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Automatic Depression Detection among Higher

Education Students Based on DeepFM
Ziling Ruan, Pengfei Yang, Member, IEEE, Jiayang Huang, Keyi Yang, Yidan Lv, and

Zhi-Qiang Zhang, Member, IEEE

Abstract—Depressive disorder has become a common problem
among higher education students, but it often gets undiagnosed
and untreated due to unrecognized symptoms, poor access to
medical resources, and fear of stigma. To improve the situation,
automatic depression detection would be essential. In this paper,
we explore the feasibility of depression detection in higher
education students using their behavioral data automatically
collected by the University system. First, a DeepFM network,
which can not only take discrete-continuous mixed features as
its input but also can learn linear and nonlinear relations between
the input and the output, is presented for depression detection. A
modified focal loss function (MFL) is then proposed to alleviate
data imbalance impact caused by the fact that the proportion
of healthy students outweighs those diagnosed with depression
significantly. To verify the effectiveness of the proposed method,
behavioral data from 3218 students were collected, of which
179 were diagnosed with depression by university psychologists
using PHQ-9 scale scores. 5-fold cross-validations are performed,
and the experiment results have illustrated that DeepFM obtains
the highest average accuracy compared to Multilayer Perceptron
(MLP), Factorisation Neural Network (FNN), and Product-based
Neural Network (PNN), demonstrating the effectiveness of the
proposed framework for depression detection among university
students.

Index Terms—Depression detection, data imbalance, deep learn-
ing, DeepFM, campus big data.

I. INTRODUCTION

Depression is a common illness worldwide, with an estimated

3.8% of the population affected, and it is a significant con-

tributor to the overall global burden of disease [1]. Detection

and diagnosis of depression early is a crucial step for proper

treatment [2]. Recently, automatic objective assessment meth-

ods to assist mental health detection and diagnosis have been

widely explored [3] [4] [5] [6].

Thus far, video analysis is regarded as the main approach for

depression detection since it highly co-relates with head move-

ments, facial expressions, gaze, etc. For instance, Uddin et al.
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[7] proposed a two-stream deep spatio-temporal framework

for depression level prediction. They used a temporal median

pooling approach and employed a multilayer bidirectional long

short-term memory (Bi-LSTM) based model for depression

analysis on video data. Niu et al. [8] developed Dual Attention

(DA) and Element Recalibration (ER) blocks to construct

the Dual Attention and Element Recalibration (DAER) net-

work, which was used to extract the facial representations of

individuals with different depression levels. Yang et al. [9]

proposed a multi-modal framework for predicting the Patient

Health Questionnaire depression scale (PHQ-8 score), and

classifying an individual as depressed or not depressed, by

hybridizing deep models and shallow methodologies. de Melo

et al. [10] proposed a deep learning architecture called the

Maximization and Differentiation Network to represent facial

expression variations for depression assessment. Although

these aforementioned studies have demonstrated the feasibil-

ity of depression analysis using video data, such data may

implicate serious privacy concerns. Besides video data, EEG

and mobile phone data have also been explored recently for

depression analysis. For instance, Acharya et al. [11] and Seal

et al. [12] both proposed convolutional neural networks (CNN)

to automatically learn features to characterize depressed and

normal EEG signals. Cai et al. [13] constructed a multi-

modal model to distinguish depressed patients from normal

controls by fusing different EEG data sources, which were

under neutral, negative, and positive audio stimulation. Shen

et al. [14] presented an optimal channel selection method

via Kernel-Target Alignment (KTA) and its application in

depression detection. Although the recent advancements in

EEG make it a powerful tool, it is relatively intrusive and

unconformable during EEG data collection. Similar work has

also been reported to use intrusive phone metadata [15] [16]

[17].

Social media has proven to be an unintrusive and stable source

of data, and some researchers recently also demonstrated the

possibility of depression detection using social media data.

For instance, Choing et al. [18] propose 90 unique features,

through a combination of feature extraction using sentiment

lexicons and content-based features from the social media

messages themselves, to detect depression using machine

learning classifiers. Zhihua Guo et. al [19] collected data from

Sina Weibo and approached depression as a binary classifica-

tion problem. The effectiveness of their approach was verified

using classical machine learning methods. Jitimon Angskun et.

al [20] also explored the effectiveness of data from Tweets in
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detecting depression and found that machine learning models

can capture depressive moods of depression sufferers. Tong et

al. [21] proposed a classifier called Cost-sensitive Boosting

Pruning Trees (CBPT) and tested its performance on two

publicly accessible Twitter depression detection datasets. Shen

et al. [22] proposed a cross-domain Deep Neural Network

model with Feature Adaptive Transformation & Combination

strategy (DNN-FATC) to enhance depression detection via

social media with multi-source datasets. Although social media

can provide a non-intrusive channel for collecting depressed

text data, many people may not use social media at all.

Unlike the data collection challenges faced by depression de-

tection for the general public, the emergence of digitization in

education has made various types of student data readily avail-

able [23]. In this paper, we explore the feasibility of detecting

depression in higher education students using the behavioral

data automatically collected by the university system. With

the behavioral data containing both discrete and continuous

characteristics, the DeepFM model can automatically learn

depression detection patterns among students. DeepFM is a

deep learning structure for discrete-continuous mixed data as

input, which has been widely used in multiple tasks, such as

metal-organic properties prediction [24], passenger car sales

prediction prediction [25], taxi pick-up area recommendation

[26], and etc.

The main contributions of this study include 1) A DeepFM

network, which can not only take input for discrete-continuous

mixed features but also learn both linear and nonlinear rela-

tions between the input and the output, which is presented

for depression detection. 2) A modified focal loss function

(MFL)is then proposed to alleviate the data imbalance impact

caused by the fact that the proportion of healthy students

outweighs those diagnosed with depression significantly. The

MFL can compensate for less training data for the depressed

group by making it descend further in the stochastic gradient

descent (SGD) process, thus reducing the bias of the model in

the training phase. 3) To verify the effectiveness of the method,

behavioral data from 3218 students were collected, of which

179 were diagnosed with depression. 5-fold cross-validations

were performed, and the experiment results illustrate that

DeepFM has obtained the highest average accuracy 96.4%

compared to Multilayer Perceptron (MLP) 93.3%, Factorisa-

tion Neural Network (FNN) 91.8%, and Product-based Neural

Network (PNN) 96.2%, which demonstrated the effectiveness

of the proposed detection framework for enhancing depression

detection performance.

The remaining paper is arranged as follows: Section II intro-

duces the materials and methods. In section III, the experiment

results are reported. Then, the discussion is presented in

section IV. The conclusion is presented in the last section.

II. METHODOLOGY AND MATERIALS

In this section, we will introduce the proposed depression

detection method: we will briefly describe the data preparation,

and then we explain the proposed depression detection frame-

work, which includes a DeepFM network architecture and a

TABLE I
TABLE OF NOTATIONS

Notation Description

X
s Behavioral features

of the s-th student

ys Ground truth of the s-th student.

X
s

d

Discrete features after one-hot coding
of the s-th student

X
s
c

Continuous features after Min-Max
normalization of the s-th student

X
s

Input of the FM component
and the DNN component

FFM Output of FM component

FDNN Output of DNN component

p Probability of depression of s-th sample

ŷ Detection result given by the model

Θ Parameters of the proposed model

d Dimension of X s

vi The i-th row in V

xi The i-th value of X s

L The modified focal loss function

S1,S0
Number of students with depression,

Number of healthy students

λ The imbalance degree

∆ θ The gradient in backpropagation

hl

Number of neurons
of the l-th layer of DNN

a
(l) Output of l-th layer of DNN

σ The sigmoid function

ϕ The ReLU function

modified focal loss function. We will elaborate on each part

below. For a better understanding of our proposed depression

detection algorithm, Table I summarizes the symbols/notations

used in this paper.

A. Data Preparation and Notations

Participants in the study were full-time undergraduates (aged

from 19 to 21, enrolled between 2015 and 2017) from our

University. Firstly, we distributed 12,000 questionnaires to all

the students in these three cohorts and 5,000 students indicated

they would like to participate in our study. After signing a

non-disclosure agreement for data sharing with these student

volunteers from the University, their behavioral data were

downloaded from the University Data Center. Volunteers with

more than 20% missing data and outliers (judged by Z-score

[27]) were removed directly. For the remaining records, mice-

forest [28], a way of data interpolation, is performed to fill in

missing values. Finally, the behavioral dataset containing 3218

undergraduates (2491 males and 727 females) was created. 179

of them have been diagnosed with depression by university

psychologists. They used PHQ-9 scale [29] scores to determine

if the student was suffering from depression. Students with

a score greater than 4 are identified as depressed. Many

researches have demonstrated that there is connection between

depression and academic performance [30] [31] [32], daily

behavior [33]–[37], movement/exercises [38] [39] [40] and de-
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TABLE II
THE DETAILS OF THE BEHAVIORAL DATA

Discrete

Features

(8)

Demographic

Data

(8)

Gender, Age, Nationality,
Native place, Family number,

Family financial situation,
Year of entry, Major

Continuous

Features

(27)

Academic

Performance

Data

(16)

Sum of Courses scores,
Mean of Courses scores,

Std of courses scores, GPA,
Number of scholarship awarded,

Level of scholarship awarded,
Class ranking,

Number of courses absence,
Number of courses late,

Number of courses attendance,
Number of courses leaving in advance,

Number of retaking course,
Number of resitting course,

Sum of missing classes hours,
Mean of missing classes hours,

Std of missing classes hours

Physical

Quality

Data

(7)

PE scores, BMI,
Total number weekly workouts,

Average number of weekly workouts,
Std of number of weekly workouts,

Total hours of workouts,
Average hours of workouts

Daily

Data

(4)

Number of canteen consumption,
Number of companions,

Number of late getting back to dorms,
Number of stay up late

mography [41]–[44]. Therefore, demographic data, academic

performance data, physical quality data, and daily life data

were selected in this study. All these data were automatically

collected by the University data center due to the recent ad-

vancement of university digitalization. The details of the data

are listed in Table II. For any student s(s = 1, 2, · · · , 3218),
his (or her) data record in the depression detection data set

was depicted as (Xs, ys), where X
s is a vector of dimension

35 that indicates the features of the behavioral data, and ys

denotes the ground truth (ys = 1 means s is diagnosed with

depression and ys = 0 means s is not depressed during the

test). As shown in Table II, Xs consists of discrete features

and continuous features. Since not all discrete features can

be compared in their values, one-hot encoding is adopted to

process them. After that, discrete features are converted to

a high-dimensional sparse feature vector X
s
d . For continuous

features, Min-Max normalization was performed to get a

feature vector X s
c .

B. Depression Detection Framework Based on DeepFM

The main framework of the depression detection model based

on DeepFM is depicted in Fig.1. Firstly, due to the high-

dimensional and extremely sparse characteristic of discrete

feature X
s
d , an Embedding layer is used to reduce the di-

mension of the vector. Then, the dimension-reduced X
s
d is

concatenated to the continuous feature X
s
c , obtaining the

feature X
s, as the input of the model. X

s is taken as the

input of the factorization-machine (FM) component and deep

neural network(DNN) component, where FM learns linear

relations and part nonlinear relations and DNN mainly learns

nonlinear relations between the input and the output. Next,

TABLE III
DNN STRUCTURE. THE BATCHSIZE IS SET TO 64 IN OUR EXPERIMENTS. D

IS THE DIMENSION OF THE INPUT VECTOR X
s . THE OUTPUT OF FC4 IS

FDNN .

Layer Inputsize Outputsize Activation Dropout

FC1 batchsize × d batchsize × 256 ReLU 0.1
FC2 batchsize × 256 batchsize ×128 ReLU 0.1
FC3 batchsize × 128 batchsize × 64 ReLU 0.1
FC4 batchsize × 64 batchsize × 1 - -

The output of FM (FFM) and DNN (FDNN) are summed up and

the summation is used as an input of the activation function

sigmoid.

C. Architecture of DeepFM

Considering the discrete-continuous-mixed characteristic of

our dataset, DeepFM is used as a classifier in this study.

The DeepFM network consists of two components: the FM

component and the DNN component.

First, the FM component parameters were estimated as w =
[w0, w1, . . . wd], and a matrix V ∈ R

d×k. A row vi within

V is a k-dimensional vector, which describes the i-th feature.

The output of FM is defined as follows:

FFM = w

(

1
X

s

)

+
d−1
∑

i=1

d
∑

j=i+1

viv
T
jxixj , (1)

where X
s = [x1, x2, . . . , xd]. For each feature xi ∈ X

s, a

scalar wi ∈ w is used to weigh its order-1 importance, and

a latent vector is used to weigh its importance of interactions

with other features.

Second, the DNN, a feed-forward neural network, is used to

learn the nonlinear relations between the input and the output.

The input of the DNN component is X
s as well. As shown

in Fig.1, The DNN component is mainly composed of 4 fully

connected layers, each fully connected layer is followed by

a ReLU layer and a Dropout layer. The detailed structure of

DNN has been shown in Table III. After forward propagation,

the output of the DNN component FDNN is obtained.

Finally, after the action of the sigmoid activation function, the

output of the model, the probability of depression, is obtained.

The details are as follows:

p = σ(FFM + FDNN), (2)

where σ is the sigmoid activation function, p is the estimated

probability of depression, and the predicted label of a student

is defined as:

ŷ =

{

1 if p > 0.5,

0 otherwise.
(3)

where ŷ is the detection result given by the model (ŷ = 1
means the student is classified as depressed. ŷ = 0 means the

student is classified as healthy).

The model parameters Θ = {w,V ,U} are updated by

stochastic gradient descent algorithm (SGD), where w and

V are the parameters in the FM component and U represents

the parameters in the DNN component.
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Fig. 1. Main framework of depression detection model. The framework mainly includes 2 components, FM and DNN, and the proposed loss function, the
modified focal loss function. The input of the framework is a vector X s composed of depressive features. The output, p, is the probability of depression.

D. The Modified Focal Loss

To reduce the influence of the imbalance characteristics of the

dataset, we proposed a class imbalance loss function named

Modified Focal Loss (MFL) to reduce the bias of the model.

With the probability p obtained in Eq. 2 and the ground truth

ys defined in Section II-A, MFL is designed as:

L =− ys((1− sin(
π

2
p̂)) cos(

π

2
p̂)f(λ, S1, S0))(1− p̂)γ log p̂

− (1− ys)((1− sin(
π

2
p̂)) cos(

π

2
p̂))(1− p̂)γ log p̂

.

(4)

and

p̂ =

{

p if ys = 1

1− p otherwise,
(5)

where sin() and cos() respectively denote sine function and

cosine function, and γ is an adjustable parameter. The function

f() introduces the distribution of the training dataset into the

loss function. In this way, the gradients of the minority class

will descend further to make up for the disadvantage of less

training data. f(λ, S1, S0) is defined as follows:

f(λ, S1, S0) =

{

(S0/S1)
1
2 if λ ≤ 1

(S0/S1)
1
8 otherwise,

(6)

where λ is the imbalance degree and is defined as:

λ = −
1

2
log

S1

S0
. (7)

Here, S0 denotes the number of healthy students and S1

denotes the number of students with depression.

During the model training, any parameter θ ∈ Θ in the model

would be updated as follows:

θnew = θold + η ×∆θ (8)

∆θ =
∂L

∂θ
(9)

where θold denotes the value of parameter θ of the previous

iteration, and θnew denotes the current value updated by SGD. η

is the learning rate. ∆θ denotes the current gradient. According

to the chain rule:

∂L

∂θ
=

∂L

∂p̂

∂p̂

∂p

∂p

∂θ
(10)

∂p

∂θ
= p(1− p)

∂(FFM + FDNN)

∂θ
(11)

∂(FFM + FDNN)

∂θ
=























































1 θ = w0

xi θ = wi

xi

k
∑

e=1

vj,exj − vi,ex
2
i θ = vi,e









ϕ
′

(

hl−1
∑

r=1

u(l−1)
r,g a(l−1)

r +

b(l−1)
r )a(l−1)

r









θ = u(l−1)
r,g ,

(12)

where ϕ is the ReLU function, u
(l−1)
r,g ∈ U

(l−1), U (l−1) ∈
R

hl×hl−1 is the in the weight matrix l − 1-th layer of DNN

component, hl denotes the number of neurons of the l-layer,

so 0 < r ≤ hl−1, 0 < g ≤ hl, a
(l−1)
r ∈ a

(l−1) represents the

output of r-th neuron of (l − 1)-th layer and b
(l−1)
r ∈ b

(l−1)

represents the bias of r-th neuron of (l − 1)-th layer. And

a
(l−1)
r = ϕ(

∑h(l−2)

z=1 u
(l−2)
z,r a

(l−2)
z + b

(l−2)
z ).

∂p̂

∂p
=

{

1 if ys = 1

− 1 otherwise,
(13)
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∂L

∂p̂
=











































































− f(λ, S1, S0)(1− p̂)γ−1((1− p̂) log p̂

(sin(
π

2
p̂) + cos(πp̂))(−

π

2
) + (

(1− p̂)

p̂ ln 10

− γ log p̂)(1− sin(
π

2
p̂)) cos(

π

2
p̂))













if ys = 1,













− (1− p̂)γ−1((1− p̂) log p̂

(sin(
π

2
p̂) + cos(πp̂))(−

π

2
) + (

(1− p̂)

p̂ ln 10

− γ log p̂)(1− sin(
π

2
p̂)) cos(

π

2
p̂))













otherwise.

(14)

From Eq 8 to Eq 14, we can conclude that the length of gradi-

ent of positive class(ys = 1 ) is f(λ, S1, S0)(f(λ, S1, S0) > 1)

times as long as the negative class(ys = 0), which indicates

that the minority class will descend further during model

training. Besides, the value of function f() is not as large

as possible. This is because an enormous gradient will result

in gradient vanishing, loss not being declined, and unstable

output.

E. Hyper-parameter Setting of Our Proposed Framework

As shown in Table III, the sizes of the outputs from FC1 to

FC3 are 256, 128, and 64 respectively. The output size of the

last layer of DNN is 1. In the training phase, the batchsize

was set to 64, and the learning rate was set to 0.01. We

used stochastic gradient descent (SGD) for training, and the

dropout rate in each dropout layer was 0.1. The length of

vi, k (proposed in section C) was set to 8. Additionally, the

parameter γ in the modified focal loss was set as 3. 5-fold

cross-validations with each fold of 10 random runs (using

different random seeds) were performed. Therefore, in each

experiment, we use 80% of the data (i.e., 2574 students,

diagnosed vs. undiagnosed: 143 vs. 2431) for training and

20% (i.e., 644 students, diagnosed vs. undiagnosed: 36 vs.

608 ) for testing.

F. Evaluations Metrics

In this study, in addition to classification accuracy, sensitivity,

specificity, G-mean, F1score, and AUC (area under receiver

operating characteristic curve) were calculated to evaluate the

performance of the proposed method. Sensitivity and speci-

ficity represent the proportion of all positive samples predicted

correctly to all actual positive samples and the proportion of

all negative samples predicted correctly to all actual negative

samples, respectively. In this paper, positive samples are

diagnosed students and negative samples are healthy students.

F1score, G-mean, and AUC are the balance of two evaluation

indexes, which are commonly used in imbalance classification

studies [45]. They are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Sensitivity =
TP

TP + FN
(16)

Specificity =
TN

TN + FP
(17)

G-mean =
√

Sensitivity × Specificity (18)

F1score =
2× Precision × Recall

Precision + Recall
(19)

where precision = TP
TP+FP

, recall = TP
TP+FN

. The terms TP ,

TN , FP , and FN represent the number of true positives, true

negatives, false positives, and false negatives respectively.

III. EXPERIMENTAL RESULTS

In this section, we first introduce the baseline methods. Then,

we evaluate the performance of the proposed method on the

student behavioral dataset. Extensive comparisons of classi-

fication performance are implemented between the proposed

method and other neural networks. Finally, the influence of

the proposed loss function such as the convergence of the loss

function, the influence of the parameters in the modified loss

function, and comparisons with other loss functions were also

reported.

A. Baseline Methods

To verify the advantages of DeepFM in processing discrete-

continuous mixed features, we compared the performances

with Factorisation Machine supported neural network (FNN)

[46], Product-based neural network (PNN) [47] and MLP

[48]. The structure of MLP is the same as that of the DNN

component. So the performance of MLP expresses the role of

high-order feature interactions. FNN (Factorisation Machine

Supported Neural Network) is a deep learning model for

predicting user behavior. To minimize the influence of other

factors, the structure of the fully connected layers in FNN is

set to be the same as that of MLP. PNN (Product-based Neural

Network) was a deep learning model based on multiplication

to represent feature crossing. The PNN network structure adds

the Product layer to the traditional deep neural network, so

as to realize the crossover of features. Similarly, the fully

connected network portion of the PNN in this document was

structured in the same way as the MLP setup. In the training

phase, all of the models updated their parameters according to

the loss given by the modified focal loss function.

B. Depression Detection Performance

The depression detection performance comparison was con-

ducted between the proposed method DeepFm with the mod-

ified focal loss (DeepFM-MFL), and Multilayer Perceptron

with the modified focal loss (MLP-MFL), Factorisation Ma-

chine supported neural network with modified focal loss

(FNN-MFL), and Product-based neural network with the mod-

ified focal loss (PNN-MFL). All of them were implemented

with Pytorch1on our Dell PC with the Intel(R) Core(TM) i7-

10700 CPU @ 2.90GHz, 16 GB RAM, and 64-bit Windows

10 OS using Pycharm 2020.1.2 x64. The average classification

accuracy, sensitivity, F1score, AUC, G-mean, and specificity

were calculated over 5-fold cross-validation with 10 runs

(each run with a different random seed) to evaluate the

detection performance of these methods. Table IV illustrates

1https://pytorch.org/



6

TABLE IV
COMPARISON OF CLASSIFICATION RESULTS FOR DIFFERENT MODELS (MEAN±STD UNIT:%). ”A-B” REPRESENTED MODEL A WITH LOSS FUNCTION B

DURING THE TRAINING PHASE. ”MFL”: THE MODIFIED FOCAL LOSS FUNCTION.

Models Sensitivity Specificity F1score AUC GM Accuracy

FNN-MFL 65.4±15.8 94.4±1.3 49.1±7.9 84.1±8.6 59.8±8.4 91.8±2.7
MLP-MFL 68.6±10.3 95.6±0.9 52.6±16.2 86.4±5.3 61.8±8.4 93.3±1.3
PNN-MFL 69.4±10.3 97.3±1.8 74.3±8.7 84.3±7.4 80.2±7.3 96.2±2.4

DeepFM-MFL 82.1±7.7 99.0±0.1 81.2±5.6 91.9±4.5 86.9±8.2 96.4±0.8

(a) Cross entropy loss (b) Focal loss (c) Modified focal loss (proposed)

Fig. 2. Different loss function curves during the DeepFM model training. The horizontal axis represents the number of iterations ”iter nums” and the vertical
axis represents the current loss value.

(a) (b)

Fig. 3. Performance comparisons under different values of f . when f = 1, according to Eq. (4), the modified focal loss would ignore the distribution of
training data. When f = f() according to Eq. (6), the modified focal loss would consider the distribution of training data. The asterisks indicate significant
differences between the seven methods obtained by paired t-tests (*p <0.05, and ** p <0.01).

the classification results across all students in the test set.

As we can see from the table, the proposed DeepFM-MFL

method can achieve the best detection performance compared

to the others with a sensitivity of 82.1±7.7%, F1-score of

81.2±5.6%, AUC of 91.9±4.5%, GM of 92.3±7.9% and

accuracy of 96.4±0.8%, specificity of 99.0±0.1%.

C. The Influence of the Modified Focal Loss

In order to further evaluate the performance of the proposed

modified focal loss, in this part, firstly, we study the con-

vergence of the loss functions, the role of f() function, and

the influence of the γ parameter in the loss function. Then,

the classification performances of cross entropy loss (CE

loss), focal loss (FL) [49] and the proposed loss (MFL) were

compared. In this paper, the parameter γ of (1− p̂)γ in focal

loss was set to 3 (equals to γ of MFL).

1) Convergence of the proposed framework: To demonstrate

the convergence of the proposed framework, we illustrate the

convergence process of the modified focal loss during the

DeepFM model training phase in Fig. 2(c). As shown in

Fig. 2(c), the proposed loss begins to converge with large

fluctuations after 200 iterations. After 3000 iterations, the

fluctuation decreases and the convergence becomes stable. By

contrast, Fig. 2(a) shows the convergence process of cross

entropy loss under the same conditions as the modified focal

loss. As shown in Fig. 2(a), it is not until 1600 iterations that

the CE loss begins to converge and the loss curve fluctuates

greatly, which indicates that the output of the model is very
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(a) (b)

Fig. 4. Performance comparisons under different values of the parameter γ in Eq (4).

unstable. And Fig. 2(b) shows the focal loss curve. In short,

comparing the 3 figures in Fig. 2, the CE loss curve and

focal loss curve have more vibration than the proposed loss

curve. Besides, the proposed loss function converges faster

than others. We conjecture that the main reason is that our

loss function takes into account the distribution of the training

data so that the minority class will get more attention during

the model training.

2) Influence of the Parameters in Modified Focal Loss: The

main idea of the modified focal loss is that it introduces the

distribution of the training dataset into the loss function by

defining the function f(). Therefore, in order to investigate

the role of the function f(), we respectively set f as 1 and

f()(whose value is calculated by Eq. (6). The results of 4

models (mentioned in part A) are shown in Fig. 3. This figure

shows that sensitivity and g-mean are improved when f = f().
Next, we analyze the impact of the value of γ in Eq. (4). From

Eq. (4), we can see that with the increase of the value of γ
the value of loss will decrease. In this way, well-classified

samples will get a smaller loss so that the model will pay less

attention to these samples but more attention to others during

the model training. Fig. 4 shows how the values of sensitivity

and g-mean change with the value of γ. As can be seen from

the figure, both sensitivity and g-mean reach their maximum

when γ is equal to 3.

3) Classification performance comparisons of different loss

functions: In this part, we compare the classification perfor-

mances of CE loss, focal loss, and the proposed loss on MLP,

FNN, PNN, and DeepFM models. Fig. 5 shows the sensitivity

values of 4 models with different loss functions. The figure

demonstrates that the proposed loss function is superior to CE

loss and focal loss under the depression detection task, which

significantly improves the models’ ability to identify positive

samples(which refer to students who have been diagnosed with

depression in this paper). Fig. 6 gives information about the

distribution of estimated probabilities of depression of samples

in a test set in a randomized experiment on the DeepFM model

with 3 different loss functions. We can see immediately from

the figure that more points are distributed above 0.5 when

MFL is used in classification models which indicates that

more positive samples are found. That is the reason why the

sensitivity is improved.

Fig. 5. Sensitivity comparisons of different loss functions. The asterisks
indicate significant differences between the seven methods obtained by paired
t-tests (*p <0.05, and ** p <0.01).

IV. DISCUSSION

A. The Effect of Different Types of Data on Depression De-

tection

We further investigated the importance of 4 types of data (as

shown in Table II ) in determining student depression via

an ablation study. We trained the model using three of the

four types of data mentioned in Table II to investigate the

importance of the remaining type of data. In this way, the

larger the decrease in detection performance compared to the

model trained using all types of data, the more important

that type of data is in determining whether the student is

depressed. Fig. 7 illustrates the averaged sensitivity across 5-

fold cross-validation with 10 runs (each run with a different
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Fig. 6. Scatter diagram and normal distribution curve of estimated probability
of ground truth of test set for DeepFM model with different loss functions;
”A-B”: A denotes the chosen classification model, and B denotes the chosen
loss function. ”CE”: Cross entropy loss function; ”FL”: Focal loss function;
”MFL”: Modified focal loss function.

Fig. 7. Performance comparisons under different data. ”All Data” means all
of the data shown in Table II were used during model training. ”Non-type
Data” means apart from this type of data, the remaining data were used for
model training. The asterisks indicate significant differences between the five
conditions obtained by paired t-tests (* p <0.05, ** p <0.01, and *** p
<0.001).

random seed). As can ben seen from the figure, all 4 types of

data we collected are crucial for the detection of depression

among students. Because removing any one of them would

negatively affect the results of the experiment (sensitivities

are reduced). The four types of data in descending order of

importance are academic data, daily data, physical quality data,

and demographic data. The results of the significance analysis

show that academic data and daily data have a more significant

effect on depression detection. This illustrates that depression

among higher education students is mainly manifested through

academic performance and some daily behaviors.

B. FM vs DNN vs DeepFM

To investigate the role of FM and DNN, we trained them

separately and tested their performance. As we can see from

Fig. 8. The sensitivity comparisons of the FM component, the DNN
component, and DeepFM.

Fig. 8, DeepFM has achieved the highest sensitivity compared

with FM and DNN. Additionally, FM outperforms DNN,

indicating that the linear correlation between behavioral data

and students’ depression is more pronounced compared to

nonlinearity. Besides, in order to estimate the complexity of

FM, DNN, and DeepFM, we compared their training time

and test time. The average training times for FM, DNN,

and DeepFM are 11.851s, 28.048s, and 54.486s, respectively.

Their average test times are 0.034 ms, 0.067 ms, and 0.062

ms, respectively. All of these experiments were performed

on a Dell PC with the Intel(R) Core(TM) i7-10700 CPU @

2.90GHz, 16 GB RAM, and 64-bit Windows 10 OS using

Pycharm 2020.1.2 x64. We would like to point out that

although DeepFM has a more complicated training process

than FM and DNN, and the training time is a bit longer, it

won’t affect the computational speed of the target detection

during the test phase.

C. Comparisons with Similar Studies

To the best of our knowledge, we are the first to collect data

for student depression detection in a campus big data scenario.

And there are no similar studies using university data for

depression detection, so our dataset type is unique at this time.

In this case, it is not fair to compare our approach with other

studies because we use different data. Although that said, there

are several methods, i.e., Random Forest (RF), Support Vector

Machine (SVM) [19] [20], Random Forest with Random

Oversampling (RF-ROS), Random Forest with Tomek link

(RF-TL) and Random Forest with Random Oversampling and

Tomek link (RF-ROSTL) [17] that might apply to our data. We

thus implemented them and tested them on our dataset. Fig.

9 illustrates the averaged classification accuracy across 5-fold

cross-validation with 10 runs (each run with a different random

seed). As we can see from the figure, the proposed DeepFM-

MFL method can in general achieve the highest accuracy with

regards to others.
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Fig. 9. Violin plots represent the distributions of classification accuracy
achieved by 5 methods. The thick black line in each violin indicates the
mean value.

TABLE V
THE DISTRIBUTIONS OF GENDER AND YEAR OF ENTRY

Gender Year of entry

Lable Male Female 2015 2016 2017

Depressed 120 59 56 63 60

Normal 2371 668 1030 996 1013

D. Comparisons among diverse student populations

To explore whether there exists a significant difference be-

tween diverse student populations, we conducted some abla-

tion studies on the feature of ”Gender” and ”Year of entry”,

respectively. The distribution of ”Gender” and ”Year of entry”

have been shown in Table V. We find that the depression rate

of females is higher than that of males. The male base is

larger than the female base, which may be due to the fact

that the ratio of males to females in this university is 7:3.

There is no significant difference in the number of students

from different ”Year of entry”. Fig.10 and Fig.11 show the

depression detection performance between different ”Gender”

and ”Year of Entry” on the proposed model, which can be

seen from the 2 figures that there indeed don’t exist significant

differences across ”Gender” and ”Year of entry”.

Fig. 10. The sensitivity comparisons between different ”Gender” on DeepFM-
MFL.

Fig. 11. The sensitivity comparisons between different ”Year of entry” on
DeepFM-MFL.

E. Future Work

In this study, we propose a new method to detect depression

among higher education students. Real-world student behav-

ioral data is used to detect student depression. And we have

achieved a high average accuracy of 96.4%. However, there is

still room for improvement, and optimization can be done in

both method and application.

Firstly, for the task of imbalanced classification, apart from

the class imbalance loss function proposed in this paper, an

algorithm-level method, the imbalance classification problem

can be also addressed at the data level. For example, gen-

erative models [50] [51] [52] can synthesize samples from

the minority class. Besides, oversampling methods [53] [54]

[55] [56]can also be used to achieve data augmentation. In

the future, data augmentation can be used at the data level to

further address the imbalance problem. Secondly, identifying

the levels of students’ depression is definitely important for

depression detection and is beneficial. In situations of scarce

healthcare resources, major depressive disorder deserves pri-

mary attention as it is a significant contributor to poor aca-

demic performance, substance abuse, and attempted and com-

pleted suicide [57] [58] [59]. However, we haven’t achieved

this in this preliminary study drawback as its main purpose

is to validate the feasibility of depression detection using the

data automatically collected by the university system. Finally,

in the next phase, we will also further process the data to

extract the features that indicate students’ behavioral changes,

verify the role of students’ behavioral changes in depression

detection, and design a model to capture the characteristics of

such changes.

V. CONCLUSION

This study presented a preliminary study of depression de-

tection using student behavioral data automatically collected

by the University system. DeepFM-MFL was proposed to

enhance depression detection performance via learning linear

and nonlinear relations between student behavioral data and

depression, and MFL was proposed to alleviate the data imbal-

ance caused by the fact that the proportion of healthy students

outweighed those diagnosed with depression significantly. The

experiment results have illustrated that the proposed DeepFM-

MFL obtained the best performance compared with MLP, FNN

and PNN.
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