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Abstract

Efficient utilisation of both intra- and extra-

textual context remains one of the critical gaps

between machine and human translation. Ex-

isting research has primarily focused on pro-

viding individual, well-defined types of context

in translation, such as the surrounding text or

discrete external variables like the speaker’s

gender. This work introduces MTCUE, a novel

neural machine translation (NMT) framework

that interprets all context (including discrete

variables) as text. MTCUE learns an abstract

representation of context, enabling transfer-

ability across different data settings and lever-

aging similar attributes in low-resource sce-

narios. With a focus on a dialogue domain

with access to document and metadata context,

we extensively evaluate MTCUE in four lan-

guage pairs in both translation directions. Our

framework demonstrates significant improve-

ments in translation quality over a parameter-

matched non-contextual baseline, as measured

by BLEU (+0.88) and COMET (+1.58). More-

over, MTCUE significantly outperforms a “tag-

ging” baseline at translating English text. Anal-

ysis reveals that the context encoder of MTCUE

learns a representation space that organises con-

text based on specific attributes, such as formal-

ity, enabling effective zero-shot control. Pre-

training on context embeddings also improves

MTCUE’s few-shot performance compared to

the “tagging” baseline. Finally, an ablation

study conducted on model components and con-

textual variables further supports the robustness

of MTCUE for context-based NMT.

github.com/st-vincent1/MTCue

1 Introduction

Research in neural machine translation (NMT) has

advanced considerably in recent years, much ow-

ing to the release of the Transformer architecture

(Vaswani et al., 2017), subword segmentation (Sen-

nrich et al., 2016c) and back-translation (Sennrich

et al., 2016b). This resulted in claims of human

parity in machine translation (Hassan et al., 2018),

which in turn prompted researchers to look beyond

the sentence level: at how a translation still needs

to be compatible with the context it arises in.

Figure 1: A high-level overview of MTCUE (EN→PL).

The task of contextual adaptation to more nu-

anced extra-textual variables like the description

of the discourse situation has been largely over-

looked, in spite of earlier work suggesting that con-

versational machine translation may benefit from

such fine-grained adaptations (van der Wees et al.,

2016). Most existing work on contextual NMT has

focused on document-level context instead, aim-

ing to improve the coherence and cohesion of the

translated document (e.g. Tiedemann and Scherrer,

2017). Some research has successfully adapted

NMT to extra-textual context variables using su-

pervised learning frameworks on labelled datasets,

targeting aspects such as gender (Vanmassenhove

et al., 2018; Moryossef et al., 2019; Vincent et al.,

2022b), formality (Sennrich et al., 2016a; Nadejde

et al., 2022), translators’ or speakers’ style (Michel

and Neubig, 2018a; Wang et al., 2021b) and transla-

tion length (Lakew et al., 2019), sometimes control-

ling multiple attributes simultaneously (Schioppa

et al., 2021; Vincent et al., 2022b). However, to

our knowledge, no prior work has attempted to

model the impact of continuous extra-textual con-

texts in translation or combined the intra- and extra-

textual contexts in a robust framework. This is
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problematic since translating sentences without

or with incomplete context is akin to a human

translator working with incomplete information.

Similarly, only a handful of earlier research has

contemplated the idea of controlling these extra-

textual attributes in a zero-shot or few-shot fash-

ion (Moryossef et al., 2019; Anastasopoulos et al.,

2022); such approaches are essential given the dif-

ficulty of obtaining the labels required for training

fully supervised models.

In some domains, extra-textual context is

paramount and NMT systems oblivious to this

information are expected to under-perform. For

instance, for the dubbing and subtitling domain,

where translated shows can span different decades,

genres, countries of origin, etc., a one-size-fits-all

model is limited by treating all input sentences

alike. In this domain, there is an abundance of var-

ious metadata (not just document-level data) that

could be used to overcome this limitation. How-

ever, such adaptation is not trivial: (i) the metadata

often comes in quantities too small for training and

with missing labels; (ii) it is expressed in various

formats and types, being difficult to use in a stan-

dard pipeline; (iii) it is difficult to quantify its exact

(positive) effect.

In this paper, we address (i) and (ii) by proposing

MTCUE (Machine Translation with Contextual

universal embeddings), a novel NMT framework

that bridges the gap between training on discrete

control variables and intra-textual context as well

as allows the user to utilise metadata of various

lengths in training, easing the need for laborious

data editing and manual annotation (Figure 1). Dur-

ing inference, when context is provided verbatim,

MTCUE falls back to a code-controlled translation

model; by vectorising the inputs, it exhibits com-

petitive performance for noisy phrases and learns

transferrability across contextual tasks. While (iii)

is not directly addressed, our evaluation encom-

passes two translation quality metrics and two ex-

ternal test sets of attribute control, showing the

impact on both translation quality and capturing

relevant contextual attributes.

MTCUE can generalise to unseen context vari-

ables, achieving 100% accuracy at a zero-shot

formality controlling task; it learns to map em-

beddings of input contexts to discrete phenomena

(e.g. formality), increasing explainability; and it

exhibits more robust few-shot performance at multi-

attribute control tasks than a “tagging” baseline.

The main contributions of this work are:

1. MTCUE (§2): a novel framework for combin-

ing (un)structured intra- and extra-textual

context in NMT that significantly improves

translation quality for four language pairs in

both directions: English (EN) to/from German

(DE), French (FR), Polish (PL) and Russian (RU).

2. A comprehensive evaluation, showing that

MTCUE can be primed to exhibit excellent

zero-shot and few-shot performance at down-

stream contextual translation tasks (§4 and §5).

3. Pre-trained models, code, and an organised ver-

sion of the OpenSubtitles18 (Lison et al., 2018)

dataset with the annotation of six metadata

are made available.

This paper also presents the experimental set-

tings (§3), related work (§6) and conclusions (§7).

2 Proposed Architecture: MTCUE

MTCUE is an encoder-decoder Transformer archi-

tecture with two encoders: one dedicated for con-

textual signals and one for inputting the source text.

The signals from both encoders are combined using

parallel cross-attention in the decoder. Below we

describe how context inputs are treated in detail,

and later in §2.2 and §2.3 we describe the context

encoder and context incorporation, respectively.

2.1 Vectorising Contexts

Context comes in various formats: for example, the

speaker’s gender or the genre of a film are often

supplied in corpora as belonging to sets of pre-

determined discrete classes, whereas plot descrip-

tions are usually provided as plain text (and could

not be treated as discrete without significant loss

of information). To leverage discrete variables as

well as short and long textual contexts in a unified

framework, we define a vectorisation function that

maps each context to a single meaningful vector,

yielding a matrix Ec×r, where c is the number of

contexts and r is the embedding dimension. The

function is deterministic (the same input is always

embedded in the same way) and semantically co-

herent (semantically similar inputs receive similar

embeddings). We use a sentence embedding model

(Reimers and Gurevych, 2019) for vectorisation,

which produces embeddings both deterministic and

semantically coherent. Motivated by Khandelwal

et al. (2018) and O’Connor and Andreas (2021)

who report that generation models mostly use gen-

eral topical information from past context, ignor-
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Figure 2: The MTCUE architecture. Stylised after the Transformer architecture figure in (Vaswani et al., 2017).

ing manipulations such as shuffling or removing

non-noun words, we hypothesise that sentence em-

beddings can effectively compress the relevant con-

text information into a set of vectors, which, when

processed together within a framework, will for-

mulate an abstract representation of the dialogue

context. We select the MINILMV2 sentence em-

bedding model (Wang et al., 2021a), which we

access via the sentence-transformers library;1

a similar choice was made concurrently in Vincent

et al. (2023). In the experiments, we also refer to

DISTILBERT (Sanh et al., 2019) which is used

by one of our baselines, and a discrete embedding

function which maps unique contexts to the same

embeddings but has no built-in similarity feature.

For any sample, given a set of its k textual con-

texts C = [c1, ...ck], we vectorise each one sep-

arately using the method described above. The

resulting array of vectors is the input we supply to

the context encoder in MTCUE.

2.2 Context Encoder

Processing vectorised contexts The context en-

coder of MTCUE is a standard self-attention en-

coder with a custom input initialisation. Its in-

puts are sentence embeddings of context (§2.1) pro-

1
https://sbert.net/, accessed 1/5/23.

jected to the model’s dimensions with a linear layer

(384 → dmodel). In preliminary experiments, we

observe that the first layer of the context encoder re-

ceives abnormally large input values, which some-

times leads to the explosion of the query (Q) and

key (K) dot product QKT. We prevent this by re-

placing the scaled dot product attention with query-

key normalisation (Henry et al., 2020): applying

L2 normalisation of Q and K before the dot prod-

uct, and replacing the scaling parameter
√
d with a

learned one, initialised to a value based on training

data lengths.2

Positional embeddings We use positional con-

text embeddings to (a) indicate the distance of

a past utterance to the source sentence and (b)

to distinguish metadata inputs from document in-

formation. In particular, when translating the

source sentence si at position i in the docu-

ment, a sentence distance positional embedding

(POS) is added to the embedding representa-

tions of each past sentence si−j , with j ∈ [0, t]
where t is the maximum allowed context distance:

e′(si−j , j) = e(si−j) + POS(j). Metadata con-

texts (m0, . . . ,mn) do not receive positional em-

2An alternative solution applies layer normalisation to the
input of the first layer, but we found that this degraded perfor-
mance w.r.t. QK-NORM.
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beddings since their order is irrelevant. The fi-

nal vectorised input of the context encoder is:

e′(si, 0), e
′(si−1, 1), . . . , e

′(si−t, t), e(m0), . . . , e(mn).

2.3 Context incorporation

The outputs of the context and source encoders

(respectively C and S) are combined in the decoder

using parallel attention (Libovický et al., 2018).

Let the output of the decoder self-attention be T .

Let Tout = FFN(T ′) + T ′, where T ′ is the multi-

head attention output; i.e. Tout is T ′ with the feed-

forward layer and the residual connection applied.

In a non-contextual Transformer, source and target

representations are combined with cross-attention:

T ′ = mAttn(kv = S, q = T )

In contrast, parallel attention computes individual

cross-attention of T with S and C and then adds

them together:

S ′ = mAttn(kv = S, q = T )

C′ = mAttn(kv = C, q = T )

T ′ = C′ + S ′

Parallel attention is only one of many combination

strategies which can be used, and in preliminary

experiments we found the choice of the strategy to

have a minor impact on performance.

3 Experimental Setup

3.1 Data: the OpenSubtitles18 Corpus

Data type EN↔DE EN↔FR EN↔PL EN↔RU

Source & target 5.3M 14.7M 12.9M 12.4M

metadata

Genre 45.3% 57.8% 60.5% 73.4%
PG rating 35.9% 46.9% 48.8% 62.3%
Writer(s) 45.3% 57.1% 58.9% 71.7%

Year 45.3% 57.8% 60.5% 73.7%
Country 37.7% 42.9% 45.7% 42.7%

Plot description 43.4% 57.1% 59.7% 72.6%
previous dialogue

n− 1 60.1% 68.0% 63.7% 73.6%
n− 2 42.0% 51.2% 46.4% 57.9%
n− 3 31.2% 40.1% 35.5% 46.9%
n− 4 23.9% 32.2% 28.0% 38.6%
n− 5 18.7% 26.2% 22.4% 32.2%

Table 1: Data quantities for the extracted OpenSubti-

tles18 corpus. An average of 81% samples has at least

one context input.

The publicly available OpenSubtitles183 cor-

pus (Lison et al., 2018), hereinafter OPENSUB-

TITLES, is a subtitle dataset in .xml format with

3Created from data from https://opensubtitles.org.

Key Value

Source (EN) This is the Angel of Death, big daddy reaper.

Target (PL) To anioł śmierci. Kosiarz przez wielkie "k".

PG rating PG rating: TV-14

Released Released in 2009

Writers Writers: Eric Kripke, Ben Edlund, Julie Siege

Plot Dean and Sam get to know the whereabouts of

Lucifer and want to hunt him down. But Lucifer is

well prepared and is working his own plans.

Genre Drama, Fantasy, Horror

Country United States, Canada

Table 2: Example of a source-target pair and metadata

in OPENSUBTITLES.

IMDb ID attribution and timestamps. It is a

mix of original and user-submitted subtitles for

movies and TV content. Focusing on four lan-

guage pairs (EN↔{DE,FR,PL,RU}), we extract par-

allel sentence-level data with source and target

document-level features (up to 5 previous sen-

tences) using the timestamps (see Appendix A).

We also extract a range of metadata by matching

the IMDb ID against the Open Movie Database

(OMDb) API.4 Table 1 shows training data quanti-

ties and portions of annotated samples per context

while Table 2 shows an example of the extracted

data. We select six metadata types that we hypoth-

esise to convey useful extra-textual information:

plot description (which may contain useful topical

information), genre (which can have an impact on

the language used), year of release (to account for

the temporal dimension of language), country of

release (to account for regional differences in ex-

pression of English), writers (to consider writers’

style), PG rating (which may be associated with

e.g. the use of adult language). For validation and

testing, we randomly sample 10K sentence pairs

each from the corpus, based on held-out IMDb IDs.

Preprocessing The corpus is first detokenised

and has punctuation normalised (using Moses

scripts (Koehn et al., 2007)). Then a custom clean-

ing script is applied, which removes trailing dashes,

unmatched brackets and quotation marks, and fixes

common OCR spelling errors. Finally, we perform

subword tokenisation via the BPE algorithm with

Sentencepiece (Kudo and Richardson, 2018).

Film metadata (which comes from OMDb) is left

intact except when the fields contain non-values

such as “N/A”, “Not rated”, or if a particular field

is not sufficiently descriptive (e.g. a PG rating field

represented as a single letter “R”), in which case

4
https://omdbapi.com/, accessed 1/5/23.
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we enrich it with a disambiguating prefix (e.g. “R”

→ “PG rating: R”). Regardless of the trained lan-

guage pair, metadata context is provided in English

(which here is either the source or target language).

Document-level context is limited to source-side

context. Since for *→EN language pairs the con-

text input comes in two languages (e.g. English

metadata and French dialogue), we use multilin-

gual models to embed the context in these pairs.

3.2 Evaluation

We evaluate the presented approach with the gen-

eral in-domain test set as well as two external con-

textual tasks described in this section.

Translation quality The approaches are evalu-

ated against an in-domain held-out test set of 10K

sentence pairs taken from OPENSUBTITLES. As

metrics, we use BLEU
5 (Papineni et al., 2002) and

COMET
6 (Rei et al., 2020).

Control of multiple attributes about dialogue

participants (EAMT22) The EAMT22 task, in-

troduced by Vincent et al. (2022b), evaluates a

model’s capability to control information about

dialogue participants in English-to-Polish transla-

tion. The task requires generating hypotheses that

align with four attributes: gender of the speaker and

interlocutor(s) (masculine/feminine/mixed), num-

ber of interlocutors (one/many), and formality (for-

mal/informal). These attributes can occur in a total

of 38 unique combinations. We investigate whether

MTCUE can learn this task through zero-shot learn-

ing (pre-training on other contexts) or through few-

shot learning (when additionally fine-tuned on a

constrained number of samples).

To prepare the dataset, we use scripts provided

by Vincent et al. (2022b) to annotate OPENSUB-

TITLES with the relevant attributes, resulting in a

corpus of 5.1M annotated samples. To leverage the

context representation in MTCUE, we transcribe

the discrete attributes to natural language by creat-

ing three sentences that represent the context. For

example, if the annotation indicates that the speaker

is male, the interlocutor is a mixed-gender group,

and the register is formal, we create the following

context: (1) “I am a man”, (2) “I’m talking to a

group of people” and (3) “Formal”.

We train seven separate instances of MTCUE

using different artificial data settings. Each set-

5Computed with SacreBLEU (Post, 2018).
6Computed using the wmt20-comet-da model.

ting contains the same number of samples (5.1M)

but a varying number of annotated samples. To

address class imbalances in the dataset (e.g. mas-

culine speaker occurring more often than feminine

speaker) and ensure equal representation of the

38 attribute combinations, we collect multiples of

these combinations. We select sample numbers

to achieve roughly equal logarithmic distances: 1,

5, 30, 300, 3K and 30K supervised samples per

each of 38 combinations, yielding exactly 38, 180,

1, 127, 10, 261, 81, 953 and 510, 683 samples re-

spectively. Including the zero-shot and full super-

vision (5.1M cases), this results in a total of eight

settings. Each model is trained with the same hy-

perparameters as MTCUE, and on the same set

of 5.1M samples, with only the relevant number

of samples annotated (non-annotated samples are

given as source-target pairs without contexts). We

compare our results against our re-implementation

of the TAGGING approach which achieved the best

performance in the original paper (i.e. Vincent et al.,

2022b). We train the TAGGING model in replicas

of the eight settings above.

Zero-shot control of formality (IWSLT22) We

experiment with the generalisation of MTCUE

to an unseen type of context: formality. In the

IWSLT22 formality control task (Anastasopoulos

et al., 2022), the model’s challenge is to produce

hypotheses agreeing with the desired formality

(formal/informal). For the English-to-German lan-

guage pair, the task provides a set of paired exam-

ples (each source sentence is paired with a formal

reference and an informal one), to a total of 400
validation and 600 test examples; for the English-

to-Russian pair, only the 600 test examples are pro-

vided. We test the capacity of MTCUE to control

formality zero-shot, given a textual cue as context

input.7

3.3 Baselines

In our experiments, we compare MTCUE with

three types of baselines:

1. BASE and BASE-PM. These are pre-trained

translation models that match MTCUE either

in the shape of the encoder-decoder architec-

ture (BASE) or in terms of the total number of

parameters (BASE-PM). For BASE-PM, the

extra parameters are obtained from enhanc-

ing the source encoder, increasing the number

7We describe the process of choosing the context input for
evaluation in Appendix D.
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Model
Params dmodel

Layers
h

FFN dim.
GPU Hour/Epoch Epochs to best

Cxt Src Dec Cxt Src Dec

BASE 66M 512 − 6 6 8 − 2048 2048 − −
BASE-PM 107M 512 − 10 6 8 − 4096 2048 − −
TAGGING 107M 512 − 10 6 8 − 4096 2048 0.74± 0.35 6.13± 4.09

NOVOTNEY-CUE 99M 512 6 6 6 8 2048 2048 2048 1.29± 0.56 9.13± 3.60
MTCUE 105M 512 6 6 6 8 2048 2048 2048 0.81± 0.39 9.38± 4.57

Table 3: Model details for MTCUE and baselines. Timings and epochs are averaged across all language directions.

of layers (6 → 10) and doubling the feed-

forward dimension (2048 → 4096).

2. TAGGING. Following previous work (e.g.

Schioppa et al., 2021; Vincent et al., 2022b),

we implement a model that assigns a discrete

embedding to each unique context value. Ar-

chitecturally, the model matches BASE-PM.

The tags are prepended to feature vectors from

the source context and then together fed to the

decoder.

3. NOVOTNEY-CUE. This baseline is a re-

implementation of the CUE vectors architec-

ture (Novotney et al., 2022) for NMT. It

utilises DISTILBERT for vectorisation and

averages the context feature vectors to obtain

the decoder input. In contrast, MTCUE em-

ploys a parallel attention strategy.

In experiments on formality control, we also

report results from the two submissions to the

IWSLT22 task, both implementing a supervised

and a zero-shot approach:

1. Vincent et al. (2022a). This (winning) sub-

mission combines the TAGGING approach

with formality-aware re-ranking and data aug-

mentation. The authors augment the orig-

inal formality-labelled training samples by

matching sentence pairs from larger corpora

against samples of specific formality (akin

to the Moore-Lewis algorithm described in

Moore and Lewis, 2010). Their zero-shot ap-

proach relies on heuristically finding a suit-

able sample of formality-annotated data sim-

ilar to the provided set and performing the

same algorithm above.

2. Rippeth et al. (2022) who fine-tune large pre-

trained multilingual MT models with additive

control (Schioppa et al., 2021) on data with

synthetic formality labels obtained via rule-

based parsers and classifiers.

3.4 Implementation and hyperparameters

We implement MTCUE and all its components in

FAIRSEQ, and use HuggingFace (Wolf et al., 2020)

for vectorising contexts. We use hyperparameters

recommended by FAIRSEQ, plus optimise the learn-

ing rate and the batch size in a grid search. We

found that a learning rate of 0.0003 and a batch

size of simulated 200K tokens worked best glob-

ally. Table 3 presents the architecture details and

runtimes for the models. All training is done on a

single A100 80GB GPU, one run per model. We

use early stopping based on validation loss with a

patience of 5.

4 Results

Translation quality Results in Table 4 show

that MTCUE beats all non-contextual baselines

in translation quality, achieving an average im-

provement of +1.51 BLEU/+3.04 COMET over

BASE and +0.88/+1.58 over BASE-PM. It is

also significantly better than NOVOTNEY-CUE

(+0.46/+0.66). MTCUE achieves comparable re-

sults to the parameter-matched TAGGING model,

consistently outperforming it on all language di-

rections from English, and being outperformed by

it on directions into English. Since the primary

difference between the two models is that MTCUE

sacrifices more parameters to process context, and

TAGGING uses these parameters for additional pro-

cessing of source text, we hypothesise that the dif-

ference in scores is due to the extent to which con-

text is a valuable signal for the given language pair:

it is less important in translation into English. This

is supported by findings from literature: English

is a language that does not grammatically mark

phenomena such as gender (Stahlberg et al., 2007).

The largest quality improvements with MTCUE

are obtained on EN-DE (+1.66/+4.14 vs BASE-

PM and +1.14/+1.70 vs TAGGING) and EN-FR

(+2.23/+3.32 vs BASE-PM and +0.80/+0.62 vs

TAGGING) language pairs. Contrastively, the small-

est improvements against BASE-PM are obtained

on the RU-EN pair. MTCUE is outperformed by
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Model
EN→DE EN→FR EN→PL EN→RU DE→EN FR→EN PL→EN RU→EN Average

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Baselines

*BASE 33.60 45.90 34.54 46.92 28.08 58.52 31.37 62.94 39.53 59.56 35.46 55.10 34.42 50.38 39.37 55.99 34.65 54.41
*BASE-PM 34.36 46.77 35.31 48.87 28.66 60.97 32.40 64.55 40.32 60.88 36.16 56.28 35.03 51.77 40.04 56.86 35.28 55.87

TAGGING 34.88 49.21 36.74 51.57 29.08 64.29 32.32 65.12 41.52 62.63 37.10 57.41 36.19 53.46 40.33 57.14 36.02 57.60

NOVOTNEY-CUE 35.30 49.83 36.75 50.52 29.09 62.69 32.36 64.90 40.86 61.91 36.51 56.21 35.28 52.17 39.44 56.08 35.70 56.79

Proposed

MTCUE 36.02 50.91 37.54 52.19 29.36 63.46 33.21 65.21 40.95 61.58 36.57 56.87 35.68 52.48 39.97 56.92 36.16 57.45

Table 4: Translation quality results on the OPENSUBTITLES test set. *Model trained without access to any context.

We highlight the best result in each column and underline all statistically indistinguishable results, p ≤ 0.05 (except

the Average column).

TAGGING the most on PL-EN (−0.51/−0.98). As

far as training efficiency, MTCUE trains signifi-

cantly faster than NOVOTNEY-CUE, converging in

a similar number of epochs but using significantly

less GPU time, on par with TAGGING (Table 3).

Finally, all contextual models considered in this

evaluation significantly outperform the parameter-

matched translation model (BASE-PM), clearly sig-

nalling that metadata and document context are an

important input in machine translation within this

domain, regardless of the chosen approach.

Control of multiple attributes about dialogue

participants (EAMT22) MTCUE achieves

80.25 zero-shot accuracy at correctly translat-

ing the speaker and interlocutor attributes, an

improvement of 12.08 over the non-contextual

baseline, also expressed in increased translation

quality (25.22 vs 23.36 BLEU). Furthermore,

it bests TAGGING at few-shot performance by

5 to 8 accuracy points, reaching above 90%

accuracy with only 190 of the 5.1M annotated

samples (Figure 4). Both TAGGING and MTCUE

perform similarly with more supervised data. The

TAGGING model achieves +2 to +3 accuracy

points in the 1K to 100K range, while BLEU

remains comparable. We hypothesise that this

happens because MTCUE relies strongly on its

pre-training prior when context is scarce: this

proves useful with little data, but becomes less

relevant as more explicitly labelled samples are

added. Finally, with full supervision, both models

achieve above 99% accuracy.

Zero-shot control of formality (IWSLT22)

MTCUE appears to successfully control the formal-

ity of translations in a zero-shot fashion, achieving

nearly 100% accuracy on the IWSLT22 test sets

across two language pairs, beating all zero-shot

models on the EN-RU pair and performing on par

with the best supervised model for EN-DE. Notably,

both baselines presented in Table 5 were built to

Model Supervision Formal Informal Average

EN-DE

Non-context baseline − 74.5 25.5 50.0
Rippeth et al. (2022) Supervised 99.4 96.5 98.0

Vincent et al. (2022a) Supervised 100.0 100.0 100.0

MTCUE Zero-shot 100.0 100.0 100.0

EN-RU

Non-context baseline − 96.4 3.6 50.0
Rippeth et al. (2022) Zero-shot 100.0 1.1 50.5

Vincent et al. (2022a) Zero-shot 99.5 85.8 92.7

MTCUE Zero-shot 100.0 99.4 99.7

Table 5: Evaluation on the IWSLT22 formality control

evaluation campaign. Baseline systems were trained on

different corpora.

target formality specifically, unlike MTCUE which

is a general-purpose model.

Following MTCUE’s success at controlling for-

mality with sample contexts, we investigate the

relationship between context embeddings and their

corresponding formality control scores. We con-

sider all 394 unique contexts from the OPENSUB-

TITLES validation data, and another 394 document

contexts (individual past sentences) at random (in-

domain). We also use an in-house dataset from a

similar domain (dubbing of reality cooking shows

with custom annotations of scene contents) and se-

lect another 394 metadata and 394 document con-

texts from there (out-of-domain). We run inference

on the IWSLT22 test set with each context individ-

ually (1, 576 runs), and use UMAP (McInnes et al.,

2018) to visualise (i) the input embedding from

MINILM-V2, (ii) the output vector of the context

encoder and (iii) the corresponding formality score

(Figure 3).

We invite the reader to pay attention to the sep-

aration of dark and light points in Figure 3b that

is not present in Figure 3a. There is a spatial prop-

erty that arises in the context encoder and is shown

by Figure 3b, namely a relationship between the

feature vectors from context encoder and formal-

ity scores across both domains: contexts yielding

translations of the same register tend to be clustered

together. This is true for both in-domain data (cir-
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(a) MINILM-V2 embeddings. (b) Output of MTCUE’s context encoder.

Figure 3: UMAP visualisation of how various contexts impact the formality of produced translations when used as

input in MTCUE.

Figure 4: Evaluation results from the EAMT22 multi-

attribute control task.

cles) and out-of-domain data (crosses), suggesting

that after training this effect generalises to unseen

contexts.

For further investigation, we sample a few con-

texts at random which yield 100% zero-shot ac-

curacy (from the “ends” of the color scale) and

find that these contexts tend to have semantic re-

lationships with the type of formality they induce

in translations. For example, contexts like “What’s

wrong with you?”, “Wh-what’s he doing now?”

yield all-informal translations while “Then why are

you still in my office?” or “I can see you’re very

interested.” result in all-formal ones. This confirms

our hypothesis: MTCUE’s context encoder aligns

the semantic representation of the input context to

the most likely formality it would produce, akin to

a human translator deducing such information from

available data. Outside of an evaluation scenario

like the present one, MTCUE may therefore be able

to predict from the given context what formality

style should be used: an effect only facilitated by

the context encoder.

To exemplify how the zero-shot performance of

MTCUE manifests in practice, we present some ex-

amples of outputs for the two tasks in Appendix E.

5 Ablation Study

Ablation
COMET ZERO-SHOT ACCURACY

EN→DE EN→FR EN→PL IWSLT22 (DE) EAMT22

Full MTCUE 46.89 54.06 62.67 100.0 81.35

no context encoder 46.76 53.73 63.26 89.10 77.42
no pos. embeddings 46.68 53.81 62.47 91.65 70.91

no MINILM-V2 45.32 53.42 62.55 50.00 70.16

no metadata 45.23 53.64 62.64 89.70 83.41

no doc.-level data 46.23 53.49 61.67 68.80 74.64
random context 42.17 51.94 61.74 49.90 68.44

no context* 41.22 50.07 58.94 50.00 67.53

Table 6: Ablation study on model components and data

settings. *Corresponds to non-contextual Transformer.

We discuss the robustness of MTCUE with an ab-

lation study on the model components as well as a

complementary ablation on types of context (meta-

data vs document). We evaluate three language

pairs (EN→DE,FR,PL) and report results from sin-

gle runs (Table 6): COMET score on the OpenSub-
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titles18 data and zero-shot accuracy at the two con-

textual tasks (on the validation sets in all cases).

Removing the context encoder (output of the lin-

ear layer is combined with source straight away)

or the position embeddings has only a minor effect

on the COMET score; replacing MINILM-V2 with

a discrete embedding function hurts performance

the most. Positional embeddings seem more impor-

tant to the EAMT22 task than IWSLT22 - possibly

because EAMT22 focuses on sentence-level phe-

nomena, so the order of past context matters.

Replacing MINILM-V2 with a discrete embed-

ding function removes the zero-shot effect in both

tasks. An interesting finding is that between meta-

data and document-level data, it is the latter that

brings more improvements to contextual tasks; this

means that our model potentially scales to domains

without metadata. Finally, using random context

degrades performance w.r.t. full model implying

that the gains come from signals in data rather than

an increase in parameters or training time.

6 Related Work

Although contextual adaptation has been discussed

in other tasks (e.g. Keskar et al., 2019), in this sec-

tion we focus on NMT, as well as set our work side

by side with research that inspired our approach.

Existing studies on incorporating context into

NMT have primarily focused on document-level

context. These approaches include multi-encoder

models (e.g. Miculicich et al., 2018), cache models

(Kuang et al., 2018), automatic post-editing (Voita

et al., 2019a), shallow fusion with a document-level

language model (Sugiyama and Yoshinaga, 2021),

data engineering techniques (Lupo et al., 2022)

or simple concatenation models (Tiedemann and

Scherrer, 2017). Another line of research aims to

restrict hypotheses based on certain pre-determined

conditions, and this includes formality (Sennrich

et al., 2016a), interlocutors’ genders (e.g. Van-

massenhove et al., 2018; Moryossef et al., 2019),

or a combination of both (Vincent et al., 2022b).

Other conditions include translation length and

monotonicity (Lakew et al., 2019; Schioppa et al.,

2021), vocabulary usage (Post and Vilar, 2018) or

domain and genre (Matusov et al., 2020). While

wider contextual adaptation in NMT has been dis-

cussed theoretically, most empirical research falls

back to gender (Rabinovich et al., 2017) or for-

mality control (Niu et al., 2017). One exception is

Michel and Neubig (2018b) who adapt NMT for

each of many speakers by adding a “speaker bias”

vector to the decoder outputs.

Our work is motivated by the CUE vectors

(Novotney et al., 2022) and their application in

personalised language models for film and TV dia-

logue Vincent et al. (2023). CUE vectors represent

context computed by passing sentence embeddings

of the input context through a dedicated encoder.

Novotney et al. show that incorporating CUE in lan-

guage modelling improves perplexity, while Vin-

cent et al. use them to personalise language models

for on-screen characters. In contrast, we reformu-

late CUE for contextual machine translation, pro-

vide a detailed analysis of incorporating CUE into

the model, emphasise the importance of vectorising

the context prior to embedding it, and examine the

benefits for zero-shot and few-shot performance in

contextual NMT tasks.

7 Conclusions

We have presented MTCUE, a new NMT archi-

tecture that enables zero- and few-shot control of

contextual variables, leading to superior translation

quality compared to strong baselines across multi-

ple language pairs (English to others, cf. Table 4).

We demonstrated that using sentence embedding-

based vectorisation functions over discrete embed-

dings and leveraging a context encoder significantly

enhances zero- and few-shot performance on con-

textual translation tasks. MTCUE outperforms the

winning submission to the IWSLT22 formality con-

trol task for two language pairs, with zero-shot

accuracies of 100.0 and 99.7 accuracy respectively,

without relying on any data or modelling proce-

dures for formality specifically. It also improves by

12.08 accuracy points over the non-contextual base-

line in zero-shot control of interlocutor attributes in

translation at the EAMT22 English-to-Polish task.

Our ablation study and experiments on formality in

English-to-German demonstrated that the context

encoder is an integral part of our solution. The con-

text embeddings produced by the context encoder

of the trained MTCUE can be mapped to specific

effects in translation outputs, partially explaining

the model’s improved translation quality. Our ap-

proach emphasises the potential of learning from

diverse contexts to achieve desired effects in trans-

lation, as evidenced by successful improvements

in formality and gender tasks using film metadata

and document-level information in the dialogue

domain.
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Limitations

While we carried out our research in four language

pairs (in both directions), we recognise that these

are mainly European languages and each pair is

from or into English. The choice of language pairs

was limited by the data and evaluation tools we had

access to, however as our methods are language-

independent, this research could be expanded to

other pairs in the future.

Another limitation is that the work was con-

ducted in one domain (TV subtitles) and it remains

for future work to investigate whether similar bene-

fits can be achieved in other domains, though the

findings within language modelling with CUE in

Novotney et al. (2022) who used a different domain

suggest so.
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We do not foresee a direct use of our work in an un-

ethical setting. However, as with all research using

or relying on LMs, our work is also prone to the
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contain (e.g. social biases). Therefore, when con-

trolling contextual attributes, researchers should be

aware of the biases in their data in order to under-

stand the models’ behaviour.
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A Data Preprocessing

Parsing OPENSUBTITLES To prepare OPEN-

SUBTITLES (specifically the document-level part

of the corpus), we follow the setup described in

Voita et al. (2019b). There are timestamps and

overlap values for each source-target sample in the

corpus; we only take into account pairs with over-

lap >= 0.9 and we use two criteria to build any

continuous document: (1) no omitted pairs (due

to poor overlap) and (2) no distance greater than

seven seconds between any two consecutive pairs.

To generate train/validation/test splits, we use gen-

erated lists of held-out IMDB IDs based on vari-

ous published test sets (Müller et al., 2018; Lopes

et al., 2020; Vincent et al., 2022b) to promote re-

producibility. These lists can be found within the

GitHub repository associated with this paper.

Embedding contexts Since a lot of metadata

is repeated, and models are trained for multiple

epochs, we opt for the most efficient way of em-

bedding and storing data which is to use a memory-

mapped binary file with embeddings for unique

contexts, and an index which maps each sample to

its embedding. This saves more than 90% space

w.r.t. storing a matrix of all embeddings, and trains

over 3× faster than embedding batches on-the-fly.

B Model details

MTCUE is trained from a pre-trained machine

translation model (corresponding to the BASE

model) which is the transformer NMT architec-

ture within FAIRSEQ. We follow model specifi-

cations and training recommendations set out by

FAIRSEQ in their examples for training a transla-

tion model8. We train a model for each of the eight

language directions on the source-target pairs from

OPENSUBTITLES. We train the model until a pa-

tience parameter of 5 is exhausted on the validation

loss.

C Observations on training and

hyperparameters

We shortly describe here our findings from seeking

the optimal architecture for MTCUE and training

settings in the hope that this helps save the time of

researchers expanding on our work.

• Reducing the number of context encoder layers

led to inferior performance.

• Freezing the source encoder when fine-tuning

MTCUE from a translation model led to inferior

performance,

• Training MTCUE from scratch − significantly in-

creased training time while having a minor effect

on performance.

8
https://github.com/facebookresearch/

fairseq/tree/main/examples/translation#

iwslt14-german-to-english-transformer, accessed
1/5/23.
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• Other context combination strategies (sequential

and flat attention in Libovický et al., 2018) led to

similar results.

• Some alternatives to QK-NORM to combat the

problem of the exploding dot-product were suc-

cessful but had a negative impact on perfor-

mance:

– using layer normalisation after the linear

layer is applied to vectorised contexts,

– using SmallEmb9 which initialises the em-

bedding layer (in our case, the linear proj.

layer) to tiny numbers and adds layer nor-

malisation on top.

• Zero-shot performance at the IWSLT22 task is

generally consistent (at around 98.0−100.0 accu-

racy) though may vary depending on the selected

checkpoint. We found that training MTCUE for

longer (i.e. more than 20 epochs) may improve

translation quality but degrade the performance

on e.g. this task.

• We found that MTCUE is generally robust to

some hyperparameter manipulation on the OPEN-

SUBTITLES dataset, and recommend perform-

ing a hyperparameter search when training the

model on new data. For simplicity, in this paper

we use a single set of hyperparameters for all

language directions, though for some pairs the

results may improve by manipulating parameters

such as batch size and context dropout.

D Formality

To evaluate the performance of any tested model

on the formality task we had to come up with a

fair method of choosing a context to condition on,

since in a zero-shot setting the model organically

learns the tested attributes from various contexts

rather than specific cherry-picked sentences.

To do so, we sampled some metadata from the

validation set of the OPENSUBTITLES data and

picked eight contexts (four for the formal case and

four for the informal case) which either used formal

or informal language themselves or represented a

domain where such language would be used. We

also added two generic prompts: Formal conversa-

tion and Informal chit-chat. The full list of prompts

was as follows:

• Formal:

9
https://github.com/BlinkDL/SmallInitEmb, ac-

cessed 1/5/23.

1. Formal conversation

2. Hannah Larsen, meet Sonia Jimenez. One

of my favourite nurses.

3. In case anything goes down we need all the

manpower alert, not comfortably numb.

4. Biography, Drama,

5. A musician travels a great distance to return

an instrument to his elderly teacher

• Informal:

1. Informal chit-chat

2. I’m gay for Jamie.

3. What else can a pathetic loser do?

4. Drama, Family, Romance

5. Animation, Adventure, Comedy

We then ran the evaluation as normal with each

context separately, and selected the highest re-

turned score for each attribute.

E Examples of Model Outputs

(Zero-Shot)

We include examples of translations produced zero-

shot by MTCUE in Table 7. We would like to draw

attention particularly to the top example for the

EAMT22 task (“I just didn’t want you to think you

had to marry me”). The phrase to marry someone

can be translated to Polish in several ways, indicat-

ing that the addressee is to be a wife (ożenić się z

kimś), a husband (wyjść za kogoś [za mąż]) or neu-

tral (wziąć ślub). While the reference in this exam-

ple uses a neutral version, both the baseline model

and MTCUE opted for feminine/masculine variants.

However, the gender of the speaker is feminine, so

the phrase “... had to marry me” should use either

the neutral version (wziąć ślub) or the feminine

one (ożenić się). The baseline model incorrectly

picks the masculine version while MTCUE is able

to pick the correct one based on the context given.

MTCUE also correctly translates the gender of the

interlocutor: both in the top example (myślał vs

myślała) and the bottom one (aś vs eś, even though

a synonymous expression is used in translation,

agreement remains correct). Finally, the IWSLT22

example shows how MTCUE produces correct pos-

sessive adjectives for each formality.
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EAMT22

Source I just didn’t want you to think you had to marry me.

Context I am a woman. I am talking to a man

Reference Bo nie chciałam, żebyś myślał, że cię zmuszam do ślubu.

“Because I didn’t wantfeminine you to thinkmasculine I am forcing you into a wedding.”

Baseline Po prostu nie chciałem, żebyś myślała, że musisz za mnie wyjść.

“I just didn’t wantmasculine you to thinkfeminine you had to marryfeminine me.”

MTCUE Nie chciałam, żebyś myślał, że musisz się ze mną ożenić.

“I didn’t wantfeminine you to thinkmasculine you had to marrymasculine me.”

Source So then you confronted Derek.

Context I am talking to a woman

Reference A więc doprowadziłaś do konfrontacji z Derekiem.

“So then you ledfeminine to a confrontation with Derek.”

Baseline Więc wtedy skonfrontowałeś się z Derekiem.

“So then you confrontedmasculine Derek.”

MTCUE Więc skonfrontowałaś się z Derekiem.

“So then you confrontedfeminine Derek.”

IWSLT22

Source I got a hundred colours in your city.

MTCUE (formal) Ich habe 100 Farben in Ihrer Stadt.

MTCUE (informal) Ich hab 100 Farben in deiner Stadt.

Table 7: Examples of MTCUE’s outputs (zero-shot) versus a non-contextual Transformer baseline.
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