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Circuit Synthesis of Electrochemical Supercapacitor

Models
R. Drummond, S. Zhao, D.A. Howey and S. R. Duncan

Abstract—This paper considers the synthesis of RC
electrical circuits from physics-based supercapacitor
models that describe conservation and diffusion re-
lationships. The proposed synthesis procedure uses
model discretisation, linearisation, balanced model or-
der reduction and passive network synthesis to form
the circuits. Circuits with different topologies are syn-
thesized from physical models. Because the synthesized
impedance functions are generated by considering the
physics, rather than from experimental fitting which
may ignore dynamics, this work provides greater un-
derstanding of the physical interpretation of electrical
circuits and will enable the development of more gen-
eralised circuits.

Index Terms—Supercapacitors, Electrochemical
Modelling, Equivalent Circuits, Passive Network
Synthesis

I. Introduction

Electric double layer (EDL) supercapacitors, otherwise
known as supercapacitors or ultracapacitors, are an in-
creasingly popular form of energy storage device, which
are characterised by high power densities, long lifespans,
low temperature dependencies and low internal resistances
[1]. The main energy storage mechanism of EDL superca-
pacitors does not involve chemical reactions, but instead
uses charge separation across the double layer in porous
electrodes with high specific surface areas [2]. This results
in supercapacitors typically having lower energy densities,
but higher power densities than devices such as lithium
ion batteries, which utilise chemical energy storage, and
increased energy densities compared to dielectric capaci-
tors [3]. Supercapacitors are typically used for high power
applications, for example, in delivering the transient loads
when connected in a hybrid power system with lithium ion
batteries [4]. In a hybrid power system, the benefits of the
different devices can be combined to give improved perfor-
mance and reduced battery degradation, since the battery
can then be operated at near steady-state conditions.

The growing popularity of supercapacitors has led to
a demand for improved performance and understanding
from a systems perspective. An important tool to achieve
this improved performance is the development of models
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that enable predictions to be made about the superca-
pacitor during a charge, reducing experiment numbers
and enabling a constructive methodology for design. The
literature on supercapacitor modelling is both large and
growing, with the models being mainly differentiated by
their accuracy, complexity and detail. The two main cat-
egories of supercapacitor models are equivalent circuits
(EC) and physics based (PB) models. EC models are
formed by the connection of passive circuit components
such as resistors and capacitors [5]. For supercapacitors,
the resulting model equations are typically low-order linear
ordinary differential equations (ODEs) which are relatively
straight forward to solve. This makes EC models both
simple to implement and to understand, resulting in them
being the most popular form of model for application
purposes. The main drawback of EC models is that the
model states have little physical interpretation and the
developed circuits are typically local approximations of
the nonlinear devices. This limits their use for design
purposes and for gaining a detailed understanding about
the physical state of the device during a charge. Numerous
EC models have been presented in the literature [6, 7, 8],
with three common circuits being compared in [9] for an
electric vehicle application.
PB models are formed from a set of partial differential

equations (PDEs) that describe the electrochemistry of the
device. These PDEs typically describe diffusion equations
coupled with algebraic constraints to enforce charge con-
servation [10]. Since the underlying equations are PDEs,
PB models are generally more complex than EC models
and are usually implemented with some form of spatial dis-
cretisation technique, such as the finite difference method
[10]. In [10], the physical PDE equations were established
and shown to match experimental data reasonably well.
Several studies have expanded upon this PB model, for
example, by studying electrode 3D effects and parameter
sensitivities [11], the computational implementation with
an efficient spectral collocation discretisation [12], imple-
mentation with the multi-physics modelling programme
COMSOL [13], a reduced order PDE system where concen-
tration effects were ignored [14], the inclusion of tempera-
ture effects [15] and analytic solutions for constant current
and electrical impedance spectroscopy charging profiles
are given in [16]. Physics based models have also been
developed for related electrical energy storage devices.
For example, the Newman model [17] has been widely
studied for lithium-ion batteries, both in terms of its
implementation [18] and its incorporation within a control



system [19].
Even though both EC and PB supercapacitor models

describe the same physical device, there has not been
much overlap between the two methods and they are often
treated as two separate approaches. Those efforts that
have been made to link the approaches tend to give a
qualitative, rather than quantitative, relationship between
the two. The purpose of this paper is to bridge this
gap by linking the two approaches using a mathemati-
cal transformation, such that equivalent circuits can be
synthesized from the physical PDEs. This mathematical
transformation uses balanced model order reduction [20]
and passive network synthesis [21]. In order for circuits to
be realised, it is necessary to give a state-space realisation
of the impedance function. State-space realisations of an-
alytic impedance functions using model order reduction
and Taylor series expansion for PB lithium ion models
was studied by Smith et al in [22, 23] and this paper is
concerned with the circuit synthesis of similar realisations.
The work of this paper could be said to generalise [24],
where a specific circuit is designed to describe a PB lithium
ion model, since the goal of this paper is show that a wide
class of PB models can be synthesised into a wide class
of circuits. The circuits developed by this approach have a
physical basis and should be more robust than those which
fit an impedance function to data.
It is stressed that the presented method does not give

analytic expressions for the various components of the
synthesized circuits in terms of the physical parameters of
the device. Instead, a numerical procedure is introduced
that allows the circuit synthesize to be efficiently carried
out. The reason no analytic expression can be obtained
is due to the model order reduction which results in a
loss of model information. It should be noted that this
work does not focus on model development, but instead on
PB model analysis in terms of electrical components. For
this reason, the models considered in this paper are not
validated against experimental data, but, this validation
was considered in [10, 25] amongst others.
The paper is structured as follows; PB and EC super-

capacitor models are respectively described in Sections 2
and 3. Section 4 describes the synthesis process that uses
passive network synthesis and model order reduction to
form circuits from the PB model.

II. Physics Based Models

A particular PB supercapacitor model will now be
described for the purpose of circuit synthesis but it is
noted that the synthesis process of Section 4 is flexible
enough to be applied on other PB models described by
different physical equations. This PB model was developed
in [12] and is a reformulation of the model set out in [10].
For the purposes of this paper, this PB model is treated
as a ‘true’ model which describes the whole dynamics of
the device and was shown to match up with experimental
data [10, 25]. The model has three domains, one for each
electrode and one for the separator, with the electrically
insulating separator preventing a short circuit. In order
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Figure 1: The standard construction of a supercapacitor.

for the model to be tractable, several assumptions have
to be introduced, as outlined in [10]. These include the
homogenisation of the electrode structure using porous
electrode theory and fixing the capacitance as a lumped
parameter, even though capacitance has been shown to
change with variables such as the voltage [26]. The bound-
ary conditions of the model are also outlined in [10]
and are applied at the separator/electrode and current
collector/electrode interfaces. These boundary conditions
can be summarised as enforcing conservation of ionic flux
and current. The current collectors are responsible for the
transfer of current to and from the system. This setup is
shown in Fig. 1.
The three partial differential algebraic equations of the

PB model describe:

• Charge conservation across the double layer

aC
∂(φ1 − φ2)

∂t
= σ

∂2φ1

∂χ2
(1a)

• Elctrolyte diffusion

ǫ
∂c

∂t
= D

∂2c

∂χ2
−

aC

F

(

t−
dq+
dq

+ t+
dq−
dq

)

∂(φ1 − φ2)

∂t
, (1b)

• Ohm’s Law

κ

(

RT (t+ − t−)

F

)

∂

∂χ
ln (c) + σ

∂(φ1 − φ2)

∂χ

+

(

κ
∂

∂χ
+ σ

∂

∂χ

)

φ2 + i = 0 (1c)

with specific capacitance aC, potential in the electrode
φ1, potential in the electrolyte φ2, electrode conductivity
σ, porosity ǫ, diffusion constant D, Faraday constant F ,
transference numbers t+ and t−,

dq+/−

dq
describing the

change in surface concentration of an ion associated with a
change in the surface charge on the electrode q, electrolyte
conductivity κ, gas constant R, temperature T , current
density i and spatial co-ordinate χ. The values of these
parameters used in this model based on a SAFT America
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supercapacitor are given in Table I. The output of the
model y is the voltage V

y = V = φ1|x=0 − φ1|x=L. (2)

In the electrodes, equations (1a), (1b) and (1c) have state-
space form (3a) and the state space form of the separator
is given by (3b).

In implementation, discretisation methods are applied
to the spatial differentiation operators of partial differ-
ential algebraic equations (DAE) systems such as (3a).
Discretisation gives a finite dimensional approximation
to the infinite dimensional PDE problem, resulting in a
significantly simpler problem to solve. Upon discretisation,
the spatial derivative operator ∂/∂χ is approximated by
a differentiation matrix D̂ζ , with the subscript ζ implying
that the matrix accounts for ζ’s boundary conditions.
These boundary conditions are enforced by the patching
technique of [27]. As outlined in [12], the spectral collo-
cation method is used to discretise the model equations
as this results in lower order models for a given level
of solution accuracy [27]. The discretised version of the
electrode state-space system (3a) is
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and, similarly, for the separator

[
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(5)

In the following analysis, only (4) will be studied as (5)
can be embedded into the structure of (4) by expanding
the dimension of the model states. The discretised version

of the model output is

y =
[

0 C1

]

[

c

φ1 − φ2

]

+ C1φ2 +D1i. (6)

It is possible to convert the DAE (4) into an ODE by
solving the algebraic equation

σD̂φ1
(φ1 − φ2) +

(

κD̂φ2
+ σD̂φ1

)

φ2 (7)

κ

(

t+ − t−
f

)

D̂ln cln (c) + i = 0 (8)

for the algebraic variable φ2

φ2 =−
(

κD̂φ2
+ σD̂φ1

)

−1
[

σD̂φ1
(φ1 − φ2) (9)

κ

(

t+ − t−
f

)

D̂ln cln (c) + i

]

. (10)

A unique solution of (9) exists if one of the potentials
is set as a reference. Since only the potential difference,
rather than the actual potential values, is important, this
reference can be used. If no reference is set, then the range
of potentials that would give the same potential difference
would be infinite and there would be an infinite number
of solutions to (9). Reformulating (4) using (9) gives the
following equation system
[

M11 M12

0 M22

] [

ċ

φ̇1 − φ̇2

]

=

[

Â11 0

0 Â22

] [

c

φ1 − φ2

]

(11a)

+

[

0
B1

]

ln (c) +

[

0
B2

]

i (11b)

y =
[

0 C̃
]

[

c

φ1 − φ2

]

+ D̃1 ln (c) + D̃2i (11c)

whose trajectories evolve along the manifold defined by
(7). The general form of (11) is

Mẋ = Ax+ B̃1 ln (c) + B̃2i (12a)

y = Cx+ D̃1 ln (c) + D̃2i (12b)

with state x := [cT , φ1

T − φ2

T ]T where c ∈ R
n
+ and

φ1 − φ2 ∈ R
n. By inverting the “mass” matrix M , (11a)

can be written as a standard dynamic system

ẋ = Amx+B1,m ln (c) +B2,mi. (13)
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III. Equivalent Circuit Models

Several circuits to be synthesized from the PB model
(13) will now be introduced. In the literature, a number
of equivalent circuit models can be found, so to make the
circuit synthesis problem tractable, the class of circuits
which will be considered is restricted to the classical,
ladder and dynamic circuits which have seen widespread
application and are compared in [9].

The classical model with added series capacitance term,
shown in Fig. 2, is the simplest model and has dynamics

[
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ẋ2

]

=

[

0 0
0 − 1

R1C1

] [

x1

x2

]

+

[

1
C
1
C1

]

i (14a)

V = x1 + x2 +Ri. (14b)

Incorporating additional time constants to this circuit by
the inclusion of more RC branches results in the dynamic
circuit, shown in Fig. 3, with dynamics
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(15a)

V = x1 + x2 + x3 + x4 +Rsi. (15b)

The third circuit which will be studied is the ladder circuit

R1 R2 R3

C1 C2 C3

Figure 4: Ladder circuit.

of Fig. 4
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V = x1 +R1i. (16b)

IV. Circuit Synthesis

In order to synthesize the three circuits (14), (15) and
(16), the nonlinear PB model (13) is linearised around the
equilibrium concentration ce, where the concentration has
diffused to a flat distribution, resulting in the following
dynamics

ẋ =
(

Am + [B1,m/ce 0]
)

x+B2,mi (17a)

y =
(

C + [D̃1/ce 0]
)

x+ D̃2i. (17b)

The logarithmic nonlinearity of (13) is relatively benign
when ce ≫ 0 and only becomes significant when the
concentration approaches zero. The near linear voltage-
current dynamics of supercapacitors makes them more
suitable for circuit realisation than other electrochemical
devices such as lithium ion batteries, which exhibit highly
nonlinear behaviour, due to the Butler-Volmer equation
and OCV curve [18].
The dimensionality n of the discretised physical state-

space system (17) is, in general, greater than the number
of RC branches of typical equivalent circuit models, which
most commonly have 2 or 3 branches [9]. In order for the
boundary conditions to be implemented in (17), it was
found that the electrode domain required a minimum of
three discretisation elements and the separator required a
minimum of two elements. This meant that the minimum
dimensionality for the PB model in (17) was nine and, for
circuit synthesis, the order of (17) needed to be reduced.
There are a number of methods for model order reduction
[28] with the balanced truncation method being imple-
mented in this work [20]. The first stage of this method is
to introduce the observability operator Ψo : Rn → Le

2[0, t1]
where

‖y‖22 = 〈x∗

0Ψ
∗

o,Ψox0〉 (18)

such that the observability grammian Yo can be defined
by

Yo = Ψ∗

oΨo =

∫ t1

0

eA
∗τC∗CeAτdτ. (19)

This self-adjoint operator maps the initial conditions to
the outputs lying in the Le

2 Hilbert space. Similarly, the
controllability operator Ψc : L

e
2[−t2, 0] → R

n

x0 = Ψcu (20)

defines the controllability grammian Xc

Xc = Ψ∗

cΨc =

∫ 0

−t2

eA
∗τB∗BeAτdτ (21)



which maps all inputs u ∈ Le
2[−t2, 0] to the initial condi-

tion x0 ∈ R
n. If a linear system is Hurwitz stable, control-

lable and observable, with system matrices (A,B,C,D),
then it has a balanced realisation meaning that there exists
a transformation matrix T such that the equivalent system
(Ã, B̃, C̃, D̃) = (TÃT−1, T B̃, C̃T−1, D) satisfies

X̃c = Ỹo = Σ (22)

with diagonal Σ > 0. The states that are least controllable
in this equivalent system are also least observable. The
error between a balanced system G and a reduced order
system Gr is bounded by

‖G−Gr‖∞ ≥ σr+1 (23)

where σ1 ≥ σ2 ≥ · · · ≥ σr ≥ σr+1 ≥ · · · ≥ σn are
the singular values of the Hankel operator ΓG = ΨoΨc :
Le
2[−t2, 0] → Le

2[0, t1] which maps the model input to
the output [20]. In this truncation method, the (balanced)
state-space matrices are partitioned by

A =

[

A11 A12

A21 A22

]

B =

[

B1

B2

]

C =
[

C1 C2

]

(24)

and the resulting reduced order model (A11, B1, C1, D) has
frequency domain form

Gr(s) = C1(Is−A11)
−1B1 +D (25)

which is balanced with Hankel singular values σ1 . . . σr

[20]. Reducing the order of the system in this manner
means that the error of the input/output response of the
reduced order model depends on the model order and can
be lower bounded by σr+1.
The requirement that the system matrix A be Hur-

witz for the balanced truncation method is violated by
(17a) since ni of the dynamic modes of this system are
integrators. This problem was overcome by removing the
integrators from the system, performing the model order
reduction on the remaining Hurwitz subsystem and then
combining this reduced order system back with the in-
tegrators. This means that the size of the reduced order
system can never be less than ni+1. However, in synthesis,
the ni integrator states combine to form a single lumped
capacitor. This is shown by considering the dynamics of
the integrator states xi ∈ R

ni

ẋi = Binti (26a)

yi = Cintxi (26b)

where Bint ∈ R
ni×1, Cint ∈ R

1×ni such that the integrator
capacitance C is given by

C = CintBint. (27)

For this reason, the controllability and observability op-
erators are defined to operate on the Le

2 space, not the
full L2 space. By defining the temporal domain to be a
closed set [−t2, t1] instead of the open set (−∞,∞) as is
used with the L2 space, then the dynamics of (17a) remain
bounded for bounded inputs in finite time [29].

Parameter Value Units

Global Parameters
dq+
dq

=
dq

−

dq
-0.5

t+ 0.55

T 298 K

Electrode Domain

κ 0.0195 S m−1

D 2.09 ×10−12 m2 s−1

ǫ 0.67

σ 0.0521 S m−1

aC 42 ×106 F m−2

α 42 ×106 F m−2

β 10 ×106 F m−2

Separator Domain

κ 0.0312 S m−1

D 3.34 ×10−12 m2 s−1

ǫ 0.6

Table I: Parameters for the PB supercapacitor model [10].

In addition to the Hurwitz condition, the system is
also required to be both observable and controllable for
a balanced realisation. These properties were studied in
[30], where it was found that the nonlinear model was
fully controllable but lost observability when the two
transference numbers, t+ and t− in (1b), were equal. The
presence of unobservable states with equal transference
numbers occurs because there is no induced potential
gradient caused by an imbalance of positive and negative
electrolyte ions. This means that no knowledge about the
concentrations could be gained from measurements of the
voltage. However, for unequal transference numbers, which
occurs in most supercapacitor electrolytes [31], the model
was shown to be fully observable.
The transfer function G(s) of the reduced order system

(17) is known as the impedance function, giving the s-
domain gain from current to voltage. When (17) was
reduced to a three state system using the parameters from
Table I the impedance function was

G(s) =
V (s)

I(s)
=

(s+ 6.56)(s+ 1.59)(s+ 0.29)

s(s+ 5.62)(s+ 1.4)
. (28)

Equivalent circuit realisations of the impedance function
(28) will now be obtained using passive network synthesis.
Passive network synthesis was studied extensively in the
electrical engineering community in the 1930s [32, 33]
with the goal being to understand and simulate complex
dynamical systems using electrical components [34]. In-
terest in this field died down in the 1960s even though
many problems still remained open. Network synthesis
has recently witnessed a revival due to the application
of modern mathematical tools to the classical methods
[35] and its application to mechanical systems through the
discovery of the inerter [36].

The key requirement for circuit synthesis of an
impedance function is that G(s) must be a positive real
function. Positive real functions satisfy:

1) G(s) is real for real s.



2) Real G(s) ≥ 0 for real s ≥ 0.

Positive realness is equivalent to showing that the system
is passive, i.e. non energy generating [37]. Passivity of the
supercapacitor model has been shown for both the nonlin-
ear discretised system and for the fundamental nonlinear
partial differential algebraic equations [38]. This implies
that the PDE model could be realised by a RC circuit of
infinite dimension, but, this is beyond the scope of this
paper.

The positive-real conditions are satisfied by (28). Real-
ising a transfer function in terms of a circuit is equivalent
to realising it in terms of a state-space system that has
a particular structure. State transformation operations
imply that transfer functions have a non-unique state-
space representation and this explains the vast array of
circuit models that can be found in the literature. By re-
stricting the class of circuits to the classical, dynamic and
ladder circuits of [9], circuit realisations can be obtained,
although it is pointed out that there exists a much wider
class of circuits that could be realised by the proposed
approach, but are not considered in this paper.

The methodology of network synthesis is to expand the
positive real impedance function G(s) around some point,
such as a pole at s = 0. The various components of
this expansion can then be realised by passive electrical
components such as resistors, capacitors and inductors
[39]. The realisation of the impedance function (28) in
terms of the dynamic circuit (15) is known as the Foster
form of the first kind [39] and is obtained by continuously
removing a pole of G(s) at s = 0. This is similar to
performing a partial fraction expansion

G(s) =
1

k0
+

k1
s+ σ1

+ · · ·+
ki

s+ σi

+ · · ·+ k∞. (29)

The resistances and capacitances of the circuit can then
be obtained by the following rules

C =
1

k0
Ci =

1

ki
Ri =

ki
σi

R = k∞. (30)

By reducing the order of the reduced system to one, the
classical circuit of (14) is realised. An alternative method
for obtaining the RC components for the dynamic circuit
would be to take the eigen-decomposition of the reduced
order physical system (17) and then match up the system
matrix coefficients to that of (15), since both would have
diagonal structures.

The ladder circuit (16) can be realised from the
impedance function by the continuous removal of poles
at s = ∞. This representation is known as the Cauer
form of the first kind [39] and can be obtained by taking a

Component Classical Dynamic Ladder

R1 6.2× 10−4 Ω 3.75× 10−4 Ω 2.5× 10−3 Ω

R2 3.15× 10−4 Ω 9.8× 10−4 Ω

R3 2.52× 10−4 Ω 4× 10−3 Ω

R 2.52× 10−3 Ω 2.52× 10−3 Ω

C1 431 F 475 F 285.9 F

C2 2.26× 103 F 549.6 F

C3 1.3× 106 F 249.6× 10−6 F

C 1.05× 103 F 1.05× 103 F

Table II: Resistor and capacitor values for the synthesized
classical, dynamic and ladder circuits.

continuous fraction expansion of the impedance function

G(s) = α1 +
1

α2s+
1

α3 +
1

α4s+
1

α5+
.. .

αr−1 +
1

αrs

.

(31)
The resistors and capacitors of the circuit can then be
obtained with

Ri = α2i−1 Ci = α2i for i = 1, . . . , r/2. (32)

The Cauer form of the second kind [39] of (28) has the
resistors and capacitors swapped around in Fig. 4. The
values of the resistors and capacitors for the three circuits
obtained by the synthesis procedure are given in Table II
for the SAFT America supercapacitor described by the
parameters from Table I. It is noted that the proposed
synthesis method allows a wide class of circuits to be syn-
thesized, with this class not being restricted to the three
circuits described. The Bode plots for the three circuits
match the full order linearised PB model as shown in Fig 5.
This is to be expected since the circuits are simply reduced
order realisations of the physical impedance function.
Using this approach, quantitative estimates for the the

errors introduced at each step of the synthesis process
(discretisation, linearisation and model order reduction)
can be obtained when the full order PB model is treated as
describing the true dynamics of the system. This contrasts
with the rather qualitative errors discussed with fitted EC
circuits. The singular values of the Hankel norm describe
the error bound for the reduced order system and are
shown for a 20 state discretisation of (17) in Fig. 6.
The first three singular values in this plot have been
removed since they relate to the integrator states. For this
discretisation, 12 states were related to the concentration
c with the remaining eight being related to the potential
difference φ1 − φ2. This shows that the concentration
states have a greater impact on the input/output dynamics
of (17) than the potential states. This is because the
concentration states evolve by a diffusion process, which
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Figure 5: Bode plot of the three synthesized circuits and
full order linearised physical model.

is much slower than the rapidly decaying, fast dynamics
associated with the potentials. This suggests that there
is no advantage gained in increasing the number of RC
branches beyond the number of concentration states nc−ni

when this synthesis process is used.

Recently, circuits have been developed for specific charg-
ing conditions such as charge relaxation [40]. With the
proposed PB approach, there should be a much broader
range of dynamics that are considered in forming the
impedance functions. This should result in more gener-
alised synthesized circuits that are designed for a broader
range of charging conditions. The ability to realise the
physical dynamics in terms of both the ladder and the
dynamic circuits contrasts with the view in the literature
which gives each of these circuits a distinct physical
interpretation; the ladder circuit is said to describe ion
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Figure 6: Singular values of the Hankel operator ΓG.

movement within a pore while the dynamic circuit is said
to model double layer effects [9]. The analysis of this
paper suggests that the physical interpretation of these
circuits is not as well defined as that, with each of the
modelled phenomenon contributing to the components
of each branch. The admittance function F (s), which is
the inverse of the impedance function G(s), can also be
synthesized in terms of resistors and inductors [39]. The
PB model is transformed into a circuit and it is believed
that this transformation can not occur in the opposite
direction, i.e. going from the circuit equations to the
model PDEs. However, it is pointed out that developing
PB models by considering the physics would be a better
approach than reverse synthesizing circuits.
The proposed circuit synthesis method is flexible since it

can be applied to general PB models describing additional
physical phenomena. For example, including the linear
dependence of electrolyte conductivity with concentration

κ = κ0c, (33)

which is often neglected due to the assumptions of dilute
solution thoery [10], changes the state-space system to




ǫ aC
F
(t−

dq+
dq

+ t+
dq−
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ċ
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∂χ

σ ∂
∂χ

κ0c
∂
∂χ

+ σ ∂
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(34)

whose linearised impedance is

G(s) =
V (s)

I(s)
= (35)

(s+ 4.76)(s+ 0.3)(s+ 2.95× 10−5)(s+ 3.27× 10−5)

s(s+ 3.74)(s+ 2.9× 10−5)(s+ 3.27× 10−6)
.

(36)



As well as electrolyte conductivity, the capacitance aC has
also been shown to vary during charging. Several models
have been proposed to account for this relationship, with
the most popular being the Guoy-Chapman-Stern model
[1]. In the region of low voltage, this relationship can be
approximated by a linear fit

aC = α+ β(φ1 − φ2). (37)

This relationship changes the state-space system to
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0 0 0
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0
0
1



 i.

(38)

and the impedance for a given α and β in Table I to

G(s) =
V (s)

I(s)
=

(s+ 6.04)(s+ 1.46)(s+ 0.27)(s+ 0.0031)

s(s+ 5.17)(s+ 1.29)(s+ 0.003)
.

(39)

Both impedance functions (35) & (39) are positive real
functions and so can be synthesized by passive circuit ele-
ments. The method can also be easily updated to generate
local circuits applicable to any operating region besides the
equilibrium concentration by changing the linearisation
point of the model.
As discussed in the introduction, circuits approximate

the local dynamics of a nonlinear supercapacitor model
in a given operating region. During a charging profile,
the state of the supercapacitor may leave this region,
necessitating the need for a new circuit to be generated,
typically using parameter estimation methods [41]. This
parameter estimation problem for the circuit components
can be re-cast as a synthesis problem of the PB model.
Fig. 7 shows the percentage deviation from their original
values of the three time constants of the dynamic circuit
(15) that were synthesized from (1) using an input current
of i = 10 + 10 sin(0.1t) A m−2. Unlike Fig. 5, Fig. 7
does not describe the accuracy of the circuit realisation,
but instead analyses how the components of the dynamic
circuit realisation would vary during a charge to account
for the nonlinearity of the PB model. The three RC
branches shown in Fig. 7 relate to different time constants
with C1R1 < C2R2 < C3R3. It was found that only the
time constant C3R3, which is related to long term dy-
namics, changed significantly during this charging profile.
This is because the localised component of the PB model
dynamics that changes during the charging profile is due
to the ln(c) nonlinearity, which is solely a function of the
concentration. Since the concentration exhibits slow diffu-
sion dynamics via (1b), only the long term time constants

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

T
im

e
C
on

st
an

t
D
ev
ia
ti
on

(%
)

C1R1

C2R2

C3R3

Figure 7: Variation of the time constants of the dynamic
circuit during a charge with sinusoidal current.

are local. If the electrochemical equations were linear, then
the circuit component values would be fixed. However, the
circuit component values would still be dependent upon
the parameters of the PB model, such as temperature and
porosity factor, as these parameters affect the impedance
function. The proposed method can easily accommodate
for this dependency. Since no analytic expression was ob-
tained for the circuit components in terms of the physical
parameters, the synthesis process was carried out at each
time step of the simulation. Although, since the numerical
procedure for the synthesis was fairly efficient, this process
was not computational exhaustive. The trajectory based
synthesis method proposed here should be more accurate
than circuits synthesized around an equilibrium point.

V. Conclusion

In this paper, a method for synthesising electrical cir-
cuits from physical supercapacitor models has been pro-
posed. This method used model discretisation, linearisa-
tion, balanced model order reduction and passive network
synthesis. The method is flexible since a wide class of
circuits can be realised from a wide class of physical
models. The circuits were validated by comparing their
frequency responses to that of a linearised physical model.
The aim of this paper is to give a greater understanding to
the physical interpretation of equivalent circuit models and
also to enable the synthesis of more general circuits whose
impedance function would be generated by considering the
device physics, not by experimental fitting.
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