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ABSTRACT

Treatment of patients with oesophageal and gastric cancer (OeGC) is guided by disease stage, patient performance sta-
tus and preferences. Lymph node (LN) status is one of the strongest prognostic factors for OeGC patients. However, sur-
vival varies between patients with the same disease stage and LN status. We recently showed that LN size from patients
with OeGC might also have prognostic value, thus making delineations of LNs essential for size estimation and the ex-

We hypothesized that a machine learning workflow is able to: (1) find digital H&E stained slides containing LNs,
(2) create a scoring system providing degrees of certainty for the results, and (3) delineate LNs in those images.

To train and validate the pipeline, we used 1695 H&E slides from the OE02 trial. The dataset was divided into training (80%)
and validation (20%). The model was tested on an external dataset of 826 H&E slides from the OEO5 trial. U-Net architecture
was used to generate prediction maps from which predefined features were extracted. These features were subsequently used
to train an XGBoost model to determine if a region truly contained a LN. With our innovative method, the balanced accura-
cies of the LN detection were 0.93 on the validation dataset (0.83 on the test dataset) compared to 0.81 (0.81) on the vali-
dation (test) datasets when using the standard method of thresholding U-Net predictions to arrive at a binary mask. Our
method allowed for the creation of an “uncertain” category, and partly limited false-positive predictions on the external
dataset. The mean Dice score was 0.73 (0.60) per-image and 0.66 (0.48) per-LN for the validation (test) datasets.

Our pipeline detects images with LNs more accurately than conventional methods, and high-throughput delineation of
LNs can facilitate future LN content analyses of large datasets.

Autodelineation

Explainability . . . .

Digital pathology traction of other imaging biomarkers.
Lymph nodes

Introduction

cancer and perioperative chemotherapy for gastric cancer according to
the ESMO guideline.®

Oeosphageal and gastric cancers (OeGC) were diagnosed more than 1.5
million times worldwide in 2020 and represented 13.2% of all cancer
deaths.! The treatment of OeGC patients depends on the disease stage,
and patient performance status and preferences.” For Western patients di-
agnosed with locally advanced resectable disease, the standard of care is
neoadjuvant chemo(radio)therapy followed by surgery for oesophageal

The overall survival of Western OeGC patients is poor with a 3 year sur-
vival rate between 22.3% and 33.8% for gastric cancer and between 19.2%
and 27.0% for oesophageal cancer.

Lymph node (LN) status (presence or absence of metastasis in regional
LNs) is currently the strongest prognostic factors for OeGC patients
irrespective of treatment modality, grade of primary tumour regression,

Abbreviations: AUC, area under the curve; DL, deep learning; H&E, haematoxylin and eosin; LN, lymph node; OeGC, Oeosphageal and gastric cancers; ROC, receiver operating characteristic.
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or regression in LN.>® Our recent pilot study of digital haematoxylin and
eosin (H&E) stained slides containing resection specimens from patients
with oesophageal cancer from the OE02 trial” suggested that not only LN
status but also the size of LNs might have prognostic value.® Validation of
these pilot study findings is needed in at least 1 independent large study
assessing thousands of LNs before pathological LN size can be considered
as a useful biomarker for routine use in OeGC patient management. This
and possibly other imaging biomarkers could be useful to identify patients
who will benefit most from (potentially) toxic adjuvant treatment.

However, manual review of digital H&E-stained slides to identify and
delineate all LNs as previously performed in the pilot study is not feasible
within a reasonable time frame in large datasets. Recent phase III trials in
OeGC patients typically amount to 20 000 slides and 10 000 LNs per trial,
as on average 30 slides are made per resection specimen and more than
15 LNs per patient are obtained. Thus, a toolbox for the automatic identifi-
cation of image files containing LNs and their automatic delineation would
be very desirable for a large-scale validation of our LN size findings and as a
prerequisite for further characterisation of the LN architecture by quantita-
tive image analysis. To the best of our knowledge, there are currently no
fully automated solutions available for such a task.

We hypothesized that a computational pipeline using a deep learning
(DL) model combined with imaging features extracted from the generated
prediction map can: (1) identify which H&E-stained digitised slides from
oesophagogastric cancer resection specimens contain LNs and (2) automat-
ically delineate the LNs with higher accuracy than current stand-alone DL
solutions.

The aim of the study was to develop, validate, and externally test a
DL-based workflow to enable large-scale high throughput studies in
digital H&E-stained LN tissue sections from resection specimens of
oesophagogastric cancer patients.

Materials and methods
Haematoxylin & eosin-stained digitised tissue section collection

H&E-stained slides were collected retrospectively from resection speci-
mens from OeGC patients recruited into the phase III randomised con-
trolled trial, UK MRC OE02.” Those samples were collected from 42
European centres. Whole slides were scanned using an Aperio XT Scanner.
A total of 1695 scanned H&E slides from 493 resection specimens (on aver-
age 3,4 images per specimen) were manually reviewed and classified as
containing one or more LNs (N =756 images) or no LN (N =939). All LNs
were manually delineated by an expert pathologist using the Aperio

{A) Original data
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ImageScope software (ground-truth delineations) and delineations were
saved in an Aperio ImageScope XML annotation file format.

The image dataset was randomly split per patient, with 394 patients
(~80%) in the training dataset and 99 (~ 20%) patients in the validation
dataset. For the external dataset, 826 H&E slides were extracted from 33
resected specimens (on average 25 images per specimen) from the UK
MRC OEO5 trial.” The OE05 dataset had 348 images with delineated LNs
and 478 images identified without LNs. The study was approved by the
South East Research Ethics Committee, London, UK, REC reference: 07/
H1102/111.

Pre-processing of digital images for deep learning

Common pre-processing strategies for H&E-stained images as described
by Li et al.'® were applied to the original images in our database to harmo-
nise the dataset and remove noise: Python 3.7 was used and all packages/
libraries used in this study are listed in supplementary material Table 1.
As the resolution of slides scanned at 40 X magnification can be up to
200 000 % 200 000 pixels, scanned images were extracted from the Aperio
ScanScope files at a maximum size of 2048 x 2048 pixels, preserving the as-
pect ratio of the original image. To extract the image at a maximum resolu-
tion of 2048 x 2048 pixels, different downsample levels were tested until
reaching the maximum resolution, at which point the downsampled
image was extracted. Finally, the extracted images were converted into
jpeg image file format to facilitate the use of standard python packages
for pre-processing. One scanned image from the dataset was randomly se-
lected to be the reference image for Macenko’s colour normalisation strat-
egy, which consists of colour deconvolution later matched to the colour
characteristics extracted from the reference image.!! As the DL model re-
quired square images as input, scanned images with rectangular shapes
(i.e., length > than 1.5 times the width) were split into 2 squares to avoid
overstretching or compressing of the image. We also applied the Otsu
thresholding method,'? a histogram-based filter able to generate a binary
mask that separates the foreground (tissue) from the background (empty
space) setting the background values to 255 to maintain a white
background.

Subsequently, the scanned and cropped images were resized to
512x512 pixels by downsampling with bicubic interpolation (see Fig. 1)
to be suitable as input for U-Net.

We named “pre-processed images” the resulting images. We also de-
rived binary masks from the coordinates of the delineations saved in XML
files indicating the pixels belonging to LN tissue. The number of samples
used during the study before and after pre-processing can be seen in
Table 1.

(B) Images resized at a maximum resolution
of 2048x2048 + Pixel normalization based
on the reference image

(D) Background removed +

(C) Split into 2 if lengths > 1.5 x width
. 512x512 resizing

Reference image

Fig. 1. Pre-processing workflow: colour normalisation, resizing, splitting, and removal of background. (A) Digitised glass slide with 2 lymph nodes; bottom: randomly chosen
reference image. (B) Image after colour normalisation per pixel and downsizing to 2048 x 2048. (C) Image split into 2 sub-images in cases where the original image was

rectangular. (D) Removal of background and resizing to 512 x 512 pixels.
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Table 1

Description of the 3 different datasets: number of patients with scanned H&E slides,
number of scanned H&E slides, and number of images after pre-processing of the
scanned H&E slide.

Data type/subset Training Validation Test
dataset dataset dataset
from OE02 from OE02 from OE05

Number of patients 394 99 33
Number of images 1340 355 826
Number of images after 1516 481 1251

pre-processing

Deep learning model for automatic detection and delineation of lymph nodes

The DL model chosen to detect and delineate LNs was a U-Net'® using
ResNet-50 as backbone due to its proven good performance for histopathol-
ogy whole slide image delineation."* The loss function used was a combina-
tion of Dice loss weighted at 0.3 and binary cross entropy loss weighted at
0.7, which empirically gave the best Dice score on the validation dataset.
We used Adam (adaptive moment estimation), an algorithm which opti-
mises the model with a learning rate of 10.>®> The model was trained
using 4 GPUs (NVIDIA GeForce RTX 2080Ti) until overfitting was observed
based on the surveillance of the mean Dice coefficient in the training and
validation datasets calculated after each epoch, i.e., when the epoch just be-
fore the mean Dice continued increasing for the training dataset but stag-
nated or reduced for the validation dataset.

Identification of the images containing Lymph nodes

The output of the DL model per pre-processed image was a probability
map showing the predicted likelihood of a particular pixel being part of a
LN. In order to convert the per-pixel prediction value into a binary classifier
for the scanned image, we compared the results of 2 methods based on the
probability maps. The first method was the current standard method which
uses a simple threshold of the prediction map to obtain a binary mask as de-
scribed by Ronneberger et al,'® termed “conventional method” in this arti-
cle. The per-pixel predictions were threshold at 0.5 probability, where
every prediction higher than 0.5 was considered part of a LN, creating a bi-
nary mask. To remove potential artefacts, small areas (minimum area set at
5% of the smallest LN area found in the training set) were considered as po-
tential outliers and excluded from further analyses. Any scanned image con-
taining a region of interest greater than that size was labelled as potentially
containing LN.

The second method used a priori knowledge of the LN shape (usually
similar to a kidney bean) to analyse the predicted LN delineation and select
the most likely correctly segmented ones. This selection allowed us to ob-
tain a prediction score not just per pixel but per LN and quantify the results
of our DL model. The following features were extracted from the prediction
map of each candidate LN: descriptive statistics (geometric and harmonic
means, standard deviation of prediction values, entropy, skewness, and kur-
tosis), and shape features (pixel count, number of delineations predicted,
roundness, roundness disproportion, area, perimeter, centroid, orientation,
major axis length, minor axis length, diameter, extent, solidity, eccentricity,
elongation, perimeter/surface ratio). The features were normalised using z-
score normalisation based on the mean and standard deviation derived
from the training dataset and the correlation between features were tested
using the Spearman rank correlation coefficient'® on the training dataset.
To remove redundant information, if a correlation coefficient was above
0.85 between 2 features, the feature with the highest correlation coefficient
across the correlation table was deselected from the remaining feature set.
The normalisation and the feature selection based on the training dataset
was later applied to the validation and test datasets. Finally, recursive fea-
ture elimination with 10 cross-validation (RFECV) using default parameters
was performed on the features extracted from the training set, optimising
the area under the curve (AUC) of the receiver operating characteristic
(ROC) score for an extreme gradient boosting (XGBoost) classifier.
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At every iteration of the RFECV model, the least predictive feature was re-
moved from the dataset until only 1 remained. We visualised the RFECV
curve (corresponding to the AUC against the number of features) and se-
lected the number of features corresponding to the turning point of the
curve, i.e., when no further increase in the AUC score was observed.

The selected features were used as input for an XGBoost classifier which
was trained to give a prediction score between 1 and 0 whether a candidate
delineation contained a LN or not. To fine-tune the parameters of this clas-
sifier, a grid-search with 10-fold cross-validation was performed on the
training dataset. The parameters tested were maximum depth, minimum
child weight, number of estimators, gamma, and the learning rate. The
set parameters were the scoring system using the ROC AUC, the objective
being binary logistic, and column sample by tree at 0.8. To determine
whether a particular pre-processed image contained a LN or not, each po-
tential LN within the pre-processed image was attributed a prediction
score and the highest score was chosen to classify the pre-processed
image. The workflow of both automatic classification strategies per pre-
processed image (with LNs/without LNs) is shown Fig. 2.

Reusing our prediction score computed per predicted delineations and
in an attempt to make the model more robust, we empirically created a
third “uncertain” category based on statistics from the validation dataset,
for which the model could not predict with a high enough confidence
whether the pre-processed image contained a LN or not. To define this
new category, the lower bound corresponding to the lowest 5% of predic-
tion scores in the distribution of pre-processed images with LNs and the
upper bound corresponding to the highest 5% of scores in the distribution
of pre-processed images without LNs in the validation dataset were ex-
tracted from the distribution of the confidence scores.

Analysis of the model’s lymph node detection performance

We compared the performance of the 2 methods used for classification
of pre-processed images on the validation, and external test datasets by
comparing the normalised confusion matrices (i.e., the rows are divided
by the sum of the rows which then add up to 1). Performance metrics calcu-
lated on the validation and external datasets were balanced accuracy, sen-
sitivity, specificity, and F1-score.

We reported the feature importance via the Gini index of the trained
XGBoost model,'” the ROC curves of the candidate delineation classifica-
tion prediction on the training, validation, and external test datasets with
their confidence intervals at 95% calculated with 2000 bootstrapping of
the results and the AUCs, along with the calibration curve based on the pre-
dictions obtained on the validation dataset. We also reported the results
using the confusion matrices including the uncertain category on the vali-
dation and the external test datasets composed of the pre-processed images.
To evaluate the added value of the uncertain category, we compared the
false-negative and false-positive results on the external dataset with and
without the uncertain category using 2 proportion z-test at a significance
level of 0.05.

We used the maximum prediction score of a candidate delineation to es-
tablish the performance of the XGBoost model on the scanned images.

The scanned image predictions were used to calculate sensitivity and
balanced accuracy per patient in the validation and external test datasets.
We reported the mean sensitivity and the mean balanced accuracy per pa-
tient together with the violin plots of those metrics with a 2-sided Mann—
Whitney-Wilcoxon test with Bonferroni correction to assess whether distri-
butions of balanced accuracies and specificities were different between the
validation and external test datasets.

Analysis of the false-negative results were performed by an expert pa-
thologist. Observations were reported on the scanned images of the exter-
nal test dataset containing LNs which remained undetected by the model
to identify potential underlying causes or trends. The scanned images
were considered false negatives when none of the pre-processed images be-
longing to those scanned images were falling in the category “uncertain” or
“contain LN”.
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Fig. 2. The 2 strategies for predicting whether an image contains a lymph node. (A) “conventional” method, (B) our prediction score method.

Auto-delineation of the lymph nodes

Post-processing for auto-delineation extraction

If the pre-processed images had to be split in 2 during the pre-processing
step, the delineations were performed on both pre-processed images and on
a central image corresponding to both halves of the pre-processed images.
Pixels with 2 probabilities were averaged. Finally, to evaluate the delinea-
tion results, we resized the pre-processed images to the original scanned
image aspect ratio. Once the prediction was obtained from the scanned
image, the delineations were automatically found as described in Suzuki
and Be.'® Areas with LN candidates were removed if the area was smaller
than the minimum area computed previously. Next, the delineations were
made convex to roughly resemble the natural shape of LNs.'® From the
scanned images, we filtered out the background to only delineate the tissue
and increase the accuracy of the delineation, taking into consideration that
potential concavity might not have been dealt with when making the delin-
eations convex.

Analysis of lymph node delineation performance

The performance of the delineation model was reported using the aver-
age Dice coefficient *° calculated from the original image, along with the
average Dice per LNs from the validation and test dataset. Violin plots of
the Dice coefficient per size category were reported. We calculated 4 size
categories based on the distribution of areas of the ground-truth delinea-
tions in the original images in the training dataset, given in pm® (1) from
the minimum area to the first quartile (Q1), (2) from Q1 to the median
(M), (3) from M to the third quartile (Q3), and (4) from Q3 to the largest
area. The distribution of the values within the violin plots were compared
between the size categories using a 2-sided Mann-Whitney—Wilcoxon test
with Bonferroni correction.

Results

After pre-processing of the datasets, the training dataset contained 1516
pre-processed images, the validation dataset 481, and the test dataset 1251
(see Table 1). Our U-Net model was trained for 28 epochs until the model
began to overfit on the training dataset.

Evaluation of the lymph node detection performance

Comparison between conventional threshold method and newly developed
prediction score method

Among the pre-processed images of the training dataset, 5% of the
smallest LN area was equivalent to 167 pixels. The confusion matrices illus-
trating these results can be found in Fig. 3 panels A and B. The detection
performance was reported Table 2.

The optimal number of features calculated for our newly developed pre-
diction score system was 6, namely perimeter surface ratio, standard devi-
ation, roundness, harmonic mean, number of contours, and centroid. The
accuracy vs number of features curve calculated during the recursive fea-
ture elimination supporting the choice of number of features can be
found in supplementary material Fig. 1 A. The optimum hyperparameters
for XGBoost were found to be gamma = 0.8, learning rate = 0.01, maxi-
mum depth = 3, number of estimators was 1000, and minimum child
weight = 5. Feature importance can be found in supplementary material
Fig. 1B. The detection accuracies on the scanned images were 0.92 on the
validation dataset and 0.85 on the test dataset. The confusion matrices illus-
trating these results can be found in Fig. 3C and D.

The AUGs of the training, validation, and test datasets were 0.98, 0.94,
and 0.90, respectively. The ROC curves obtained on the training, valida-
tion, and test datasets are illustrated in supplementary material Fig. 2 and
the calibration curve calculated on the validation dataset can be found in
supplementary material Fig. 3.

For the interval of uncertainty we found the following values on the val-
idation dataset: The lower boundary of the distribution scores for the pre-
processed images which contained LNs at a 5% cut-off was found to be
0.48; the upper boundary at 95% obtained on the score of the pre-
processed images which didn’t contain LNs had a prediction score of
0.72. Table 3 displays the results found on the validation and external test
datasets, respectively.

The uncertain category, i.e., a category which would require manual
rechecking of the original image by a pathologist, comprised 6% of the val-
idation dataset. The same proportion was obtained on the external test
dataset using the lower and upper bounds calculated on the validation
dataset. Comparing the results obtained in the uncertain table score to the
confusion matrix in Fig. 3D, the false-negative rate was similar: 23 % in
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Fig. 3. Comparison of the results obtained on the original images to detect LNs in the validation and external test dataset between the “conventional” method and our
prediction score method. (A) Confusion matrix “conventional” method for the validation dataset, (B) confusion matrix “conventional” method for the external test
dataset, (C) confusion matrix using the prediction score method on the validation dataset, (D) confusion matrix using the prediction score method on the external test dataset.

Table 2

Balanced accuracy, specificity, sensitivity, and F1-score calculated on the validation and external test datasets for comparing the 2 classification methods. Bold indicates best
performance on the external test dataset.

Method Dataset Balanced accuracy Specificity Sensitivity F1-score
Our method Validation 0.93 CI [0.90,0.95] 0.90 CI [0.87,0.94] 0.95 CI [0.92,0.98] 0.92 CI [0.89,0.94]
Test 0.83 CI [0.81,0.86] 0.89 CI [0.86,0.91] 0.78 CI [0.74,0.82] 0.77 CI [0.74,0.81]
Conventional method Validation 0.81 CI [0.79,0.84] 0.63 CI [0.57,0.68] 1.00 CI [1.00,1.00] 0.81 CI [0.76,0.84]
Test 0.81 CI [0.78,0.83] 0.70 CI [0.67,0.73] 0.91 CI [0.88,0.94] 0.72 CI [0.69,0.75]
Table 3

Predictions on the validation and external test datasets split into 3 categories according to the level of certainty. The ground truth (image with or without LN) was obtained
from manual review by a pathologist.

Pre-processed images predicted Uncertain category n (%) Pre-processed images predicted Total
to contain one or more LN n (%) to contain no LN n (%)
Dataset Validation dataset
Images with LN 181 (0.87) 17 (0.08) 11 (0.05) 209 (1)
Images without LN 14 (0.05) 11 (0.04) 247 (0.90) 272(1)
Total 258 (0.53) 28 (0.06) 195 (0.41) 481 (1)
Dataset External test dataset
Images with LN 280 (0.69) 32(0.08) 92(0.23) 404 (1)
Images without LN 61 (0.07) 33(0.04) 753 (0.89) 847 (1)
Total 341 (0.38) 65 (0.06) 845 (0.56) 1251 (1)
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our uncertain table versus 22% in the confusion matrix (P = .73). However,
we observed a significant decrease in false-positive findings: 7% in our un-
certain table versus 11% in the confusion matrix (P < .05).

Accuracy and sensitivity distributions

The balanced accuracy and sensitivity distribution for the detection of
LN per scanned image reported per patient in the validation and external
test datasets is illustrated in supplementary material Fig. 4 . The mean sen-
sitivities of the LN detection were 1 and 0.72 for the validation and test
dataset, respectively. The mean balanced-accuracies for the LN detection
were 0.58 for both the validation and test datasets.

False-negative analysis on the test dataset

30 (9%) scans out of 348 were classified as “not containing LNs” al-
though they contained a LN. Fig. 4 summarises the description of those
images.

We observed that some of the LNs ‘undetected’ by the algorithm were:
(a) very small collections of lymphocytes which did not have a capsule or
(b) did not display the usual LN microarchitecture with loss of lymphocytes
and massive increase of macrophages occupying large part of the node,
while others appeared ‘empty’, i.e., devoid of immune cells.

Evaluation of the model’s lymph nodes delineation performance

The delineation performance was computed on the validation and ex-
ternal test datasets, comparing the ground truth delineated by a pathologist
with the fully automatic delineation in original images containing LNs. The
mean Dice score per original image was 0.73 and the mean Dice score per
LNs was 0.66 for the validation dataset and 0.60 per original image and
0.48 per LNs for the external test dataset. The parameters used to create dif-
ferent intervals computed on the distribution of delineation areas in the
train dataset were: Q1 = 278 061.5, M= 737 090.6, and Q3= 1 707
021.1 (areas in pm?). The violin plots of the Dice scores per interval for
the validation and external test datasets are displayed in Fig. 5. Examples
of different quality of auto-delineations are displayed in supplementary
material Fig. 5.

Accurate delineation of small LNs (<Q1) seem to be significantly lower
than the detection of the LNs at another size range, for both the validation
and test datasets. However, the results are significantly different for the first
and last categories (Fig. 5).
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Discussion

In the current study, we developed a novel machine learning based
pipeline to: (1) find and (2) delineate LNs in large collections of digitised
H&E-stained slides from oesophagogastrectomy specimens and tested the
performance on 1 independent dataset, while attempting to increase the
explainability of the models. For finding the digital images containing
LNs, we compared the performance of a conventional U-Net with
thresholding method with our newly developed prediction score approach
and observed a lower number of false-positives in both the validation and
test datasets using our method. Furthermore, our approach had a higher ac-
curacy in predicting whether a pre-processed image contains LN or not in
the external test dataset (0.77 conventional method vs 0.81 our approach).

Another study to delineate LNs in H&E-stained images for gastric cancer
patients using a U-Net architecture and thresholding reports a Dice score of
0.986 on the validation dataset.?! The main difference to our study is that
the training dataset of the U-Net model consisted exclusively of H&E-
stained images containing LNs in every slide, meaning that the network
would only have to exclude the background and small artefacts to allow
LN delineation. Moreover, metrics per LN such as sensitivity or Dice score
were not reported, leading to the performance of this model on small LNs
to remain unknown.

When inspecting the feature importance within the XGBoost model
ranked by the Gini coefficient, we observe that roundness and perimeter-
to-surface ratio where among the 3 most important features. This correlates
well with semantic knowledge that LNs often have an oval shape,'® leading
to irregular shapes being filtered out by our model. The delineation results
obtained on the test dataset were adequate (mean Dice of 0.60 per original
image, 0.48 for per LNs). When looking at the results divided by LN size in
Fig. 5, the Dice scores for smaller LNs were significantly lower than for
larger LNs. This is partially due to the penalisation of small structures by
the Dice score, but might also be partially due to mislabelled data, where
artefacts were wrongly attributed a label during pre-processing. Further
analysis of the small LNs is being conducted. Although we attempted to
limit the change of appearance of our data by splitting our images in 2
when the length/height difference was greater than 1.5, resizing the images
into square images compresses the data and possibly negatively impacted
our feature extractions and thus our results. Another pre-processing method
such as tiling the extracted images instead of resizing them could alter the
effect of the resizing.

Individual LNs can vary substantially in their microarchitecture?? which
can impact on the successful training of a DL model to identify LNs.>* Delin-
eations of the lymph nodes could be impacted by tumour invasion, as this
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Fig. 4. Analysis of the LNs architecture in the scanned images belonging to the external test dataset wrongly categorised without LNs.
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could change their structure and appearance. A follow-up study could eval-
uate the results on the positive and negative lymph nodes and show if a sig-
nificant difference exists between the results in the 2 categories.
Furthermore, H&E-stained tissue sections can vary in colour even if they
originate from the same laboratory. Our analysis pipeline therefore in-
cluded normalisation of the data, making the datasets less dependent
from differences in staining. It is also possible that our normalisation
method was not sufficient to prevent a domain shift in the external test
dataset. Other method such as Fourier-based data augmentation as de-
scribed in Wang et al.>* could be adopted in a follow-up study to overcome
this issue. We have chosen to train a U-Net model as this has been shown to
be one of the most often-used models for automatic delineation in
histopathology.'* Further, our attempt to make the results of a U-Net
model trained on histopathology data more explainable (certainty score,
uncertain class creation, and most important features extracted from the
prediction map) could solve 2 major roadblocks to clinical implementation:
DL models lack explainability (the “black-box problem”) and are incapable
of assessing whether a new dataset is useable or should be rechecked by a
pathologist (the “generalisability problem”). Our “uncertain” class could
help solve this issue although our current results don’t generalise well on
the external dataset, with almost a quarter of pre-processed images being
classified as not containing LNs while containing LNs (23%).

The different results observed between the validation and test datasets
could be due to the fact that the validation dataset is from the same source
as the training dataset while the test dataset is from another cohort.

Looking towards clinical application, our model for the detection and
delineation of LNs could be integrated into software used for reviewing
H&E-stained slides in the diagnostic setting and tested prospectively on
H&E data from UGI patients. To obtain better delineations and detection re-
sults, we suggest implementing a continual learning process which would
retrain the model with corrected delineations and detections predictions
on the new dataset such as in Perkonigg et al.>> A follow-up project will in-
troduce analysis of handcrafted features extracted from the H&E-stained
images (histomics analysis) to complete the work performed here and pre-
dict tumour infiltration within LNs.

In conclusion, we created a pipeline using deep learning for initial
detection and handcrafted features to reinforce the predictions of a
semantic delineation model which outperformed the conventional
approach. Thanks to our scoring model, we could create an uncertain
category for which the model is not confident to classify the image
into with or without LNs that pathologists would have to review. Al-
though good performance was obtained on the validation dataset, me-
dium performance was obtained on the test dataset for both the
classification and delineation tasks, which might be due to high hetero-
geneity in the external test dataset which might not have been there in
the training dataset. The first part of our workflow could be used in a
routine diagnostic setting for H&E-stained images of esophageal tissue
after further prospective validation, and the second part could be useful
for further work on measuring LN areas and characterising the structure
of LNs, potentially useful for personal treatment planning for patients
with UGI cancer.
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