local.lemNorm2Decomposition

local.lemNullImpliesOrigin local.lemZeroRoot)
have case2 : timelike p −→ ?thesis

by (metis local.add-less-zeroD local.diff-gt-0-iff-gt

local.lemZeroRoot local.not-square-less-zero)
thus ?thesis using assms(1 ) case1 by blast

qed
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have tqnz: tval q 6= 0 using assms(2 )
by (metis local.diff-add-cancel local.lemNorm2Decomposition

local.lemNullImpliesOrigin local.lemZeroRoot)

define phat where phat: phat = ((1/tval p)⊗p)
define qhat where qhat: qhat = ((1/tval q)⊗q)

have phatcausal: causal phat

proof −
have n2 : mNorm2 phat = (sqr (1/tval p))∗mNorm2 p using phat

lemMNorm2OfScaled by blast

have lightlike p −→ lightlike phat using phat n2 tpnz by auto

moreover have timelike p −→ timelike phat using phat n2 tpnz

by (simp add: local.lemSquaresPositive)
ultimately show ?thesis using assms(1 ) by blast

qed

have qhatlightlike: lightlike qhat

proof −
have mNorm2 qhat = (sqr (1/tval q))∗mNorm2 q using qhat

lemMNorm2OfScaled by blast

thus ?thesis using assms(2 ) tqnz qhat local.divide-eq-0-iff by force

qed

have hatsorthog: orthogm phat qhat

proof −
have (phat ⊙m qhat) = (1/tval p)∗(p ⊙m qhat)

using phat lemMDotScaleLeft[of 1/tval p p qhat] by auto

thus ?thesis

using qhat lemMDotScaleRight[of p 1/tval q q] tpnz tqnz assms(3 )
by auto

qed

define ps where ps: ps = sComponent phat

define qs where qs: qs = sComponent qhat

have p: phat = stPoint 1 ps using phat ps tpnz by auto

have q: qhat = stPoint 1 qs using qhat qs tqnz by auto

have sNorm2 ps ≤ 1 using p phatcausal by auto

moreover have sNorm2 qs = 1 using q qhatlightlike by auto

moreover have sdot ps qs = 1 using hatsorthog p q by auto

ultimately have ps = qs

using lemCauchySchwarzEqualityInUnitSphere by auto

hence phat = qhat using p q by auto

hence ((1/tval p)⊗p) = ((1/tval q)⊗q) using phat qhat by auto
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hence p = (((tval p)/(tval q)) ⊗ q)
using tpnz tqnz

lemScaleAssoc[of tval p 1/tval p p]
lemScaleAssoc[of tval p 1/tval q q]

by auto

thus ?thesis using tpnz tqnz using local.divide-eq-0-iff

by blast

qed

end

end

18 Matrices

This theory defines 4× 4 matrices.

theory Matrices

imports Vectors

begin

record ′a Matrix =
trow :: ′a Point

xrow :: ′a Point

yrow :: ′a Point

zrow :: ′a Point

class Matrices = Vectors

begin

fun applyMatrix :: ′a Matrix ⇒ ′a Point ⇒ ′a Point

where applyMatrix m p = (| tval = dot (trow m) p, xval = dot (xrow

m) p,
yval = dot (yrow m) p, zval = dot (zrow m) p |)

fun tcol :: ′a Matrix ⇒ ′a Point

where tcol m = (| tval = tval (trow m), xval = tval (xrow m),
yval = tval (yrow m), zval = tval (zrow m) |)

fun xcol :: ′a Matrix ⇒ ′a Point

where xcol m = (| tval = xval (trow m), xval = xval (xrow m),
yval = xval (yrow m), zval = xval (zrow m) |)

fun ycol :: ′a Matrix ⇒ ′a Point

where ycol m = (| tval = yval (trow m), xval = yval (xrow m),
yval = yval (yrow m), zval = yval (zrow m) |)
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fun zcol :: ′a Matrix ⇒ ′a Point

where zcol m = (| tval = zval (trow m), xval = zval (xrow m),
yval = zval (yrow m), zval = zval (zrow m) |)

fun transpose :: ′a Matrix ⇒ ′a Matrix

where transpose m = (| trow = (tcol m), xrow = (xcol m),
yrow = (ycol m), zrow = (zcol m) |)

fun mprod :: ′a Matrix ⇒ ′a Matrix ⇒ ′a Matrix

where mprod m1 m2 =
transpose (| trow = applyMatrix m1 (tcol m2 ), xrow =

applyMatrix m1 (xcol m2 ),
yrow = applyMatrix m1 (ycol m2 ), zrow =

applyMatrix m1 (zcol m2 ) |)

end

end

19 LinearMaps

This theory defines linear maps and establishes their main prop-
erties.

theory LinearMaps

imports Functions CauchySchwarz Matrices

begin

class LinearMaps = Functions + CauchySchwarz + Matrices

begin

abbreviation linear :: ( ′a Point ⇒ ′a Point) ⇒ bool where
linear L ≡ (L origin = origin)

∧ (∀ a p . L (a ⊗ p) = (a ⊗ (L p)))
∧ (∀ p q . L (p ⊕ q) = ((L p) ⊕ (L q)))
∧ (∀ p q . L (p ⊖ q) = ((L p) ⊖ (L q)))
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lemma lemLinearProps:
assumes linear L

shows (L origin = origin) ∧ (L (a ⊗ p) = (a ⊗ (L p)))
∧ (L (p ⊕ q) = ((L p) ⊕ (L q)))
∧ (L (p ⊖ q) = ((L p) ⊖ (L q)))

using assms by simp

lemma lemMatrixApplicationIsLinear : linear (applyMatrix m)
using lemDotScaleRight lemDotSumRight lemDotDiffRight

by fastforce

lemma lemLinearIsMatrixApplication:
assumes linear L

shows ∃ m . L = (applyMatrix m)
proof −

define Lt where Lt = L tUnit

define Lx where Lx = L xUnit

define Ly where Ly = L yUnit

define Lz where Lz = L zUnit

define M where M = transpose (| trow = Lt, xrow = Lx, yrow =
Ly, zrow = Lz |)

have trowM : trow M = (| tval = (tval Lt), xval = (tval Lx),
yval = (tval Ly), zval = (tval Lz) |)

using M-def by auto

have xrowM : xrow M = (| tval = (xval Lt), xval = (xval Lx),
yval = (xval Ly), zval = (xval Lz) |)

using M-def by auto

have yrowM : yrow M = (| tval = (yval Lt), xval = (yval Lx),
yval = (yval Ly), zval = (yval Lz) |)

using M-def by auto

have zrowM : zrow M = (| tval = (zval Lt), xval = (zval Lx),
yval = (zval Ly), zval = (zval Lz) |)

using M-def by auto

{ fix u :: ′a Point

define tvu where tvu: tvu = ((tval u)⊗tUnit)
define xvu where xvu: xvu = ((xval u)⊗xUnit)
define yvu where yvu: yvu = ((yval u)⊗yUnit)
define zvu where zvu: zvu = ((zval u)⊗zUnit)

have u: u = (tvu ⊕ (xvu ⊕ (yvu ⊕ zvu)))
using tvu xvu yvu zvu lemPointDecomposition[of u] by simp
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have Mu: applyMatrix M u = (| tval = dot (trow M ) u,
xval = dot (xrow M ) u,
yval = dot (yrow M ) u,
zval = dot (zrow M ) u |) by simp

have tvalMu: tval (applyMatrix M u) =
(tval Lt)∗(tval u) + (tval Lx)∗(xval u) + (tval Ly)∗(yval u) +

(tval Lz)∗(zval u)
using Mu trowM by force

have xvalMu: xval (applyMatrix M u) =
(xval Lt)∗(tval u) + (xval Lx)∗(xval u) + (xval Ly)∗(yval u) +

(xval Lz)∗(zval u)
using Mu xrowM by force

have yvalMu: yval (applyMatrix M u) =
(yval Lt)∗(tval u) + (yval Lx)∗(xval u) + (yval Ly)∗(yval u) +

(yval Lz)∗(zval u)
using Mu yrowM by force

have zvalMu: zval (applyMatrix M u) =
(zval Lt)∗(tval u) + (zval Lx)∗(xval u) + (zval Ly)∗(yval u) +

(zval Lz)∗(zval u)
using Mu zrowM by force

hence Lu: L u = ((L tvu) ⊕ ((L xvu) ⊕ ((L yvu) ⊕ (L zvu))))
using assms u

lemLinearProps[of L 0 tvu xvu ⊕ (yvu ⊕ zvu)]
lemLinearProps[of L 0 xvu yvu ⊕ zvu]

by auto

have Ltvu: L tvu = ((tval u)⊗Lt)
using tvu Lt-def assms lemLinearProps[of L tval u tUnit] by auto

have Lxvu: L xvu = ((xval u)⊗Lx)
using xvu Lx-def assms lemLinearProps[of L xval u xUnit] by

auto

have Lyvu: L yvu = ((yval u)⊗Ly)
using yvu Ly-def assms lemLinearProps[of L yval u yUnit] by

auto

have Lzvu: L zvu = ((zval u)⊗Lz)
using zvu Lz-def assms lemLinearProps[of L zval u zUnit] by

auto

hence Lu ′: L u = (((tval u)⊗Lt) ⊕ (((xval u)⊗Lx)
⊕ (((yval u)⊗Ly) ⊕ ((zval u)⊗Lz))))

using Lu Ltvu Lxvu Lyvu Lzvu by force

hence L u = applyMatrix M u

using Lu ′ add-assoc tvalMu xvalMu yvalMu zvalMu mult-commute

by simp

}
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hence ∀ u. L u = applyMatrix M u by auto

thus ?thesis by force

qed

lemma lemLinearIffMatrix: linear L ←→ (∃ M . L = applyMatrix M )
using lemMatrixApplicationIsLinear lemLinearIsMatrixApplication

by auto

lemma lemIdIsLinear : linear id

by simp

lemma lemLinearIsBounded:
assumes linear L

shows bounded L

proof −
obtain M where M : L = applyMatrix M using assms lemLinear-

IffMatrix by auto

define tr where tr = trow M

define xr where xr = xrow M

define yr where yr = yrow M

define zr where zr = zrow M

define bnd where bnd = (sqr(norm tr)+sqr(norm xr)+sqr(norm

yr)+sqr(norm zr))

define n

where n: n = (| tval=norm tr , xval=norm xr , yval=norm yr ,
zval=norm zr |)

hence bnd = dot n n using bnd-def by auto

hence norm2n: bnd = norm2 n by simp

hence bndnonneg: bnd ≥ 0 by simp

{ assume bndpos: bnd > 0

{ fix p :: ′a Point

define q where q = applyMatrix M p

hence q = (| tval=dot tr p, xval=dot xr p,yval=dot yr p, zval=dot

zr p |)
using tr-def xr-def yr-def zr-def by auto

hence 1 : dot q q = sqr (dot tr p) + sqr (dot xr p)
+ sqr (dot yr p) + sqr(dot zr p)

by auto

also have . . . ≤ sqr (dot tr p) + sqr (dot xr p) + sqr (dot yr p)
+ (sqr(norm zr)∗sqr(norm p))
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using lemCauchySchwarzSqr4 [of zr p] lemNormSqrIsNorm2

by auto

also have . . . ≤ sqr (dot tr p) + sqr (dot xr p) + (sqr(norm

yr)∗sqr(norm p))
+ (sqr(norm zr)∗sqr(norm p))

using lemCauchySchwarzSqr4 [of yr p] lemNormSqrIsNorm2

by auto

also have . . . ≤ sqr (dot tr p) + (sqr(norm xr)∗sqr(norm p)) +
(sqr(norm yr)∗sqr(norm p))

+ (sqr(norm zr)∗sqr(norm p))
using lemCauchySchwarzSqr4 [of xr p] lemNormSqrIsNorm2

by auto

also have . . . ≤ (sqr(norm tr)∗sqr(norm p)) + (sqr(norm

xr)∗sqr(norm p)) + (sqr(norm yr)∗sqr(norm p))
+ (sqr(norm zr)∗sqr(norm p))

using lemCauchySchwarzSqr4 [of tr p] lemNormSqrIsNorm2

by auto

finally have dot q q ≤ (sqr(norm tr)∗sqr(norm p)) + (sqr(norm

xr)∗sqr(norm p)) + (sqr(norm yr)∗sqr(norm p))
+ (sqr(norm zr)∗sqr(norm p)) by auto

hence dot q q ≤ (sqr(norm tr)+sqr(norm xr)+sqr(norm yr)+sqr(norm

zr))∗sqr(norm p)
using distrib-right by auto

hence norm2 q ≤ bnd ∗ sqr(norm p) using bnd-def by simp

hence norm2 (applyMatrix M p) ≤ bnd ∗ norm2 p

using q-def lemNormSqrIsNorm2 by simp

}
hence ∀ p. norm2 (applyMatrix M p) ≤ bnd ∗ norm2 p by auto

hence ∃ bnd > 0 . ∀ p. norm2 (applyMatrix M p) ≤ bnd ∗ norm2

p

using bndpos by auto

}
hence case1 : (bnd > 0 ) −→ (bounded (applyMatrix M )) by simp

{ assume bnd0 : bnd = 0

hence n = origin using lemNullImpliesOrigin norm2n by auto

hence (norm tr = 0 ) ∧ (norm xr = 0 ) ∧ (norm yr = 0 ) ∧ (norm

zr = 0 )
using n by simp

hence allzero: (tr = origin)∧(xr=origin)∧(yr=origin)∧(zr=origin)
using lemZeroNorm by auto

define one where one = (1 :: ′a)
hence onepos: one > 0 by simp

{ fix p :: ′a Point

have applyMatrix M p = origin

using allzero tr-def xr-def yr-def zr-def by auto

hence norm2 (applyMatrix M p) = 0 by auto

hence norm2 (applyMatrix M p) ≤ one ∗ (norm2 p) using onepos
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by auto

}
hence ∀ p . norm2 (applyMatrix M p) ≤ one ∗ (norm2 p) by auto

hence ∃ one > 0 . ∀ p . norm2 (applyMatrix M p) ≤ one ∗ (norm2

p)
using onepos by auto

hence bounded (applyMatrix M ) by simp

}
hence case2 : (bnd = 0 ) −→ (bounded (applyMatrix M )) by simp

thus ?thesis using case1 case2 bndnonneg M by auto

qed

lemma lemLinearIsCts:
assumes linear L

shows cts (asFunc L) x

proof −
{ fix x ′

assume x ′: x ′ = L x

have bounded L using assms(1 ) lemLinearIsBounded[of L] by auto

then obtain bnd where bnd: (bnd > 0 ) ∧ (∀ p. norm2 (L p) ≤
bnd∗(norm2 p))

by auto

then obtain bb where bb: (bb > 0 ) ∧ (sqr bb) > bnd

using bnd lemSquareExistsAbove[of bnd] by auto

{ fix p

have p1 : norm2 (L p) ≤ bnd∗(norm2 p) using bnd by simp

have bnd∗(norm2 p) ≤ (sqr bb)∗(norm2 p) using bb mult-mono

by auto

hence norm2 (L p) ≤ (sqr bb)∗(norm2 p) using p1 by simp

}
hence bbbnd: ∀ p . norm2 (L p) ≤ (sqr bb)∗(norm2 p) by auto

{ fix e

assume epos: e > 0

define d where d: d = e/bb

hence dpos: d > 0 using epos bb by simp

have (d = e/bb) ∧ (bb 6= 0 ) using d bb by auto

hence esqr : (sqr d)∗(sqr bb) = sqr e by simp

{ fix p ′

assume p ′: p ′ ∈ applyToSet (asFunc L) (ball x d)
then obtain p where p: (p ∈ ball x d) ∧ (p ′ = L p) by auto

hence p-near-x: p within d of x using lemSep2Symmetry[of p
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x] by force

have norm2 (L (p⊖x)) ≤ (sqr bb) ∗ norm2 (p⊖x) using bbbnd

by blast

hence 1 : norm2 (L (p⊖x)) ≤ (sqr bb) ∗ (sep2 p x) by auto

have (sqr bb)∗(sep2 p x) < (sqr bb)∗(sqr d)
using lemMultPosLT bb p-near-x by auto

hence 2 : norm2 (L (p⊖x)) < (sqr bb) ∗ (sqr d) using 1 by
simp

have (L (p⊖x)) = ((L p) ⊖ (L x)) using assms(1 ) by auto

hence norm2 (L (p⊖x)) = sep2 p ′ x ′ using p x ′ by force

hence sep2 p ′ x ′ < (sqr bb) ∗ (sqr d) using 2 by simp

hence sep2 p ′ x ′ < sqr e using d bb by auto

hence p ′ ∈ ball x ′ e using lemSep2Symmetry by auto

}
hence applyToSet (asFunc L) (ball x d) ⊆ ball x ′ e by auto

hence ∃ d>0 . applyToSet (asFunc L) (ball x d) ⊆ ball x ′ e

using dpos by auto

}
hence ∀ e>0 . ∃ d>0 . applyToSet (asFunc L) (ball x d) ⊆ ball x ′ e

by auto

}
thus ?thesis by auto

qed

lemma lemLinOfLinIsLin:
assumes (linear A) ∧ (linear B)
shows linear (B ◦ A)
proof −

have 1 : (B ◦ A) origin = origin using assms by auto

have 2 : ∀ a p . (B ◦ A)(a ⊗ p) = (a ⊗ ((B ◦ A) p)) using assms

by auto

have 3 : ∀ p q . (B ◦ A) (p ⊕ q) = (((B ◦ A) p) ⊕ ((B ◦ A) q))
using assms by auto

have 4 : ∀ p q . (B ◦ A) (p ⊖ q) = (((B ◦ A) p) ⊖ ((B ◦ A) q))
using assms by auto

thus ?thesis using 1 2 3 by force

qed

lemma lemInverseLinear :
assumes linear A

and invertible A

shows ∃A ′ . (linear A ′) ∧ (∀ p q. A p = q ←→ A ′ q = p)
proof −

obtain L where L: (∀ p q. A p = q ←→ L q = p)
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using assms(2 ) by metis

have 1 : L origin = origin using assms L by auto

{ fix p ′ q ′ a

obtain p where p: (A p = p ′) ∧ (∀ z. A z = p ′ −→ z = p) using
assms(2 ) by blast

obtain q where q: (A q = q ′) ∧ (∀ z. A z = q ′ −→ z = q) using
assms(2 ) by blast

have L (a ⊗ p ′) = L ( a ⊗ (A p) ) using p by auto

also have ... = L ( A ( a ⊗ p ) ) using assms(1 ) by auto

also have ... = (a ⊗ p) using L by blast

finally have 2 : L (a ⊗ p ′) = (a ⊗ (L p ′)) using p L by auto

have L (p ′ ⊕ q ′) = L ((A p) ⊕ (A q)) using p q by auto

also have ... = L( A (p ⊕ q) ) using assms(1 ) by auto

also have ... = (p ⊕ q) using p q L by auto

finally have 3 : L (p ′ ⊕ q ′) = ( (L p ′) ⊕ (L q ′) ) using p q L by
auto

have L (p ′ ⊖ q ′) = L ((A p) ⊖ (A q)) using p q by auto

also have ... = L( A (p ⊖ q) ) using assms(1 ) by auto

also have ... = (p ⊖ q) using p q L by auto

finally have 4 : L (p ′ ⊖ q ′) = ( (L p ′) ⊖ (L q ′) ) using p q L by
auto

hence (L origin = origin) ∧
(L (a ⊗ p ′) = (a ⊗ (L p ′))) ∧
(L (p ′ ⊕ q ′) = ( (L p ′) ⊕ (L q ′) )) ∧
(L (p ′ ⊖ q ′) = ( (L p ′) ⊖ (L q ′) ))

using 1 2 3 by auto

}
hence linear L by auto

thus ?thesis using L by auto

qed

end

end
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20 Affine

This theory defines affine transformations and established their
key properties.

theory Affine

imports Translations LinearMaps

begin

class Affine = Translations + LinearMaps

begin

abbreviation affine :: ( ′a Point ⇒ ′a Point) ⇒ bool

where affine A ≡ ∃ L T . (linear L) ∧ (translation T ) ∧ (A = T ◦
L)

abbreviation affInvertible :: ( ′a Point ⇒ ′a Point) ⇒ bool

where affInvertible A ≡ affine A ∧ invertible A

abbreviation isLinearPart :: ( ′a Point ⇒ ′a Point) ⇒ ( ′a Point ⇒
′a Point) ⇒ bool

where isLinearPart A L ≡ (affine A) ∧ (linear L) ∧
(∃ T . (translation T ∧ A = T ◦ L))

abbreviation isTranslationPart :: ( ′a Point ⇒ ′a Point)⇒ ( ′a Point

⇒ ′a Point) ⇒ bool

where isTranslationPart A T ≡ (affine A) ∧ (translation T ) ∧
(∃ L. (linear L ∧ A = T ◦ L))

20.1 Affine approximation

A key concept in the proof is affine approximation. We will even-
tually assert that worldview transformation can be approximated
by invertible affine transformations.

abbreviation affineApprox :: ( ′a Point ⇒ ′a Point) ⇒
( ′a Point ⇒ ′a Point => bool) ⇒
′a Point ⇒ bool

where affineApprox A f x ≡ (isFunction f ) ∧
(affInvertible A) ∧ (diffApprox (asFunc A) f x)

fun applyAffineToLine :: ( ′a Point ⇒ ′a Point)
⇒ ′a Point set ⇒ ′a Point set ⇒ bool

where applyAffineToLine A l l ′←→ (affine A) ∧
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(∃ T L b d . ((linear L) ∧ (translation T ) ∧ (A = T ◦ L) ∧
(l = line b d) ∧ (l ′ = (line (A b) (L d)))))

abbreviation affConstantOn :: ( ′a Point ⇒ ′Point) ⇒ ′a Point ⇒
′a Point set ⇒ bool

where affConstantOn A x s ≡ (∃ ε>0 . ∀ y∈s. (y within ε of x) −→
((A y) = (A x)))

lemma lemTranslationPartIsUnique:
assumes isTranslationPart A T1

and isTranslationPart A T2

shows T1 = T2

proof −
obtain L1 where T1 : linear L1 ∧ A = T1 ◦ L1 using assms(1 )

by auto

obtain L2 where T2 : linear L2 ∧ A = T2 ◦ L2 using assms(2 )
by auto

obtain t1 where t1 : ∀ x. T1 x = (x ⊕ t1 ) using assms(1 ) by auto

obtain t2 where t2 : ∀ x. T2 x = (x ⊕ t2 ) using assms(2 ) by auto

have T1 origin = A origin using T1 assms(1 ) by auto

also have ... = T2 origin using T2 assms(2 ) by auto

finally have T1 origin = T2 origin by auto

hence t1 = t2 using t1 t2 by auto

hence ∀ x. (T1 x = T2 x) using t1 t2 by auto

thus ?thesis by auto

qed

lemma lemLinearPartIsUnique:
assumes isLinearPart A L1

and isLinearPart A L2

shows L1 = L2

proof −
obtain T1 where T1 : translation T1 ∧ A = T1 ◦ L1 using

assms(1 ) by auto

obtain T2 where T2 : translation T2 ∧ A = T2 ◦ L2 using
assms(2 ) by auto

have 1 : isTranslationPart A T1 using assms(1 ) T1 by auto

have 2 : isTranslationPart A T2 using assms(2 ) T2 by auto
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hence T1T2 : T1 = T2 using 1 2 lemTranslationPartIsUnique[of A

T1 T2 ] by auto

obtain t where t: ∀ x. T1 x = (x ⊕ t) using T1 by auto

define T where T = mkTranslation (origin ⊖ t)
hence 3 : T ◦ A = L1 using T1 t lemInverseTranslation by auto

have T ◦ A = L2 using T-def T2 t T1T2 lemInverseTranslation

by auto

thus ?thesis using 3 by auto

qed

lemma lemLinearImpliesAffine:
assumes linear L

shows affine L

proof −
have 1 : L = id ◦ L by fastforce

thus ?thesis using assms lemIdIsTranslation by blast

qed

lemma lemTranslationImpliesAffine:
assumes translation T

shows affine T

proof −
have T = T ◦ id by force

thus ?thesis using assms lemIdIsLinear by blast

qed

lemma lemAffineDiff :
assumes linear L

and ∃ T . ((translation T ) ∧ (A = T ◦ L))
shows ((A p) ⊖ (A q)) = L (p ⊖ q)

proof −
obtain T where T : (translation T ) ∧ (A = T ◦ L) using assms(2 )

by auto

thus ?thesis using assms(1 ) by auto

qed

lemma lemAffineImpliesTotalFunction:
assumes affine A

shows isTotalFunction (asFunc A)
by simp

lemma lemAffineEqualAtBase:
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assumes affineApprox A f x

shows ∀ y. (f x y) ←→ (y = A x)
proof −

have diff : diffApprox (asFunc A) f x using assms(1 ) by simp

{ fix y

assume y: f x y

hence f x y ∧ (asFunc A) x (A x) by auto

hence A x = y using diff lemApproxEqualAtBase[of f x asFunc A

y]
by auto

}
hence l2r : ∀ y . f x y −→ y = A x by auto

{ obtain y where y: f x y using diff by auto

hence y = A x using l2r by auto

hence f x (A x) using y by auto

}
thus ?thesis using l2r by blast

qed

lemma lemAffineOfPointOnLine:
assumes (linear L) ∧ (translation T ) ∧ (A = T ◦ L)

and x = (b ⊕ (a⊗d))
shows A x = ((A b) ⊕ (a ⊗ (L d)))

proof −
have (L x = ((L b) ⊕ (L (a ⊗ d)))) ∧ (L (a ⊗ d) = (a ⊗ (L d)))

using assms by blast

hence A x = T ((L b) ⊕ (a ⊗ (L d))) using assms(1 ) by auto

also have ... = ((T (L b)) ⊕ (a ⊗ (L d)))
using assms(1 ) lemTranslationSum[of T L b a ⊗ (L d)] by auto

finally show ?thesis using assms(1 ) by auto

qed

lemma lemAffineOfLineIsLine:
assumes isLine l

shows (applyAffineToLine A l l ′) ←→ (affine A ∧ l ′ = applyToSet

(asFunc A) l)
proof −

{ assume lhs: applyAffineToLine A l l ′

hence affA: affine A by fastforce

have ∃ T L b d . (linear L) ∧ (translation T ) ∧ (A = T ◦ L) ∧
(l = line b d) ∧ (l ′ = (line (A b) (L d))) using lhs by auto

then obtain T L b d where TL: (linear L) ∧ (translation T ) ∧
(A = T ◦ L) ∧

(l = line b d) ∧ (l ′ = (line (A b) (L d)))
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using lhs by blast

{ fix p ′

{ assume p ′ ∈ l ′

then obtain a where a: p ′ = ( (A b) ⊕ (a ⊗ (L d)) ) using
TL by auto

define p where p: p = (b ⊕ (a⊗d))
hence p ′ ∈ applyToSet (asFunc A) l using a TL lemAffineOf-

PointOnLine by auto

}
hence (p ′ ∈ l ′) −→ (p ′ ∈ applyToSet (asFunc A) l) by auto

}
hence l2r : l ′ ⊆ (applyToSet (asFunc A) l) by auto

{ fix p ′

{ assume p ′ ∈ applyToSet (asFunc A) l

then obtain p where p: p ∈ l ∧ p ′ = A p by auto

then obtain a where a: p = (b ⊕ (a⊗d)) using TL by auto

hence A p = ((A b) ⊕ (a ⊗ (L d))) using TL lemAffineOf-

PointOnLine by auto

hence p ′ ∈ l ′ using TL p by auto

}
hence (p ′ ∈ applyToSet (asFunc A) l) −→ (p ′ ∈ l ′) using l2r

by auto

}
hence (applyToSet (asFunc A) l) ⊆ l ′ by auto

hence affine A ∧ l ′ = applyToSet (asFunc A) l using affA l2r by
auto

}
hence rtp1 : (applyAffineToLine A l l ′) −→ (affine A ∧ l ′ = apply-

ToSet (asFunc A) l)
by blast

{ assume rhs: (affine A) ∧ (l ′ = applyToSet (asFunc A) l)

obtain b d where bd: l = line b d using assms(1 ) by auto

obtain T L where TL: (linear L) ∧ (translation T ) ∧ (A = T ◦
L)

using rhs by auto

{ fix p ′

assume p ′ ∈ l ′

then obtain p where p: (p ∈ l) ∧ (A p = p ′) using rhs by auto

then obtain a where a: p = (b ⊕ (a⊗d)) using bd by auto

hence A p = ((A b) ⊕ (a ⊗ (L d)))
using TL lemAffineOfPointOnLine by auto

hence p ′ ∈ line (A b) (L d) using p by auto

}
hence l2r : l ′ ⊆ line (A b) (L d) by force
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{ fix p ′

assume p ′ ∈ line (A b) (L d)
then obtain a where a: p ′ = ( (A b) ⊕ (a ⊗ (L d)) ) using

TL by auto

define p where p: p = (b ⊕ (a⊗d))
hence A p = ((A b) ⊕ (a ⊗ (L d)))

using TL lemAffineOfPointOnLine by auto

hence A p = p ′ using a by simp

hence p ′ ∈ applyToSet (asFunc A) l using p bd by auto

}
hence line (A b) (L d) = l ′ using rhs l2r by blast

hence applyAffineToLine A l l ′ using TL bd by auto

}
hence (affine A) ∧ (l ′ = applyToSet (asFunc A) l)

−→ (applyAffineToLine A l l ′)
by blast

thus ?thesis using rtp1 by blast

qed

lemma lemOnLineUnderAffine:
assumes (affine A) ∧ (onLine p l)

shows onLine (A p) (applyToSet (asFunc A) l)
proof −

define l ′ where l ′: l ′ = applyToSet (asFunc A) l

have lineL: isLine l using assms by auto

hence Tll ′: applyAffineToLine A l l ′

using lemAffineOfLineIsLine[of l A l ′] assms l ′

by blast

hence ∃ T ′ L b d . (linear L) ∧ (translation T ′) ∧ (A = T ′ ◦ L) ∧
(l = line b d) ∧ (l ′ = (line (A b) (L d))) by force

then obtain T ′ L b d

where TLbd: (linear L) ∧ (translation T ′) ∧ (A = T ′ ◦ L) ∧
(l = line b d) ∧ (l ′ = (line (A b) (L d))) by blast

then obtain a where a: p = (b ⊕ (a⊗d)) using assms by auto

hence A p = ((A b) ⊕ (a ⊗ (L d))) using lemAffineOfPointOnLine

TLbd by auto

thus ?thesis using l ′ TLbd by blast

qed

lemma lemLineJoiningUnderAffine:
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assumes affine A

shows applyToSet (asFunc A) (lineJoining p q) = lineJoining (A
p) (A q)
proof −

obtain T L where TL: translation T ∧ linear L ∧ A = T◦L using
assms(1 ) by auto

hence ((A q) ⊖ (A p)) = L (q⊖p) by auto

{ fix a

have (a⊗((A q) ⊖ (A p))) = L (a ⊗ (q⊖p))
using TL lemLinearProps[of L a q⊖p] by force

}
hence as: ∀ a. (a⊗((A q) ⊖ (A p))) = L (a ⊗ (q⊖p)) by auto

{ fix x ′

assume x ′ ∈ applyToSet (asFunc A) (lineJoining p q)
then obtain x where x: x ∈ (lineJoining p q) ∧ x ′ = A x by

force

then obtain a where a: x = (p ⊕ (a⊗(q⊖p))) by force

have expandL: L (p ⊕ (a⊗(q⊖p))) = ((L p) ⊕ (L (a⊗(q⊖p))))
using TL lemLinearProps[of L 0 p (a⊗(q⊖p))]
by fast

have x ′ = A (p ⊕ (a⊗(q⊖p))) using x a by fast

also have ... = (T (L (p ⊕ (a⊗(q⊖p))))) using TL by force

also have ... = T ((L p) ⊕ (L (a⊗(q⊖p)))) using expandL by
force

finally have x ′ = ((T (L p)) ⊕ (L (a⊗(q⊖p))))
using TL lemTranslationSum[of T L p L (a⊗(q⊖p))]
by auto

hence x ′ ∈ lineJoining (A p) (A q) using TL as by auto

}
hence l2r : applyToSet (asFunc A) (lineJoining p q) ⊆ lineJoining

(A p) (A q)
by force

{ fix x ′

assume x ′ ∈ lineJoining (A p) (A q)
hence ∃ a . x ′ = ((T (L p)) ⊕ (a⊗((A q)⊖(A p))))

using TL by auto

then obtain a where a: x ′ = ((T (L p)) ⊕ (a⊗((A q)⊖(A p))))
using TL by fast

hence x ′ = ((T (L p)) ⊕ (L (a⊗(q⊖p)))) using as by force

also have ... = T ( (L p) ⊕ (L (a⊗(q⊖p))))
using TL lemTranslationSum[of T L p L (a⊗(q⊖p))] by simp

also have ... = T ( L (p ⊕ (a⊗(q⊖p))) )
using TL lemLinearProps[of L 0 p a⊗(q⊖p)] by auto

finally have x ′ = A (p ⊕ (a⊗(q⊖p))) using TL by auto
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hence x ′ ∈ applyToSet (asFunc A) (lineJoining p q) by auto

}
thus ?thesis using l2r by auto

qed

lemma lemAffineIsCts:
assumes affine A

shows cts (asFunc A) x

proof −

have ∃ T L . (translation T )∧(linear L)∧(A = T ◦ L) using assms

by auto

then obtain T L where TL: (translation T )∧(linear L)∧(A = T ◦
L) by auto

define f where f : f = asFunc L

define g where g: g = asFunc T

have 1 : cts f x using f TL lemLinearIsCts[of L x] by auto

have 2 : ∀ y. (f x y) −→ (cts g y)
using f g TL lemTranslationIsCts[of T x] by auto

have cts (composeRel g f ) x using 1 2 lemCtsOfCtsIsCts[of f x g]
by simp

thus ?thesis using f g TL by auto

qed

lemma lemAffineContinuity:
assumes affine A

shows ∀ x. ∀ ε>0 . ∃ δ>0 . ∀ p. (p within δ of x) −→ ((A p) within

ε of (A x))
proof −

{ fix x

{ fix e

assume epos: e > 0

have (asFunc A) x (A x) ∧ (cts (asFunc A) x)
using assms lemAffineIsCts[of A x] by auto

hence u: (∀ ε>0 . ∃ δ>0 . (applyToSet (asFunc A) (ball x δ)) ⊆
ball (A x) ε)

by force

then obtain d where d: (d > 0 ) ∧
(applyToSet (asFunc A) (ball x d)) ⊆ ball (A

x) e

using epos by force

{ fix p
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assume p within d of x

hence (A p) within e of (A x) using d lemSep2Symmetry by
force

}
hence ∃ d>0 . ∀ p. (p within d of x) −→ ((A p) within e of (A

x))
using d by auto

}
hence ∀ e>0 . ∃ d>0 . ∀ p. (p within d of x) −→ ((A p) within e of

(A x))
by auto

}
thus ?thesis by auto

qed

lemma lemAffOfAffIsAff :
assumes (affine A) ∧ (affine B)

shows affine (B ◦ A)
proof −

obtain TA LA TB LB where props:
translation TA ∧ linear LA ∧ translation TB ∧ linear LB ∧

A = TA ◦ LA ∧ B = TB ◦ LB using assms by blast

then obtain ta tb where ts: (∀ p. TA p = (p ⊕ ta)) ∧ (∀ p. TB p

= (p ⊕ tb)) by auto

{ fix p

have (B ◦ A) p = ((LB ( (LA p) ⊕ ta )) ⊕ tb) using props ts by
force

also have ... = (((LB (LA p)) ⊕ (LB ta)) ⊕ tb) using props by
force

also have ... = (((LB◦LA) p) ⊕ ((LB ta)⊕tb)) using add-assoc

by force

finally have (B ◦ A) p = ((mkTranslation ((LB ta)⊕tb)) ◦ (LB◦LA))
p by force

}
hence BA: (B ◦ A) = (mkTranslation ((LB ta)⊕tb)) ◦ (LB◦LA) by

auto

define T where T : T = mkTranslation ((LB ta)⊕tb)
hence trans: translation T using lemMkTrans by blast

define L where L: L = (LB◦LA)
hence lin: linear L using lemLinOfLinIsLin[of LA LB] props by

auto

hence (translation T ) ∧ (linear L) ∧ ((B◦A) = (T◦L)) using T L

trans lin BA by auto

thus ?thesis by auto

qed
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lemma lemInverseAffine:
assumes affInvertible A

shows ∃A ′ . (affine A ′) ∧ (∀ p q . A p = q ←→ A ′ q = p)
proof −

obtain A ′ where A ′: (∀ p q. A p = q ←→ A ′ q = p)
using assms by metis

obtain T L where TL: translation T ∧ linear L ∧ (A = T ◦ L)
using assms(1 ) by auto

obtain T ′ where T ′: (translation T ′) ∧ (∀ p q . T p = q ←→ T ′

q = p)
using TL lemInverseTrans[of T ] by auto

{ fix p

{ fix q

assume Ap: A p = q

hence T (L p) = q using TL by auto

hence L p = T ′ q using T ′ by auto

hence L p = (T ′ ◦ A) p using Ap by auto

}
}
hence L: L = (T ′ ◦ A) by auto

{ fix q

obtain r where r : (T ′ r = q) using T ′ by auto

then obtain p where p: (A p = r) ∧ (∀ x. A x = r −→ x = p)
using A ′ by auto

hence 1 : L p = q using L r by auto

{ fix x

assume L x = q

hence T ′ (A x) = q using L by auto

hence A x = r using r T ′ lemTranslationInjective[of T ′] by
force

hence x = p using p A ′ by blast

} hence ∃ p . (L p = q) ∧ (∀ x. L x = q −→ x = p) using 1 by
auto

}
hence invL: invertible L by blast

then obtain L ′ where L ′: (linear L ′) ∧ (∀ p q . L p = q ←→ L ′ q

= p)
using TL lemInverseLinear [of L] by blast
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{ fix p q

have A ′ q = p ←→ T (L p) = q using A ′ TL by auto

also have ... ←→ T ′ q = L p using T ′ by auto

also have ... ←→ L p = T ′ q by auto

also have ... ←→ L ′ (T ′ q) = p using L ′ by auto

finally have A ′ q = p ←→ (L ′◦T ′) q = p by auto

}
hence A ′ = L ′ ◦ T ′ by auto

hence affine A ′ using lemAffOfAffIsAff [of T ′ L ′]
lemTranslationImpliesAffine[of T ′] T ′

lemLinearImpliesAffine[of L ′] L ′

by auto

thus ?thesis using A ′ by auto

qed

lemma lemAffineApproxDomainTranslation:
assumes translation T

and affineApprox A f x

and ∀ p q . T p = q ←→ T ′ q = p

shows affineApprox (A◦T ) (composeRel f (asFunc T )) (T ′ x)
proof −

define A0 where A0 : A0 = A ◦ T

define g where g: g = composeRel f (asFunc T )

have ToT ′: ∀ p . T (T ′ p) = p using assms(3 ) by force

have T ′oT : ∀ p . T ′ (T p) = p using assms(3 ) by force

obtain t where t: ∀ p . T p = (p ⊕ t) using assms(1 ) by force

hence mkT : T = mkTranslation t by force

{ fix p q

have T ′ p = q ←→ T q = p using assms(3 ) by auto

also have ... ←→ (q ⊕ t) = p using t by auto

also have ... ←→ q = (p ⊕ (origin ⊖ t)) by force

finally have T ′ p = q ←→ q = (p ⊕ (origin ⊖ t)) by force

hence T ′ p = q ←→ q = mkTranslation (origin ⊖ t) p by force

}
hence mkT ′: T ′ = mkTranslation (origin ⊖ t) by force

hence transT ′: translation T ′ using lemMkTrans by blast

have funcF : isFunction f using assms(2 ) by auto

hence rtp3a: isFunction g using g by auto

have affA: affine A using assms(2 ) by auto
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hence rtp3b: affine A0

using lemAffOfAffIsAff [of T A] lemTranslationImpliesAffine[of T ]
A0 affA assms(1 )

by blast

{ fix q

obtain p where p: (A p = q) ∧ (∀ x. A x = q −→ x = p) using
assms(2 ) by blast

define p0 where p0 : p0 = T ′ p

hence Tp0 : T p0 = p using assms(3 ) by blast

hence 1 : A0 p0 = q using A0 p by auto

{ fix x

assume A0 x = q

hence T x = p using A0 p by fastforce

hence x = p0 using Tp0 assms(1 ) lemTranslationInjective[of

T ] by force

}
hence ∀ x. A0 x = q −→ x = p0 by auto

hence ∃ p0 . (A0 p0 = q) ∧ (∀ x. A0 x = q −→ x = p0 ) using 1

by auto

}
hence rtp3c: invertible A0 by auto

have diffApprox (asFunc A) f x using assms(2 ) by auto

hence dAx: (definedAt f x) ∧
(∀ ε > 0 . (∃ δ > 0 . (∀ y .
( (y within δ of x)
−→
( (definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr ε) ∗ sep2 y x ))) )

)) by blast

hence (definedAt f x) ∧ (x = T (T ′ x)) using assms(1 ) ToT ′ by
auto

hence rtp3d1 : (definedAt g (T ′ x)) using g by auto

{ fix e

assume epos: e > 0

then obtain d where d: (d > 0 ) ∧ (∀ y .
( (y within d of x)
−→
( (definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x ))) )

using dAx by force

{ fix y

assume y within d of (T ′ x)
hence (T y) within d of (T (T ′ x)) using assms(1 ) lemBall-

102



Translation by auto

hence (T y) within d of x using ToT ′ by auto

hence (definedAt f (T y)) ∧ (∀ u v . (f (T y) u ∧ (asFunc A)
(T y) v) −→

( sep2 v u ) ≤ (sqr e) ∗ sep2 (T y) x )
using d by blast

hence (definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 (T y) x ) using g A0 by auto

hence (definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y (T ′ x) )

using transT ′ lemTranslationPreservesSep2 [of T ′ T y x] T ′oT

by auto

}
hence ∃ d > 0 . ∀ y . (y within d of (T ′ x)) −→

(definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y (T ′ x) )

using d by fast

}
hence rtp3d2 : ∀ e>0 . ∃ d > 0 . ∀ y . (y within d of (T ′ x)) −→

(definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y (T ′ x) )

by auto

hence rtp3d: diffApprox (asFunc A0 ) g (T ′ x) using rtp3d1 by fast

have rtp3 : affineApprox A0 g (T ′ x) using rtp3a rtp3b rtp3c rtp3d

by blast

thus ?thesis using A0 g by fast

qed

lemma lemAffineApproxRangeTranslation:
assumes translation T

and affineApprox A f x

shows affineApprox (T◦A) (composeRel (asFunc T ) f ) x

proof −

define A0 where A0 : A0 = T ◦ A

define g where g: g = composeRel (asFunc T ) f

obtain T ′ where T ′: (translation T ′) ∧ (∀ p q . T p = q ←→ T ′

q = p)
using assms(1 ) lemInverseTrans[of T ] by auto

have ToT ′: ∀ p . T (T ′ p) = p using T ′ by force

have T ′oT : ∀ p . T ′ (T p) = p using T ′ by force

obtain t where t: ∀ p . T p = (p ⊕ t) using assms(1 ) by auto
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hence mkT : T = mkTranslation t by auto

{ fix p q

have T ′ p = q ←→ T q = p using T ′ by auto

also have ... ←→ (q ⊕ t) = p using t by auto

also have ... ←→ q = (p ⊕ (origin ⊖ t)) by force

finally have T ′ p = q ←→ q = (p ⊕ (origin ⊖ t)) by force

hence T ′ p = q ←→ q = mkTranslation (origin ⊖ t) p by force

}
hence mkT ′: T ′ = mkTranslation (origin ⊖ t) by auto

hence transT ′: translation T ′ using lemMkTrans by blast

have funcF : isFunction f using assms(2 ) by auto

hence rtp3a: isFunction g using g by auto

have affA: affine A using assms(2 ) by auto

hence rtp3b: affine A0

using lemAffOfAffIsAff [of A T ] lemTranslationImpliesAffine[of T ]
A0 affA assms(1 )

by blast

{ fix q

obtain p where p: (A p = T ′ q) ∧ (∀ x. A x = T ′ q −→ x = p)
using assms(2 ) by blast

hence T ′ q = A p by auto

hence T (A p) = q using T ′ ToT ′ by auto

hence 1 : A0 p = q using A0 by auto

{ fix x

assume A0 x = q

hence T (A x) = q using A0 by auto

hence T ′ (T (A x)) = T ′ q by auto

hence A x = T ′ q using T ′oT by auto

hence x = p using p by auto

}
hence ∀ x. A0 x = q −→ x = p by auto

hence ∃ p0 . (A0 p0 = q) ∧ (∀ x. A0 x = q −→ x = p0 ) using 1

by auto

}
hence rtp3c: invertible A0 by auto

have diffApprox (asFunc A) f x using assms(2 ) by auto

hence dAx: (definedAt f x) ∧
(∀ ε > 0 . (∃ δ > 0 . (∀ y .
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( (y within δ of x)
−→
( (definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr ε) ∗ sep2 y x ))) )

)) by blast

hence rtp3d1 : definedAt g x using g by auto

{ fix e

assume epos: e > 0

then obtain d where d: (d > 0 ) ∧ (∀ y .
( (y within d of x)
−→
( (definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x ))) )

using dAx by auto

{ fix y

assume y within d of x

hence (definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x ) using d by force

hence (definedAt g y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x ) using g by force

hence (definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x )

using g A0 assms(1 ) lemBallTranslation by force

}
hence ∃ d>0 . ∀ y . (y within d of x) −→

(definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x )

using d by force

}
hence rtp3d2 : ∀ e>0 . ∃ d > 0 . ∀ y . (y within d of x) −→

(definedAt g y) ∧ (∀ u v . (g y u ∧ (asFunc A0 ) y v) −→
( sep2 v u ) ≤ (sqr e) ∗ sep2 y x )

by auto

hence rtp3d: diffApprox (asFunc A0 ) g x using rtp3d1 by auto

hence rtp3 : affineApprox A0 g x using rtp3a rtp3b rtp3c rtp3d by
auto

thus ?thesis using g A0 mkT by best

qed

lemma lemAffineIdentity:
assumes affine A

and e > 0
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and ∀ y . (y within e of x) −→ (A y = y)
shows A = id

proof −

obtain T L where TL: translation T ∧ linear L ∧ A = T◦L using
assms(1 ) by auto

have x within e of x using assms(2 ) by auto

hence xfixed: A x = x using assms(3 ) by auto

{ fix p

define d where d: d = (p ⊖ x)
then obtain a where a: (a > 0 ) ∧ (norm2 (a⊗d) < sqr e)

using assms(2 ) lemSmallPoints[of e d] by auto

define p ′ where p ′: p ′ = ((a⊗d)⊕x)
hence p ′fixed: A p ′ = p ′ using a assms(3 ) lemSep2Symmetry by

auto

have p ′x: (p ′ ⊖ x) = (a ⊗ (p ⊖ x)) using p ′ d by auto

hence ((1/a)⊗(p ′⊖x)) = (p⊖x) using a lemScaleAssoc[of 1/a a

p⊖x] by auto

hence p: p = (((1/a)⊗(p ′⊖x)) ⊕ x) by auto

hence L p = L (((1/a)⊗(p ′⊖x)) ⊕ x) by auto

also have ... = ((L ((1/a)⊗(p ′⊖x))) ⊕ (L x)) using TL by blast

also have ... = ((L x) ⊕ (L ((1/a)⊗(p ′⊖x)))) using add-commute

by simp

finally have A p = ((A x) ⊕ (L ((1/a)⊗(p ′⊖x))))
using TL lemTranslationSum by auto

hence 1 : A p = (x ⊕ (L ((1/a)⊗(p ′⊖x)))) using xfixed by auto

have (L ((1/a)⊗(p ′⊖x))) = ((1/a) ⊗ (L (p ′⊖x))) using TL by
blast

also have ... = ((1/a) ⊗ ( (L p ′) ⊖ (L x) )) using TL by auto

also have ... = ((1/a) ⊗ ( (A p ′) ⊖ (A x) )) using TL by auto

also have ... = ((1/a) ⊗ (p ′ ⊖ x)) using p ′fixed xfixed by auto

finally have (L ((1/a)⊗(p ′⊖x))) = (p⊖x) using p by auto

hence A p = (x ⊕ (p ⊖ x)) using 1 by auto

hence A p = p using add-diff-eq by auto

}
thus ?thesis by auto

qed

end
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end

21 Sublemma4

This theory shows that functions with affine approximations are
continuous where approximated.

theory Sublemma4

imports Affine AxTriangleInequality

begin

Our naming of lemmas, propositions, etc., is sometimes coun-
terintuitive. This is because the proof follows a hand-written
proof, and we need to maintain the link between the paper-based
and Isabelle versions. We will specifically be discussing how we
translated from one to the other in a forthcoming paper (under
construction). In fact, sublemmas 1 and 2 were eventually found
to be unnecessary during construction of the Isabelle proof, and
so do not appear in this documentation.

class Sublemma4 = Affine + AxTriangleInequality

begin

lemma sublemma4 :
assumes affineApprox A f x

shows (∃ δ>0 . ∀ p. (p within δ of x) −→ (definedAt f p)) ∧ (cts f x)
proof −

have diff : (definedAt f x) ∧
(∀ ε > 0 . (∃ δ > 0 . (∀ y .
( (y within δ of x)
−→
(definedAt f y) ∧ ( ∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ) ≤ (sqr ε) ∗ sep2 y x )) )

)) using assms by simp

have 0 < 1 by simp

then obtain d where d: (d > 0 ) ∧ (∀ y .
( (y within d of x)
−→
((definedAt f y) ∧ (∀ u v . (f y u ∧ (asFunc A) y v) −→
( sep2 v u ≤ (sqr 1 ) ∗ sep2 y x ))))) using diff by blast

hence ∀ p . (p within d of x) −→ (definedAt f p) by blast

hence rtp1 : ∃ δ > 0 . ∀ p . (p within δ of x) −→ (definedAt f p)
using d by auto
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have funcF : isFunction f using assms by simp

have affA: affine A using assms by simp

have funcA: isFunction (asFunc A) using assms by simp

{ fix x ′

assume x ′: f x x ′

hence ax: x ′ = A x

using assms lemAffineEqualAtBase[of f A x] by blast

{ fix e

assume epos: e > 0

hence e2pos: e/2 > 0 by simp

obtain d1 where d1 : (d1 > 0 ) ∧ (∀ y .
((y within d1 of x) −→ ((A y) within (e/2 ) of (A x))))

using e2pos affA lemAffineContinuity by blast

obtain d2 ′ where d2 ′: (d2 ′ > 0 ) ∧ (∀ y .
( (y within d2 ′ of x) −→ ((definedAt f y) ∧
( ∀ fy Ay . (f y fy ∧ (asFunc A) y Ay) −→
( sep2 Ay fy ) ≤ (sqr (e/2 )) ∗ sep2 y x ))))

using e2pos assms by auto

then obtain d2

where d2 : (d2 > 0 ) ∧ (d2 < d2 ′) ∧ (sqr d2 < d2 ) ∧ (d2 < 1 )
using lemReducedBound[of d2 ′] by auto

define d where d: d = min d1 d2

have dd1 : d ≤ d1 using d by auto

have dd2 : d ≤ d2 using d by auto

have dpos: d > 0 using d1 d2 d by auto

{ fix y ′

assume y ′: y ′ ∈ applyToSet f (ball x d)
then obtain y where y: (y ∈ ball x d) ∧ (f y y ′) by auto

hence y-near-x: y within d of x using lemSep2Symmetry by
auto

have y within d1 of x using lemBallInBall y-near-x dpos dd1

by auto

hence dist1 : (A y) within (e/2 ) of (A x) using d1 by auto

have yd2 ′x: y within d2 ′ of x using lemBallInBall y-near-x

dpos d2 dd2 by auto

hence ∀ fy Ay . (f y fy ∧ (asFunc A) y Ay) −→
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( sep2 Ay fy ≤ (sqr (e/2 )) ∗ sep2 y x )
using d2 ′ by auto

hence conc2 : sep2 (A y) y ′ ≤ (sqr (e/2 )) ∗ sep2 y x using y

by auto

have y within d2 of x using lemBallInBall y-near-x dpos d2

dd2 by auto

hence yx1 : y within 1 of x using lemBallInBall d2 by auto

have sqr (e/2 ) > 0 using e2pos lemSqrMonoStrict[of 0 e/2 ]
by auto

hence (sqr (e/2 )) ∗ sep2 y x < sqr (e/2 )
using mult-strict-left-mono[of sep2 y x 1 sqr (e/2 )]

lemNorm2NonNeg[of y⊖x] yx1

by auto

hence dist2 : sep2 (A y) y ′ < sqr (e/2 ) using conc2 by auto

define p where p: p = (A x)
define q where q: q = (A y)
define r where r : r = y ′

have tri: axTriangleInequality (q⊖p) (r⊖q)
using AxTriangleInequality by blast

have Dist1 : p within (e/2 ) of q

using dist1 p q lemSep2Symmetry by auto

have Dist2 : r within (e/2 ) of q

using dist2 q r lemSep2Symmetry by auto

have r within ((e/2 )+(e/2 )) of p

using e2pos Dist1 Dist2 tri

lemDistancesAdd[of q p r e/2 e/2 ]
by blast

hence r within e of p using lemSumOfTwoHalves by auto

hence y ′ ∈ ball x ′ e using p r ax lemSep2Symmetry by auto

}
hence ∃ d>0 . applyToSet f (ball x d) ⊆ (ball x ′ e) using dpos

by auto

}
hence (∀ e>0 . ∃ d>0 . applyToSet f (ball x d) ⊆ (ball x ′ e))

by auto

}
hence ∀ x ′. (f x x ′) −→ (∀ e>0 . ∃ d>0 . applyToSet f (ball x d) ⊆

(ball x ′ e))
by auto

hence rtp2 : cts f x by simp

thus ?thesis using rtp1 by auto

qed
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end

end

22 MainLemma

This theory establishes conditions under which a function maps
tangent lines to tangent lines.

theory MainLemma

imports Sublemma3 Sublemma4

begin

class MainLemma = Sublemma3 + Sublemma4

begin

lemma lemMainLemmaBasic:
assumes tgt: tangentLine l wl origin

and injf : injective f

and affapp: affineApprox A f origin

and f00 : f origin origin

and ctsf ′0 : cts (invFunc f ) origin

and affline: applyAffineToLine A l l ′

shows tangentLine l ′ (applyToSet f wl) origin

proof −

define goal1 where
goal1 : goal1 ≡ origin ∈ (applyToSet f wl)

define goal2 where
goal2 : goal2 ≡ onLine origin l ′

define goal3 where
goal3 : goal3 ≡ accPoint origin (applyToSet f wl)

define subgoal4a where
subgoal4a: subgoal4a ≡ (λ p ′ . onLine p ′ l ′)

define subgoal4b where
subgoal4b: subgoal4b ≡ (λ p ′ . p ′ 6= origin)

define subgoal4c1 where
subgoal4c1 : subgoal4c1 ≡ (λ p ′ d e .
(∀ y ′ ∈ (applyToSet f wl) . (y ′ within d of origin) ∧ (y ′ 6= origin)

−→ (∃ r . (onLine r (lineJoining origin y ′)) ∧ (r within e of p ′))))
define subgoal4c where

subgoal4c: subgoal4c ≡ (λ p ′ .∀ e>0 . ∃ d>0 . subgoal4c1 p ′ d e)
define goal4 where
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goal4 : goal4 ≡ (∃ p ′. (subgoal4a p ′) ∧ (subgoal4b p ′) ∧ (subgoal4c

p ′))

have GOAL: goal1 ∧ goal2 ∧ goal3 ∧ goal4

−→ tangentLine l ′ (applyToSet f wl) origin

using goal1 goal2 goal3 goal4 subgoal4a subgoal4b subgoal4c1 sub-

goal4c

by force

have affA: affine A using affapp by auto

then obtain T L where TL: translation T ∧ linear L ∧ A=T◦L
by auto

then obtain t where t: ∀ u. T u = (u ⊕ t) by auto

define Tinv where Tinv: Tinv = mkTranslation (origin ⊖ t)
hence transTinv: translation Tinv using lemMkTrans by blast

have linel: isLine l using tgt by auto

hence linel ′: isLine l ′

using affA affline lemAffineOfLineIsLine

by auto

have funcF : isFunction f using affapp by auto

have A00 : A origin = origin

using lemAffineEqualAtBase[of f A origin] affapp f00

by auto

have A origin = ((L origin) ⊕ t) using TL t by auto

also have ... = (origin ⊕ t) using TL by auto

finally have origin = t using A00 by auto

hence ∀ p. T p = p using t by auto

hence T = id by auto

hence A = L using TL by auto

hence linA: linear A using TL by auto

have ((invFunc f ) origin origin)
∧ (∀ x . ((invFunc f ) origin x) −→ (∀ ε>0 . ∃ δ>0 .
(applyToSet (invFunc f ) (ball origin δ)) ⊆ ball x ε))

using f00 ctsf ′0 by auto
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hence ctsfinv: (∀ ε>0 . ∃ δ>0 .
(applyToSet (invFunc f ) (ball origin δ)) ⊆ ball origin ε)

by blast

have ctsA: ∀ x. ∀ ε>0 . ∃ δ>0 . ∀ p.
(p within δ of x) −→ ((A p) within ε of (A x))

using affA lemAffineContinuity by auto

have tgt1 : origin ∈ wl using tgt by auto

have tgt2 : onLine origin l using tgt by auto

have tgt3 : ∀ ε > 0 . ∃ q ∈ wl. (origin 6= q) ∧ (inBall q ε origin)
using tgt by auto

have sub4 : (∃ δ>0 . ∀ p. (p within δ of origin)
−→ (definedAt f p)) ∧ (cts f origin)

using affapp sublemma4 [of f A origin] by auto

hence ctsfx: (∀ ε>0 . ∃ δ>0 . (applyToSet f (ball origin δ)) ⊆ ball

origin ε)
using f00 by auto

obtain ddef where ddef : (ddef > 0 ) ∧
(∀ p. (p within ddef of origin) −→ (definedAt f

p))
using sub4 by auto

have rtp1 : goal1 using tgt1 f00 goal1 by auto

have l ′-from-l: l ′ = applyToSet (asFunc A) l

using tgt affline lemAffineOfLineIsLine by auto

have (asFunc A) origin origin using linA by auto

hence rtp2 : goal2 using l ′-from-l tgt2 affline goal2 by auto

{ fix e

assume epos: e > 0

then obtain dd ′

where dd ′: (dd ′ > 0 ) ∧ ((applyToSet f (ball origin dd ′)) ⊆ ball
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origin e)
using ctsfx by auto

define dd where dd: dd = min dd ′ ddef

hence ddpos: dd > 0 using dd ′ ddef by simp

then obtain q where q: (q ∈ wl) ∧ (origin 6= q) ∧ (q within dd

of origin)
using tgt3 by auto

have dd ≤ ddef using dd by auto

hence q within ddef of origin

using ddpos q lemBallInBall[of q origin dd ddef ] by auto

then obtain q ′ where q ′: (f q q ′) using ddef by auto

hence fact3a: q ′ ∈ (applyToSet f ) wl using q by auto

have q 6= origin using q by auto

hence fact3b: q ′ 6= origin using injf q ′ f00 by auto

have dd ≤ dd ′ using dd by auto

hence q ∈ ball origin dd ′

using q lemBallInBall[of q origin dd dd ′] ddpos by auto

hence q ′ ∈ ball origin e using dd ′ q ′ by auto

hence fact3c: q ′ within e of origin using lemSep2Symmetry by
auto

hence ∃ y ′ ∈ ((applyToSet f ) wl) . (origin 6= y ′) ∧ (y ′ within e of

origin)
using fact3a fact3b q ′ by auto

}
hence rtp3 : goal3 using goal3 by auto

obtain P where P: (onLine P l) ∧ (P 6= origin) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ∈ wl. (
( (y within δ of origin) ∧ (y 6= origin) )
−→
( ∃ r . ((onLine r (lineJoining origin y)) ∧ (r within ε of P)))))

using tgt by auto

define nP where nP: nP = norm P

have P 6= origin using P by auto

hence nPpos: nP > 0 using P nP lemNotOriginImpliesPositiveNorm[of

P]
by auto

define a where a: a = 1/nP

hence apos: a > 0 using nPpos by auto
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define p where p: p = (a⊗P)
{ assume p = origin

hence (a⊗P) = origin using p by auto

hence (nP⊗(a⊗P)) = (nP⊗origin) by simp

hence P = origin using a apos lemScaleAssoc by auto

}
hence p-not-0 : p 6= origin using P by auto

define p ′ where p ′: p ′ = A p

obtain A ′ where A ′: (affine A ′) ∧ ((affine A ′) ∧ (∀ p q . A p = q

←→ A ′ q = p))
using affapp lemInverseAffine[of A] by auto

hence A ′ origin = origin ∧ A ′ p ′ = p using A00 p ′ by blast

hence p ′-not-0 : p ′ 6= origin using p-not-0 by auto

have (onLine origin l) ∧ (onLine P l) ∧ (origin 6= P) using P tgt2

by auto

hence l-is-0P: l = lineJoining origin P

using lemLineAndPoints[of origin P l] by auto

have p = (origin ⊕ (a⊗(P ⊖ origin))) using p by auto

hence onLine p (lineJoining origin P) by blast

hence p-on-l: onLine p l using l-is-0P by auto

moreover have l ′ = applyToSet (asFunc A) l ∧ isLine l ′

using lemAffineOfLineIsLine [of l A l ′]
affline

by auto

ultimately have p ′-on-l ′: onLine p ′ l ′ using p-on-l p ′ by auto

have p = (a⊗P) using p by auto

hence norm2 p = (sqr a)∗(norm2 P)
using lemNorm2OfScaled[of a P] by auto

hence norm2 p = (sqr a)∗(sqr nP)
using nP lemNormSqrIsNorm2 [of P] by auto

hence np1 : norm2 p = 1 using a nPpos apos mult-assoc mult-commute

by auto

have (onLine p l) ∧ (norm2 p = 1 ) ∧ (tangentLine l wl origin)
using p-on-l np1 tgt by auto

hence sub3 : ∀ ε > 0 . ∃ δ > 0 . ∀ y ny . (
((y within δ of origin) ∧ (y 6= origin) ∧ (y ∈ wl) ∧ (norm y =

ny))
−→
( (((1/ny)⊗y) within ε of p) ∨ (((−1/ny)⊗y) within ε of p)))
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using sublemma3 [of l p wl]
by auto

{ fix e

assume epos: e > 0

define e1 where e1 : e1 = nP ∗ e

hence e1pos: e1 > 0 using nPpos epos by auto

define e2 where e2 : e2 = e/2

hence e2pos: e2 > 0 using epos by auto

obtain dctsA0 where (dctsA0 > 0 ) ∧ (∀ q.
(q within dctsA0 of origin) −→ ((A q) within e2 of (A origin)))

using ctsA e2pos A00 by blast

hence dctsA0 : (dctsA0 > 0 ) ∧ (∀ q.
(q within dctsA0 of origin) −→ ((A q) within e2 of origin))

using A00 by auto

obtain dctsAp where dctsAp: (dctsAp > 0 ) ∧ (∀ q.
(q within dctsAp of p) −→ ((A q) within e2 of (A p)))

using ctsA e2pos by blast

obtain dsub where dsub: (dsub > 0 ) ∧ (∀ y ny .
((y within dsub of origin) ∧ (y 6= origin) ∧ (y ∈ wl) ∧ (norm y

= ny))
−→

(((1/ny)⊗y) within (dctsAp) of p)
∨ (((−1/ny)⊗y) within (dctsAp) of p))

using apos dctsAp sub3 by blast

obtain daff where daff : (daff > 0 ) ∧ (∀ y .
( (y within daff of origin)
−→
( (definedAt f y) ∧ (∀ fy Ay . (f y fy ∧ (asFunc A) y Ay) −→
( sep2 Ay fy ) ≤ (sqr e2 ) ∗ sep2 y origin ))) )

using e2pos affapp by auto

define dmin where dmin: dmin = min dsub daff

hence dminsub: dmin ≤ dsub by auto

have dminaff : dmin ≤ daff using dmin by auto

have dminpos: dmin > 0 using dmin dsub daff by auto

obtain dfinv

where dfinv: (dfinv > 0 )
∧ ((applyToSet (invFunc f ) (ball origin dfinv))
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⊆ ball origin dmin)
using ctsfinv dminpos by auto

{ fix y ′

assume y ′: (y ′ ∈ (applyToSet f wl)) ∧ (y ′ 6= origin)
then obtain y where y: (f y y ′) ∧ (y ∈ wl) by auto

have y-not-0 : y 6= origin using y y ′ f00 funcF by auto

obtain ny where ny: norm y = ny by auto

hence nypos: ny >0

using y-not-0 lemNotOriginImpliesPositiveNorm[of y] ny by
auto

define p1 where p1 : p1 = ((1/ny)⊗y ′)
define q1 where q1 : q1 = (A ((1/ny)⊗y))
define p2 where p2 : p2 = ((−1/ny)⊗y ′)
define q2 where q2 : q2 = (A ((−1/ny)⊗y))
define r where r : r = (A p)

assume y ′2 : (y ′ within dfinv of origin)
hence y ′ ∈ ball origin dfinv using lemSep2Symmetry by auto

hence y ∈ applyToSet (invFunc f ) (ball origin dfinv) using y by
auto

hence ydmin: y ∈ ball origin dmin using dfinv by auto

have dmin ≤ dsub using dmin by auto

hence ydsub: y within dsub of origin

using lemBallInBall[of y origin dmin dsub] dminpos ydmin

by auto

hence (y within dsub of origin) ∧ (y 6= origin)
∧ (y ∈ wl) ∧ (norm y = ny)

using ydsub y-not-0 y ny by force

hence cases: (((1/ny)⊗y) within dctsAp of p)
∨ (((−1/ny)⊗y) within dctsAp of p)

using dsub by blast

hence casesA: (q1 within e2 of r) ∨ (q2 within e2 of r)
using dctsAp q1 q2 r by auto

have dmin ≤ daff using dmin by auto

hence y within daff of origin

using lemBallInBall[of y origin dmin daff ] dminpos ydmin

by auto
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hence (definedAt f y) ∧ (∀ fy Ay . (f y fy ∧ (asFunc A) y Ay)
−→

( sep2 Ay fy ) ≤ (sqr e2 ) ∗ sep2 y origin)
using daff by auto

hence sep2 (A y) y ′ ≤ (sqr ny) ∗ (sqr e2 )
using y ny lemNormSqrIsNorm2 mult-commute by auto

hence sep2 (A y) y ′ ≤ sqr (ny∗e2 )
using lemSqrMult[of ny e2 ] by auto

hence sep2 ((1/ny)⊗(A y)) ((1/ny)⊗y ′) ≤ sqr e2

using nypos

lemScaleBallAndBoundary[of A y y ′ ny∗e2 1/ny]
by auto

hence part1 : sep2 (A ((1/ny)⊗y)) ((1/ny)⊗y ′) ≤ sqr e2

using linA lemLinearProps[of A 1/ny y] by auto

{
assume case1 : q1 within e2 of r

have pq: sep2 p1 q1 ≤ sqr e2

using part1 lemSep2Symmetry[of p1 q1 ] p1 q1 by auto

hence rq: sep2 r q1 < sqr e2 using case1 lemSep2Symmetry

r q1 by auto

{ define pp where pp: pp = (q1⊖p1 )
define qq where qq: qq = (r⊖q1 )

have tri1 : axTriangleInequality pp qq using AxTriangleInequal-

ity by simp

hence r within (e2 + e2 ) of p1

using pp qq pq rq e2pos lemDistancesAddStrictR[of q1 p1 r ]
by blast

}
hence done1 : p1 within e of r using lemSep2Symmetry lem-

SumOfTwoHalves e2 by auto

have p1 = (origin ⊕ ((1/ny)⊗(y ′⊖origin))) using p1 by auto

hence onLine p1 (lineJoining origin y ′) by fastforce

hence onLine p1 (lineJoining origin y ′) ∧ (p1 within e of p ′)
using p ′ r done1 by blast

}
hence case1 : (q1 within e2 of r)

−→ (onLine p1 (lineJoining origin y ′) ∧ (p1 within

e of p ′))
by blast

{
assume case2 : q2 within e2 of r

have p2 = (((−1 )∗(1/ny))⊗y ′) using p2 by auto
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hence p2 ′: p2 = ((−1 )⊗p1 ) using lemScaleAssoc[of −1 1/ny

y ′] p1 by auto

have q2 = (A (((−1 )∗(1/ny))⊗y)) using q2 by auto

hence q2q1 : q2 = ((−1 )⊗q1 )
using linA lemLinearProps[of A −1 ((1/ny)⊗y)] q1

by auto

hence sep2 p2 q2 = sep2 p1 q1 using lemScaleSep2 [of −1 ]
p2 ′ by auto

hence pq: sep2 p2 q2 ≤ sqr e2

using part1 lemSep2Symmetry[of p1 q1 ] p1 q1 by auto

hence rq: sep2 r q2 < sqr e2 using case2 lemSep2Symmetry

r q2 by auto

{ define pp where pp: pp = (q2⊖p2 )
define qq where qq: qq = (r⊖q2 )

have tri2 : axTriangleInequality pp qq using AxTriangleInequal-

ity by simp

hence r within (e2 + e2 ) of p2

using pp qq pq rq e2pos lemDistancesAddStrictR[of q2 p2 r ]
by blast

}
hence p2 within e of r using lemSep2Symmetry lemSumOfT-

woHalves e2 by auto

hence done2 : p2 within e of p ′ using r p ′ by simp

have p2 = (origin ⊕ ((−1/ny)⊗(y ′⊖origin))) using p2 by
auto

hence onLine p2 (lineJoining origin y ′) by blast

hence onLine p2 (lineJoining origin y ′) ∧ (p2 within e of p ′)
using p ′ done2 by blast

}
hence case2 : (q2 within e2 of r)
−→ (onLine p2 (lineJoining origin y ′) ∧ (p2 within e of p ′))

by blast

hence ∃ r . (onLine r (lineJoining origin y ′)) ∧ (r within e of p ′)
using casesA case1 case2 by blast

hence ( (y ′ ∈ applyToSet f wl) ∧ (y ′ within dfinv of origin) ∧ (y ′

6= origin) )
−→ (∃ r . (onLine r (lineJoining origin y ′)) ∧ (r within e of p ′))
using dfinv by blast

}
hence subgoal4c1 p ′ dfinv e using dfinv subgoal4c1 by blast

hence ∃ d>0 . subgoal4c1 p ′ d e using dfinv by auto

}
hence ∀ e>0 . ∃ d>0 . subgoal4c1 p ′ d e by auto
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hence subgoal4c p ′ using subgoal4c subgoal4c1 by force

hence (subgoal4a p ′) ∧ (subgoal4b p ′) ∧ (subgoal4c p ′)
using p ′-not-0 p ′-on-l ′ subgoal4a subgoal4b by auto

hence rtp4 : goal4 using goal4 subgoal4a subgoal4b subgoal4c by blast

thus ?thesis using rtp1 rtp2 rtp3 GOAL by fastforce

qed

lemma lemMainLemmaOrigin:
assumes tgtx: tangentLine l wl x

and injf : injective f

and affappx: affineApprox A f x

and fx0 : f x origin

and ctsf ′0 : cts (invFunc f ) origin

and affline: applyAffineToLine A l l ′

shows tangentLine l ′ (applyToSet f wl) origin

proof −

define T where T : T = mkTranslation x

hence transT : translation T using lemMkTrans by blast

define T ′ where T ′: T ′ = mkTranslation (origin ⊖ x)
hence transT ′: translation T ′ using lemMkTrans by blast

have TT ′: ∀ p q . T p = q ←→ T ′ q = p using T T ′ by auto

define g where g: g = composeRel f (asFunc T )

define l0 where l0 : l0 = applyToSet (asFunc T ′) l

define wl0 where wl0 : wl0 = applyToSet (asFunc T ′) wl

define A0 where A0 : A0 = A ◦ T

have T ′ x = origin using T ′ by auto

hence rtp1 : tangentLine l0 wl0 origin

using l0 wl0 transT ′ tgtx lemTangentLineTranslation[of T ′ x wl l]
by auto

have rtp2 : injective g

using transT lemTranslationInjective[of T ] lemInjOfInjIsInj[of

asFunc T f ]
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injf g

by blast

have T ′ x = origin using T ′ by auto

hence rtp3 : affineApprox A0 g origin

using transT TT ′

lemAffineApproxDomainTranslation[of T f A x T ′]
affappx g A0

by auto

have (T origin = x) ∧ (f x origin) using T fx0 by auto

hence ∃ x . ((asFunc T ) origin x) ∧ (f x origin) by auto

hence rtp4 : g origin origin using g T fx0 by auto

define h where h: h = (invFunc (asFunc T ))
hence invcomp: composeRel h (invFunc f ) = invFunc g

using lemInverseComposition[of g asFunc T f ] g by auto

{ fix p r

have inv1 : invFunc (asFunc T ) p r ←→ (T ′◦T ) r = T ′ p

using transT ′ lemTranslationInjective by auto

henceinvFunc (asFunc T ) p r ←→ r = T ′ p

using T T ′ lemInverseTranslation[of T x T ′] by auto

}
hence hT : h = asFunc T ′ using h by force

hence ∀ y. cts h y

using transT ′ lemTranslationImpliesAffine[of T ′]
lemAffineIsCts[of T ′]

by blast

hence ctsh: ∀ y. (invFunc f ) origin y −→ cts h y by auto

define g ′ where g ′: g ′ = composeRel h (invFunc f )
hence invg: g ′ = invFunc g using hT invcomp by simp

have cts g ′ origin

using ctsf ′0 ctsh lemCtsOfCtsIsCts[of invFunc f origin h] g ′

by auto

hence rtp5 : cts (invFunc g) origin using invg by auto

have affA: affine A using assms(3 ) by auto

hence rtp3b: affine A0

using lemAffOfAffIsAff [of T A] lemTranslationImpliesAffine[of T ]
A0 affA transT
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by auto

define l0 ′ where l0 ′: l0 ′ = applyToSet (asFunc A0 ) l0

hence rtp6 : applyAffineToLine A0 l0 l0 ′

using rtp1 rtp3b lemAffineOfLineIsLine[of l0 A0 l0 ′]
by auto

have (tangentLine l0 wl0 origin) −→ (
(injective g) −→
(affineApprox A0 g origin) −→
(g origin origin) −→
((cts (invFunc g) origin) −→
((applyAffineToLine A0 l0 l0 ′) −→
(tangentLine l0 ′ (applyToSet g wl0 ) origin))))

using lemMainLemmaBasic[of wl0 l0 g A0 l0 ′]
by blast

hence basic: (tangentLine l0 ′ (applyToSet g wl0 ) origin)
using rtp1 rtp2 rtp3 rtp4 rtp5 rtp6 by meson

obtain A ′ where A ′: ∀ p q . A p = q ←→ A ′ q = p

using affappx by metis

have ToT ′: T ◦ T ′ = id using TT ′ by auto

have A0 ◦ T ′ = (A ◦ T ) ◦ T ′ using A0 by auto

also have ... = A ◦ (T ◦ T ′) by auto

finally have A0T ′: A0 ◦ T ′ = A using ToT ′ by auto

have l0 ′ = applyToSet (asFunc (A0 ◦ T ′)) l using l0 l0 ′ by auto

hence l0 ′ = applyToSet (asFunc A) l using A0T ′ by auto

hence l0 ′l: l0 ′ = l ′ using tgtx affline lemAffineOfLineIsLine[of l A

l ′] by auto

have applyToSet g wl0 = applyToSet (composeRel f (asFunc (T◦T ′)))
wl using wl0 g by auto

also have ... = applyToSet (composeRel f (asFunc id)) wl using
ToT ′ by auto

also have ... = applyToSet f wl by auto

finally have applyToSet g wl0 = applyToSet f wl by auto

hence tangentLine l ′ (applyToSet f wl) origin using basic l0 ′l by
auto

thus ?thesis by auto
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qed

lemma lemMainLemma:
assumes tgtx: tangentLine l wl x

and injf : injective f

and affappx: affineApprox A f x

and fxy: f x y

and ctsf ′y: cts (invFunc f ) y

and affline: applyAffineToLine A l l ′

shows tangentLine l ′ (applyToSet f wl) y

proof −
define Ty where Ty: Ty = mkTranslation y

hence transTy: translation Ty using lemMkTrans by auto

define Ty ′ where Ty ′: Ty ′ = mkTranslation (origin ⊖ y)
hence transTy ′: translation Ty ′ using lemMkTrans by blast

define g where g: g = composeRel (asFunc Ty ′) f

define Ay where Ay: Ay = Ty ′ ◦ A

define ly ′ where ly ′: ly ′ = applyToSet (asFunc Ty ′) l ′

have lineL: isLine l using tgtx by auto

have affA: affine A using affappx by auto

have TT ′: ∀ p q . Ty p = q ←→ Ty ′ q = p using Ty Ty ′ by auto

have rtp1 : tangentLine l wl x by (rule tgtx)

have rtp2 : injective g

using transTy ′ lemTranslationInjective[of Ty ′] lemInjOfInjIsInj[of

f asFunc Ty ′]
injf g

by blast

have (translation Ty ′) −→ (affineApprox A f x)
−→ (affineApprox (Ty ′ ◦ A) (composeRel (asFunc Ty ′) f ) x)

using lemAffineApproxRangeTranslation[of Ty ′ f A x]
by blast

hence rtp3 : affineApprox Ay g x using Ay g transTy ′ affappx by
meson

have rtp4 : g x origin using g Ty ′ fxy by auto
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define f ′ where f ′: f ′ = invFunc f

define h where h: h = (invFunc (asFunc Ty ′))
define g ′ where g ′: g ′ = invFunc g

hence invcomp: g ′ = composeRel f ′ h

using lemInverseComposition g f ′ h by auto

{ fix p r

have inv1 : invFunc (asFunc Ty ′) p r ←→ (Ty◦Ty ′) r = Ty p

using transTy lemTranslationInjective by auto

hence invFunc (asFunc Ty ′) p r ←→ r = Ty p using Ty Ty ′ by
auto

}
hence hT : h = asFunc Ty using h by force

hence ctsh0 : cts h origin

using transTy lemTranslationImpliesAffine[of Ty]
lemAffineIsCts[of Ty]

by blast

{ fix p

assume h origin p

hence (asFunc Ty) origin p using hT by auto

hence p = y using Ty by auto

hence cts (invFunc f ) p using ctsf ′y by auto

}
hence ctsf : ∀ p. h origin p −→ cts f ′ p using f ′ by auto

have cts g ′ origin

using invcomp ctsh0 ctsf lemCtsOfCtsIsCts[of h origin f ′]
by blast

hence rtp5 : cts (invFunc g) origin using g ′ by auto

have affAy: affine Ay

using affA lemTranslationImpliesAffine[of Ty ′] transTy ′

lemAffOfAffIsAff [of A Ty ′] Ay

by auto

have l ′ = applyToSet (asFunc A) l

using affline lineL affA lemAffineOfLineIsLine[of l A l ′] by auto

hence ly ′ = applyToSet (asFunc Ay) l using ly ′ Ay by auto

hence rtp6 : applyAffineToLine Ay l ly ′

using lineL affAy lemAffineOfLineIsLine[of l Ay ly ′]
by auto
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have (tangentLine l wl x) −→
(injective g) −→
(affineApprox Ay g x) −→
(g x origin) −→
(cts (invFunc g) origin) −→
(applyAffineToLine Ay l ly ′) −→
(tangentLine ly ′ (applyToSet g wl) origin)

using lemMainLemmaOrigin[of x wl l g Ay ly ′]
by fastforce

hence tgt ′: tangentLine ly ′ (applyToSet g wl) origin

using rtp1 rtp2 rtp3 rtp4 rtp5 rtp6 by meson

define wl ′ where wl ′: wl ′ = (applyToSet g wl)
define Term1 where Term1 : Term1 = applyToSet (asFunc Ty) ly ′

define Term2 where Term2 : Term2 = applyToSet (asFunc Ty) wl ′

define Term3 where Term3 : Term3 = Ty origin

have tangentLine ly ′ wl ′ origin using tgt ′ wl ′ by auto

hence goal: tangentLine (applyToSet (asFunc Ty) ly ′)
(applyToSet (asFunc Ty) wl ′)
(Ty origin)

using transTy lemTangentLineTranslation[of Ty origin wl ′ ly ′]
by fastforce

hence goal: tangentLine Term1 Term2 Term3

using Term1 Term2 Term3 by auto

have ToT ′: Ty ◦ Ty ′ = id using TT ′ by auto

have Term1 = applyToSet (asFunc Ty) (applyToSet (asFunc Ty ′)
l ′)

using ly ′ Term1 by auto

also have ... = applyToSet (asFunc (Ty ◦ Ty ′)) l ′ by auto

also have ... = applyToSet (asFunc id) l ′ using ToT ′ by auto

finally have term1 : Term1 = l ′ by auto

have composeRel (asFunc Ty) g = composeRel (asFunc Ty) (composeRel

(asFunc Ty ′) f )
using g by auto

also have ... = composeRel (asFunc (Ty◦Ty ′)) f by auto

also have ... = composeRel (asFunc id) f using ToT ′ by auto

finally have Tog: composeRel (asFunc Ty) g = f by auto

have Term2 = applyToSet (asFunc Ty) (applyToSet g wl)
using wl ′ Term2 by auto

also have ... = applyToSet (composeRel (asFunc Ty) g) wl by auto

finally have term2 : Term2 = applyToSet f wl using Tog by auto

have term3 : Term3 = y using Ty Term3 by auto
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thus ?thesis using goal term1 term2 term3

by fastforce

qed

end

end

23 AXIOM: AxDiff

This theory declares the axiom AxDiff.

theory AxDiff

imports Affine WorldView

begin

AxDiff: Worldview transformations are differentiable wherever
they are defined - they can be approximated locally by affine
transformations.

class axDiff = Affine + WorldView

begin
abbreviation axDiff :: Body ⇒ Body ⇒ ′a Point ⇒ bool

where axDiff m k p ≡ (definedAt (wvtFunc m k) p)
−→ (∃ A . (affineApprox A (wvtFunc m k) p ))

end

class AxDiff = axDiff +
assumes AxDiff : ∀ m k p . axDiff m k p

begin
end

end

24 TangentLineLemma

This theory shows that affine approximations map tangent lines
to tangent lines.

theory TangentLineLemma

imports MainLemma AxDiff Cones

begin

class TangentLineLemma = MainLemma + AxDiff + Cones
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begin

lemma lemWVTImpliesFunction: isFunction (wvtFunc k h)
proof −

{ fix x p q

assume hyp: wvtFunc k h x p ∧ wvtFunc k h x q

have axDiff k h x using AxDiff by blast

hence axdiff : (∃ r . wvtFunc k h x r)
−→ (∃ A . (affineApprox A (wvtFunc k h) x ))

by auto

then obtain A where A: affineApprox A (wvtFunc k h) x using
hyp by auto

hence ∀ z. (wvtFunc k h x z) ←→ (z = A x)
using lemAffineEqualAtBase[of wvtFunc k h A x]
by auto

hence p = A x ∧ q = A x using hyp by blast

moreover have affine A using A by auto

ultimately have p = q by auto

}
thus ?thesis by force

qed

lemma lemWVTCts:
assumes definedAt (wvtFunc h k) p

shows cts (wvtFunc h k) p

proof −
have axDiff h k p using AxDiff by blast

hence axdiff : (∃ r . wvtFunc h k p r) −→ (∃ A . (affineApprox A

(wvtFunc h k) p ))
by auto

then obtain A where A: affineApprox A (wvtFunc h k) p using
assms by auto

thus ?thesis using sublemma4 [of wvtFunc h k A p] by auto

qed

lemma lemWVTInverse: invFunc (wvtFunc k h) = wvtFunc h k

by force

lemma lemWVTInverseCts:
assumes wvtFunc k h p q

shows cts (wvtFunc h k) q

proof −
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define whk where whk: whk = wvtFunc h k

have definedAt whk q −→ cts whk q

using lemWVTCts[of h k q] whk by fast

moreover have definedAt whk q using whk assms by auto

ultimately have cts whk q by auto

thus ?thesis using whk by auto

qed

lemma lemWVTInjective: injective (wvtFunc k h)
proof −

define wkh where wkh: wkh = wvtFunc k h

define inv where inv: inv = invFunc wkh

define inv2 where inv2 : inv2 = invFunc inv

define whk where whk: whk = wvtFunc h k

have 1 : inv = whk using inv whk wkh by force

have 2 : inv2 = wkh using inv2 inv wkh by force

haveisFunction whk using lemWVTImpliesFunction whk by auto

hence isFunction inv using 1 by auto

hence injective inv2 using inv2 by auto

hence injective wkh using 2 by auto

thus ?thesis using wkh by auto

qed

lemma lemPresentation:
assumes x ∈ wline m b

and tangentLine l (wline m b) x

and affineApprox A (wvtFunc m k) x

and wvtFunc m k x y

and applyAffineToLine A l l ′

shows tangentLine l ′ (wline k b) y

proof −

have main: (tangentLine l (wline m b) x) −→
(injective (wvtFunc m k)) −→
(affineApprox A (wvtFunc m k) x) −→
((wvtFunc m k) x y) −→
(cts (invFunc (wvtFunc m k)) y) −→
(applyAffineToLine A l l ′) −→
(tangentLine l ′ (applyToSet (wvtFunc m k) (wline m b)) y)

using lemMainLemma[of x wline m b l wvtFunc m k A y l ′]
by blast

have 1 : (tangentLine l (wline m b) x) using assms(2 ) by auto

have 2 : injective (wvtFunc m k) using lemWVTInjective by auto
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have 3 : affineApprox A (wvtFunc m k) x using assms(3 ) by auto

have 4 : (wvtFunc m k) x y using assms(4 ) by auto

have invFunc (wvtFunc m k) = wvtFunc k m using lemWVTInverse

by auto

moreover have cts (wvtFunc k m) y

using assms(4 ) lemWVTInverseCts[of y m k x] by auto

ultimately have 5 : cts (invFunc (wvtFunc m k)) y by force

have 6 : applyAffineToLine A l l ′ using assms(5 ) by auto

hence tgt: tangentLine l ′ (applyToSet (wvtFunc m k) (wline m b)) y

using main 1 2 3 4 5 by meson

have axdiff : axDiff k m y using AxDiff by blast

hence (∃ r . wvtFunc k m y r)
−→ (∃ A ′ . (affineApprox A ′ (wvtFunc k m) y )) by blast

then obtain A ′ where A ′: affineApprox A ′ (wvtFunc k m) y using
assms(4 ) by auto

hence (∃ δ>0 . ∀ p. (p within δ of y) −→ (definedAt (wvtFunc k m)
p))

using sublemma4 [of wvtFunc k m A ′ y] by auto

then obtain d where d: (d > 0 ) ∧ (∀ p.
(p within d of y) −→ (definedAt (wvtFunc k

m) p))
by auto

hence dpos: d > 0 by auto

define Ball where Ball: Ball = ball y d

have l2r : (applyToSet (wvtFunc m k) (wline m b)) ∩ Ball ⊆ (wline

k b) ∩ Ball

using Ball by auto

{ fix q

assume q: q ∈ (wline k b) ∩ Ball

hence q within d of y using Ball lemSep2Symmetry by auto

hence definedAt (wvtFunc k m) q using d by auto

hence qset: q ∈ applyToSet (wvtFunc m k) (wvt k m q) by auto

have wvt k m q ⊆ applyToSet (wvtFunc k m) (wline k b) using q

by auto

hence wvt k m q ⊆ wline m b by auto

hence applyToSet (wvtFunc m k) (wvt k m q)
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⊆ applyToSet (wvtFunc m k) (wline m b) by auto

hence q ∈ applyToSet (wvtFunc m k) (wline m b) using qset by
auto

hence q ∈ (applyToSet (wvtFunc m k) (wline m b)) ∩ Ball using
qset q by auto

}
hence r2l: (wline k b) ∩ Ball ⊆ (applyToSet (wvtFunc m k) (wline

m b)) ∩ Ball

by auto

define lBall where lBall: lBall = (applyToSet (wvtFunc m k) (wline

m b)) ∩ Ball

define rBall where rBall: rBall = (wline k b) ∩ Ball

hence equ: lBall = rBall using l2r r2l lBall rBall by auto

have yinBall: y ∈ Ball using Ball d by auto

have tgt1 : y ∈ (applyToSet (wvtFunc m k) (wline m b)) using tgt

by auto

hence y ∈ lBall using yinBall lBall by auto

hence rtp1 : y ∈ wline k b using equ rBall by auto

have rtp2 : onLine y l ′ using tgt by auto

have tgt3 : accPoint y (applyToSet (wvtFunc m k) (wline m b)) using
tgt by auto

hence tgt3 ′: ∀ ε > 0 . ∃ q ∈ (applyToSet (wvtFunc m k) (wline m

b)) . (y 6= q) ∧ (inBall q ε y)
by auto

{ fix e

assume epos: e > 0

define d1 where d ′: d1 = min d e

have dd: d1 ≤ d using d ′ by auto

have de: d1 ≤ e using d ′ by auto

have d ′pos: d1 > 0 using dpos epos d ′ by auto

then obtain q

where q: q ∈ (applyToSet (wvtFunc m k) (wline m b)) ∧ (y 6=
q) ∧ (inBall q d1 y)

using tgt3 ′ by blast

hence q ∈ (applyToSet (wvtFunc m k) (wline m b)) ∧ (inBall q d

y) ∧ (y 6= q)
using lemBallInBall[of q y d1 d] d ′pos dd by auto

hence q ∈ lBall ∧ (y 6= q) ∧ (inBall q d1 y)
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using q Ball lemSep2Symmetry lBall by auto

hence q ∈ rBall ∧ (y 6= q) ∧ (inBall q e y)
using lemBallInBall[of q y d1 e] d ′pos de equ by auto

hence ∃ q ∈ rBall . (y 6= q) ∧ (inBall q e y) by auto

}
hence rtp3 : ∀ e > 0 . ∃ q ∈ wline k b . (y 6= q) ∧ (inBall q e y)

using rBall by auto

have tgt4 : (∃ p . ( (onLine p l ′) ∧ (p 6= y) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ′ ∈ (applyToSet (wvtFunc m k) (wline

m b)). (
( (y ′ within δ of y) ∧ (y ′ 6= y) )
−→
( ∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within ε of p))))

)
)) using tgt by auto

then obtain p where p: ( (onLine p l ′) ∧ (p 6= y) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ y ′ ∈ (applyToSet (wvtFunc m k) (wline

m b)). (
( (y ′ within δ of y) ∧ (y ′ 6= y) )
−→
( ∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within ε of p))))

)) by auto

have p1 : onLine p l ′ using p by auto

have p2 : p 6= y using p by auto

{ fix e

assume epos: e > 0

then obtain d2 where d2 : (d2 > 0 ) ∧
(∀ y ′ ∈ (applyToSet (wvtFunc m k) (wline m b)). (
( (y ′ within d2 of y) ∧ (y ′ 6= y) )
−→
( ∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within e of p))))

) using p by auto

hence d2pos: d2 > 0 by auto

define dm where dm: dm = min d2 d

have dmd2 : dm ≤ d2 using dm by auto

have dmd: dm ≤ d using dm by auto

have dmpos: dm > 0 using dpos d2pos dm by auto

{ fix y ′

assume y ′: (y ′ ∈ wline k b) ∧ (y ′ within dm of y) ∧ (y ′ 6= y)
hence ydm: y ′ within dm of y by auto

hence y ′ within d of y using dmpos dmd lemBallInBall[of y ′ y

dm d] by auto

hence y ′ ∈ Ball using Ball lemSep2Symmetry by auto

hence y ′ ∈ rBall using y ′ rBall by auto
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hence yL: y ′ ∈ lBall using equ by auto

have y ′ within d2 of y

using ydm dmpos dmd2 lemBallInBall[of y ′ y dm d2 ] by auto

hence y ′ ∈ (applyToSet (wvtFunc m k) (wline m b)) ∧ (y ′ within

d2 of y) ∧ (y ′ 6= y)
using y ′ yL lBall by auto

hence ∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within e of p))
using d2 by auto

}
hence ∃ dm > 0 . ∀ y ′ ∈ (wline k b) .

(y ′ within dm of y) ∧ (y ′ 6= y)
−→ (∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within e

of p)))
using dmpos by blast

}
hence ∀ e > 0 . ∃ dm > 0 . ∀ y ′ ∈ (wline k b) .

(y ′ within dm of y) ∧ (y ′ 6= y)
−→ (∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within e

of p)))
by auto

hence rtp4 : ∃ p . ( (onLine p l ′) ∧ (p 6= y) ∧ (∀ e > 0 . ∃ dm >
0 . ∀ y ′ ∈ (wline k b) .

(y ′ within dm of y) ∧ (y ′ 6= y)
−→ (∃ r . ((onLine r (lineJoining y y ′)) ∧ (r within e

of p)))))
using p1 p2 by auto

hence tangentLine l ′ (wline k b) y using rtp1 rtp2 rtp3 rtp4 by
blast

thus ?thesis by auto

qed

lemma lemTangentLines:
assumes affineApprox A (wvtFunc m k) x

and tl l m b x

and applyAffineToLine A l l ′

and wvtFunc m k x y

shows tl l ′ k b y

proof −
have pres: x ∈ wline m b

−→ tangentLine l (wline m b) x

−→ affineApprox A (wvtFunc m k) x

−→ wvtFunc m k x y

−→ applyAffineToLine A l l ′

−→ tangentLine l ′ (wline k b) y
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using lemPresentation[of x m b l k A y l ′]
by blast

have 1 : x ∈ wline m b using assms(2 ) by auto

have 2 : tangentLine l (wline m b) x using assms(2 ) by auto

have 3 : affineApprox A (wvtFunc m k) x using assms(1 ) by simp

have 4 : wvtFunc m k x y using assms(4 ) by simp

have 5 : applyAffineToLine A l l ′ using assms(3 ) by simp

have tangentLine l ′ (wline k b) y using pres 1 2 3 4 5 by meson

thus ?thesis by auto

qed

lemma lemSelfTangentIsTimeAxis:
assumes tangentLine l (wline k k) x

shows l = timeAxis

proof −
define s where s: s = wline k k

hence s ⊆ timeAxis using s AxSelfMinus by blast

hence xOnAxis: onTimeAxis x using assms(1 ) s by auto

have x: (x ∈ s) ∧ (onLine x l) ∧ (accPoint x s)
∧ (∃ p . ( (onLine p l) ∧ (p 6= x) ∧

(∀ ε > 0 . ∃ δ > 0 . ∀ z ∈ s. (
( (z within δ of x) ∧ (z 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x z)) ∧ (r within ε of

p))))
))) using s assms(1 ) by auto

then obtain p where
p: ( (onLine p l) ∧ (p 6= x) ∧
(∀ ε > 0 . ∃ δ > 0 . ∀ z ∈ s. (
( (z within δ of x) ∧ (z 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x z)) ∧ (r within ε of p))))

)) by auto

have accxs: accPoint x s using x by auto

define p0 where
p0 : p0 = (| tval = tval p, xval = 0 , yval = 0 , zval = 0 |)

hence p0OnAxis: onTimeAxis p0 by auto

define dp where dp: dp = sep2 p p0
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have pp0 : dp = sqr (tval p0 − tval p) + sqr (xval p0 − xval p) +
sqr (yval p0 − yval p) + sqr (zval p0 − zval p)

using dp p0 by simp

moreover have . . . = sqr (xval p) + sqr (yval p) + sqr (zval p)
using p0 by auto

ultimately have dpval: dp = sqr (xval p) + sqr (yval p) + sqr (zval

p)
using dp by simp

define e where e: e = (min dp 1 ) / 2

define e2 where e2 : e2 = sqr e

have e2ledp: e2 ≤ dp

proof −
have msmall: 0 ≤ (min dp 1 ) ≤ 1 using lemNorm2NonNeg dp

by auto

hence esmall: 0 ≤ e < 1 using e leI by force

hence e2lte: e2 ≤ e using e2 mult-left-le by force

have mrange: 0 ≤ (min dp 1 ) ≤ dp using lemNorm2NonNeg dp

by auto

hence e ≤ dp/2 using e divide-right-mono zero-le-numeral by
blast

hence e ≤ dp using msmall e add-increasing2 divide-nonneg-nonneg

le-cases lemSumOfTwoHalves min-def zero-le-numeral

by metis

thus ?thesis using e2lte by auto

qed

have offaxis: ∀ z . (dp > 0 ) ∧ onTimeAxis z −→ ¬ (z within e of

p)
proof −

{ fix z

{ assume z: (dp > 0 ) ∧ onTimeAxis z

have sep2 z p = sqr (tval z − tval p)
+ sqr (xval z − xval p)
+ sqr (yval z − yval p)
+ sqr (zval z − zval p) using p0 by simp

moreover have . . . = sep2 z p0

+ sqr (xval p) + sqr (yval p) + sqr (zval p)
using p0 z by auto

moreover have . . . = sep2 z p0 + dp

using dpval add-assoc

by presburger

moreover have . . . ≥ dp using lemNorm2NonNeg by simp

ultimately have sep2 z p ≥ e2
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using e2ledp dual-order .trans by presburger

}
hence (0 < dp) ∧ onTimeAxis z −→ ¬ (z within e of p)

using e2 by auto

}
thus ?thesis by auto

qed

{ assume dpnz: dp > 0

hence enz: e > 0 using e by auto

then obtain d where d: (d > 0 ) ∧ (∀ z ∈ s. (
( (z within d of x) ∧ (z 6= x) )
−→
( ∃ r . ((onLine r (lineJoining x z)) ∧ (r within e of p)))))

using p by blast

obtain q where q: (q ∈ s) ∧ (x 6= q) ∧ (inBall q d x)
using accxs dpnz enz d by blast

hence qOnAxis: q ∈ timeAxis using s AxSelfMinus by blast

have qprops: (q within d of x) ∧ (q 6= x) using q by auto

then obtain r where r : (onLine r (lineJoining x q)) ∧ (r within

e of p)
using d q by blast

have x 6= q using q by auto

moreover have onLine x timeAxis using xOnAxis lemTimeAxi-

sIsLine by auto

moreover have onLine q timeAxis using qOnAxis lemTimeAxi-

sIsLine by auto

ultimately have timeAxis = lineJoining x q

using lemLineAndPoints[of x q timeAxis]
by auto

hence rOnAxis: (onTimeAxis r) using r by auto

hence ¬ (r within e of p) using offaxis dpnz by blast

hence False using r by blast

}
hence ¬ (dp > 0 ) ∧ (dp ≥ 0 ) using lemNorm2NonNeg dp by auto

hence dp = 0 by auto

hence p = p0 using dp lemNullImpliesOrigin[of p ⊖ p0 ] by auto

hence onLine p timeAxis using p0OnAxis lemTimeAxisIsLine by
auto
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moreover have onLine x timeAxis using xOnAxis lemTimeAxisIs-

Line by auto

moreover have pnotx: p 6= x using p by blast

ultimately have xp: timeAxis = lineJoining x p

using lemLineAndPoints[of x p timeAxis]
by auto

have onLine p l using p by auto

moreover have onLine x l using x by auto

ultimately have l = lineJoining x p

using lemLineAndPoints[of x p l] pnotx

by auto

hence timeAxis = l using xp by auto

thus ?thesis using s by blast

qed

lemma lemTangentLineUnique:
assumes tl l1 m k x

and tl l2 m k x

and affineApprox A (wvtFunc m k) x

and wvtFunc m k x y

and x ∈ wline m k

shows l1 = l2

proof −
define L1 where L1 : L1 = applyToSet (asFunc A) l1

define L2 where L2 : L2 = applyToSet (asFunc A) l2

define p1 where p1 : p1 = (x ∈ wline m k)
define p2a where p2a: p2a = tangentLine l1 (wline m k) x

define p2b where p2b: p2b = tangentLine l2 (wline m k) x

define p3 where p3 : p3 = affineApprox A (wvtFunc m k) x

define p4 where p4 : p4 = wvtFunc m k x y

define p5a where p5a: p5a = applyAffineToLine A l1 L1

define p5b where p5b: p5b = applyAffineToLine A l2 L2

define tgt1 where tgt1 : tgt1 = tangentLine L1 (wline k k) y

define tgt2 where tgt2 : tgt2 = tangentLine L2 (wline k k) y

have pre1 : p1 using p1 assms(5 ) by auto

have pre2a: p2a using p2a assms(1 ) by auto

have pre2b: p2b using p2b assms(2 ) by auto

have pre3 : p3 using p3 assms(4 ) using assms(3 ) by auto

have pre4 : p4 using p4 assms(4 ) by auto

have isLine l1 using assms(1 ) by auto

hence pre5a: p5a using p5a L1 assms(3 ) lemAffineOfLineIsLine[of
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l1 A L1 ] by auto

have isLine l2 using assms(2 ) by auto

hence pre5b: p5b using p5b L2 assms(3 ) lemAffineOfLineIsLine[of

l2 A L2 ] by auto

have [[ p1 ; p2a; p3 ; p4 ; p5a ]] =⇒ tgt1

using p1 p2a p3 p4 p5a tgt1 lemPresentation[of x m k l1 k A y L1 ]
by fast

hence tgt1 using pre1 pre2a pre3 pre4 pre5a by auto

hence L1axis: L1 = timeAxis using tgt1 lemSelfTangentIsTimeAxis

by auto

have [[ p1 ; p2b; p3 ; p4 ; p5b ]] =⇒ tgt2

using p1 p2b p3 p4 p5b tgt2 lemPresentation[of x m k l2 k A y L2 ]
by fast

hence tgt2 using pre1 pre2b pre3 pre4 pre5b by auto

hence L2 = timeAxis using tgt2 lemSelfTangentIsTimeAxis by auto

hence L1L2 : L1 = L2 using L1axis by auto

obtain A ′ where A ′: (affine A ′) ∧ (∀ p q . A p = q ←→ A ′ q = p)
using assms(3 ) lemInverseAffine[of A] by auto

{ fix p

define q where q: q = A p

hence A ′q: A ′ q = p using A ′ by auto

{ assume p ∈ l1

hence q ∈ L2 using q L1 L1L2 by auto

then obtain p2 where p2 : q = A p2 ∧ p2 ∈ l2 using L2 by
auto

hence A ′ q = p2 using A ′ by auto

hence p = p2 using A ′q by auto

hence p ∈ l2 using p2 by auto

}
hence l2r : p ∈ l1 −→ p ∈ l2 by blast

{ assume p ∈ l2

hence q ∈ L1 using q L2 L1L2 by auto

then obtain p1 where p1 : q = A p1 ∧ p1 ∈ l1 using L1 by
auto

hence A ′ q = p1 using A ′ by auto

hence p = p1 using A ′q by auto

hence p ∈ l1 using p1 by auto

}
hence p ∈ l2 −→ p ∈ l1 by blast
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hence p ∈ l1 ←→ p ∈ l2 using l2r by auto

}

thus ?thesis by blast

qed

end

end

25 Proposition2

This theory shows that affine approximations map surfaces of
cones to (subsets of) surfaces of cones.

theory Proposition2

imports TangentLineLemma

begin

class Proposition2 = TangentLineLemma

begin

lemma lemProposition2 :
assumes affineApprox A (wvtFunc m k) x

shows applyToSet (asFunc A) (coneSet m x) ⊆ coneSet k (A x)
proof −

define y where y: y = A x

define lhs where lhs: lhs = applyToSet (asFunc A) (coneSet m x)
define rhs where rhs: rhs = coneSet k y

have mkxy: wvtFunc m k x y

using assms lemAffineEqualAtBase[of wvtFunc m k A x] y

by auto

have affA: affine A using assms by auto

{ fix q

{ assume q: q ∈ lhs

hence ∃ p . (p ∈ coneSet m x) ∧ (asFunc A) p q using lhs by
auto

then obtain p where
p: (p ∈ coneSet m x) ∧ (asFunc A) p q

by presburger
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hence qAp: q = A p using affA by auto

have cone m x p using p by auto

then obtain l where
l: (onLine p l) ∧ (onLine x l) ∧ (∃ ph . Ph ph ∧ tl l m ph x)
by auto

then obtain ph where ph: Ph ph ∧ tl l m ph x by auto

have lineL: isLine l using l by auto

have tll: tl l m ph x using ph by auto

define l ′ where l ′: l ′ = applyToSet (asFunc A) l

hence aatl: applyAffineToLine A l l ′

using lineL affA lemAffineOfLineIsLine[of l A l ′]
by simp

hence tll ′: tl l ′ k ph y

using assms(1 ) tll mkxy

lemTangentLines[of m k A x ph l l ′ y]
by simp

hence (Ph ph ∧ tl l ′ k ph y)
using ph by auto

hence exPh: ∃ ph . (Ph ph ∧ tl l ′ k ph y)
using exI [of λ b. (Ph b ∧ tl l ′ k b y) ph]
by auto

have p ∈ l using l by auto

hence q ∈ l ′ using qAp q l ′ by auto

moreover have lineL ′: isLine l ′ using tll ′ by auto

ultimately have qonl ′: onLine q l ′ by auto

hence (onLine q l ′) ∧ (onLine y l ′) ∧ (∃ ph . Ph ph ∧ tl l ′ k ph

y)
using exPh tll ′ by blast

hence q ∈ rhs using y tll ′ rhs by auto

}
hence q ∈ lhs −→ q ∈ rhs by auto

}
hence l2r : lhs ⊆ rhs by auto

thus ?thesis using lhs rhs y by auto

qed

end
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end

26 AXIOM: AxEventMinus

This theory declares the axiom AxEventMinus

theory AxEventMinus

imports WorldView

begin

AxEventMinus: An observer encounters the events in which they
are observed.

class axEventMinus = WorldView

begin

abbreviation axEventMinus :: Body ⇒ Body ⇒ ′a Point ⇒ bool

where axEventMinus m k p ≡ (m sees k at p)
−→ (∃ q . ∀ b . ( (m sees b at p) ←→ (k sees b at q)))

end

class AxEventMinus = axEventMinus +
assumes AxEventMinus: ∀ m k p . axEventMinus m k p

begin
end

end

27 Proposition3

This theory collects together earlier results to show that world-
view transformations can be approximated by affine transforma-
tions that have various useful properties.

theory Proposition3

imports Proposition1 Proposition2 AxEventMinus

begin

class Proposition3 = Proposition1 + Proposition2 + AxEventMinus

begin
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lemma lemProposition3 :
assumes m sees k at x

shows ∃ A y . (wvtFunc m k x y)
∧ (affineApprox A (wvtFunc m k) x)
∧ (applyToSet (asFunc A) (coneSet m x) ⊆ coneSet k y)
∧ (coneSet k y = regularConeSet y)

proof −
define g1 where g1 : g1 = (λ y . wvtFunc m k x y)
define g2 where g2 : g2 = (λ A . affineApprox A (wvtFunc m k) x)
define g3 where g3 : g3 = (λ A y . applyToSet (asFunc A) (coneSet

m x) ⊆ coneSet k y)
define g4 where g4 : g4 = (λ y . coneSet k y = regularConeSet y)

have axEventMinus m k x using AxEventMinus by simp

hence (∃ q . ∀ b . ( (m sees b at x) ←→ (k sees b at q)))
using assms by simp

then obtain y where y: ∀ b . ( (m sees b at x) ←→ (k sees b at

y)) by auto

hence ev m x = ev k y by blast

hence goal1 : g1 y using assms g1 by auto

have axDiff m k x using AxDiff by simp

hence ∃ A . affineApprox A (wvtFunc m k) x using g1 goal1 by
blast

then obtain A where goal2 : g2 A using g2 by auto

have applyToSet (asFunc A) (coneSet m x) ⊆ coneSet k (A x)
using g2 goal2 lemProposition2 [of m k A x]
by auto

moreover have A x = y

using goal1 goal2 g1 g2 lemAffineEqualAtBase[of wvtFunc m k A

x]
by blast

ultimately have goal3 : g3 A y using g3 by auto

have k sees k at y using assms(1 ) g1 goal1 by fastforce

hence ∀ p . cone k y p = regularCone y p

using lemProposition1 [of y k] by auto

hence goal4 : g4 y using g4 by force

hence ∃ A y . (g1 y) ∧ (g2 A) ∧ (g3 A y) ∧ (g4 y)
using goal1 goal2 goal3 goal4 by blast
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thus ?thesis using g1 g2 g3 g4 by fastforce

qed

end

end

28 ObserverConeLemma

This theory gives sufficient conditions for an observed observer’s
cone to appear upright to that observer.

theory ObserverConeLemma

imports Proposition3

begin

class ObserverConeLemma = Proposition3

begin

lemma lemConeOfObserved:
assumes affineApprox A (wvtFunc m k) x

and m sees k at x

shows coneSet k (A x) = regularConeSet (A x)
proof −

have Ax: ∀ y. (wvtFunc m k x y) ←→ (y = A x)
using assms(1 ) lemAffineEqualAtBase[of (wvtFunc m k) A x ]
by auto

define set1 where set1 : set1 = coneSet k (A x)
define set2 where set2 : set2 = regularConeSet (A x)
define P where P: P = (λ A ′ y . (wvtFunc m k x y)

∧ (affineApprox A ′ (wvtFunc m k) x)
∧ (applyToSet (asFunc A ′) (coneSet m x) ⊆ coneSet k

y)
∧ (coneSet k y = regularConeSet y))

have m sees k at x using assms(2 ) by auto

hence ∃ A ′ y . P A ′ y using P lemProposition3 [of m k x] by fast

then obtain A ′ y where A ′y: P A ′ y by auto

have wvtFunc m k x y using P A ′y by auto

hence y = A x using Ax by auto

moreover have coneSet k y = regularConeSet y using A ′y P by
auto

ultimately show ?thesis using set1 set2 by auto

qed
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end

end

29 Quadratics

This theory shows how to find the roots of a quadratic, assuming
that roots exist (AxEField).

theory Quadratics

imports Functions AxEField

begin

class Quadratics = Functions + AxEField

begin

abbreviation quadratic :: ′a ⇒ ′a ⇒ ′a ⇒ ( ′a ⇒ ′a)
where quadratic a b c ≡ λ x . a∗(sqr x) + b∗x + c

abbreviation qroot :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool

where qroot a b c r ≡ (quadratic a b c) r = 0

abbreviation qroots :: ′a ⇒ ′a ⇒ ′a ⇒ ′a set

where qroots a b c ≡ { r . qroot a b c r }

abbreviation discriminant :: ′a ⇒ ′a ⇒ ′a ⇒ ′a

where discriminant a b c ≡ (sqr b) − 4∗a∗c

abbreviation qcase1 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase1 a b c ≡ (a = 0 ∧ b = 0 ∧ c = 0 )
abbreviation qcase2 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase2 a b c ≡ (a = 0 ∧ b = 0 ∧ c 6= 0 )
abbreviation qcase3 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase3 a b c ≡ (a = 0 ∧ b 6= 0 ∧ (c = 0 ∨ c 6=0 ))
abbreviation qcase4 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase4 a b c ≡ (a 6= 0 ∧ discriminant a b c < 0 )
abbreviation qcase5 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase5 a b c ≡ (a 6= 0 ∧ discriminant a b c = 0 )
abbreviation qcase6 :: ′a ⇒ ′a ⇒ ′a ⇒ bool

where qcase6 a b c ≡ (a 6= 0 ∧ discriminant a b c > 0 )

lemma lemQuadRootCondition:
assumes a 6= 0

shows (sqr (2∗a∗r + b) = discriminant a b c) ←→ qroot a b c r
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proof −
have sqr (2∗a∗r) = (4∗a) ∗ (a ∗ sqr r)
using lemSqrMult local.numeral-sqr mult-assoc sqr .simps(1 ) sqr .simps(2 )
by metis

moreover have 2∗(2∗a∗r)∗b = (4∗a) ∗ (b∗r)
by (metis dbl-def dbl-simps(5 ) mult.left-commute mult-2 mult-2-right

mult-assoc)
ultimately have s: sqr (2∗a∗r) + 2∗(2∗a∗r)∗b = (4∗a) ∗ ((a ∗

sqr r) + b ∗r)
by (simp add: local.distrib-left)

have sqr(2∗a∗r + b) = sqr (2∗a∗r) + 2∗(2∗a∗r)∗b + sqr b

using lemSqrSum by auto

moreover have . . . = (4∗a) ∗ ((a ∗ sqr r) + b ∗r) + sqr b using
s by auto

moreover have . . . = (4∗a) ∗ ((a ∗ sqr r) + b ∗r + c) − (4∗a)∗c
+ sqr b

by (simp add: distrib-left)
ultimately have eqn1 : sqr(2∗a∗r + b) = (4∗a)∗(quadratic a b c r)

+ (discriminant a b c)
by (simp add: add-diff-eq diff-add-eq)

{ assume qroot a b c r

hence sqr (2∗a∗r + b) = discriminant a b c using eqn1 by simp

}
hence l2r : qroot a b c r −→ sqr (2∗a∗r + b) = discriminant a b c

by auto

{ assume sqr (2∗a∗r + b) = discriminant a b c

hence 0 = (4∗a)∗(quadratic a b c r) using eqn1 by auto

hence qroot a b c r by (metis assms divisors-zero zero-neq-numeral)
}
hence (sqr (2∗a∗r + b) = discriminant a b c) −→ qroot a b c r by

blast

thus ?thesis using l2r by blast

qed

lemma lemQuadraticCasesComplete:
shows qcase1 a b c ∨ qcase2 a b c ∨ qcase3 a b c ∨ qcase4 a b c ∨

qcase5 a b c ∨ qcase6 a b c

using not-less-iff-gr-or-eq by blast

lemma lemQCase1 :
assumes qcase1 a b c

shows ∀ r . qroot a b c r

using assms by simp
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lemma lemQCase2 :
assumes qcase2 a b c

shows ¬ (∃ r . qroot a b c r)
by (simp add: assms)

lemma lemQCase3 :
assumes qcase3 a b c

shows qroot a b c r ←→ r = −c/b

proof −
have qroot a b c r −→ r = −c/b

proof −
{ assume hyp: qroot a b c r

hence b∗r + c = 0 using assms by auto

hence b∗r = −c by (simp add: local.eq-neg-iff-add-eq-0 )
hence r = −c/b by (metis assms local.nonzero-mult-div-cancel-left)
}
thus ?thesis by auto

qed
moreover have r = −c/b −→ qroot a b c r by (simp add: assms)
ultimately show ?thesis by blast

qed

lemma lemQCase4 :
assumes qcase4 a b c

shows ¬ (∃ r . qroot a b c r)
proof −

have props: (a 6= 0 ∧ discriminant a b c < 0 ) using assms by auto

{ assume hyp: ∃ r . qroot a b c r

then obtain r where r : qroot a b c r by auto

hence sqr (2 ∗ a ∗ r + b) = discriminant a b c

using props lemQuadRootCondition[of a r b c] by auto

hence sqr (2∗a∗r + b) < 0 using props by auto

hence False using lemSquaresPositive by auto

}
thus ?thesis by auto

qed

lemma lemQCase5 :
assumes qcase5 a b c

shows qroot a b c r ←→ r = −b/(2∗a)
proof −
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have qroot a b c r −→ r = −b/(2∗a)
proof −

{ assume hyp: qroot a b c r

hence sqr (2 ∗ a ∗ r + b) = 0

using assms lemQuadRootCondition[of a r b c] by auto

hence 2∗a∗r + b = 0 by simp

hence 2∗a∗r = −b using local.eq-neg-iff-add-eq-0 by auto

moreover have 2∗a 6= 0 using assms by auto

ultimately have r = ((−b)/(2∗a)) by (metis local.nonzero-mult-div-cancel-left)
}
thus ?thesis by auto

qed
moreover have r = −b/(2∗a) −→ qroot a b c r

proof −
{ assume hyp: r = −b/(2∗a)

hence (2∗a)∗r + b = discriminant a b c by (simp add: assms)
hence qroot a b c r using lemQuadRootCondition[of a r b c]

assms by auto

}
thus ?thesis by auto

qed
ultimately show ?thesis by blast

qed

lemma lemQCase6 :
assumes qcase6 a b c

and rd = sqrt (discriminant a b c)
and rp = ((−b) + rd) / (2∗a)
and rm = ((−b) − rd) / (2∗a)

shows (rp 6= rm) ∧ qroots a b c = { rp, rm }
proof −

define d where d: d = discriminant a b c

have dpos: d > 0 using assms d by auto

hence rootd: hasUniqueRoot d using AxEField lemSqrt[of d] by
auto

hence rdprops: 0 ≤ rd ∧ d = sqr rd

using assms(2 ) d theI ′[of isNonNegRoot d] by auto

hence rdnot0 : rd 6= 0 using assms dpos mult-nonneg-nonpos by
auto

hence rdpos: rd > 0 using rdprops by auto

define pp where pp: pp = (−b) + rd

define mm where mm: mm = (−b) − rd

have rd 6= −rd using rdnot0 by simp

hence pp 6= mm using pp mm add-left-imp-eq[of −b rd −rd] by
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auto

moreover have aa: 2∗a 6= 0 using assms by auto

ultimately have pp/(2∗a) 6= mm/(2∗a) by auto

hence conj1 : rp 6= rm using assms pp mm by simp

have conj2 : qroots a b c = {rp, rm}
proof −

{ fix r assume r ∈ qroots a b c

hence sqr (2∗a∗r + b) = d

using assms lemQuadRootCondition d by auto

hence sqrt d = abs (2∗a∗r + b) using lemSqrtOfSquare by blast

moreover have sqrt d = rd using d assms by auto

ultimately have rdprops: rd = abs (2∗a∗r + b) by auto

define v :: ′a where v: v = 2∗a∗r + b

hence vnot0 : v 6= 0 using rdprops rdnot0 by simp

hence cases: (v < 0 ) ∨ (v > 0 ) by auto

{ assume v < 0

hence 2∗a∗r + b = −rd using v rdprops

by (metis local.abs-if local.minus-minus)
hence 2∗a∗r = (−b) − rd

by (metis local.add-diff-cancel-right ′ local.minus-diff-commute)
hence r = rm using aa assms(4 )

by (metis local.nonzero-mult-div-cancel-left)
}
hence case1 : v < 0 −→ r = rm by auto

{ assume v > 0

hence 2∗a∗r + b = rd using v rdprops by simp

hence 2∗a∗r = (−b) + rd by auto

hence r = rp using aa assms(3 )
by (metis local.nonzero-mult-div-cancel-left)

}
hence v > 0 −→ r = rp by auto

hence r = rm ∨ r = rp using case1 cases by blast

hence r ∈ { rm, rp } by blast

}
hence ∀ r . r ∈ qroots a b c −→ r ∈ { rm, rp } by blast

hence l2r : qroots a b c ⊆ {rm, rp} by auto

have rootm: qroot a b c rm

proof −
have rm = ((−b) − rd) / (2∗a) using assms by auto

hence (2∗a)∗rm = (−b) − rd using aa by simp

hence (2∗a)∗rm + b = − rd by (simp add: local.diff-add-eq)
hence sqr( (2∗a)∗rm + b ) = sqr rd by simp

moreover have . . . = discriminant a b c
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using assms(2 ) rootd d lemSquareOfSqrt[of discriminant a b c

rd] by auto

ultimately show ?thesis

using assms lemQuadRootCondition[of a rm b c] by auto

qed

have rootp: qroot a b c rp

proof −
have rp = ((−b) + rd) / (2∗a) using assms by auto

hence (2∗a)∗rp = (−b) + rd using aa by simp

hence (2∗a)∗rp + b = rd by (simp add: local.diff-add-eq)
hence sqr( (2∗a)∗rp + b ) = sqr rd by simp

moreover have . . . = discriminant a b c

using assms(2 ) rootd d lemSquareOfSqrt[of discriminant a b c

rd] by auto

ultimately show ?thesis

using assms lemQuadRootCondition[of a rp b c] by auto

qed

hence {rm, rp} ⊆ qroots a b c using rootm rootp by auto

thus ?thesis using l2r by blast

qed

thus ?thesis using conj1 by blast

qed

lemma lemQuadraticRootCount:
assumes ¬(qcase1 a b c)
shows finite (qroots a b c) ∧ card (qroots a b c) ≤ 2

proof −
define d where d: d = discriminant a b c

have case1 : qcase1 a b c −→ ?thesis using assms by auto

moreover have case2 : qcase2 a b c −→ ?thesis using lemQCase2

by auto

moreover have case3 : qcase3 a b c −→ ?thesis using lemQCase3

by auto

moreover have case4 : qcase4 a b c −→ ?thesis using lemQCase4

by auto

moreover have case5 : qcase5 a b c −→ ?thesis using lemQCase5

by auto

moreover have case6 : qcase6 a b c −→ ?thesis using lemQCase6

card-2-iff by auto

ultimately show ?thesis using lemQuadraticCasesComplete by
blast

qed
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end

end

30 Classification

This theory explains how to establish whether a point lies inside,
on or outside a cone.

theory Classification

imports Cones Quadratics CauchySchwarz

begin

We want to establish where a point lies in relation to a cone, and
will later show that this relationship is preserved under relevant
affine transformations. We therefore need a classification scheme
that relies on purely affine concepts. To do this we consider lines
that can be drawn through the point, and ask how many points
lie in the intersection of such a line and the cone.

class Classification = Cones + Quadratics + CauchySchwarz

begin

abbreviation vertex :: ′a Point ⇒ ′a Point ⇒ bool

where vertex x p ≡ (x = p)

abbreviation insideRegularCone :: ′a Point ⇒ ′a Point ⇒ bool

where insideRegularCone x p ≡
(slopeFinite x p) ∧ (∃ v ∈ lineVelocity (lineJoining x p) . sNorm2

v < 1 )

abbreviation outsideRegularCone :: ′a Point ⇒ ′a Point ⇒ bool

where outsideRegularCone x p ≡
(x 6= p) ∧
((slopeInfinite x p) ∨ (∃ v ∈ lineVelocity (lineJoining x p) .

sNorm2 v > 1 ))

abbreviation onRegularCone :: ′a Point ⇒ ′a Point ⇒ bool

where onRegularCone x p ≡ (x = p) ∨ (∃ v ∈ lineVelocity (lineJoining

x p) . sNorm2 v = 1 )
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lemma lemDrtnLineJoining:
assumes l = lineJoining x p

and x 6= p

shows (p ⊖ x) ∈ drtn l

proof −
define d where d: d = (p ⊖ x)
have lprops: onLine x l ∧ onLine p l

using assms(1 ) lemLineJoiningContainsEndPoints by blast

hence ∃ x p . (x 6= p) ∧ (onLine x l) ∧ (onLine p l) ∧ (d = (p ⊖
x))

using assms(2 ) d by blast

thus ?thesis using d by auto

qed

lemma lemVelocityLineJoining:
assumes l = lineJoining x p

and v = velocityJoining origin (p ⊖ x)
and x 6= p

shows v ∈ lineVelocity l

proof −
define d where d: d = (p ⊖ x)
hence d ∈ drtn l using assms lemDrtnLineJoining by auto

hence ∃ d ∈ drtn l . v = velocityJoining origin d using assms d

by blast

thus ?thesis by auto

qed

lemma lemSlopeLineJoining:
assumes l = lineJoining p q

and p 6= q

shows lineSlopeFinite l ←→ slopeFinite p q

proof −
have pql: onLine p l ∧ onLine q l

using assms(1 ) lemLineJoiningContainsEndPoints by auto

have l2r : lineSlopeFinite l −→ slopeFinite p q

proof −
{ assume lineSlopeFinite l

then obtain x y

where xy: (onLine x l) ∧ (onLine y l) ∧ (x 6= y) ∧ (slopeFinite

x y) by blast

hence lxy: l = lineJoining x y using lemLineAndPoints[of x y l]
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by auto

define tdiff where tdiff : tdiff = tval y − tval x

hence tdnot0 : tdiff 6= 0 using xy by auto

obtain a where a: p = (x ⊕ (a ⊗ (y⊖x))) using pql lxy by auto

hence tvalp: tval p = tval x + a∗(tval y − tval x) by simp

obtain b where b: q = (x ⊕ (b ⊗ (y⊖x))) using pql lxy by auto

hence tvalq: tval q = tval x + b∗(tval y − tval x) by simp

have anotb: b − a 6= 0 using a b assms(2 ) by auto

have tval q − tval p = (b − a)∗tdiff

using tdiff tvalp tvalq

by (simp add: local.left-diff-distrib ′)
hence slopeFinite p q using anotb tdnot0

by (metis local.diff-self local.divisors-zero)
}
thus ?thesis by auto

qed

have r2l: slopeFinite p q −→ lineSlopeFinite l using pql assms(2 )
by blast

thus ?thesis using l2r by blast

qed

lemma lemVelocityJoiningUsingPoints:
assumes p 6= q

shows velocityJoining p q = velocityJoining origin (q⊖p)
proof −

define t1 where t1 : t1 = tval p − tval q

define t2 where t2 : t2 = tval origin − tval (q⊖p)
define v1 where v1 : v1 = (p⊖q)
define v2 where v2 : v2 = (origin⊖(q⊖p))

have ts: t1 = t2 using t1 t2 by simp

{ assume slopeFinite p q

hence (tval origin) − (tval (q⊖p)) 6= 0 by simp

hence sf2 : slopeFinite origin (q⊖p) using diff-self by metis

hence sloper p q = sloper origin (q⊖p) using t2 v2 sloper .simps

by auto

hence ?thesis by auto

}
hence sf : slopeFinite p q −→ ?thesis by auto

{ assume hyp: ¬ (slopeFinite p q)
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hence ¬ (slopeFinite origin (q⊖p)) using t1 t2 ts by simp

hence sloper p q = sloper origin (q⊖p) using hyp by simp

hence ?thesis by auto

}
thus ?thesis using sf by blast

qed

lemma lemLineVelocityNonZeroImpliesFinite:
assumes u ∈ lineVelocity l

and sNorm2 u 6= 0

shows lineSlopeFinite l

proof −
have u ∈ { u . ∃ d ∈ drtn l . u = velocityJoining origin d } using

assms(1 ) by auto

then obtain d where d: d ∈ drtn l ∧ u = velocityJoining origin d

by blast

hence d ∈ { d . ∃ p q . (p 6= q) ∧ (onLine p l) ∧ (onLine q l) ∧ (d
= (q ⊖ p)) }

by auto

then obtain p q where pq: (p 6= q) ∧ (onLine p l) ∧ (onLine q l)
∧ (d = (q ⊖ p))

by blast

hence upq: u = velocityJoining p q using lemVelocityJoiningUsing-

Points d by auto

{ assume slopeInfinite p q

hence sloper p q = origin by simp

hence u = sOrigin using upq by simp

hence False using assms(2 ) by auto

}
hence slopeFinite p q by auto

thus ?thesis using pq by blast

qed

lemma lemLineVelocityUsingPoints:
assumes slopeFinite p q

and onLine p l ∧ onLine q l

shows lineVelocity l = { velocityJoining p q }
proof −

define v where v: v = velocityJoining p q

hence v ′: v = velocityJoining origin (q⊖p)
using lemVelocityJoiningUsingPoints[of p q] assms(1 ) by blast

have pnotq: p 6= q using assms(1 ) by auto

hence l: l = lineJoining p q using lemLineAndPoints[of p q l] assms

by auto
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hence vinlv: v ∈ lineVelocity l

using lemVelocityLineJoining[of l p q v] v ′ assms by blast

hence r2l: {v} ⊆ lineVelocity l by blast

{ fix u assume u: u ∈ lineVelocity l

hence u = v

using vinlv pnotq assms lemFiniteLineVelocityUnique[of u l v] by
blast

}
hence lineVelocity l ⊆ {v} by blast

thus ?thesis using r2l v by blast

qed

lemma lemSNorm2VelocityJoining:
assumes slopeFinite x p

and v = velocityJoining x p

shows sqr (tval p − tval x) ∗ sNorm2 v = sNorm2 (sComponent

(p⊖x))
proof −

have sloper x p = ((1 / (tval x − tval p)) ⊗ (x ⊖ p)) using assms(1 )
by auto

hence v = ((1/(tval x − tval p))⊗s (sComponent(x ⊖ p))) using
assms(2 ) by simp

hence sNorm2 v = sqr (1/ (tval x − tval p)) ∗ sNorm2 (sComponent

(x⊖p))
using lemSNorm2OfScaled assms(1 ) by blast

also have . . . = sqr (1/ (tval p − tval x)) ∗ sNorm2 (sComponent

(p⊖x))
using lemSSep2Symmetry assms(1 ) lemSqrDiffSymmetrical by

simp

finally show ?thesis using assms(1 ) by simp

qed

lemma lemOrthogalSpaceVectorExists:
shows ∃ w . (w 6= sOrigin) ∧ (w ⊙s v) = 0

proof −
obtain x y z where xyz: v = mkSpace x y z using Space.cases by

blast

define w where w: w = (if x = 0 then (mkSpace 1 0 0 )
else (mkSpace (y/x) (−1 ) 0 ))

have wnot0 : (w 6= sOrigin) using w by simp

moreover have orth: (w ⊙s v) = 0

proof −
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{ assume x0 : x = 0

hence w = mkSpace 1 0 0 using w by simp

hence (w ⊙s v) = 0 using x0 xyz by simp

}
hence case0 : x = 0 −→ ?thesis by blast

{ assume xnot0 : x 6= 0

hence w = mkSpace (y/x) (−1 ) 0 using w by simp

hence (w ⊙s v) = 0 using xnot0 xyz by simp

}
hence x 6= 0 −→ ?thesis by blast

thus ?thesis using case0 by blast

qed
ultimately show ?thesis by force

qed

lemma lemNonParallelVectorsExist:
shows ∃ w . ((w 6= origin) ∧ (tval v = tval w)) ∧ (¬ (∃ α . (α 6=

0 ) ∧ v = (α ⊗ w)))
proof −

have cases: xval v = 0 ∨ xval v 6= 0 by auto

{ assume case1 : xval v = 0

define diff where diff : diff = (if ((v ⊕ xUnit) = origin) then

(2⊗xUnit) else xUnit)
define w where w: w = (v ⊕ diff )
hence w1 : (xval w) = 1 using case1 diff by auto

{ assume ∃ α . (α 6= 0 ) ∧ v = (α ⊗ w)
then obtain a where a: (a 6= 0 ) ∧ v = (a ⊗ w) by auto

hence xval v = a ∗ xval w by simp

hence 0 = a ∗ 1 using case1 w1 by auto

hence a = 0 by auto

hence False using a by blast

}
hence (¬ (∃ α . (α 6= 0 ) ∧ v = (α ⊗ w))) by auto

moreover have tval v = tval w using w diff by auto

ultimately have (w 6= origin) ∧ (tval v = tval w) ∧ (¬ (∃ α . (α
6= 0 ) ∧ v = (α ⊗ w)))

using w1 by auto

}
hence lhs: xval v = 0 −→ ?thesis by blast

{ assume case2 : xval v 6= 0

define w where w: w = (v ⊕ yUnit)
hence wx: xval w = xval v using case2 by auto

have wy: yval w = yval v + 1 using w by auto

{ assume ∃ α . (α 6= 0 ) ∧ v = (α ⊗ w)
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then obtain a where a: (a 6= 0 ) ∧ v = (a ⊗ w) by auto

hence xv: xval v = a ∗ xval w by simp

hence a1 : xval v = a ∗ xval v using wx by simp

hence a = 1 using case2 by simp

hence yval v = yval w using a by auto

hence False using wy by auto

}
hence (¬ (∃ α . (α 6= 0 ) ∧ v = (α ⊗ w))) by auto

moreover have tval v = tval w using w by auto

moreover have xval w 6= 0 using w case2 by auto

ultimately have (w 6= origin) ∧(tval v = tval w) ∧ (¬ (∃ α . (α
6= 0 ) ∧ v = (α ⊗ w)))

by auto

}
hence rhs: xval v 6= 0 −→ ?thesis by blast

thus ?thesis using cases lhs by auto

qed

lemma lemConeContainsVertex:
shows regularCone x x

proof −
define d where d: d = (tUnit ⊕ xUnit)
define p where p: p = (d ⊕ x)
define l where l: l = lineJoining x p

define v where v: v = velocityJoining origin d

have xnotp: x 6= p

proof −
{ assume x = p

hence (d ⊕ x) = x using p by auto

hence d = origin using add-cancel-left-left

by (metis dot.simps lemDotSumRight lemNullImpliesOrigin)
hence False using d by auto

}
thus ?thesis by auto

qed
moreover have d = (p ⊖ x) using p by auto

ultimately have vel: v ∈ lineVelocity l

using l v d lemVelocityLineJoining[of l x p v] by blast

have lprops: onLine x l ∧ onLine p l

using xnotp l lemLineAndPoints[of x p l] by auto

have slope: sNorm2 v = 1

proof −
define sx where sx: sx = (| svalx = 1 , svaly = 0 , svalz = 0 |)
have slopeFinite origin d using d by auto
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hence sloper origin d = ((1 / ((tval origin) − (tval d))) ⊗ (origin

⊖ d)) by simp

moreover have . . . = ((−1 ) ⊗ (origin ⊖ d)) using d by auto

moreover have . . . = d by auto

ultimately have sloper origin d = d by simp

hence velocityJoining origin d = sComponent d by simp

hence v = sx using v d sx by auto

thus ?thesis using sx by auto

qed

hence v ∈ lineVelocity l ∧ sNorm2 v = 1 using vel by auto

hence ∃ l . (onLine x l) ∧(∃ v ∈ lineVelocity l . sNorm2 v = 1 )
using lprops by blast

thus ?thesis by blast

qed

lemma lemConesExist:
shows regularConeSet x 6= {}

proof −
have x ∈ regularConeSet x using lemConeContainsVertex by auto

thus ?thesis by blast

qed

lemma lemRegularCone:
shows ((x = p) ∨ onRegularCone x p) ←→ regularCone x p

proof −
define l where l: l = lineJoining x p

hence lprops: onLine p l ∧ onLine x l

using lemLineJoiningContainsEndPoints by auto

define LHS where LHS : LHS = ((x = p) ∨ (onRegularCone x p))
define RHS where RHS : RHS = (regularCone x p)

have LHS −→ RHS

proof −
{ assume x = p

hence ?thesis using RHS lemConeContainsVertex by auto

}
hence case1 : x = p −→ regularCone x p using LHS RHS by auto

{ assume x 6=p ∧ onRegularCone x p

then obtain v where v: v ∈ lineVelocity l ∧ sNorm2 v = 1

using l by blast

hence ∃ l . (onLine p l) ∧ (onLine x l) ∧ (∃ v ∈ lineVelocity l .
sNorm2 v = 1 )

using lprops by blast

}
thus ?thesis using case1 LHS RHS by blast
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qed

moreover have RHS −→ LHS

proof −
{ assume rhs: RHS

have cases: x = p ∨ x 6= p by auto

have case1 : x = p −→ (x = p ∨ onRegularCone x p) by auto

{ assume xnotp: x 6= p

then obtain l1 where
l1 : (onLine x l1 ) ∧ (onLine p l1 )

∧ (∃ v ∈ lineVelocity l1 . sNorm2 v = 1 )
using rhs RHS by blast

hence l1 = l using xnotp l l1 lemLineAndPoints[of x p l1 ] by
auto

hence ∃ v ∈ lineVelocity l . sNorm2 v = 1 using l1 by blast

hence onRegularCone x p using l by blast

hence (x = p ∨ onRegularCone x p) by blast

}
hence case2 : x 6= p −→ LHS

using l lprops LHS by blast

hence (x = p ∨ onRegularCone x p) using cases case1 LHS by
blast

}
thus ?thesis using LHS RHS by auto

qed

ultimately have LHS ←→ RHS by blast

thus ?thesis using LHS RHS by fastforce

qed

lemma lemSlopeInfiniteImpliesOutside:
assumes x 6= p

and slopeInfinite x p

shows ∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {})
proof −

define dxp where dxp: dxp = (x ⊖ p)
hence x = (dxp ⊕ p) by simp

hence xdxp: x = (p ⊕ dxp) using add-commute by blast

have xp: tval x = tval p using assms(2 ) by blast

hence tvaldxp: tval dxp = 0 using dxp by simp

obtain dnew where
dnew: (dnew 6= origin) ∧ (tval dnew = tval dxp) ∧ ¬(∃ α. α 6= 0

∧ dxp = (α ⊗ dnew))
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using lemNonParallelVectorsExist[of dxp]
by auto

hence tvaldnew: tval dnew = 0 using tvaldxp by simp

define w where w: w = (p ⊕ dnew)
hence wmp: (w ⊖ p) = dnew by simp

have wx: tval w = tval x

proof −
have tval dnew = tval x − tval p using dnew dxp by auto

hence tval w = tval p + (tval x − tval p) using w by auto

thus ?thesis using add-commute diff-add-cancel by auto

qed

define lw where lw: lw = lineJoining w p

have xNotOnLw: ¬ (x ∈ lw)
proof −

{ assume x ∈ lw

then obtain a where a: x = (w ⊕ (a ⊗ (p⊖w))) using lw by
auto

hence (p ⊕ dxp) = ((p ⊕ dnew) ⊕ (a ⊗ (p⊖w))) using xdxp w

by auto

hence dxp = (dnew ⊕ (a ⊗ (p⊖w))) using add-assoc by auto

moreover have (p⊖w) = ((−1 ) ⊗ (w⊖p)) by simp

hence (a ⊗ (p⊖w)) = ((−a) ⊗ (w⊖p)) using lemScaleAssoc[of

a −1 w⊖p] by simp

ultimately have dxp = (dnew ⊕ ((−a) ⊗ (w⊖p))) by auto

hence dxp = ((1 ⊗ dnew) ⊕ ((−a) ⊗ dnew)) using wmp by
auto

hence dxp = ((1−a) ⊗ dnew) using left-diff-distrib ′ by fastforce

hence (1−a) = 0 using dnew by blast

hence a = 1 by simp

hence x = (w ⊕ (p ⊖ w)) using a by auto

hence x = p by (simp add: local.add-diff-eq)
}
thus ?thesis using assms(1 ) by auto

qed

have dnew 6= origin using dnew by auto

hence wNotp: w 6= p using w diff-self wmp by blast

hence pwOnLw: onLine p lw ∧ onLine w lw

using lw lemLineAndPoints[of w p lw] by auto

hence target1 : w 6= p ∧ onLine w lw ∧ onLine p lw using wNotp

by auto

define MeetW where MeetW : MeetW = lw ∩ regularConeSet x

{ assume nonempty: ¬ (MeetW = {})
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then obtain z where z: z ∈ MeetW by blast

have zx: tval z = tval x

proof −
have z ∈ lineJoining w p using z MeetW lw by auto

then obtain a where a: z = (w ⊕ (a ⊗ (p⊖w))) by blast

have tval (p⊖w) = 0 using w tvaldnew by auto

hence tval z = tval w using a by auto

thus ?thesis using wx by auto

qed

have regularCone x z using z MeetW by auto

then obtain l1 where l1 : (onLine z l1 ) ∧ (onLine x l1 )
∧ (∃ v ∈ lineVelocity l1 . sNorm2 v =

1 ) by blast

then obtain v where v: v ∈ lineVelocity l1 ∧ sNorm2 v = 1 by
blast

hence ∃ d ∈ drtn l1 . v = velocityJoining origin d ∧ sNorm2 v =
1 by auto

then obtain d1 where d1 : d1 ∈ drtn l1 ∧ v = velocityJoining

origin d1 ∧ sNorm2 v = 1

by blast

hence v 6= sOrigin by fastforce

hence velocityJoining origin d1 6= sOrigin using d1 by auto

hence drtnNotZero: tval d1 6= 0 by auto

define d2 where d2 : d2 = (z ⊖ x)
hence tvald2 : tval d2 = 0 using zx by simp

have zNotz: x 6= z using xNotOnLw z MeetW by blast

hence (x 6= z) ∧ (onLine z l1 ) ∧ (onLine x l1 ) ∧ (d2 = (z ⊖ x))
using l1 d2 by auto

hence ∃ x z . (x 6= z) ∧ (onLine x l1 ) ∧ (onLine z l1 ) ∧ (d2 = (z
⊖ x)) by blast

hence d2 ∈ drtn l1 by auto

then obtain b where b: b 6= 0 ∧ d1 = (b ⊗ d2 )
using lemDrtn[of d2 d1 l1 ] d1 by blast

hence tval d1 = b ∗ tval d2 by simp

hence tval d1 = 0 using tvald2 by simp

hence False using drtnNotZero by auto

}
hence MeetW = {} by auto

hence (w 6= p) ∧ onLine w lw ∧ onLine p lw ∧ (lw ∩ regularConeSet

x = {})
using target1 MeetW by auto
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thus ?thesis by blast

qed

lemma lemClassification:
shows (insideRegularCone x p) ∨ (vertex x p ∨ outsideRegularCone

x p ∨ onRegularCone x p)
proof −

define l where l: l = lineJoining x p

define v where v: v = velocityJoining origin (p⊖x)
{ assume xnotp: x 6= p

hence vel: v ∈ lineVelocity l

using l v lemVelocityLineJoining[of l x p v] by auto

have (sNorm2 v < 1 ) ∨ (sNorm2 v > 1 ) ∨ (sNorm2 v = 1 ) by
auto

hence ?thesis using xnotp l v vel by blast

}
hence x 6= p −→ ?thesis by auto

moreover have x = p −→ ?thesis by auto

ultimately show ?thesis by blast

qed

lemma lemQuadCoordinates:
assumes p = (B ⊕ (α ⊗ D))

and a = mNorm2 D

and b = 2∗(tval (B⊖x))∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

(B⊖x)))
and c = mNorm2 (B⊖x)
shows sqr (tval (p⊖x)) − sNorm2 (sComponent (p⊖x)) = a∗(sqr α)
+ b∗α + c

proof −
define X where X : X = (B⊖x)
have pmx: (p ⊖ x) = (X ⊕ (α ⊗ D)) using diff-add-eq assms X by

simp

have pmxt: tval p − tval x = tval X + α∗tval D using pmx by simp

have pmxs: sComponent (p⊖x) = ((sComponent X) ⊕s (α ⊗s (sComponent

D)))
using pmx by simp

have tsqr : sqr (tval (p⊖x))
= sqr (tval X) + α∗(2∗(tval X)∗(tval D)) + (sqr α)∗(sqr

(tval D))
using pmxt lemSqrSum[of tval X α∗(tval D)] mult-assoc mult-commute

by auto
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have ssqr : sNorm2 (sComponent (p⊖x))
= (sNorm2 (sComponent X))

+ α∗(2∗((sComponent X) ⊙s (sComponent D)))
+ (sqr α)∗(sNorm2 (sComponent D))

using lemSDotScaleRight lemSNorm2OfScaled lemSNorm2OfSum

mult.left-commute pmxs

by presburger

hence sqr (tval (p⊖x)) − sNorm2 (sComponent (p⊖x))
= ( sqr (tval X) + α∗(2∗(tval X)∗(tval D)) + (sqr α)∗(sqr (tval

D)) )
− ((sNorm2 (sComponent X))

+ α∗(2∗((sComponent X) ⊙s (sComponent D)))
+ (sqr α)∗(sNorm2 (sComponent D)) )

using tsqr by auto

also have . . .
= ( sqr (tval X) + α∗(2∗(tval X)∗(tval D)) )

+ ( (sqr α)∗(sqr (tval D)) − (sqr α)∗(sNorm2 (sComponent

D)) )
− ((sNorm2 (sComponent X))

+ α∗(2∗((sComponent X) ⊙s (sComponent D))))
using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap by fastforce

also have . . .
= sqr (tval X) +

( α∗(2∗(tval X)∗(tval D)) − α∗(2∗((sComponent X) ⊙s

(sComponent D))) )
+ ( (sqr α)∗(sqr (tval D)) − (sqr α)∗(sNorm2 (sComponent

D)) )
− (sNorm2 (sComponent X))

using diff-add-eq add-diff-eq diff-add-eq-diff-diff-swap add-commute

by simp

also have . . .
= sqr (tval X) + α∗b + (sqr α)∗ a − (sNorm2 (sComponent

X))
using right-diff-distrib ′ assms(2 ) assms(3 ) X lemSDotCommute

by presburger

also have . . . = c + α∗b + (sqr α)∗a
using right-diff-distrib ′ assms(4 ) X add-commute add-diff-eq by

simp

finally show ?thesis using add-commute mult-commute add-assoc

by auto

qed

lemma lemConeCoordinates:
shows (onRegularCone x p ←→ sqr (tval p − tval x) = sNorm2

(sComponent (p⊖x)))
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∧ (insideRegularCone x p ←→ sqr (tval p − tval x) > sNorm2

(sComponent (p⊖x)))
∧ (outsideRegularCone x p ←→ sqr (tval p − tval x) < sNorm2

(sComponent (p⊖x)))
proof −

define tdiff where tdiff : tdiff = tval p − tval x

define sdiff where sdiff : sdiff = sComponent (p⊖x)

have cases: x = p ∨ x 6= p by simp

have case1 : x = p −→ ?thesis

proof −
{ assume xisp: x = p

hence on: onRegularCone x p by auto

moreover have both0 : sqr tdiff = 0 ∧ sNorm2 sdiff = 0

using xisp tdiff sdiff by simp

ultimately have onRegularCone x p ←→ sqr tdiff = sNorm2

sdiff by simp

moreover have outsideRegularCone x p ←→ sqr tdiff > sNorm2

sdiff

proof −
have ¬outsideRegularCone x p using xisp by simp

moreover have ¬ (sqr tdiff > sNorm2 sdiff ) using both0 by
simp

ultimately show ?thesis by blast

qed

moreover have insideRegularCone x p ←→ sqr tdiff < sNorm2

sdiff

proof −
have ¬insideRegularCone x p using xisp by simp

moreover have ¬ (sqr tdiff < sNorm2 sdiff ) using both0 by
simp

ultimately show ?thesis by blast

qed

ultimately have ?thesis using tdiff sdiff by blast

}
thus ?thesis by blast

qed

have case2 : x 6= p −→ ?thesis

proof −
define l where l: l = lineJoining x p

hence onl: onLine x l ∧ onLine p l using lemLineJoiningContain-

sEndPoints by blast

define v where v: v = velocityJoining x p
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{ assume xnotp: x 6= p

{ assume sinf : slopeInfinite x p

hence t0 : sqr tdiff = 0 using tdiff by simp

hence sdiff 6= sOrigin using xnotp sdiff tdiff by auto

hence sNorm2 sdiff 6= 0 using lemSpatialNullImpliesSpatialO-

rigin by blast

moreover have sNorm2 sdiff ≥ 0 by simp

ultimately have sNorm2 sdiff > 0 using lemGENZGT by
auto

hence eqn: sqr tdiff < sNorm2 sdiff using t0 by auto

have out: outsideRegularCone x p using sinf xnotp by blast

have notin: ¬ insideRegularCone x p using sinf by blast

have notgt: ¬ (sqr tdiff > sNorm2 sdiff ) using eqn by auto

have noton: ¬ onRegularCone x p

proof −
{ assume onRegularCone x p

then obtain u where u: u ∈ lineVelocity l ∧ sNorm2 u =
1

using l xnotp by blast

hence slopeFinite x p

using xnotp lemLineVelocityNonZeroImpliesFinite[of u l]
zero-neq-one l

by fastforce

hence False using sinf by auto

}
thus ?thesis by blast

qed
have noteq: ¬ (sqr tdiff = sNorm2 sdiff ) using eqn by auto

have outs: (outsideRegularCone x p) ←→ (sqr tdiff < sNorm2

sdiff )
using out eqn by blast

have ins: (insideRegularCone x p) ←→ (sqr tdiff > sNorm2

sdiff )
using notin notgt by blast

have ons: (onRegularCone x p) ←→ (sqr tdiff = sNorm2 sdiff )

using noton noteq by blast

hence ?thesis using ins outs ons tdiff sdiff by blast

}
hence ifsinf : slopeInfinite x p −→ ?thesis by blast
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{ assume sf : slopeFinite x p

hence lv: lineVelocity l = {v}
using lemLineVelocityUsingPoints[of x p l] v onl xnotp by

auto

have formula: sqr tdiff ∗(sNorm2 v) = sNorm2 sdiff

using lemSNorm2VelocityJoining[of x p v] sf v tdiff sdiff by
auto

{ assume onRegularCone x p

hence (∃ v ∈ lineVelocity l . sNorm2 v = 1 ) using xnotp l

by auto

then obtain u where u: u ∈ lineVelocity l ∧ sNorm2 u = 1

by blast

hence u = v using lv by blast

hence sNorm2 v = 1 using u by auto

hence sqr tdiff = sNorm2 sdiff using formula by auto

}
hence on1 : (onRegularCone x p) −→ (sqr tdiff = sNorm2 sdiff )

by auto

{ assume insideRegularCone x p

hence (∃ v ∈ lineVelocity l . sNorm2 v < 1 ) using xnotp l

by auto

then obtain u where u: u ∈ lineVelocity l ∧ sNorm2 u < 1

by blast

hence u = v using lv by blast

hence vlt1 : sNorm2 v < 1 using u by auto

{ assume sNorm2 v = 0

hence v0 : v = sOrigin using lemSpatialNullImpliesSpa-

tialOrigin by auto

have sloper x p = ((1/(tval x − tval p))⊗(x⊖p)) using sf

by auto

hence v = ((1/(tval x − tval p))⊗s (sComponent (x⊖p)))
using v by simp

hence sOrigin = ((1/(tval x − tval p))⊗s (sComponent

(x⊖p)))
using v0 by force

hence ((tval x − tval p) ⊗s sOrigin) = sComponent (x⊖p)
using lemSScaleAssoc[of (tval x − tval p) 1/(tval x − tval

p)
(sComponent (x⊖p))] sf

mult-eq-0-iff right-minus-eq by auto

hence s0 : sComponent (x⊖p) = sOrigin by auto

hence pmxs: sNorm2 sdiff = 0 using sdiff lemSSep2Symmetry

by auto

have tdiff 6= 0 using tdiff xnotp s0 by auto
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hence sqr tdiff > sNorm2 sdiff using pmxs lemSquaresPositive

by auto

}
hence ifv0 : sNorm2 v = 0 −→ sqr tdiff > sNorm2 sdiff by

blast

{ assume vne0 : sNorm2 v 6= 0

hence sNorm2 v > 0 using lemGENZGT by auto

moreover have tpos: sqr tdiff > 0

using sf lemSquaresPositive tdiff by auto

ultimately have lpos: (sqr tdiff )∗(sNorm2 v) > 0 by auto

hence rpos: sNorm2 sdiff > 0 using formula by auto

hence (sqr tdiff )∗(sNorm2 v) < (sqr tdiff ) using tpos lpos

vlt1

using lemMultPosLT1 [of sqr tdiff sNorm2 v] tpos by auto

hence sqr tdiff > sNorm2 sdiff using formula by auto

}
hence sNorm2 v 6= 0 −→ sqr tdiff > sNorm2 sdiff by auto

hence sqr tdiff > sNorm2 sdiff using ifv0 by blast

}
hence in1 : insideRegularCone x p −→ sqr tdiff > sNorm2 sdiff

by auto

{ assume out: outsideRegularCone x p

have xnotp: (x 6= p) using out by simp

have (∃ v ∈ lineVelocity (lineJoining x p) . sNorm2 v > 1 )
using sf out by blast

then obtain u where u: u ∈ lineVelocity (lineJoining x p) ∧
(sNorm2 u > 1 )

by blast

hence u = v using lv l by blast

hence sNorm2 v > 1 using u by auto

moreover have sqr tdiff > 0 using sf tdiff lemSquaresPositive

by auto

ultimately have (sqr tdiff )∗(sNorm2 v) > (sqr tdiff )
using local.mult-strict-left-mono by fastforce

hence sqr tdiff < sNorm2 sdiff using formula by auto

}
hence out1 : (outsideRegularCone x p) −→ (sqr tdiff < sNorm2

sdiff ) by auto

have in2 : (sqr tdiff > sNorm2 sdiff ) −→ (insideRegularCone x

p)
proof −

{ assume lhs: sqr tdiff > sNorm2 sdiff

{ assume ¬ insideRegularCone x p
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hence options: onRegularCone x p ∨ outsideRegularCone

x p

using lemClassification xnotp by blast

{ assume onRegularCone x p

hence sqr tdiff = sNorm2 sdiff using xnotp on1 by blast

hence False using lhs by auto

}
hence notOn: ¬onRegularCone x p by blast

{ assume outsideRegularCone x p

hence sqr tdiff < sNorm2 sdiff using xnotp out1 by
blast

hence False using lhs by auto

}
hence notIn: ¬outsideRegularCone x p by blast

hence False using notOn options by blast

}
hence insideRegularCone x p by blast

}
thus ?thesis by blast

qed

have out2 : (sqr tdiff < sNorm2 sdiff ) −→ (outsideRegularCone

x p)
proof −

{ assume lhs: sqr tdiff < sNorm2 sdiff

{ assume ¬ outsideRegularCone x p

hence options: onRegularCone x p ∨ insideRegularCone x

p

using lemClassification xnotp by blast

{ assume onRegularCone x p

hence sqr tdiff = sNorm2 sdiff using xnotp on1 by blast

hence False using lhs by auto

}
hence notOn: ¬onRegularCone x p by blast

{ assume insideRegularCone x p

hence sqr tdiff > sNorm2 sdiff using xnotp in1 by blast

hence False using lhs by auto

}
hence notIn: ¬insideRegularCone x p by blast

hence False using notOn options by blast

}
hence outsideRegularCone x p by blast

}

165



thus ?thesis by blast

qed

have on2 : (sqr tdiff = sNorm2 sdiff ) −→ (onRegularCone x p)
proof −

{ assume lhs: sqr tdiff = sNorm2 sdiff

{ assume ¬ onRegularCone x p

hence options: outsideRegularCone x p ∨ insideRegularCone

x p

using lemClassification xnotp by blast

{ assume outsideRegularCone x p

hence sqr tdiff < sNorm2 sdiff using xnotp out1 by
blast

hence False using lhs by auto

}
hence notOut: ¬outsideRegularCone x p by blast

{ assume insideRegularCone x p

hence sqr tdiff > sNorm2 sdiff using xnotp in1 by blast

hence False using lhs by auto

}
hence notIn: ¬insideRegularCone x p by blast

hence False using notOut options by blast

}
hence onRegularCone x p by blast

}
thus ?thesis by blast

qed

hence ?thesis using in1 in2 out1 out2 on1 on2 tdiff sdiff by
blast

}
hence slopeFinite x p −→ ?thesis by blast

hence ?thesis using ifsinf by blast

}
thus ?thesis by blast

qed

thus ?thesis using cases case1 by blast

qed

lemma lemConeCoordinates1 :
shows p ∈ regularConeSet x ←→ norm2 (p⊖x) = 2∗sqr (tval p −

tval x)
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proof −
define tdiff where tdiff : tdiff = tval p − tval x

hence tdiff ′: tdiff = tval (p⊖x) by simp

define sdiff where sdiff : sdiff = (sComponent (p⊖x))

have n: norm2 (p⊖x) = sqr tdiff + sNorm2 sdiff

using lemNorm2Decomposition sdiff tdiff ′ by blast

have reg: onRegularCone x p ←→ sqr tdiff = sNorm2 sdiff

using lemConeCoordinates tdiff sdiff by blast

{ assume p ∈ regularConeSet x

hence onRegularCone x p using lemRegularCone[of x p] by auto

hence sqr tdiff = sNorm2 sdiff using reg by blast

hence norm2 (p⊖x) = 2∗sqr tdiff using n mult-2 by force

}
hence l2r : p ∈ regularConeSet x −→ norm2 (p⊖x) = 2∗sqr tdiff

by auto

{ assume norm2 (p⊖x) = 2∗sqr tdiff

hence sqr tdiff + sNorm2 sdiff = 2∗sqr tdiff using n by auto

hence sNorm2 sdiff = sqr tdiff using mult-2 add-diff-eq by auto

hence onRegularCone x p using reg by auto

hence p ∈ regularConeSet x

using lemConeContainsVertex lemRegularCone[of x p] by blast

}
hence norm2 (p⊖x) = 2∗sqr tdiff −→ p ∈ regularConeSet x by

blast

thus ?thesis using l2r tdiff by blast

qed

lemma lemWhereLineMeetsCone:
assumes a = mNorm2 D

and b = 2∗(tval (B⊖x))∗(tval D) − 2∗((sComponent D) ⊙s

(sComponent (B⊖x)))
and c = mNorm2 (B⊖x)
shows qroot a b c α ←→ regularCone x (B ⊕ (α⊗D))
proof −

{ fix α assume α: qroot a b c α
define p where p: p = (B ⊕ (α⊗D))
hence mNorm2 (p⊖x) = a∗(sqr α) + b∗α + c

using lemQuadCoordinates[of p B α D a b x c] assms by auto

hence sqr (tval (p⊖x)) − sNorm2 (sComponent (p⊖x)) = 0 using
α by auto

hence onRegularCone x p using lemConeCoordinates[of x p] by
auto

hence regularCone x (B ⊕ (α⊗D)) using lemRegularCone p by
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blast

}
hence l2r : qroot a b c α −→ regularCone x (B ⊕ (α⊗D)) by blast

{ assume reg: regularCone x (B ⊕ (α⊗D))
define p where p: p = (B ⊕ (α⊗D))
hence onRegularCone x p using lemRegularCone reg by blast

hence sqr (tval (p⊖x)) − sNorm2 (sComponent (p⊖x)) = 0

using lemConeCoordinates[of x p] by auto

hence a∗(sqr α) + b∗α + c = 0

using lemQuadCoordinates[of p B α D a b x c] p assms

by auto

hence qroot a b c α by auto

}
hence regularCone x (B ⊕ (α⊗D)) −→ qroot a b c α by auto

thus ?thesis using l2r by blast

qed

lemma lemLineMeetsCone1 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a: a = mNorm2 D

and b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

X))
and c: c = mNorm2 X

shows (qcase1 a b c −→ S = {B})
proof −

{ assume hyp1 : qcase1 a b c

have impa: norm2 D = 2∗sqr (tval D)
proof −

have a = 0 using hyp1 by simp

hence sqr (tval D) = sNorm2 (sComponent D) using a by auto

hence onRegularCone origin D

using lemConeCoordinates[of origin D] by auto

hence regularCone origin D using lemRegularCone by blast

thus ?thesis using lemConeCoordinates1 by auto

qed

have impb: (D⊙X) = 2 ∗ tval X ∗ tval D

proof −
have 2∗(tval X)∗(tval D) = 2∗((sComponent D) ⊙s (sComponent

X))
using hyp1 b by auto
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hence (tval X)∗(tval D) = ((sComponent D) ⊙s (sComponent

X))
by (simp add: mult-assoc)

thus ?thesis using mult-2 lemDotDecomposition[of X D]
lemSDotCommute mult-assoc lemDotCommute by metis

qed

have impc: norm2 X = 2∗sqr (tval X)
proof −

have sqr (tval X) = sNorm2 (sComponent X) using hyp1 c by
auto

hence onRegularCone x B using X lemConeCoordinates by auto

hence regularCone x B using lemRegularCone by blast

thus ?thesis using X lemConeCoordinates1 by auto

qed

have allOnCone: ∀ α . regularCone x (B ⊕ (α ⊗ D))
proof −

{ fix α
define y where y: y = (B ⊕ (α ⊗ D))
have qroot a b c α using hyp1 by simp

hence regularCone x y

using lemWhereLineMeetsCone[of a D b B x c α] using y

assms by auto

}
thus ?thesis by auto

qed

have tval D = 0

proof −
{ assume Dnot0 : tval D 6= 0

define α where α: α = (tval x − tval B)/(tval D)
define y where y: y = (B ⊕ (α⊗D))
hence yOnl: y ∈ l using l by blast

hence ty0 : tval y = tval x

proof −
have tval y = tval ((B ⊕ (α⊗D))) using y by auto

also have . . . = tval B + α∗(tval D) by simp

also have . . . = tval B + (tval x − tval B)/(tval D)∗(tval D)
using α by simp

also have . . . = tval B + (tval x − tval B) using Dnot0 by
simp

finally show ?thesis using add-commute local.diff-add-cancel

by auto

qed

have regularCone x y using y allOnCone by blast

hence norm2 (y⊖x) = 2∗sqr (tval y − tval x)
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using lemConeCoordinates1 by auto

hence norm2 (y⊖x) = 0 using ty0 by auto

hence (y⊖x) = origin using lemNullImpliesOrigin by blast

hence y = x by simp

hence False using yOnl assms by blast

}
thus ?thesis by blast

qed

hence norm2 D = 0 using impa by auto

hence D0 : D = origin using lemNullImpliesOrigin by auto

have B0 : B = (B ⊕ (0⊗D)) by simp

have regularCone x (B ⊕ (0⊗D)) using allOnCone by blast

hence BonCone: regularCone x B

using B0 by (metis (mono-tags, lifting))
hence BinS : B ∈ S using assms BonCone B0 l by blast

hence SisB: S = {B}
proof −

{ fix y assume y: y ∈ S

then obtain α where y = (B ⊕ (α⊗D)) using assms l by
blast

hence y = B using D0 by simp

hence y ∈ {B} by blast

}
hence S ⊆ {B} by blast

thus ?thesis using BinS by blast

qed

}
thus ?thesis by auto

qed

lemma lemLineMeetsCone2 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a = mNorm2 D

and b = 2∗(tval (B⊖x))∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

(B⊖x)))
and c = mNorm2 (B⊖x)
shows qcase2 a b c −→ S = {}
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proof −
{ assume hyp2 : qcase2 a b c

{ assume S 6= {}
then obtain y where y: y ∈ S by auto

then obtain α where α: y = (B ⊕ (α⊗D)) using assms by
blast

hence regularCone x (B ⊕ (α⊗D)) using y assms by blast

hence qroot a b c α
using lemWhereLineMeetsCone[of a D b B x c α] assms

by auto

hence False using lemQCase2 [of a b c] hyp2 by auto

}
hence S = {} by auto

}
thus ?thesis by auto

qed

lemma lemLineMeetsCone3 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a: a = mNorm2 D

and b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

X))
and c: c = sqr (tval X) − sNorm2 (sComponent X)
and y3 : y3 = (B ⊕ ((−c/b)⊗D))
shows qcase3 a b c −→ S = {y3}
proof −

{ assume hyp3 : qcase3 a b c

define T where T : T = {y3}

have S ⊆ T

proof −
{ fix y assume y: y ∈ S

then obtain r where r : y = (B ⊕ (r⊗D)) using l assms by
blast

hence regularCone x y using y assms by auto

hence abcr : qroot a b c r

using a b c r X

lemWhereLineMeetsCone[of a D b B x c r ]
by auto

hence r = −c/b using lemQCase3 [of a b c r ] abcr hyp3 by
blast

hence y = y3 using y3 r by auto
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hence y ∈ T using T by blast

}
thus ?thesis by auto

qed

moreover have T ⊆ S

proof −
{ fix y assume y ∈ T

hence y: y = (B ⊕ ((−c/b)⊗D)) using T assms by blast

have qroot a b c (−c/b) using lemQCase3 hyp3 by auto

hence rc: regularCone x y

using hyp3 assms y lemWhereLineMeetsCone[of a D b B x c

(−c/b)]
by auto

have y ∈ l using assms y by blast

hence y ∈ S using rc assms by auto

}
thus ?thesis by blast

qed

ultimately have S = {y3} using T by auto

}
thus ?thesis by blast

qed

lemma lemLineMeetsCone4 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a: a = mNorm2 D

and b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

X))
and c: c = sqr (tval X) − sNorm2 (sComponent X)
shows (qcase4 a b c −→ S = {})
proof −

{ assume hyp4 : qcase4 a b c

{ assume S 6= {}
then obtain y where y: y ∈ S by blast

then obtain r where r : y = (B ⊕ (r⊗D)) using l assms by
blast

hence regularCone x y using y assms by auto

hence abcr : qroot a b c r

using a b c r X

lemWhereLineMeetsCone[of a D b B x c r ]
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by auto

hence False using lemQCase4 hyp4 by auto

}
hence S = {} by auto

}
thus ?thesis by blast

qed

lemma lemLineMeetsCone5 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a: a = mNorm2 D

and b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

X))
and c: c = sqr (tval X) − sNorm2 (sComponent X)
and y5 : y5 = (B ⊕ ((−b/(2∗a))⊗D))
shows (qcase5 a b c −→ S = {y5})
proof −

{ assume hyp5 : qcase5 a b c

define T where T : T = {y5}

have S ⊆ T

proof −
{ fix y assume y: y ∈ S

then obtain r where r : y = (B ⊕ (r⊗D)) using l assms by
blast

hence regularCone x y using y assms by auto

hence abcr : qroot a b c r

using a b c r X

lemWhereLineMeetsCone[of a D b B x c r ]
by auto

hence r = −b/(2∗a) using lemQCase5 abcr hyp5 by blast

hence y = y5 using r y5 by auto

hence y ∈ T using T by blast

}
thus ?thesis by blast

qed

moreover have T ⊆ S

proof −
{ fix y assume y ∈ T

hence y: y = (B ⊕ ( (−b/(2∗a))⊗D)) using T assms by blast

have qroot a b c (−b/(2∗a)) using lemQCase5 hyp5 by blast

hence rc: regularCone x y
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using hyp5 assms y lemWhereLineMeetsCone[of a D b B x c

(−b/(2∗a))]
by auto

have y ∈ l using assms y by blast

hence y ∈ S using rc assms by auto

}
thus ?thesis by blast

qed

ultimately have S = {y5} using T by auto

}
thus ?thesis by blast

qed

lemma lemLineMeetsCone6 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

and l: l = line B D

and X : X = (B ⊖ x)
and a: a = mNorm2 D

and b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D) ⊙s (sComponent

X))
and c: c = sqr (tval X) − sNorm2 (sComponent X)
and ym: ym = (B ⊕ (((−b − (sqrt (discriminant a b c))) / (2∗a)) ⊗
D))
and yp: yp = (B ⊕ (((−b + (sqrt (discriminant a b c))) / (2∗a)) ⊗
D))
shows (qcase6 a b c −→ (ym 6= yp) ∧ S = {ym, yp})
proof −

{ assume hyp6 : qcase6 a b c

define T where T : T = {ym, yp}
define rm where rm: rm = (−b − (sqrt (discriminant a b c))) /

(2∗a)
define rp where rp: rp = (−b + (sqrt (discriminant a b c))) /

(2∗a)

have ymnotyp: ym 6= yp

proof −
define d where d: d = discriminant a b c

define sd where sd: sd = sqrt d

have sdnot0 : sqrt d 6= 0

proof −
have dpos: d > 0 using d hyp6 by simp

174



hence hasRoot d using AxEField by auto

thus ?thesis using lemSquareOfSqrt[of d] dpos by auto

qed

have Dnot0 : D 6= origin

proof −
{ assume D = origin

hence a = 0 using a by simp

hence False using hyp6 by simp

}
thus ?thesis by auto

qed

have rmnotrp: rm 6= rp

proof −
{ assume rm = rp

hence (−b − sd) / (2∗a) = (−b + sd)/(2∗a) using sd d rm

rp by simp

hence −b−sd = −b+sd using hyp6 by simp

hence −sd = sd using add-left-imp-eq diff-conv-add-uminus

by metis

hence False using sdnot0 sd by simp

}
thus ?thesis by auto

qed

{ assume ym = yp

hence (B ⊕ (rm ⊗ D)) = (B ⊕ (rp ⊗ D)) using ym yp rm rp

by auto

hence (rm ⊗ D) = (rp ⊗ D) by simp

hence ((rm − rp)⊗D) = origin by auto

hence rm − rp = 0 using Dnot0 by auto

hence False using rmnotrp by auto

}
thus ?thesis by auto

qed

have S ⊆ T

proof −
{ fix y assume y: y ∈ S

then obtain r where r : y = (B ⊕ (r⊗D)) using l assms by
blast

hence regularCone x y using y assms by auto

hence abcr : qroot a b c r

using a b c r X

lemWhereLineMeetsCone[of a D b B x c r ]
by auto

hence qroots a b c = {rp, rm}
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using lemQCase6 [of a b c sqrt (discriminant a b c) rp rm]
rp rm hyp6 by auto

hence rchoice: (r = rm ∨ r = rp) using abcr by blast

hence ychoice: (y = ym ∨ y = yp) using r ym yp rm rp by
blast

hence yinT : y ∈ T using T by blast

}
thus ?thesis by auto

qed

moreover have T ⊆ S

proof −
{ fix y assume y ∈ T

hence y: y = ym ∨ y = yp using T assms by blast

have qroot a b c rm using rm lemQCase6 hyp6 by blast

hence rcm: regularCone x ym

using hyp6 assms ym rm lemWhereLineMeetsCone[of a D b

B x c rm]
by auto

have qroot a b c rp using rp lemQCase6 hyp6 by blast

hence rcp: regularCone x yp

using hyp6 assms yp rp lemWhereLineMeetsCone[of a D b B

x c rp]
by auto

hence regularCone x y using rcm y by blast

moreover have y ∈ l using assms y by blast

ultimately have y ∈ S using assms by blast

}
thus ?thesis by blast

qed

ultimately have (ym 6= yp) ∧ S = {ym, yp} using T ymnotyp

by auto

}
thus ?thesis by blast

qed

lemma lemConeLemma1 :
assumes ¬ (x ∈ l)

and isLine l

and S = l ∩ regularConeSet x

shows finite S ∧ card S ≤ 2

proof −
obtain B D where BD: l = line B D using assms(2 ) by auto

define X where X : X = (B ⊖ x)
define a where a: a = mNorm2 D
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define b where b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D)
⊙s (sComponent X))

define c where c: c = sqr (tval X) − sNorm2 (sComponent X)

have qcase1 a b c −→ ?thesis

using assms X a b c lemLineMeetsCone1 [of x l S B D X a b c] BD

by auto

moreover have qcase2 a b c −→ ?thesis

using assms X a b c lemLineMeetsCone2 [of x l S B D X a b c] BD

by auto

moreover have qcase3 a b c −→ ?thesis

using assms X a b c lemLineMeetsCone3 [of x l S B D X a b c] BD

by auto

moreover have qcase4 a b c −→ ?thesis

using assms X a b c lemLineMeetsCone4 [of x l S B D X a b c] BD

by auto

moreover have qcase5 a b c −→ ?thesis

using assms X a b c lemLineMeetsCone5 [of x l S B D X a b c] BD

by auto

moreover have qcase6 a b c −→ ?thesis

proof −
{ assume hyp6 : qcase6 a b c

define ym where ym: ym = (B ⊕ (((−b − (sqrt (discriminant

a b c))) / (2∗a)) ⊗ D))
define yp where yp: yp = (B ⊕ (((−b + (sqrt (discriminant a

b c))) / (2∗a)) ⊗ D))

have (ym 6= yp) ∧ S = { ym, yp }
using assms X a b c ym yp hyp6

lemLineMeetsCone6 [of x l S B D X a b c ym yp] BD

by auto

hence card S = 2 using card-2-iff by blast

hence finite S ∧ card S ≤ 2 using card.infinite by fastforce

}
thus ?thesis by auto

qed

ultimately show ?thesis using lemQuadraticCasesComplete by
blast

qed

lemma lemConeLemma2 :
assumes ¬ (regularCone x w)
shows ∃ l . (onLine w l) ∧ (¬ (x ∈ l)) ∧ (card (l ∩ (regularConeSet

x)) = 2 )
proof −

have xnotw: x 6= w using assms lemConeContainsVertex by blast
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have iftvalsequal: tval x = tval w −→ ?thesis

proof −
{ assume ts: tval x = tval w

define l where l: l = line w tUnit

hence wonl: onLine w l

proof −
have w = (w ⊕ (0⊗tUnit)) by simp

thus ?thesis using l by blast

qed

have xnotinl: ¬(x ∈ l)
proof −

{ assume x ∈ l

then obtain a where a: x = (w ⊕ (a⊗tUnit)) using l by
blast

hence tval x = tval w + a by simp

hence a = 0 using ts by simp

hence x = w using a by simp

hence False using xnotw by simp

}
thus ?thesis by blast

qed

have card (l ∩ (regularConeSet x)) = 2

proof −
define S where S : S = l ∩ regularConeSet x

hence cardS : finite S ∧ card S ≤ 2

using xnotinl l lemConeLemma1 [of x l S ] by blast

have (sNorm2 (sComponent (w⊖x))) ≥ 0 by simp

hence sExists: hasRoot (sNorm2 (sComponent (w⊖x))) using
AxEField by auto

define s where s: s = sqrt (sNorm2 (sComponent (w⊖x)))
define yp where yp: yp = (w ⊕ (s⊗tUnit))
define ym where ym: ym = (w ⊖ (s⊗tUnit))

have ypnotym: yp 6= ym

proof −
{ assume yp = ym

hence (w ⊕ (s⊗tUnit)) = (w ⊖ (s⊗tUnit)) using yp ym

by auto

hence tval w + s = tval w − s by simp

hence s = 0

by (metis local.add-cancel-right-right

local.double-zero-sym local.lemDiffSumCancelMiddle)
hence sNorm2 (sComponent (w⊖x)) = sqr 0

using s lemSquareOfSqrt[of sNorm2 (sComponent (w⊖x))
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s] sExists

by auto

hence norm2 (w⊖x) = 0 using lemNorm2Decomposition

ts by auto

hence (w⊖x) = origin using lemNullImpliesOrigin by blast

hence w = x by simp

hence False using xnotw by simp

}
thus ?thesis by auto

qed

have ypinl: yp ∈ l using yp l by blast

have yminl: ym ∈ l

proof −
have ym = (w ⊕ ((−s)⊗tUnit)) using ym by simp

thus ?thesis using l by blast

qed

have ypcone: yp ∈ regularConeSet x

proof −
have (yp ⊖ x) = ((w ⊕ (s⊗tUnit)) ⊖ x) using yp by auto

hence tval (yp ⊖ x) = s using ts by simp

hence tsqr : sqr (tval (yp⊖x)) = (sNorm2 (sComponent

(w⊖x)))
using s sExists lemSquareOfSqrt AxEField by blast

hence sComponent (yp⊖x) = sComponent ((w ⊕ (s⊗tUnit))
⊖ x) using yp by auto

also have . . . = ((sComponent (w ⊕ (s⊗tUnit))) ⊖s (sComponent

x)) by simp

also have . . . = (((sComponent w) ⊕s (sComponent (s⊗tUnit)))
⊖s (sComponent x)) by simp

also have . . . = ((sComponent w) ⊖s (sComponent x)) by
simp

finally have sComponent (yp⊖x) = sComponent (w⊖x) by
simp

hence ssqr : sNorm2 (sComponent (yp⊖x)) = (sNorm2

(sComponent (w⊖x)))
by auto

hence sqr (tval (yp⊖x)) = (sNorm2 (sComponent (yp⊖x)))
using tsqr by auto

hence onRegularCone x yp using lemConeCoordinates[of x

yp] by auto

thus ?thesis using lemRegularCone by blast

qed

have ymcone: ym ∈ regularConeSet x

proof −
have (ym ⊖ x) = ((w ⊖ (s⊗tUnit)) ⊖ x) using ym by auto
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hence tval (ym ⊖ x) = tval (w ⊖ (s⊗tUnit)) − tval x by
simp

also have . . . = (tval w − tval(s⊗tUnit)) − tval x by simp

also have . . . = (tval w − s) − tval w using ts by simp

finally have tval (ym⊖x) = −s using diff-right-commute

by (metis local.add-implies-diff local.uminus-add-conv-diff )
hence sqr (tval (ym⊖x)) = sqr s by simp

hence tsqr : sqr (tval (ym⊖x)) = (sNorm2 (sComponent

(w⊖x)))
using s sExists lemSquareOfSqrt AxEField by force

hence sComponent (ym⊖x) = sComponent ((w ⊖ (s⊗tUnit))
⊖ x) using ym by auto

also have . . . = ((sComponent (w ⊖ (s⊗tUnit))) ⊖s (sComponent

x)) by simp

also have . . . = (((sComponent w) ⊖s (sComponent (s⊗tUnit)))
⊖s (sComponent x)) by simp

also have . . . = ((sComponent w) ⊖s (sComponent x)) by
simp

finally have sComponent (ym⊖x) = sComponent (w⊖x) by
simp

hence ssqr : sNorm2 (sComponent (ym⊖x)) = (sNorm2

(sComponent (w⊖x)))
by auto

hence sqr (tval (ym⊖x)) = (sNorm2 (sComponent (ym⊖x)))
using tsqr by auto

hence onRegularCone x ym using lemConeCoordinates[of x

ym] by auto

thus ?thesis using lemRegularCone by blast

qed

define T where T : T = {yp, ym}

hence T ⊆ S using ypinl ypcone yminl ymcone S by auto

hence TleS : card T ≤ card S using cardS card-mono by blast

have cardT : card T = 2 using T ypnotym card-2-iff by blast

hence (2 ≤ card S) ∧ finite S ∧ card S ≤ 2 using TleS cardS

by auto

thus ?thesis using S by simp

qed

hence ?thesis using xnotinl wonl by blast

}
thus ?thesis by auto

qed

have iftvalsne: tval x 6= tval w −→ ?thesis
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proof −
{ assume ts: tval x 6= tval w

define x0 where x0 : x0 = mkPoint (tval w) (xval x) (yval x)
(zval x)

have xnotx0 : x 6= x0 using x0 ts by (metis Point.select-convs(1 ))
have tdiff0 : tval w = tval x0 using x0 by simp

define dir where dir : dir = (if (w 6=x0 ) then (w⊖x0 ) else xUnit)

hence tdir0 : tval dir = 0

proof −
{ assume w 6=x0

hence dir = (w⊖x0 ) using dir by simp

}
hence wnotx0 : (w 6=x0 ) −→ ?thesis using tdiff0 by auto

{ assume w = x0

hence dir = xUnit using dir by simp

}
hence (w=x0 ) −→ ?thesis by simp

thus ?thesis using wnotx0 by auto

qed

define l where l: l = lineJoining x0 (dir⊕x0 )
hence lprops: l = line x0 dir using dir by auto

hence wonl: onLine w l

proof −
{ assume wnotx0 : w 6= x0

hence dir = (w⊖x0 ) using dir by simp

hence (dir⊕x0 ) = ((w⊖x0 )⊕x0 ) by simp

hence w = (dir ⊕ x0 ) using diff-add-eq by auto

hence ?thesis using dir lemLineJoiningContainsEndPoints l

by blast

}
moreover have (w=x0 ) −→ ?thesis using lemLineJoining-

ContainsEndPoints l by blast

ultimately show ?thesis by auto

qed

then obtain A where A: w = (x0 ⊕ (A ⊗ dir )) using l by
auto

have xnotinl: ¬(x ∈ l)
proof −

{ assume x ∈ l

then obtain a where a: x = (x0 ⊕ (a⊗dir)) using l by auto

hence tval x = tval x0 using tdir0 by simp

hence False using ts tdiff0 by auto
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}
thus ?thesis by blast

qed

have card (l ∩ (regularConeSet x)) = 2

proof −
define S where S : S = l ∩ regularConeSet x

hence cardS : finite S ∧ card S ≤ 2

using xnotinl l lemConeLemma1 [of x l S ] by blast

have (sNorm2 (sComponent (w⊖x0 ))) ≥ 0 by simp

hence sExists: hasRoot (sNorm2 (sComponent (w⊖x0 ))) using
AxEField by auto

define s where s: s = sqrt (sNorm2 (sComponent (w⊖x0 )))

define unit where unit: unit = (if (w = x0 ) then xUnit else

((1/s)⊗(w⊖x0 )))

have tunit0 : tval unit = 0

proof −
{ assume w = x0

hence unit = xUnit using unit by simp

}
hence w=x0 −→ ?thesis by auto

moreover have w 6=x0 −→ ?thesis

proof −
{ assume wnotx0 : w 6= x0

hence unit = ((1/s)⊗dir) using unit dir by simp

}
thus ?thesis using tdir0 by auto

qed
ultimately show ?thesis by auto

qed

have snot0 : w 6= x0 −→ s 6= 0

proof −
{ assume wnotx0 : w 6= x0

hence norm2 (w⊖x0 ) > 0

using local.lemNotEqualImpliesSep2Pos by presburger

also have norm2 (w⊖x0 ) = sNorm2 (sComponent (w⊖x0 ))
using tdiff0 lemNorm2Decomposition[of w⊖x0 ] by auto

finally have s2pos: sNorm2 (sComponent (w⊖x0 )) > 0 by
auto

{ assume s = 0

hence False using lemSquareOfSqrt[of sNorm2 (sComponent

(w⊖x0 )) s]
s2pos s sExists by auto

}
hence s 6= 0 by auto
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}
thus ?thesis by auto

qed

hence unit1 : sNorm2 (sComponent unit) = 1

proof −
have case0 : w=x0 −→ ?thesis using unit by auto

have case1 : w 6=x0 −→ ?thesis

proof −
{ assume case1 : w 6= x0

have unit = ((1/s)⊗(w⊖x0 )) using unit case1 by simp

hence sComponent unit = ((1/s) ⊗s (sComponent (w⊖x0 )))
by simp

hence sNorm2 (sComponent unit) = sqr (1/s) ∗ sNorm2

(sComponent (w⊖x0 ))
using lemSNorm2OfScaled[of (1/s) sComponent (w⊖x0 )]
by auto

also have . . . = sqr (1/s) ∗ sqr s

using lemSquareOfSqrt[of sNorm2 (sComponent (w⊖x0 ))
s] sExists s

by auto

finally have sNorm2 (sComponent unit) = 1 using snot0

case1 by simp

}
thus ?thesis by auto

qed
thus ?thesis using case0 by blast

qed

define dt where dt: dt = tval w − tval x

define mdt where mdt: mdt = −dt

define yp where yp: yp = (x0 ⊕ (dt ⊗ unit))
define ym where ym: ym = (x0 ⊖ (dt ⊗ unit))
hence ymalt: ym = (x0 ⊕ (mdt ⊗ unit)) using mdt by simp

have ypnotym: yp 6= ym

proof −
{ assume yp = ym

hence (x0 ⊕ (dt⊗unit)) = (x0 ⊖ (dt⊗unit)) using yp ym by
auto

hence ((x0 ⊕ (dt⊗unit)) ⊕ (dt⊗unit)) = x0 by auto

hence (x0 ⊕ (2⊗(dt⊗unit))) = x0 using add-assoc mult-2

by auto

hence ((x0 ⊕ (2⊗(dt⊗unit))) ⊖ x0 ) = origin by simp

hence (2⊗(dt⊗unit)) = origin using add-diff-eq by auto

hence False using unit1 ts dt by simp

}
thus ?thesis by auto

qed
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have ypinl: yp ∈ l

proof −
{ assume w = x0

hence yp = (w ⊕ (dt⊗dir)) using dir unit yp by simp

hence ∃ a . yp = (w ⊕ (a ⊗ dir)) using yp by auto

}
hence wx0 : w=x0 −→ ?thesis using l by auto

{ assume wnotx0 : w 6= x0

hence u: unit = ((1/s)⊗dir) using unit dir by auto

hence yp = (x0 ⊕ ((dt/s)⊗dir)) using lemScaleAssoc yp by
auto

hence ∃ a . yp = (x0 ⊕ (a⊗dir)) using snot0 by blast

}
hence w 6=x0 −→ ?thesis using l by auto

thus ?thesis using wx0 by blast

qed

have yminl: ym ∈ l

proof −
{ assume w = x0

hence ym = (x0 ⊕ (mdt⊗dir)) using dir unit ymalt by simp

hence ∃ a . ym = (x0 ⊕ (a ⊗ dir)) using ym by auto

}
hence wx0 : w=x0 −→ ?thesis using l by auto

{ assume wnotx0 : w 6= x0

hence u: unit = ((1/s)⊗dir) using unit dir by auto

hence ym = (x0 ⊕ ((mdt/s)⊗dir)) using lemScaleAssoc ymalt

by auto

hence ∃ a . ym = (x0 ⊕ (a⊗dir)) using snot0 by blast

}
hence w 6=x0 −→ ?thesis using l by auto

thus ?thesis using wx0 by blast

qed

have ypcone: yp ∈ regularConeSet x

proof −
have sNorm2 (sComponent (yp⊖x0 )) = sqr dt

proof −
have yp = (x0 ⊕ (dt ⊗ unit)) using yp by simp

hence (yp ⊖ x0 ) = (dt ⊗ unit) using add-diff-eq diff-add-eq

by auto

hence sComponent (yp ⊖ x0 ) = (dt ⊗s (sComponent unit))
by auto

thus ?thesis

using lemSNorm2OfScaled[of dt sComponent unit] unit1 by
auto
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qed
hence sNorm2 (sComponent (yp⊖x)) = sqr dt using x0 by

simp

also have . . . = sqr (tval (yp⊖x)) using dt tunit0 yp tdiff0 by
simp

finally have sNorm2 (sComponent (yp⊖x)) = sqr (tval (yp⊖x))
by blast

hence onRegularCone x yp using lemConeCoordinates[of x yp]
by auto

thus ?thesis using lemRegularCone by blast

qed

have ymcone: ym ∈ regularConeSet x

proof −
have sNorm2 (sComponent (ym⊖x0 )) = sqr dt

proof −
have ym = (x0 ⊕ (mdt ⊗ unit)) using ymalt by simp

hence (ym ⊖ x0 ) = (mdt ⊗ unit) using add-diff-eq diff-add-eq

by auto

hence sComponent (ym ⊖ x0 ) = (mdt ⊗s (sComponent unit))
by auto

thus ?thesis

using lemSNorm2OfScaled[of mdt sComponent unit] unit1

mdt by auto

qed
hence sNorm2 (sComponent (ym⊖x)) = sqr dt using x0 by

simp

also have . . . = sqr (tval (ym⊖x)) using ym mdt dt tunit0

tdiff0 by auto

finally have sNorm2 (sComponent (ym⊖x)) = sqr (tval

(ym⊖x)) by blast

hence onRegularCone x ym using lemConeCoordinates[of x

ym] by auto

thus ?thesis using lemRegularCone by blast

qed

define T where T : T = {yp, ym}

hence T ⊆ S using ypinl ypcone yminl ymcone S by auto

hence TleS : card T ≤ card S using cardS card-mono by blast

have cardT : card T = 2 using T ypnotym card-2-iff by blast

hence (2 ≤ card S) ∧ finite S ∧ card S ≤ 2 using TleS cardS

by auto

thus ?thesis using S by simp

qed

hence ?thesis using xnotinl wonl by blast

}
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thus ?thesis by auto

qed
thus ?thesis using iftvalsequal by blast

qed

lemma lemLineInsideRegularConeHasFiniteSlope:
assumes insideRegularCone x p

and l = lineJoining x p

shows lineSlopeFinite l

proof −
{ assume converse: ¬ (lineSlopeFinite l)

hence slope: slopeInfinite x p

using assms lemSlopeLineJoining[of l] by blast

hence False using assms(1 ) assms(2 ) slope by simp

}
thus ?thesis by auto

qed

lemma lemInvertibleOnMeet:
assumes invertible f

and S = A ∩ B

shows applyToSet (asFunc f ) S = (applyToSet (asFunc f ) A) ∩
(applyToSet (asFunc f ) B)
proof −

define S ′ where S ′: S ′ = applyToSet (asFunc f ) S

define A ′ where A ′: A ′ = applyToSet (asFunc f ) A

define B ′ where B ′: B ′ = applyToSet (asFunc f ) B

have S ′ ⊆ A ′ ∩ B ′

proof −
{ fix s ′ assume s ′ ∈ S ′

then obtain s where s: s ∈ S ∧ f s = s ′ using S ′ by auto

have inA: s ′ ∈ A ′

proof −
have s ∈ A using assms s by auto

thus ?thesis using s A ′ by auto

qed
have inB: s ′ ∈ B ′

proof −
have s ∈ B using assms s by auto

thus ?thesis using s B ′ by auto

qed
hence s ′ ∈ A ′ ∩ B ′ using inA by auto

}
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thus ?thesis by auto

qed

moreover have A ′ ∩ B ′ ⊆ S ′

proof −
{ fix s ′ assume s ′: s ′ ∈ A ′ ∩ B ′

then obtain a where a: a ∈ A ∧ f a = s ′ using A ′ by auto

obtain b where b: b ∈ B ∧ f b = s ′ using s ′ B ′ by auto

have (∃ p . (f p = s ′) ∧ (∀ x. f x = s ′ −→ x = p)) using assms(1 )
by auto

then obtain p where p: (f p = s ′) ∧ (∀ x. f x = s ′ −→ x = p)
by auto

hence a = b using a b by blast

hence a ∈ S ∧ f a = s ′ using a b assms(2 ) by auto

hence s ′ ∈ S ′ using S ′ by auto

}
thus ?thesis by auto

qed

ultimately show ?thesis using S ′ A ′ B ′ by auto

qed

lemma lemInsideCone:
shows insideRegularCone x p ←→

¬(vertex x p ∨ outsideRegularCone x p ∨ onRegularCone x

p)
proof −

{ assume lhs: insideRegularCone x p

hence (slopeFinite x p) ∧ (∃ v ∈ lineVelocity (lineJoining x p) .
sNorm2 v < 1 )

by auto

hence rtp1 : ¬(vertex x p) by blast

define l where l: l = lineJoining x p

obtain vin where vin: vin ∈ lineVelocity l ∧ sNorm2 vin < 1

using l lhs by blast

hence vs: ∀ v . v ∈ lineVelocity l −→ sNorm2 v < 1

proof −
{ fix v assume v: v ∈ lineVelocity l

have slopeFinite x p using lhs by blast

moreover have onLine x l ∧ onLine p l using l lemLineJoin-

ingContainsEndPoints

by auto

ultimately have v = vin

using rtp1 v vin lemFiniteLineVelocityUnique[of v l vin] by
blast
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}
thus ?thesis using vin by blast

qed

{ assume outsideRegularCone x p

then obtain v where v: v ∈ lineVelocity l ∧ sNorm2 v > 1

using l lhs by blast

hence sNorm2 v < 1 using vs by blast

hence False using v by force

}
hence rtp2 : ¬ outsideRegularCone x p by blast

{ assume onRegularCone x p

then obtain v where v: v ∈ lineVelocity l ∧ sNorm2 v = 1

using l lhs by blast

hence sNorm2 v < 1 using vs by blast

hence False using v by force

}
hence rtp3 : ¬ onRegularCone x p by blast

hence ¬(vertex x p ∨ outsideRegularCone x p ∨ onRegularCone x

p)
using rtp1 rtp2 by blast

}
hence l2r : insideRegularCone x p −→

¬(vertex x p ∨ outsideRegularCone x p ∨ onRegularCone x

p)
by blast

{ assume rhs: ¬(vertex x p ∨ outsideRegularCone x p ∨ onRegular-

Cone x p)
define v where v: v = (insideRegularCone x p)
define z where z: z = (vertex x p ∨ outsideRegularCone x p ∨

onRegularCone x p)
hence v ∨ z using v z lemClassification[of x p] by auto

hence insideRegularCone x p using rhs v z by blast

}
thus ?thesis using l2r by blast

qed

lemma lemOnRegularConeIff :
assumes l = lineJoining x p

shows onRegularCone x p ←→ (l ∩ regularConeSet x = l)
proof −

{ assume rc: onRegularCone x p

hence reg: regularCone x p using lemRegularCone by blast

define S where S : S = l ∩ regularConeSet x

have SinL: S ⊆ l using S by blast
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have l ⊆ S

proof −
{ fix q assume q: q ∈ l

then obtain a where a: q = (x ⊕ (a ⊗ (p⊖x))) using assms

by blast

hence qmx: (q⊖x) = (a ⊗ (p⊖x)) by simp

hence sqr (tval (q⊖x)) = sqr (tval (a ⊗ (p⊖x))) by auto

also have . . . = (sqr a)∗(sqr (tval p − tval x)) using lemSqrMult

by auto

also have . . . = (sqr a)∗(sNorm2 (sComponent (p⊖x)))
using rc lemConeCoordinates[of x p] by auto

also have . . . = sNorm2 ( a ⊗s (sComponent (p⊖x)) )
using lemSNorm2OfScaled[of a (sComponent (p⊖x))] by auto

also have . . . = sNorm2 (sComponent ( a ⊗ (p⊖x) )) by simp

finally have sqr (tval (q⊖x)) = sNorm2 (sComponent (q⊖x)
) using qmx by simp

hence onRegularCone x q using lemConeCoordinates[of x q]
by auto

hence regularCone x q using lemRegularCone by blast

hence q ∈ S using S q by auto

}
hence ∀ q . q ∈ l −→ q ∈ S by blast

thus ?thesis by blast

qed

hence (l ∩ regularConeSet x = l) using S SinL by blast

}
hence l2r : onRegularCone x p −→ (l ∩ regularConeSet x = l) by

blast

{ assume rhs: (l ∩ regularConeSet x = l)
have p ∈ l

using lemLineJoiningContainsEndPoints[of l x p] assms(1 ) by
auto

hence regularCone x p using rhs by blast

hence onRegularCone x p using lemRegularCone by blast

}
thus ?thesis using l2r by blast

qed

lemma lemOutsideRegularConeImplies:
shows outsideRegularCone x p

−→ (∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {}))
proof −

{ assume lhs: outsideRegularCone x p
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hence xnotp: (x 6= p) by auto

hence formula: sqr (tval p − tval x) < sNorm2 (sComponent

(p⊖x))
using lemConeCoordinates[of x p] using lhs by auto

have cases: (slopeInfinite x p) ∨
((slopeFinite x p) ∧
(∃ v ∈ lineVelocity (lineJoining x p) . sNorm2 v >

1 ))
using lhs by blast

have case1 : slopeInfinite x p −→
(∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {}))
using xnotp lemSlopeInfiniteImpliesOutside

by blast

have case2 :
((slopeFinite x p) ∧ (∃ v ∈ lineVelocity (lineJoining x p) . sNorm2

v > 1 ))
−→ (∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {}))
proof −

define l where l: l = lineJoining x p

hence onl: onLine x l ∧ onLine p l using lemLineJoiningCon-

tainsEndPoints by blast

{ assume hyp: (slopeFinite x p) ∧
(∃ v ∈ lineVelocity (lineJoining x p) . sNorm2 v

> 1 )
then obtain v where v: v ∈ lineVelocity l ∧ sNorm2 v > 1

using l by blast

define x0 where x0 : x0 = mkPoint (tval p) (xval x) (yval x)
(zval x)

define dsqr where dsqr : dsqr = norm2 (p ⊖ x0 )
define d where d: d = sqrt dsqr

have dExists: hasRoot dsqr using dsqr lemNorm2NonNeg

AxEField by auto

have xnotp: x 6= p using hyp by auto

have dnot0 : d 6= 0

proof −
{ assume d0 : d = 0
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hence dsqr = 0 using lemSquareOfSqrt[of dsqr d] dExists

d by auto

hence (p⊖x0 ) = origin using dsqr lemNullImpliesOrigin[of

(p⊖x0 )] by auto

hence p = x0 by simp

hence sloper x p = ((1/(tval x − tval p))⊗(x⊖x0 )) using
x0 by auto

moreover have sComponent (x⊖x0 ) = sOrigin using x0

by simp

ultimately have velocityJoining x p = sOrigin using hyp

by auto

hence sOrigin ∈ lineVelocity l

using lemLineVelocityUsingPoints[of x p l] l hyp xnotp onl

by auto

hence sOrigin = v

using lemFiniteLineVelocityUnique[of sOrigin l v]
hyp v onl xnotp by blast

hence sNorm2 v = 0 by auto

hence False using v by auto

}
thus ?thesis by auto

qed

hence dsqrnot0 : dsqr 6= 0

using d dExists lemSquareOfSqrt[of dsqr d] lemZeroRoot by
blast

have dpos: d > 0

using d theI ′[of isNonNegRoot dsqr ] lemSqrt dExists dnot0

by auto

define T where T : T = tval p

define radius where radius: radius = tval p − tval x

define R0 where R0 : R0 = sComponent (p⊖x)

have R0gtRadius: sqr radius < sNorm2 R0 using formula

radius R0 by auto

have dsqr ′: dsqr = sNorm2 R0

proof −
have sComponent x = sComponent x0 using x0 by simp

hence R0 = sComponent (p ⊖ x0 ) using R0 by auto

moreover have tval (p⊖x0 ) = 0 using x0 by simp

ultimately show ?thesis using lemNorm2Decomposition dsqr

by auto

qed

hence radialnot0 : R0 6= sOrigin using dsqrnot0 by auto
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obtain D0 where D0 : D0 6= sOrigin ∧ ((D0 ⊙s R0 ) = 0 )
using lemOrthogalSpaceVectorExists[of R0 ] by auto

define D where D: D = stPoint 0 D0

define L where L: L = line p D

hence pOnLine: onLine p L

using lemLineJoiningContainsEndPoints[of L p (p⊕D)] by
auto

have meetEmpty: L ∩ regularConeSet x = {}
proof −

{ assume L ∩ regularConeSet x 6= {}
then obtain Q where Q: Q ∈ L ∩ regularConeSet x by

blast

then obtain α where α: Q = (p ⊕ (α ⊗ D)) using L by
blast

have ((p ⊕ (α ⊗ D))⊖x) = ((p⊖x) ⊕ (α⊗D))
using add-diff-eq diff-add-eq by auto

hence Qmx: (Q ⊖ x) = ((p⊖x) ⊕ (α⊗D)) using α by
simp

hence Qmxt: tval Q − tval x = tval (p⊖x) using D by simp

have sComponent (Q⊖x) = sComponent ((p⊖x) ⊕ (α⊗D))
using Qmx by simp

also have . . . = ((sComponent (p⊖x)) ⊕s (sComponent

(α⊗D))) by simp

finally have sNorm2 (sComponent (Q⊖x))
= sNorm2 ((sComponent (p⊖x)) ⊕s (sComponent (α⊗D)))

by simp

also have . . . = sNorm2 (R0 ⊕s (α ⊗s D0 )) using R0 D

by auto

also have . . . = sNorm2 R0 + 2∗(R0 ⊙s (α ⊗s D0 )) +
sNorm2 (α ⊗s D0 )

using lemSNorm2OfSum[of R0 (α ⊗s D0 )] by auto

finally have
sNorm2 (sComponent (Q⊖x)) = sNorm2 R0 + 2∗(R0 ⊙s

(α ⊗s D0 )) + sNorm2 (α ⊗s D0 )
by auto

moreover have (R0 ⊙s (α ⊗s D0 )) = 0

using D0 lemSDotCommute lemSDotScaleRight by simp
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moreover have sNorm2 (α ⊗s D0 ) ≥ 0 by simp

ultimately have sNorm2 (sComponent (Q⊖x)) ≥ sNorm2

R0 by simp

hence Qmxs: sNorm2 (sComponent (Q⊖x)) > sqr radius

using R0gtRadius by simp

hence sqr (tval Q − tval x) < sNorm2 (sComponent (Q⊖x))
using radius Qmxt by simp

hence ¬ (onRegularCone x Q)
using lemConeCoordinates[of x Q] by force

hence ¬ (regularCone x Q) using lemRegularCone by blast

hence False using Q by blast

}
thus ?thesis by blast

qed

define p ′ where p ′: p ′ = (p ⊕ D)
have Dnot0 : D 6= origin using D D0 by auto

hence p ′ 6= p

proof −
{ assume p ′ = p

hence (p ⊕ D) = p using p ′ by auto

hence ((p ⊕ D) ⊖ p) = origin by simp

hence D = origin using add-diff-cancel by auto

hence False using Dnot0 by auto

}
thus ?thesis by blast

qed
moreover have onLine p ′ L using L p ′ by auto

ultimately have target1 : p ′ 6= p ∧ onLine p ′ L by blast

hence (∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {})) using meetEmpty

pOnLine by blast

}
thus ?thesis by blast

qed

hence (∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {}))
using cases case1 by blast

}
hence l2r : outsideRegularCone x p −→

(∃ l p ′ . (p ′ 6= p) ∧ onLine p ′ l ∧ onLine p l

∧ (l ∩ regularConeSet x = {}))
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by blast

thus ?thesis by blast

qed

lemma lemTimelikeInsideCone:
assumes insideRegularCone x p

shows timelike (p ⊖ x)
proof −

have tval p − tval x 6= 0 using assms by auto

hence tdiffpos: sqr (tval p − tval x) > 0 using lemSquaresPositive

by auto

define l where l: l = lineJoining x p

hence slopeFinite x p ∧ (∃ v . v ∈ lineVelocity l ∧ sNorm2 v < 1 )
using assms by auto

then obtain v where v: v ∈ lineVelocity l ∧ sNorm2 v < 1

using assms by blast

have lineVelocity l = { velocityJoining x p }
using lemLineVelocityUsingPoints[of x p l] assms

lemLineJoiningContainsEndPoints l

by blast

hence vv: v = velocityJoining x p ∧ sNorm2 v < 1 using v by auto

hence formula: sqr (tval p − tval x)∗(sNorm2 v) = sNorm2 (sComponent

(p⊖x))
using lemSNorm2VelocityJoining[of x p v] assms by blast

have cases: sNorm2 v = 0 ∨ sNorm2 v > 0

using local.add-less-zeroD local.not-less-iff-gr-or-eq

local.not-square-less-zero

by blast

have case1 : sNorm2 v > 0 −→ timelike (p ⊖ x)
proof −

define snv where snv: snv = sNorm2 v

{ assume sNorm2 v > 0

hence 0 < snv < 1 using vv snv by auto

moreover have sqr (tval p − tval x)∗snv = sNorm2 (sComponent

(p⊖x))
using formula snv by simp

ultimately have sqr (tval p − tval x) > sNorm2 (sComponent

(p⊖x))
using lemMultPosLT [of sqr (tval p − tval x) snv]

tdiffpos by force

hence timelike (p⊖x) by auto

}
thus ?thesis using snv by auto

qed
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{ assume sNorm2 v = 0

hence sNorm2 (sComponent (p ⊖ x)) = 0 using formula by auto

hence timelike (p⊖x) using tdiffpos by auto

}
hence case2 : sNorm2 v = 0 −→ timelike (p⊖x) by auto

thus ?thesis using case1 cases by auto

qed

end
end

31 ReverseCauchySchwarz

This theory defines and proves the "reverse" Cauchy-Schwarz in-
equality for timelike vectors in the Minkowski metric.

theory ReverseCauchySchwarz

imports CauchySchwarz

begin

Rather than construct the proof, one could simply have asserted
the claim as an axiom. We did this during development of the
main proof, and then returned to this section later. In practice
the axiom we chose to assert contained far more information than
required, because we eventually found a proof that only required
consideration of timelike vectors (our axiom considered lightlike
vectors as well).

class ReverseCauchySchwarz = CauchySchwarz

begin

lemma lemTimelikeNotZeroTime:
assumes timelike v

shows tval v 6= 0

proof −
{ assume converse: tval v = 0

have sNorm2 (sComponent v) < sqr (tval v) using assms by auto

hence sNorm2 (sComponent v) < 0 using converse by auto

hence False using local.add-less-zeroD local.not-square-less-zero

by blast

}
thus ?thesis by auto

qed
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lemma lemOrthogmToTimelike:
assumes timelike u

and orthogm u v

and v 6= origin

shows spacelike v

proof −
have tvalu: tval u 6= 0 using assms(1 ) lemTimelikeNotZeroTime

by auto

define us where us: us = sComponent u

define vs where vs: vs = sComponent v

have sqr ((tval u) ∗ (tval v)) = sqr (us ⊙s vs) using assms(2 ) us

vs by auto

also have . . . ≤ sNorm2 us ∗ sNorm2 vs using lemCauchySchwarzSqr

by auto

finally have inequ: sqr (tval u) ∗ sqr (tval v) ≤ sNorm2 us ∗ sNorm2

vs

using mult-assoc mult-commute by auto

have ifvsnz: vs 6= sOrigin −→ sNorm2 vs > 0

by (meson local.add-less-zeroD local.antisym-conv3

local.lemSpatialNullImpliesSpatialOrigin local.not-square-less-zero)

have iftv0 : tval v = 0 −→ spacelike v

proof −
{ assume v0 : tval v = 0

hence vs 6= sOrigin using assms vs by auto

hence sNorm2 vs > 0 using ifvsnz by auto

hence spacelike v using v0 vs

by (metis local.less-iff-diff-less-0 local.mult-not-zero)
}
thus ?thesis by auto

qed

moreover have (tval v 6= 0 ∧ vs 6= sOrigin) −→ spacelike v

proof −
{ assume vnz: (tval v 6= 0 ∧ vs 6= sOrigin)

have utpos: sqr (tval u) > 0 using tvalu lemSquaresPositive by
simp

have vspos: sNorm2 vs > 0 using vnz ifvsnz by auto

have sqr (tval u) ∗ sqr (tval v) ≤ sNorm2 us ∗ sNorm2 vs using
inequ by simp

hence sqr (tval v) ≤ sNorm2 us ∗ sNorm2 vs / sqr (tval u)
using utpos

by (metis local.divide-right-mono local.divisors-zero local.dual-order .strict-implies-order
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local.nonzero-mult-div-cancel-left tvalu)
hence sqr (tval v) / sNorm2 vs ≤ sNorm2 us / sqr (tval u)
using vspos mult-commute by (simp add: local.mult-imp-div-pos-le)

moreover have sNorm2 us / sqr (tval u) < 1 using assms(1 )
us utpos by auto

ultimately have sqr (tval v) / sNorm2 vs < 1 by simp

hence spacelike v using vs vspos by auto

}
thus ?thesis by auto

qed

moreover have ¬ (tval v 6= 0 ∧ vs = sOrigin)
proof −

{ assume (tval v 6= 0 ∧ vs = sOrigin)
hence (u ⊙m v) 6= 0 using tvalu vs by auto

hence False using assms by auto

}
thus ?thesis by auto

qed

ultimately show ?thesis by blast

qed

lemma lemNormaliseTimelike:
assumes timelike v

and s = sComponent ((1/tval v)⊗v)
shows (0 ≤ sNorm2 s < 1 ) ∧ (tval ((1/tval v)⊗v) = 1 )
proof −

have sqr (tval v) > sNorm2 (sComponent v) using assms by auto

hence 1 > sqr (1/tval v) ∗ sNorm2 (sComponent v)
using local.divide-less-eq by force

hence sNorm2 s < 1 using lemSNorm2OfScaled[of 1/tval v sCom-

ponent v] assms

by auto

hence (0 ≤ sNorm2 s < 1 ) by simp

moreover have (tval ((1/tval v)⊗v) = 1 )
proof −
have sqr (tval v) > sNorm2 (sComponent v) using assms by auto

hence sqr (tval v) 6= 0

by (metis local.add-less-zeroD local.not-square-less-zero)
hence tval v 6= 0 by auto

thus ?thesis by auto

qed
ultimately show ?thesis by blast

qed
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lemma lemReverseCauchySchwarz:
assumes timelike X ∧ timelike D

shows sqr (X ⊙m D) ≥ (mNorm2 X)∗(mNorm2 D)
proof −

have case1 : parallel X D −→ ?thesis

proof −
{ assume parallel X D

then obtain a where a: X = (a ⊗ D) by auto

hence (X ⊙m D) = a ∗ mNorm2 D using lemMDotScaleLeft by
auto

moreover have mNorm2 X = (sqr a) ∗ mNorm2 D using
lemMNorm2OfScaled a by auto

ultimately have sqr (X ⊙m D) = (mNorm2 X)∗(mNorm2 D)
using local.lemSqrMult mult-assoc by auto

}
thus ?thesis by simp

qed

have (¬ parallel X D) −→ ?thesis

proof −
{ assume case2 : ¬ (parallel X D)

define u where u: u = ((1/tval X)⊗X)
define v where v: v = ((1/tval D)⊗D)
define su where su: su = (sComponent u)
define sv where sv: sv = (sComponent v)

have sphere: (0 ≤ sNorm2 su < 1 ) ∧ (0 ≤ sNorm2 sv < 1 )
using lemNormaliseTimelike u su v sv assms by blast

have tvals1 : tval u = 1 ∧ tval v = 1

using lemNormaliseTimelike u su v sv assms by blast

have worksuv: sqr (u ⊙m v) > (mNorm2 u)∗(mNorm2 v)
proof −

have uupos: mNorm2 u > 0 using assms u lemNormaliseTime-

like by auto

have vvpos: mNorm2 v> 0 using assms v lemNormaliseTimelike

by auto

have uvpos: (u ⊙m v) > 0

proof −
have sqr (sdot su sv) ≤ (sNorm2 su) ∗ (sNorm2 sv)

using lemCauchySchwarzSqr by auto

also have . . . < 1

using mult-le-one sphere local.mult-strict-mono by fastforce

finally have sqr (sdot su sv) < 1 by auto

hence (sdot su sv) < 1

using local.less-1-mult local.not-less-iff-gr-or-eq by fastforce

thus ?thesis using u v su sv tvals1 by auto

198



qed

define a where a: a = (u ⊙m v)/(mNorm2 v)
define up where up: up = (a ⊗ v)
define uo where uo: uo = (u ⊖ up)

have apos: a > 0 using a uvpos vvpos by auto

have updotup: mNorm2 up > 0

proof −
have mNorm2 up = (sqr a) ∗ mNorm2 v using up lemM-

Norm2OfScaled by auto

thus ?thesis using apos lemSquaresPositive vvpos by auto

qed

have uparts: u = (up ⊕ uo) ∧ parallel up v ∧ orthogm uo v ∧
(up ⊙m v) = (u ⊙m v)

using lemMDecomposition a up uo vvpos uvpos by auto

have updotuo: (up ⊙m uo) = 0

proof −
have (up ⊙m uo) = a∗(v ⊙m uo) using up lemMDotScaleLeft

by auto

moreover have (v ⊙m uo) = (uo ⊙m v) using mult-commute

by auto

ultimately have (up ⊙m uo) = 0 using uparts by force

thus ?thesis by auto

qed

have udotu: mNorm2 u = mNorm2 up + mNorm2 uo

proof −
have mNorm2 u = mNorm2 (up ⊕ uo) using uparts by auto

also have . . . = mNorm2 up + 2∗(up ⊙m uo) + mNorm2 uo

using lemMNorm2OfSum by auto

finally show ?thesis using updotuo by auto

qed

moreover have uodotuo: mNorm2 uo < 0

proof −
have timelike up using updotup by auto

moreover have orthogm up uo using updotuo by auto

moreover have uo 6= origin

proof −
define α where α: α = (tval X)∗a∗(1/tval D)

have αpos: α 6= 0 using apos lemTimelikeNotZeroTime

assms α by simp

{ assume uo = origin

hence u = (a ⊗ v) using uo up by auto
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moreover have X = ((tval X)⊗u)
using u lemScaleAssoc assms lemTimelikeNotZeroTime

by auto

ultimately have X = ((tval X)⊗(a⊗v)) by auto

hence X = ((tval X)⊗(a⊗((1/tval D)⊗D))) using v by
auto

hence X = (α ⊗ D) using α lemScaleAssoc mult-assoc

by (metis Point.select-convs(3−4 ))
hence False using case2 αpos by blast

}
thus ?thesis by auto

qed
ultimately show ?thesis using lemOrthogmToTimelike by

auto

qed

ultimately have upgeu: mNorm2 up > mNorm2 u by auto

have (u ⊙m v) = (up ⊙m v) using uparts by auto

also have . . . = a ∗ mNorm2 v using up lemMDotScaleLeft by
auto

finally have final: sqr (u ⊙m v) = ((sqr a)∗mNorm2 v) ∗
(mNorm2 v)

using lemSqrMult[of a mNorm2 v] mult-assoc by auto

hence sqr (u ⊙m v) = (mNorm2 up)∗(mNorm2 v) using
lemMNorm2OfScaled up by auto

thus ?thesis

using upgeu vvpos local.mult-strict-right-mono by simp

qed

have (u ⊙m v) = (((1/tval X)⊗X) ⊙m ((1/tval D)⊗D)) using
u v by auto

hence udotv: (u ⊙m v) = (1/tval X)∗(1/tval D) ∗ (X ⊙m D)
using lemMDotScaleRight lemMDotScaleLeft mult-assoc mult-commute

by metis

have udotu: mNorm2 u = sqr (1/tval X) ∗ mNorm2 X using u

lemMNorm2OfScaled by blast

moreover have vdotv: mNorm2 v = sqr (1/tval D) ∗ mNorm2

D using v lemMNorm2OfScaled by blast

ultimately have (mNorm2 u)∗(mNorm2 v) = sqr ((1/tval

X)∗(1/tval D)) ∗ mNorm2 X ∗ mNorm2 D

using mult-commute mult-assoc by auto

hence
sqr ((1/tval X)∗(1/tval D) ∗ (X ⊙m D)) >

sqr ((1/tval X)∗(1/tval D)) ∗ mNorm2 X ∗
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mNorm2 D

using worksuv udotv by auto

moreover have sqr ((1/tval X)∗(1/tval D)) > 0

using lemTimelikeNotZeroTime

by (metis calculation local.lemSquaresPositive local.mult-cancel-left1 )
ultimately have ?thesis

using mult-less-cancel-left-pos[of sqr ((1/tval X)∗(1/tval D))]
by auto

}

thus ?thesis by auto

qed

thus ?thesis using case1 by auto

qed

end

end

32 KeyLemma

This theory establishes a "key lemma": if you draw a line through
a point inside a cone, that line will intersect the cone in no fewer
than 1 and no more than 2 points.

theory KeyLemma

imports Classification ReverseCauchySchwarz

begin

class KeyLemma = Classification + ReverseCauchySchwarz

begin

lemma lemInsideRegularConeImplies:
assumes insideRegularCone x p

and D 6= origin

and l = line p D

shows 0 < card (l ∩ regularConeSet x) ≤ 2

proof −
define S where S : S = (l ∩ regularConeSet x)
define X where X : X = (p ⊖ x)
define a where a: a = mNorm2 D

define b where b: b = 2∗(tval X)∗(tval D) − 2∗((sComponent D)
⊙s (sComponent X))
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define c where c: c = mNorm2 X

define d where d: d = (sqr b) − (4∗a∗c)

have tlX : timelike X using lemTimelikeInsideCone assms(1 ) X by
auto

hence cpos: c > 0 using c by auto

have xnotp: x 6= p using assms(1 ) by auto

have aval: a = mNorm2 D using a by auto

have bval: b = 2∗(X ⊙m D)
using b local.lemSDotCommute local.right-diff-distrib ′ mult-assoc

using local.mdot.simps by presburger

have cval: c = mNorm2 X using c by auto

have dval: d = 4 ∗ ( (sqr (X ⊙m D)) − (mNorm2 X)∗(mNorm2

D) )
proof −

have d = (sqr b) − (4∗a∗c) using d by simp

moreover have (sqr b) = 4∗(sqr (X ⊙m D))
using lemSqrMult[of 2 (X ⊙m D)] bval by auto

moreover have 4∗a∗c = 4∗(mNorm2 X)∗(mNorm2 D)
using aval cval mult-commute mult-assoc by auto

ultimately show ?thesis using right-diff-distrib ′ mult-assoc by
metis

qed

define r2p where r2p: r2p = (λ r . (p⊕(r⊗D)))
define p2r where p2r : p2r = (λ q . (THE a . q = (p⊕(a⊗D))))

have bij: ∀ r q . r2p r = q ←→ (∃ w . (r2p w = q)) ∧ (p2r q = r)
proof −

have uniqueroots: ∀ a r . r2p a = r2p r −→ a = r

proof −
{ fix a r assume r2p a = r2p r

hence (a⊗D) = (r⊗D) using r2p add-diff-eq by auto

hence ((a−r)⊗D) = origin using lemScaleDistribDiff by auto

hence (a−r) = 0 using assms(2 ) by auto

hence a = r by simp

}
thus ?thesis by blast

qed
{ fix q r assume lhs: r2p r = q

have (THE a . q = r2p a) = r

proof −
{ fix a assume q = r2p a

hence a = r using uniqueroots lhs r2p by blast

}
hence ∀ a . q = r2p a −→ a = r by auto
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thus ?thesis using lhs the-equality[of λa . q = r2p a r ]
by force

qed
}
hence l2r : ∀ q r . r2p r = q −→ (∃ w . (r2p w = q)) ∧ (p2r q =

r)
using p2r r2p by blast

{ fix r q assume ass: (∃ w . (r2p w = q)) ∧ (p2r q = r)
then obtain w where w: r2p w = q by blast

hence unique: ∀ a . q = r2p a −→ a = w using uniqueroots by
auto

have rdef : r = (THE a . q = r2p a) using ass r2p p2r by simp

have q = r2p w using w by simp

hence q = r2p r using theI [of λ a. q = r2p a w] rdef unique

by blast

}
hence ∀ q r . (∃ w . (r2p w = q)) ∧ (p2r q = r) −→ q = r2p r

by blast

thus ?thesis using l2r by blast

qed

have equalr2p: ∀ x y . r2p x = r2p y −→ x = y using bij by metis

have SbijRoots: S = { y . ∃ x ∈ qroots a b c . y = r2p x }
proof −

{ fix y assume y: y ∈ S

then obtain r where r : y = r2p r using r2p S assms by blast

hence regularCone x (p ⊕ (r⊗D)) using r2p y S by auto

hence r ∈ qroots a b c

using lemWhereLineMeetsCone[of a D b p x c r ]
a b c X by auto

hence ∃ r ∈ qroots a b c . y = r2p r using r by blast

}
hence l2r : S ⊆ { y . ∃ x ∈ qroots a b c . y = r2p x } by blast

{ fix y assume y: y ∈ { y . ∃ x ∈ qroots a b c . y = r2p x }
then obtain r where r : r ∈ qroots a b c ∧ y = r2p r by blast

hence regularCone x (r2p r)
using lemWhereLineMeetsCone[of a D b p x c r ]

a b c X r2p by auto

moreover have r2p r ∈ l using assms(3 ) r2p by auto

ultimately have y ∈ S using S r by auto

}
thus ?thesis using l2r by blast

qed
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have equalcard: ((card (qroots a b c) = 1 ) ∨ (card (qroots a b c) =
2 ))

−→ (card S = card (qroots a b c))
proof −

{ assume cases: card (qroots a b c) = 1 ∨ card (qroots a b c) = 2

have case1 : card (qroots a b c) = 1 −→ (card S = card (qroots

a b c))
proof −

{ assume card1 : card (qroots a b c) = 1

hence ∃ r . (qroots a b c) = {r} by (meson card-1-singletonE)
then obtain r where r : (qroots a b c) = {r} by blast

hence l2r : { r2p r } ⊆ S using SbijRoots by auto

{ fix y assume y: y ∈ S

then obtain x where x: x ∈ qroots a b c ∧ y = r2p x

using SbijRoots by blast

hence r2p r = y using bij using r by auto

}
hence ∀ y . y ∈ S −→ y ∈ { r2p r } by auto

hence S = { r2p r } using l2r by blast

hence ∃ r . S = {r} by blast

hence card S = 1

using card-1-singleton-iff [of S ] by auto

}
thus ?thesis by auto

qed

have case2 : card (qroots a b c) = 2 −→ (card S = card (qroots

a b c))
proof −

{ assume card2 : card (qroots a b c) = 2

hence ∃ r1 r2 . (qroots a b c) = {r1 , r2} ∧ r1 6= r2

using card-2-iff by blast

then obtain r1 r2 where rs: (qroots a b c) = {r1 ,r2} ∧
r1 6=r2 by blast

hence l2r : { r2p r1 , r2p r2} ⊆ S using SbijRoots by auto

{ fix y assume y: y ∈ S

then obtain x where x: x ∈ qroots a b c ∧ y = r2p x

using SbijRoots by blast

hence x = r1 ∨ x = r2 using rs by auto

hence r2p r1 = y ∨ r2p r2 = y using x by blast

}
hence ∀ y . y ∈ S −→ y ∈ { r2p r1 , r2p r2 } by auto

hence S2 : S = { r2p r1 , r2p r2 } using l2r by blast

moreover have r2p r1 6= r2p r2 using rs bij by metis

ultimately have ∃ y1 y2 . S = {y1 , y2} ∧ y1 6=y2 by blast

hence card S = 2 using card-2-iff by blast

}
thus ?thesis by auto
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qed

hence (card S = card (qroots a b c)) using case1 cases by auto

}
thus ?thesis by auto

qed

have qc1 : ¬ qcase1 a b c using cpos by auto

have qc2 : ¬ qcase2 a b c

proof −
{ assume qcase2 a b c

hence qc2 : a = 0 ∧ b = 0 ∧ c > 0 using d cpos by auto

have llD: lightlike D using qc2 aval assms(2 ) by simp

have sqr (X ⊙m D) = (mNorm2 X)∗(mNorm2 D)
using qc2 bval aval by simp

hence orthogm X D using llD lemSqrt0 by auto

hence parXD: parallel X D

using lemCausalOrthogmToLightlikeImpliesParallel tlX llD by
auto

then obtain α where α: α 6= 0 ∧ X = (α ⊗ D) by blast

have Dnot0 : origin 6= D using assms(2 ) by simp

hence lightlike X

proof −
have tsqr : sqr (tval X) = (sqr α)∗ sqr (tval D)

using lemSqrMult α by simp

have sComponent X = (α ⊗s (sComponent D)) using α by
simp

hence sNorm2 (sComponent X) = (sqr α) ∗ sNorm2 (sComponent

D)
using lemSNorm2OfScaled[of α sComponent D] by auto

hence mNorm2 X = (sqr α) ∗ mNorm2 D

using lemMNorm2Decomposition[of X ] tsqr

by (simp add: local.right-diff-distrib ′)
thus ?thesis using llD qc2 xnotp X by auto

qed

hence False using tlX by auto

}
thus ?thesis by auto

qed
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have qc3 : qcase3 a b c −→ card S = 1

proof −
{ assume qcase3 a b c

hence qc3 : qroots a b c = {(−c/b)} using lemQCase3 by auto

hence ∃ val . (qroots a b c = {val}) by simp

hence card (qroots a b c) = 1 using card-1-singleton-iff by auto

hence card S = 1 using equalcard by auto

}
thus ?thesis by auto

qed

have qc4 : ¬ qcase4 a b c

proof −
{ assume qcase4 a b c

hence qc4 : a 6= 0 ∧ d < 0 using d by auto

{ assume a > 0

hence tlD: timelike D using aval by auto

hence sqr (X ⊙m D) ≥ (mNorm2 X)∗(mNorm2 D)
using lemReverseCauchySchwarz[of X D] tlX

using local.dual-order .order-iff-strict by blast

hence EQN : 4∗sqr (X ⊙m D) ≥ 4∗(mNorm2 X)∗(mNorm2

D)
using qc4 d dval local.leD by fastforce

have (sqr b) < 4∗a∗c using d qc4 by simp

hence 4∗sqr (X ⊙m D) < 4∗(mNorm2 X)∗(mNorm2 D)
using aval bval cval mult-assoc mult-commute

lemSqrMult[of 2 (X ⊙m D)] by auto

hence False using EQN by force

}
hence aneg: a < 0 using qc4 by force

hence 4∗a∗c < 0 using cpos

by (simp add: local.mult-pos-neg local.mult-pos-neg2 )
hence d > sqr b using d

by (metis add-commute local.add-less-same-cancel2 local.diff-add-cancel)
hence d > 0

using local.less-trans local.not-square-less-zero qc4 by blast

hence False using qc4 by auto

}
thus ?thesis by auto

qed

have qc5 : qcase5 a b c −→ card S = 1

proof −
{
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assume qc5 : qcase5 a b c

hence qroots a b c = {(−b/(2∗a))} using lemQCase5 by auto

hence ∃ val . qroots a b c = {val} by simp

hence card (qroots a b c) = 1 using card-1-singleton-iff by auto

hence card S = 1 using equalcard by simp

}
thus ?thesis by simp

qed

have qc6 : qcase6 a b c −→ card S = 2

proof −
{ define rd where rd: rd = sqrt (discriminant a b c)

define rp where rp: rp = (−b + rd) / (2 ∗ a)
define rm where rm: rm = (−b − rd) / (2 ∗ a)

assume qc6 : qcase6 a b c

hence rp 6= rm ∧ qroots a b c = {rp, rm}
using lemQCase6 [of a b c rd rp rm] a b c rd rm rp

by auto

hence ∃ v1 v2 . qroots a b c = { v1 , v2 } ∧ (v1 6= v2 ) by blast

hence card (qroots a b c) = 2 using card-2-iff [of qroots a b c]
by blast

hence card S = 2 using equalcard by simp

}
thus ?thesis by simp

qed

define n where n: n = card S

hence (n = 1 ∨ n = 2 )
using qc1 qc2 qc3 qc4 qc5 qc6 lemQuadraticCasesComplete

by blast

hence 0 < n ≤ 2 by auto

thus ?thesis using n S by auto

qed

end
end

33 Cardinalities

For our purposes the only relevant cardinalities are 0, 1, 2 and
more-than-2 (a proxy for "infinite"). We will use these cardinal-
ities when looking at how lines intersect cones, using the size of
the intersection set to characterise whether points are inside, on
or outside of lightcones.

theory Cardinalities

imports Functions
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begin

class Cardinalities = Functions

begin

lemma lemInjectiveValueUnique:
assumes injective f

and isFunction f

and f x y

shows { q. f x q } = { y }
using assms(2 ) assms(3 ) by force

lemma lemBijectionOnTwo:
assumes bijective f

and isFunction f

and s ⊆ domain f

and card s = 2

shows card (applyToSet f s) = 2

proof −
obtain x y where xy: s = {x,y} ∧ x 6= y using assms(4 )

by (meson card-2-iff )
obtain fx where fx: f x fx using xy assms(1 ) assms(3 ) by blast

obtain fy where fy: f y fy using xy assms(1 ) assms(3 ) by blast

have applyToSet f s = { q . ∃ p ∈ s . f p q } by simp

moreover have . . . = { q. f x q ∨ f y q } using xy by auto

moreover have . . . = { q. f x q } ∪ { q. f y q } by auto

ultimately have applyToSet f s = { fx } ∪ { fy }
using fx fy assms(1 ) assms(2 ) lemInjectiveValueUnique by force

moreover have fx 6= fy using fx fy assms(1 ) xy by blast

thus ?thesis using calculation by force

qed

lemma lemElementsOfSet2 :
assumes card S = 2

shows ∃ p q . (p 6= q) ∧ p ∈ S ∧ q ∈ S

by (meson assms card-2-iff ′)

lemma lemThirdElementOfSet2 :
assumes (p 6= q) ∧ p ∈ S ∧ q ∈ S ∧ (card S = 2 )

and r ∈ S

shows p = r ∨ q = r

proof −
have card S = 2 using assms(1 ) by auto
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then obtain x y where xy: (x ∈ S) ∧ (y ∈ S) ∧ (x 6= y) ∧ (∀ z∈S .
z = x ∨ z = y)

using card-2-iff ′[of S ] by auto

have p: p = x ∨ p = y using xy assms(1 ) by auto

have q: q = x ∨ q = y using xy assms(1 ) by auto

hence pq: (p = x ∧ q = y) ∨ (p = y ∧ q = x) using assms(1 ) p

by blast

moreover have r = x ∨ r = y using xy assms(2 ) by auto

ultimately show ?thesis by auto

qed

lemma lemSmallCardUnderInvertible:
assumes invertible f

and 0 < card S ≤ 2

shows card S = card (applyToSet (asFunc f ) S)
proof −

have cases: card S = 1 ∨ card S = 2 using assms(2 ) by auto

have case1 : card S = 1 −→ ?thesis

proof −
{ assume card1 : card S = 1

hence ∃ a . S = {a} by (meson card-1-singletonE)
then obtain a where a: S = {a} by blast

define b where b: b = f a

hence applyToSet (asFunc f ) S = { b }
proof −

have {b} ⊆ applyToSet (asFunc f ) S using a b by auto

moreover have applyToSet (asFunc f ) S ⊆ {b}
proof −

{ fix c assume c: c ∈ applyToSet (asFunc f ) S

hence c ∈ { c . ∃ a ′ ∈ S . (asFunc f ) a ′ c } by auto

then obtain a ′ where a ′: a ′ ∈ S ∧ (asFunc f ) a ′ c by blast

hence a ′ = a ∧ f a = c using a by auto

hence c ∈ {b} using b by auto

}
thus ?thesis by blast

qed
ultimately show ?thesis by blast

qed
hence ∃ b . applyToSet (asFunc f ) S = { b } by blast

hence card (applyToSet (asFunc f ) S) = 1 by auto

}
thus ?thesis by auto

qed

have case2 : card S = 2 −→ ?thesis

proof −
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{ assume card2 : card S = 2

hence ∃ a u . a 6=u ∧ S = {a, u} by (meson card-2-iff )
then obtain a u where au: a 6=u ∧ S = {a, u} by blast

define b where b: b = f a

define v where v: v = f u

hence applyToSet (asFunc f ) S = { b, v }
proof −

have {b, v} ⊆ applyToSet (asFunc f ) S using au b v by auto

moreover have applyToSet (asFunc f ) S ⊆ {b, v}
proof −

{ fix c assume c: c ∈ applyToSet (asFunc f ) S

hence c ∈ { c . ∃ a ′ ∈ S . (asFunc f ) a ′ c } by auto

then obtain a ′ where a ′: a ′ ∈ S ∧ (asFunc f ) a ′ c by blast

hence (a ′ = a ∧ f a = c) ∨ (a ′ = u ∧ f u = c) using au

by auto

hence c ∈ {b, v} using b v by auto

}
thus ?thesis by blast

qed
ultimately show ?thesis by blast

qed
moreover have b 6= v

proof −
{ assume b = v

hence f a = f u using b v by simp

hence a = u using assms(1 ) by blast

hence False using au by auto

}
thus ?thesis by auto

qed
ultimately have ∃ b v . b 6=v ∧ applyToSet (asFunc f ) S = { b,

v } by blast

hence card (applyToSet (asFunc f ) S) = 2 using card-2-iff by
auto

}
thus ?thesis by auto

qed

thus ?thesis using cases case1 by blast

qed

lemma lemCardOfLineIsBig:
assumes x 6= p

and onLine x l ∧ onLine p l

shows ∃ p1 p2 p3 . (onLine p1 l ∧ onLine p2 l ∧ onLine p3 l)
∧ (p1 6=p2 ∧ p2 6=p3 ∧ p3 6=p1 )

proof −
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obtain b d where bd: l = line b d using assms(2 ) by blast

hence dnot0 : d 6= origin using assms by auto

have lpd: l = line p d using lemSameLine[of p b d] bd assms(2 ) by
auto

define p1 where p1 : p1 = (p ⊕ (1 ⊗ d))
define p2 where p2 : p2 = (p ⊕ (2 ⊗ d))
define p3 where p3 : p3 = (p ⊕ (3 ⊗ d))

have onl: onLine p1 l ∧ onLine p2 l ∧ onLine p3 l using lpd p1 p2

p3 by auto

have psdiff : p1 6= p2 ∧ p2 6= p3 ∧ p3 6= p1

proof −
have p1 6= p2 using p1 p2 dnot0 by auto

moreover have p2 6= p3 using p2 p3 dnot0 by auto

moreover have p3 6= p1 using p3 p1 dnot0 by auto

ultimately show ?thesis by blast

qed

hence (onLine p1 l ∧ onLine p2 l ∧ onLine p3 l)∧(p1 6=p2 ∧ p2 6=p3

∧ p3 6=p1 )
using onl by blast

thus ?thesis using p1 p2 p3 by meson

qed

end
end

34 AffineConeLemma

This theory shows that affine approximations preserve "inside-
ness" of points relative to cones.

theory AffineConeLemma

imports KeyLemma TangentLineLemma Cardinalities

begin

class AffineConeLemma = KeyLemma + TangentLineLemma + Car-

dinalities

begin

lemma lemInverseOfAffInvertibleIsAffInvertible:
assumes affInvertible A

and ∀ x y . A x = y ←→ A ′ y = x

shows affInvertible A ′

proof −
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have invA ′: invertible A ′ using assms(2 ) by force

moreover have affine A ′

proof −
obtain L T where LT : (linear L) ∧ (translation T ) ∧ (A = T ◦

L)
using assms(1 ) by blast

then obtain t where t: ∀ x . T x = (x ⊕ t) using LT by auto

have invertible L

proof −
{ fix q

define p where p: p = A ′ (T q)
hence Lpq: (L p = q)
proof −

have A p = T q using p assms(2 ) by simp

thus ?thesis using LT by auto

qed
moreover have (∀ x. L x = q −→ x = p)
proof −

{ fix x assume L x = q

hence L x = L p using Lpq by simp

hence A x = A p using LT by auto

hence x = p using assms(2 ) by force

}
thus ?thesis by auto

qed
ultimately have ∃ p . (L p = q) ∧ (∀ x. L x = q −→ x = p)

by blast

}
thus ?thesis by blast

qed
then obtain L ′ where L ′: ∀ x y . L x = y ←→ L ′ y = x by metis

have linL: linear L using LT by auto

have linL ′: linear L ′

proof −
have part1 : L ′ origin = origin using linL L ′ by auto

have part2 : ∀ a p . L ′ (a⊗p) = (a ⊗ (L ′ p))
proof −

{ fix a p

have L (L ′ p) = p using L ′ by auto

hence L (a ⊗ (L ′ p)) = (a ⊗ p)
using linL lemLinearProps[of L a (L ′ p)] by auto

hence (a ⊗ (L ′ p)) = (L ′ (a ⊗ p)) using L ′ by auto

}
thus ?thesis by auto

qed
have ∀ p q . (L ′ (p ⊕ q) = ((L ′ p) ⊕ (L ′ q))) ∧ (L ′ (p ⊖ q) =

((L ′ p) ⊖ (L ′ q)))
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proof −
{ fix p q

have (L ((L ′ p) ⊕ (L ′ q)) = ((L (L ′ p)) ⊕ (L (L ′ q))))
∧ (L ((L ′ p) ⊖ (L ′ q)) = ((L (L ′ p)) ⊖ (L (L ′ q))))

using linL lemLinearProps[of L 0 (L ′ p) (L ′ q)] by auto

moreover have L (L ′ p) = p ∧ L (L ′ q) = q using L ′ by
auto

ultimately have (L ((L ′ p) ⊕ (L ′ q)) = (p ⊕ q)) ∧ (L ((L ′

p) ⊖ (L ′ q)) = (p ⊖ q))
using L ′ by auto

hence ((L ′ p) ⊕ (L ′ q)) = L ′ (p ⊕ q) ∧ ((L ′ p) ⊖ (L ′ q)) =
L ′ (p ⊖ q)

using L ′ by force

}
thus ?thesis by force

qed

thus ?thesis using part1 part2 by blast

qed

define t ′ where t ′: t ′ = (origin ⊖ (L ′ t))
define T ′ where T ′: T ′ = mkTranslation t ′

have transT ′: translation T ′ using T ′ t ′ by fastforce

have A ′ = T ′ o L ′

proof −
{ fix q define p where p: p = A ′ q

hence A p = q using assms(2 ) by force

hence ((L p) ⊕ t) = q using LT t by auto

hence L p = (q ⊖ t) using add-diff-eq by auto

hence p = L ′ (q ⊖ t) using L ′ by auto

hence p = ((L ′ q) ⊖ (L ′ t)) using lemLinearProps[of L ′] linL ′

by auto

hence p = T ′ (L ′ q) using T ′ t ′ by auto

hence A ′ q = (T ′ o L ′) q using p by auto

}
thus ?thesis by blast

qed

thus ?thesis using linL ′ transT ′ by blast

qed

ultimately show ?thesis by blast

qed
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lemma lemInsideRegularConeUnderAffInvertible:
assumes affInvertible A

and insideRegularCone x p

and regularConeSet (A x) = applyToSet (asFunc A) (regularConeSet

x)
shows insideRegularCone (A x) (A p)
proof −

define y where y: y = A x

define q where q: q = A p

define cx where cx: cx = regularConeSet x

define cy where cy: cy = regularConeSet y

obtain A ′ where A ′: ∀ x y . A x = y ←→ A ′ y = x using assms(1 )
by metis

hence invA ′: invertible A ′ by force

have affA ′: affine A ′

using A ′ assms(1 ) lemInverseOfAffInvertibleIsAffInvertible

by auto

have p ′: A ′ q = p using A ′ q by auto

have x ′: A ′ y = x using A ′ y by auto

have xnotp: x 6= p using assms(2 ) by auto

have ynotq: y 6= q using p ′ x ′ xnotp by auto

have cy ′: cy = applyToSet (asFunc A) cx using y cx cy assms(3 )
by auto

have cx ′: cx = applyToSet (asFunc A ′) cy

proof −
{ fix z assume z ∈ cx

hence (A z) ∈ cy using cy ′ by auto

hence A ′ (A z) ∈ applyToSet (asFunc A ′) cy by auto

hence z ∈ applyToSet (asFunc A ′) cy using A ′ by metis

}
hence l2r : cx ⊆ applyToSet (asFunc A ′) cy by blast

{ fix z assume rhs: z ∈ applyToSet (asFunc A ′) cy

hence z ∈ { z . ∃ z ′ . z ′ ∈ cy ∧ (asFunc A ′) z ′ z } by auto

then obtain z1 where z1 : z1 ∈ cy ∧ (asFunc A ′) z1 z by blast

hence z1 ∈ { z1 . ∃ z2 . z2 ∈ cx ∧ (asFunc A) z2 z1 } using
cy ′ by auto

then obtain z2 where z2 : z2 ∈ cx ∧ (asFunc A) z2 z1 by blast

hence z = z2 using z1 A ′ by auto

hence z ∈ cx using z2 by auto

}
thus ?thesis using l2r by blast

qed
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have noton: ¬ onRegularCone y q

proof −
{ assume on: onRegularCone y q

define lx where lx: lx = lineJoining x p

define ly where ly ′: ly = applyToSet (asFunc A) lx

have onlx: onLine x lx ∧ onLine p lx

using lemLineJoiningContainsEndPoints[of lx x p] lx by auto

have linelx: isLine lx using lx by blast

have linely: applyAffineToLine A lx ly

using lemAffineOfLineIsLine[of lx A ly] assms(1 ) ly ′ linelx by
auto

have ∃ D . lx = line p D

proof −
obtain b d where lx = line b d using linelx by blast

hence lx = line p d using lemSameLine[of p b d] onlx by auto

thus ?thesis by auto

qed
then obtain D where D: lx = line p D by auto

have Dnot0 : D 6= origin

proof −
{ assume D = origin

hence False using D onlx xnotp by auto

}
thus ?thesis by auto

qed

have ly: ly = lineJoining y q

proof −
have applyToSet (asFunc A) {x,p} ⊆ applyToSet (asFunc A)

lx using onlx by auto

hence {y,q} ⊆ ly using y q ly ′ by auto

moreover have isLine ly using linely by auto

ultimately show ?thesis using lemLineAndPoints[of y q ly]
by (simp add: ynotq)

qed

hence only: { y, q } ⊆ ly

using lemLineJoiningContainsEndPoints[of ly y q] ly ′ by auto

have SxSy: applyToSet (asFunc A) (lx ∩ cx) = (ly ∩ cy)
using lemInvertibleOnMeet[of A lx ∩ cx lx cx] assms(1 ) ly ′ cy ′

by auto

have cardx: 0 < card (lx ∩ cx) ≤ 2
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using lemInsideRegularConeImplies[of x p D lx]
assms(2 ) Dnot0 lx D cx

by fastforce

hence cardy: card (ly ∩ cy) = card (lx ∩ cx)
using lemSmallCardUnderInvertible[of A lx ∩ cx] assms(1 )

SxSy by auto

hence lycy: ly ∩ cy = ly

using lemOnRegularConeIff [of ly y q] ly ynotq cy on

by blast

hence ∃ p1 p2 p3 . (p1 ∈ ly ∧ p2 ∈ ly ∧ p3 ∈ ly)
∧ (p1 6=p2 ∧ p2 6=p3 ∧ p3 6=p1 )

using lemCardOfLineIsBig[of y q ly] ynotq only linely by auto

then obtain p1 p2 p3

where ps: (p1 ∈ ly ∧ p2 ∈ ly ∧ p3 ∈ ly) ∧ (p1 6=p2 ∧ p2 6=p3

∧ p3 6=p1 )
by auto

have not1 : card ly 6= 1 using ps card-1-singleton-iff [of ly] by
auto

have not2 : card ly 6= 2 using ps card-2-iff [of ly] by auto

hence ¬ (0 < card (ly ∩ cy) ≤ 2 ) using lycy not1 by auto

hence False using cardy cardx by auto

}
thus ?thesis by blast

qed

have notout: ¬ outsideRegularCone y q

proof −
{ assume out: outsideRegularCone y q

hence (∃ l q ′ . (q ′ 6= q) ∧ onLine q ′ l ∧ onLine q l

∧ (l ∩ cy = {}))
using lemOutsideRegularConeImplies[of y q] cy

by auto

then obtain l q ′

where l: (q ′ 6= q) ∧ onLine q ′ l ∧ onLine q l ∧ (l ∩ cy = {})
by blast

define lx where lx: lx = applyToSet (asFunc A ′) l

have (lx ∩ cx) = applyToSet (asFunc A ′) (l ∩ cy)
using lemInvertibleOnMeet[of A ′ l ∩ cy l cy]

invA ′ lx cx ′ by auto

hence (lx ∩ cx) = applyToSet (asFunc A ′){} using l by auto

hence int0 : (lx ∩ cx) = {} by simp

hence card0 : card (lx ∩ cx) = 0 by simp
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have linelx: isLine lx

proof −
have isLine l using l by blast

thus ?thesis using lemAffineOfLineIsLine[of l A ′ lx] lx affA ′

by auto

qed

have ponlx: onLine p lx

proof −
have q ∈ l using l by simp

thus ?thesis using lx p ′ linelx by auto

qed

have ∃ D . lx = line p D

proof −
obtain b d where lx = line b d using linelx by blast

hence lx = line p d using lemSameLine[of p b d] ponlx by auto

thus ?thesis by auto

qed
then obtain D where D: lx = line p D by auto

have Dnot0 : D 6= origin

proof −
{ assume D0 : D = origin

have allp: ∀ pt. onLine pt lx −→ pt = p

proof −
{ fix pt assume onLine pt lx

then obtain a where pt = (p ⊕ (a ⊗ D)) using D by
auto

hence pt = p using D0 by simp

}
thus ?thesis by blast

qed

define p1 where p1 : p1 = A ′ q ′

have AA ′: ∀ pt . A (A ′ pt) = pt by (simp add: A ′)

hence p1 6= p

proof −
{ assume pp: p1 = p

hence A (A ′ q ′) = A (A ′ q) using p ′ p1 by auto

hence q ′ = q using AA ′ by simp

hence False using l by auto

}
thus ?thesis by auto

qed
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moreover have onLine p1 lx

proof −
have p1 = A ′ q ′ using l p1 by blast

hence p1 ∈ applyToSet (asFunc A ′) l using l by auto

hence p1 ∈ lx by (simp add: lx)
thus ?thesis using linelx by auto

qed

ultimately have False using l allp by blast

}
thus ?thesis by auto

qed

have 0 < card (lx ∩ cx) ≤ 2

using lemInsideRegularConeImplies[of x p D lx]
assms(2 ) Dnot0 D cx

by blast

hence False using card0 by simp

}
thus ?thesis by blast

qed

hence ¬ (vertex y q) ∧ ¬(onRegularCone y q) ∧ ¬(outsideRegularCone

y q)
using ynotq noton notout by blast

hence insideRegularCone y q using lemInsideCone[of y q]
by fastforce

thus ?thesis using y q by blast

qed

end
end

35 NoFTLGR

This theory completes the proof of NoFTLGR.

theory NoFTLGR

imports ObserverConeLemma AffineConeLemma

begin

class NoFTLGR = ObserverConeLemma + AffineConeLemma

begin

The theorem says: if observer m encounters observer k (so that
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they are both present at the same spacetime point x), then k
is moving at sub-light speed relative to m. In other words, no
observer ever encounters another observer who appears to be
moving at or above lightspeed.

theorem lemNoFTLGR:
assumes ass1 : x ∈ wline m m ∩ wline m k

and ass2 : tl l m k x

and ass3 : v ∈ lineVelocity l

and ass4 : ∃ p . (p 6= x) ∧ (p ∈ l)
shows (lineSlopeFinite l) ∧ (sNorm2 v < 1 )
proof −

define s where s: s = (wline k k)

have axEventMinus m k x using AxEventMinus by force

hence (∃ q . ∀ b . ( (m sees b at x) ←→ (k sees b at q)))
using ass1 by blast

then obtain y where y: ∀ b . ( (m sees b at x) ←→ (k sees b at

y)) by auto

hence mkxy: wvtFunc m k x y using ass1 by auto

have axDiff m k x using AxDiff by simp

hence ∃ A . (affineApprox A (wvtFunc m k) x ) using mkxy by fast

then obtain A where A: affineApprox A (wvtFunc m k) x by auto

hence affA: affine A by auto

have lineL: isLine l using ass2 by auto

define l ′ where l ′: l ′ = applyToSet (asFunc A) l

hence lineL ′: isLine l ′

using lineL affA lemAffineOfLineIsLine[of l A l ′]
by auto

have tgtl ′: tangentLine l ′ s y

proof −
define g1 where g1 : g1 ≡ x ∈ wline m k

define g2 where g2 : g2 ≡ tangentLine l (wline m k) x

define g3 where g3 : g3 ≡ affineApprox A (wvtFunc m k) x

define g4 where g4 : g4 ≡ wvtFunc m k x y

define g5 where g5 : g5 ≡ applyAffineToLine A l l ′

define g6 where g6 : g6 ≡ tangentLine l ′ (wline k k) y

have x ∈ wline m k

−→ tangentLine l (wline m k) x

−→ affineApprox A (wvtFunc m k) x

−→ wvtFunc m k x y

−→ applyAffineToLine A l l ′
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−→ tangentLine l ′ (wline k k) y

using lemPresentation[of x m k l k A y l ′]
by blast

hence pres: g1 −→ g2 −→ g3 −→ g4 −→ g5 −→ g6

using g1 g2 g3 g4 g5 g6 by fastforce

have 1 : g1 using ass1 g1 by auto

have 2 : g2 using ass2 g2 by fast

have 3 : g3 using A g3 by fast

have 4 : g4 using mkxy g4 by fast

have 5 : g5 using 1 lineL l ′ affA lemAffineOfLineIsLine[of l A l ′]
g5

by auto

hence g6 using 1 2 3 4 5 pres by meson

thus ?thesis using s g6 by auto

qed

have ykk: y ∈ wline k k using ass1 y by auto

have c2 : l ′ = timeAxis

proof −
have tl l ′ k k y using tgtl ′ l ′ s by auto

thus ?thesis

using lemSelfTangentIsTimeAxis[of y k l ′] by auto

qed

have yOnAxis: onLine y timeAxis

using lemTimeAxisIsLine ykk AxSelfMinus by blast

hence yOnl ′: onLine y l ′ using c2 by auto

have ∀ p . cone k y p ←→ regularCone y p

using ykk lemProposition1 [of y k] by auto

hence ycone: coneSet k y = regularConeSet y by auto

have xcone: coneSet m x = regularConeSet x

proof −
have x ∈ wline m m using ass1 by auto

hence ∀ p . cone m x p ←→ regularCone x p

using lemProposition1 [of x m] by auto

thus ?thesis by auto

qed
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have assm1 ′: y ∈ wline k k ∩ wline k m

using ass1 y by auto

have axEventMinus k m y using AxEventMinus by force

hence (∃ q . ∀ b . ( (k sees b at y) ←→ (m sees b at q)))
using assm1 ′ by blast

then obtain z where z: ∀ b . ( (k sees b at y) ←→ (m sees b at z))
by auto

hence kmyz: wvtFunc k m y z using assm1 ′ by auto

have axDiff k m y using AxDiff by simp

hence ∃ A . (affineApprox A (wvtFunc k m) y ) using kmyz by fast

then obtain Akmy where Akmy: affineApprox Akmy (wvtFunc k

m) y by auto

hence affA ′: affine Akmy by auto

have invA ′: invertible Akmy using Akmy by auto

then obtain Amkx where
Amkx: (affine Amkx) ∧ (∀ p q . Akmy p = q ←→ Amkx q = p)
using lemInverseAffine[of Akmy] affA ′ by blast

have wvtFunc m k x y using mkxy by auto

hence kmyx: wvtFunc k m y x by auto

hence xisz: x = z using kmyz lemWVTImpliesFunction by blast

moreover have z = Akmy y

using lemAffineEqualAtBase[of wvtFunc k m Akmy y] Akmy kmyz

by blast

ultimately have xA ′y: x = Akmy y by auto

hence p35a: applyToSet (asFunc Akmy) (coneSet k y) ⊆ coneSet m

x

using Akmy lemProposition2 [of k m Akmy y]
by simp

have p35aRegular : applyToSet (asFunc Akmy) (regularConeSet y)
= regularConeSet x

proof −
have applyToSet (asFunc Akmy) (regularConeSet y) ⊆ coneSet m

x

using ycone p35a by auto

hence l2r : applyToSet (asFunc Akmy) (regularConeSet y) ⊆ regu-

larConeSet x
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using xcone by auto

have r2l: regularConeSet x ⊆ applyToSet (asFunc Akmy) (regularConeSet

y)
proof −

{ assume converse: ¬(regularConeSet x ⊆ applyToSet (asFunc

Akmy) (regularConeSet y))
then obtain z where

z: z ∈ regularConeSet x ∧ ¬(z ∈ applyToSet (asFunc Akmy)
(regularConeSet y))

by blast

define z ′ where z ′: z ′ = Amkx z

have z ′NotOnCone:¬(z ′ ∈ regularConeSet y)
proof −

{ assume conv: z ′ ∈ regularConeSet y

have Akmy z ′ = z using Amkx z ′ by auto

hence (asFunc Akmy) z ′ z by auto

hence ∃ z ′ ∈ regularConeSet y . (asFunc Akmy) z ′ z using
conv by blast

hence z ∈ applyToSet (asFunc Akmy) (regularConeSet y)
by auto

hence False using z by blast

}
thus ?thesis by blast

qed

hence ¬ (regularCone y z ′) by auto

then obtain l where
l: (onLine z ′ l) ∧ (¬ (y ∈ l)) ∧ (card (l ∩ (regularConeSet y))

= 2 )
using lemConeLemma2 [of z ′ y] by blast

then obtain p q where
pq: (p 6= q) ∧ p ∈ (l ∩ (regularConeSet y)) ∧ q ∈ (l ∩

(regularConeSet y))
using lemElementsOfSet2 [of l ∩ (regularConeSet y)] by blast

have lineL: isLine l using l by auto

define p ′ where p ′: p ′ = Akmy p

define q ′ where q ′: q ′ = Akmy q

have p ′inv: Amkx p ′ = p using Amkx p ′ by auto

have q ′inv: Amkx q ′ = q using Amkx q ′ by auto

have pOnCone: p ∈ regularConeSet y using pq by blast

moreover have (asFunc Akmy) p p ′ using p ′ by auto

ultimately have ∃ p ∈ regularConeSet y . (asFunc Akmy) p

p ′ by blast

hence p ′ ∈ applyToSet (asFunc Akmy) (regularConeSet y) by
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auto

hence Ap: p ′ ∈ regularConeSet x using l2r by blast

have qOnCone: q ∈ regularConeSet y using pq by blast

moreover have (asFunc Akmy) q q ′ using q ′ by auto

ultimately have ∃ q ∈ regularConeSet y . (asFunc Akmy) q

q ′ by blast

hence q ′ ∈ applyToSet (asFunc Akmy) (regularConeSet y) by
auto

hence Aq: q ′ ∈ regularConeSet x using l2r by blast

have p ′q ′: p ′ 6= q ′

proof −
{ assume p ′ = q ′

hence Akmy p ′ = Akmy q ′ by auto

hence p = q by (metis p ′ q ′ Amkx)
hence False using pq by simp

}
thus ?thesis by auto

qed

have p ′z: p ′ 6= z

proof −
{ assume p ′ = z

hence p = z ′ using p ′inv z ′ by auto

hence False using pOnCone z ′NotOnCone by auto

}
thus ?thesis by auto

qed

have q ′z: q ′ 6= z

proof −
{ assume q ′ = z

hence q = z ′ using q ′inv z ′ by auto

hence False using qOnCone z ′NotOnCone by auto

}
thus ?thesis by auto

qed

define l ′ where l ′: l ′ = applyToSet (asFunc Akmy) l

have affine Akmy using Akmy by auto

hence All ′: applyAffineToLine Akmy l l ′

using l ′ lineL lemAffineOfLineIsLine[of l Akmy l ′]
by blast

have lineL ′: isLine l ′ using All ′ by auto

define S where S : S = l ′ ∩ regularConeSet x
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have xNotInL ′: ¬ (x ∈ l ′)
proof −

{ assume x ∈ l ′

hence ∃ y1 ∈ l . (asFunc Akmy) y1 x using l ′ by auto

then obtain y1 where y1 : (y1 ∈ l) ∧ (Akmy y1 = x) by
auto

hence Akmy y1 = Akmy y using xA ′y by auto

hence y1 = y using invA ′ by auto

hence y ∈ l using y1 by auto

hence False using l by auto

}
thus ?thesis by auto

qed

have p ′InMeet: p ′ ∈ S

proof −
have p ∈ l ∧ (asFunc Akmy) p p ′ using p ′ pq by auto

hence ∃ p ∈ l . (asFunc Akmy) p p ′ by auto

hence p ′ ∈ l ′ using l ′ by auto

thus ?thesis using Ap S by blast

qed

have q ′InMeet: q ′ ∈ S

proof −
have q ∈ l ∧ (asFunc Akmy) q q ′ using q ′ pq by auto

hence ∃ q ∈ l . (asFunc Akmy) q q ′ by auto

hence q ′ ∈ l ′ using l ′ by auto

thus ?thesis using Aq S by blast

qed

have zInMeet: z ∈ S

proof −
have Akmy z ′ = z using z ′ Amkx by blast

moreover have z ′ ∈ l using l by auto

ultimately have z ′ ∈ l ∧ (asFunc Akmy) z ′ z by auto

hence ∃ z ′ ∈ l . (asFunc Akmy) z ′ z by auto

hence z ∈ l ′ using l ′ by auto

thus ?thesis using z S by blast

qed

have finite S ∧ card S ≤ 2

using xNotInL ′ lineL ′ S lemConeLemma1 [of x l ′ S ]
by auto

moreover have S 6= {} using zInMeet by auto

ultimately have card S = 1 ∨ card S = 2

using card-0-eq by fastforce
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moreover have card S 6= 2

proof −
{ assume card S = 2

hence p ′ = z ∨ q ′ = z

using p ′q ′ p ′InMeet q ′InMeet zInMeet

lemThirdElementOfSet2 [of p ′ q ′ S z ]
by auto

hence False using p ′z q ′z by auto

}
thus ?thesis by auto

qed

moreover have card S 6= 1

using p ′InMeet q ′InMeet p ′q ′ card-1-singletonE by force

ultimately have False by blast

}
thus ?thesis by blast

qed
thus ?thesis using l2r by blast

qed

have lprops: l = applyToSet (asFunc Akmy) timeAxis

proof −
define t ′ where t ′: t ′ = applyToSet (asFunc Akmy) timeAxis

define p1 where p1 : p1 = (y ∈ wline k k)
define p2 where p2 : p2 = tangentLine timeAxis (wline k k) y

define p3 where p3 : p3 = affineApprox Akmy (wvtFunc k m) y

define p4 where p4 : p4 = wvtFunc k m y x

define p5 where p5 : p5 = applyAffineToLine Akmy timeAxis t ′

define tgt where tgt: tgt = tangentLine t ′ (wline m k) x

have pre1 : p1 using p1 ykk by auto

have pre2 : p2

proof −
have tangentLine l ′ (wline k k) y using tgtl ′ s by auto

hence tangentLine timeAxis (wline k k) y using c2 by meson

thus ?thesis using p2 by blast

qed
have pre3 : p3 using p3 Akmy by auto

have pre4 : p4 using p4 kmyx by auto

have pre5 : p5

225



using p5 affA ′ lemTimeAxisIsLine t ′ Akmy

lemAffineOfLineIsLine[of timeAxis Akmy t ′]
by blast

have p1 −→ p2 −→ p3 −→ p4 −→ p5 −→ tgt

using p1 p2 p3 p4 p5 tgt

lemPresentation[of y k k timeAxis m Akmy x t ′]
by fast

hence tl t ′ m k x using tgt pre1 pre2 pre3 pre4 pre5 by auto

moreover have tl l m k x using ass2 by auto

moreover have affineApprox A (wvtFunc m k) x using A by auto

moreover have wvtFunc m k x y using mkxy by auto

moreover have x ∈ wline m k using ass1 by auto

ultimately have t ′ = l

using lemTangentLineUnique[of x m k t ′ l A y]
by fast

thus ?thesis using t ′ by blast

qed

{ fix py assume py: onTimeAxis py ∧ py 6= y

have pyInsideCone: insideRegularCone y py

proof −
have pyOnAxis: onLine py timeAxis using py lemTimeAxisIsLine

by blast

hence pyprops: timeAxis = lineJoining y py

using py yOnAxis lemLineAndPoints[of y py timeAxis] by auto

define d where d: d = (y ⊖ py)
hence ∃ py y . (py 6= y) ∧ (onLine py timeAxis)

∧ (onLine y timeAxis) ∧ (d = (y ⊖ py))
using py pyOnAxis yOnAxis by blast

hence ddrtn: d ∈ drtn timeAxis by simp

have scomp0 : sComponent d = sOrigin using d py yOnAxis by
auto

have sf : slopeFinite py y using py yOnAxis by force

hence sloper py y = ((−1 ) ⊗ ((1 / (tval py − tval y)) ⊗ d))
using d by auto

hence velocityJoining py y = sOrigin using scomp0 by simp

hence velocityJoining origin d = sOrigin using d by auto

hence (d ∈ drtn timeAxis) ∧ (sOrigin = velocityJoining origin

d)
using ddrtn by auto
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hence ∃ d . (d ∈ drtn timeAxis) ∧ (sOrigin = velocityJoining

origin d)
by blast

hence (sOrigin ∈ lineVelocity timeAxis) by auto

hence (sOrigin ∈ lineVelocity timeAxis) ∧ (sNorm2 sOrigin <
1 )

by auto

hence ∃ v . (v ∈ lineVelocity timeAxis) ∧ (sNorm2 v < 1 )
by blast

thus ?thesis using pyprops sf by auto

qed

define px where px: px = Akmy py

have insideRegularCone x px

proof −
have insideRegularCone y py using pyInsideCone by blast

moreover have affInvertible Akmy using affA ′ invA ′ by blast

moreover have x = Akmy y by (simp add: xA ′y)
moreover have px = Akmy py by (simp add: px)
moreover have regularConeSet x = applyToSet (asFunc Akmy)

(regularConeSet y)
using p35aRegular by simp

ultimately show ?thesis

using lemInsideRegularConeUnderAffInvertible[of Akmy y py]
by auto

qed

moreover have x 6= px

proof −
{ assume xispx:x = px

hence False using xispx invA ′ px xA ′y py by auto

}
thus ?thesis by auto

qed

ultimately have insideRegularCone x (Akmy py) ∧ x 6= (Akmy

py)
using px by blast

}
hence result: ∀ py . (onTimeAxis py ∧ py 6= y)

−→ insideRegularCone x (Akmy py) ∧ x 6= (Akmy

py)
by blast

{
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obtain p where p: (p 6= x) ∧ (p ∈ l) using assms(4 ) by blast

have l = applyToSet (asFunc Akmy) timeAxis using lprops by
simp

hence p ∈ { p . ∃ py ∈ timeAxis . (asFunc Akmy) py p } using
p by auto

then obtain py where py: py ∈ timeAxis ∧ (asFunc Akmy) py p

by blast

hence onTimeAxis py by blast

moreover have py 6= y

proof −
{ assume py = y

hence False using py p by (simp add: xA ′y)
}
thus ?thesis by auto

qed
ultimately have onTimeAxis py ∧ py 6= y by blast

hence inside: insideRegularCone x p ∧ x 6= p using result py by
auto

have onl: onLine x l ∧ onLine p l using ass2 using p by blast

have pnotx: p 6= x using inside by auto

hence xnotp: x 6= p by simp

hence lj: l = lineJoining x p

using lemLineAndPoints[of x p l] xnotp onl by auto

hence lineSlopeFinite l using onl inside by blast

moreover have (sNorm2 v < 1 )
proof −

have (∃ v ∈ lineVelocity l . sNorm2 v < 1 ) using lj inside by
auto

then obtain u where u: u ∈ lineVelocity l ∧ sNorm2 u < 1 by
blast

hence u = v

using lemFiniteLineVelocityUnique[of u l v] ass3 calculation

by presburger

thus ?thesis using u by auto

qed

ultimately have (lineSlopeFinite l) ∧ (sNorm2 v < 1 ) by auto

}
thus ?thesis by auto

qed
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end

end
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