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ABSTRACT: The manual identification and in situ correction
of the state of the scanning probe tip is one of the most time-
consuming and tedious processes in atomic-resolution scanning
probe microscopy. This is due to the random nature of the
probe tip on the atomic level, and the requirement for a human
operator to compare the probe quality via manual inspection of
the topographical images after any change in the probe.
Previous attempts to automate the classification of the scanning
probe state have focused on the use of machine learning
techniques, but the training of these models relies on large,
labeled data sets for each surface being studied. These data sets
are extremely time-consuming to create and are not always
available, especially when considering a new substrate or
adsorbate system. In this paper, we show that the problem of tip classification from a topographical image can be solved by
using only a single image of the surface along with a small amount of prior knowledge of the appearance of the system in
question with a method utilizing template matching (TM). We find that by using these TM methods, comparable accuracy and
precision can be achieved to values obtained with the use of machine learning. We demonstrate the efficacy of this technique
by training a machine learning-based classifier and comparing the classifications with the TM classifier for two prototypical
silicon-based surfaces. We also apply the TM classifier to a number of other systems where supervised machine learning-based
training was not possible due to the nature of the training data sets. Finally, the applicability of the TM method to surfaces
used in the literature, which have been classified using machine learning-based methods, is considered.
KEYWORDS: scanning tunneling microscopy (STM), scanning probe microscopy (SPM), atomic resolution, machine learning,
in situ tip conditioning, cross-correlation, automation

INTRODUCTION
Atomic-resolution scanning probe microscopy (SPM) has
revolutionized our ability to investigate nanoscale phenom-
ena1−3 and manipulate matter with exceptional precision.4−8

Central to the success of SPM techniques is the quality and
sharpness of the probe tip, which directly influences the
resolution, sensitivity, and reliability of measurements. The
manual in situ preparation of probe tips is a labor-intensive and
time-consuming process, which poses a challenge to the
efficiency and reproducibiltiy of SPM experiments, making it
difficult to meet the growing demand for high-throughput SPM
experiments. The ability to automate tip preparation is
therefore desirable, as it would allow for operators to use
their time elsewhere or assist in fully autonomous exper-
imentation.

The main hurdle to overcome in producing a system for the
automatic in situ preparation of tips is the classification of the
state of the tip itself. This is usually carried out by an operator
through comparisons between the expected surface structure

and a few lines of a topograph while scanning, with the final
decision being entirely based on the operator’s experience. It is
also possible to use “inverse imaging” to characterize a tip,
whereby the tip is scanned over a high aspect ratio surface
feature, such as an adsorbed carbon monoxide (CO) molecule9

or a surface adatom,10 to image the shape of the probe apex.
This difficulty in classification is specific to SPM methods and
is not normally a consideration for other atomic-resolution
methods, such as transmission electron microscopy (TEM).
Recently, there has been great interest in the possibility of
replacing human operators with trained machine learning
(ML) models for tasks such as image evaluation, especially

Received: October 27, 2023
Revised: December 26, 2023
Accepted: January 2, 2024
Published: January 9, 2024

A
rtic

le

www.acsnano.org

© 2024 The Authors. Published by
American Chemical Society

2384
https://doi.org/10.1021/acsnano.3c10597

ACS Nano 2024, 18, 2384−2394

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
L

E
E

D
S 

on
 F

eb
ru

ar
y 

5,
 2

02
4 

at
 1

6:
06

:2
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dylan+Stewart+Barker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philip+James+Blowey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+Brown"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adam+Sweetman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsnano.3c10597&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10597?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10597?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10597?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10597?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10597?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/ancac3/18/3?ref=pdf
https://pubs.acs.org/toc/ancac3/18/3?ref=pdf
https://pubs.acs.org/toc/ancac3/18/3?ref=pdf
https://pubs.acs.org/toc/ancac3/18/3?ref=pdf
www.acsnano.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsnano.3c10597?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsnano.org?ref=pdf
https://www.acsnano.org?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


considering the successes in this area with handling complex
problems in recent years.11,12

It has previously been shown that convolutional neural
networks (CNNs) can be used to create models that are able
to accurately classify tip states on multiple surfaces in both
binary classifications (e.g., between “sharp” and “double” tip on
H:Si(100))13 and multilabel classifications with multiple
desirable tip states on H:Si(100), Au(111), and Cu(111).14

Advancements have also been made in ML as applied to SPM
in increasing the speed of classifications by using partial scans
on H:Si(100)15 or I(V) spectra on Au(111).16 In addition, full
autonomous experiments have been conducted using ML-
based classifiers, which are able to distinguish between various
features present on a surface and react to each accordingly.
This approach has been used for both lithography on
H:Si(100)17 and data collection on Ag(100).18 CNNs have
also been used to classify images for use in automated tip
functionalization,19 specifically allowing for CO molecules to
be picked up from a Cu(111) surface and for the resultant tip
quality to be assessed via scanning tunneling microscopy
(STM) imaging of other adsorbed CO molecules. Never-
theless, machine learning exhibits several drawbacks as an
image classification technique. For example, it is difficult to
implement and train and has issues related to data sets (such as
insufficiently sized data sets, inherent biases, and inaccurate
labeling); it is also difficult to comprehensively discern the
knowledge acquired by the model. Factors such as these limit
its general applicability to routine SPM operation, necessitating
a substantial number of labeled data sets and requiring a high
level of expertise for implementation. Some attempts have
been made to address the problem of undesirable probe tips
without the use of ML, with tip state classification attempts on
highly oriented pyrolytic graphite (HOPG) in ambient
conditions using an image analysis method known as the
universal similarity metric.20 However, this method was found
to perform poorly when analyzing STM images.21

In this paper, we present an alternative method for
automating tip state classification using template matching
(TM) methods, wherein input images are classified by
comparison to a specific template, whether that be a reference
image for cross-correlation (CC) or a perfect circle for
circularity measurement. This is demonstrated using multiple
prototypical surfaces imaged using STM. The TM-based
classifier functions under various rotations and requires only a
single image to complete a classification, contrary to the large
data sets needed for ML. Its performance is compared to an
ML-based classifier using CNNs (as was used in previous
examples of tip classification) and to classifications performed
by human operators. We highlight the limitations and
advantages of both techniques and discuss them in the context
of current state-of-the-art automated STM.

EFFECT OF TIPS ON IMAGING
Topographical scans can appear with a large variety of image
contrasts, from badly resolved features resulting from a blunt
tip to completely different apparent surface structures resulting
from multi-tips. Conversely, suitable tips show only one
general appearance, that of the expected surface structure with
well-defined features, for example on Si(111) - 7 × 7, this
would appear as a repeating unit cell containing twelve surface
atoms.1 We therefore define a binary classification system
dividing tip states into “Good” and “Bad” classes. In this way,
we can both reduce ambiguity in labeling and increase the
accuracy of our machine learning networks. For specific
purposes,22,23 it may be desirable to distinguish between
various desirable tip states, as has been done previously using
ML.14,24 However, in this paper we focus only on a classifier
able to identify a high-quality tip for imaging; therefore,
multiple-state classification will not be discussed further. It is
important to note that the classification carried out in this
study is of the probe tip based on topographical images of the
surface rather than the classification of the state of the sample

Figure 1. Examples of systems which are (a−c) suitable and (d) not suitable for classification via cross-correlation. (e−g) Example reference
images to be used in the CC classification on the surfaces shown in (a−c), respectively. (a) Si(111) - 7 × 7 surface imaged at 2 V and 200 pA.
(b) B:Si(111) surface imaged at 2 V and 250 pA. (c) Cu(111) with a low coverage of C60 molecules imaged at 5 K, 100 mV, and 100 pA. (d)
Bare Cu(111) surface imaged at 5 K, 1 mV, and 1 nA. This surface is not suitable for CC-based classification, as no common repeating
features are visible on the surface; only the standing wave pattern of free electrons on the surface is visible. (e) Corner-hole feature with six
surrounding silicon surface atoms on the Si(111) - 7 × 7 surface. (f) Dangling-bond feature surrounded by six silicon surface atoms on the
B:Si(111) surface. (g) Single C60 molecule on the Cu(111) surface.
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itself, which has been studied previously, for example, by using
TEM.25,26

IMAGE LABELING
An essential requirement for the accurate training of ML
architectures is a large, well-labeled data set; therefore, a key
consideration is to reduce the ambiguity in the training set,
which can be achieved by compiling a clear and concise
classification scheme that each human labeler is to follow. In
general, when labeling a data set with binary labels, such as
labeling a set of images of animals “dog” or “not a dog”, it is
assumed that the labels being used are completely accurate
(i.e., the distinction should be easy to make). However, when
labeling a set of images based on an individual’s opinion of the
features present, even with a detailed classification scheme, it is
inevitable that some ambiguous images remain due to a lack of
agreement between labelers. In instances such as these, the
images were removed from the classification data set. Images
which show a clear tip change mid-image were also removed;
an additional script was used to determine whether a tip
change had taken place during a scan. Since human
classification is itself imprecise, it is important to note that
no machine learning classifier would be able to achieve 100%
accuracy without significant overfitting.

“Good” and “Bad” tips were defined on a case-by-case basis,
depending on the system being studied and the expected
appearance of the surface when scanning using a “Good” tip.
For the Si(111) - 7 × 7 surface, the main qualifiers of a “Good”
tip were the following: the surface adatoms appeared as well-
defined with a good contrast between the adatoms and the
corner holes, and the appearance of the overall surface was that
of the 7 × 7 structure with a diamond-shaped unit cell
containing 12 atoms and corner holes at the corners, as shown
in Figure 1a. In contrast to this, the B:Si(111) - (√3 ×
√3)R30° (referred to as B:Si(111) hereafter) surface and the
Cu(111) surfaces (Cu(111) with a low coverage of Cu
adatoms and CO molecules and Cu(111) with a low coverage
of C60 molecules) were categorized primarily by the
protrusions in the topograph (dangling bonds (DBs) in the
case of the B:Si(111) surface and Cu adatoms on Cu(111)), as
these features vary a great deal with small changes in the apex
of the probe tip. These features appear misshapen when
imaged with a “Bad” tip, as opposed to their usual round
appearance when imaged with a “Good” tip, and are, hence,
highly sensitive tip classification points that allow for clear
“inverse imaging” of the probe tip. Finally, on the Cu(111)
surface with a low coverage of C60 molecules, the molecules
themselves are used to classify the state of the probe tip, with a
“Good” tip showing the molecules with three lobes (as shown
in Figure 1e). These molecules protrude relatively far from the
surface (an apparent height of ∼600 pm in STM at 0.1 V and
100 pA with an actual height of ∼1 nm); therefore, the tip state
needs to be considered more carefully, as tip defects further up
the shaft are more evident during a scan, which can result in
the appearance of double/multi-tip features more commonly.
Because of this, we only classify the primary apex of the tip
rather than the tip as a whole (see the Supporting Information
(SI) for further discussion).

The images of the Si(111) - 7 × 7 surface used in this paper
were manually labeled by four scanning probe microscopists
familiar with atomic-resolution imaging in ultrahigh vacuum
(UHV). Initially, the total number of images obtained was
1308, with 873 remaining after the removal of ambiguous

scans. Through comparisons between the labelers on this
surface, it was found that the overall accuracy of the labeling
was not reduced when the data set was labeled by only a single
operator. Therefore, the labeling of the other surfaces
(specifically the B:Si(111) and one of the Cu(111) surface)
was carried out by only a single microscopist (this is discussed
further in the SI). Initially, the B:Si(111) data set contained
1701 images, with 1296 remaining after the removal of
ambiguous scans or those containing tip changes.

The labeled Cu(111) data set with a low coverage of carbon
monoxide molecules and copper adatoms contained a total of
2036 images, with 1996 “Bad” images and 40 “Good” images.
In this case, no images were removed, as there was little
ambiguity and no tip changes. We note that from the labeling,
the data set was highly unbalanced and so would not be
amenable to training an ML-based classifier (see the SI for
further details). The Cu(111) data set with a low coverage of
C60 molecules had a similar imbalance in classes and so was not
labeled.

In the case of the images labeled by multiple labelers (as
carried out on the Si(111) - 7 × 7 surface), ambiguous images
were defined as those which the majority of labelers (three out
of the four) did not agree, whereas for a single labeler
(B:Si(111)), an extra choice of label was included for images
that the labeler could not classify with certainty. The collective
agreement among all operators was assessed to determine the
overall consistency in the labeling. No individual labeler
exhibited a deviation from the majority greater than 10% when
considering the entire batch of images; this highlights a high
level of agreement between the operators.

Additionally, for the Si(111) - 7 × 7 data set, which was
labeled by four operators, a random 10% of the images were
represented to the labelers to measure each individual’s
consistency within their own labeling. Final accuracies and
precisions for the operator labels (shown later in Table 1) were

calculated based on the most consistent labeler, or in the case
of a single labeler, the accuracy and precision were based only
on the repeated images. These accuracies were calculated to be
used as a comparison between the human labeling, the ML
classifier, and the TM classifier and are shown later in the
Results and Discussion section.

MACHINE LEARNING CLASSIFIER
A ML-based classifier was trained to be used as a comparison
to the TM approach. A CNN-based classifier was chosen, as
they are commonly used in image classification tasks due to
their ability to extract high-level patterns from the input image.
Multiple CNNs were trained in order to find the optimal
hyperparameters for our specific data set. This involved
training CNNs with varying numbers of convolutional and
dense training layers, as well as varying the neurons per layer
and the convolutional kernal sizes. The optimal architectures
found were the same for both the B:Si(111) and Si(111) - 7 ×

Table 1. Accuracy and TPP of Multiple Tip State
Classification Methods: TM Classifier, ML-Based CNN, and
Manual Classifications Carried out by an Operator

TM CNN operator

Si-7 × 7 B:Si Si-7 × 7 B:Si Si-7 × 7 B:Si

accuracy 90% 89% 96% 90% 92% 95%
TPP 97% 95% 92% 97% 93% 88%
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7 classifiers. The structure used a total of five 3 × 3
convolutional layers (with 20, 40, 60, 80, and 100 feature
maps, respectively) with rectified linear unit (ReLU) activation
functions, each separated by 2 × 2 max pooling layers. The
convolutional layers were followed by three dense training
layers (32, 64, and 128 neurons per layer, in that order) using
ReLU activation functions and a final binary output layer using
a sigmoid activation function. The training layers were each
separated by dropout layers (with probabilities of 0.5, 0.3, and
0.3, respectively) to reduce overfitting. This architecture is
described in Figure S8 in the SI. The input to each network
consisted of 700 × 700 pixel (19.4 × 19.4 nm2) constant-
current STM topography images.

To improve the performance of the training, images were
augmented further using horizontal and vertical flips as well as
90° rotations, increasing the size of the data set by a multiple
of 8. This helps to increase the amount of variance in the
training data set, which reduces the level of overfitting during
the training process. Overfitting is a process in machine
learning where a model learns specific patterns present in the
training data, which may not be present in general, and
proceeds to use these patterns to make its classifications. This
causes the training accuracy to increase at the expense of the
accuracy obtained on unseen data. Another method used to
reduce overfitting was the inclusion of dropout layers after
each training layer. These dropout layers temporarily nullify
random neurons in the previous layer, reducing the reliance of
the networks on specific neurons in training.

TEMPLATE MATCHING CLASSIFIER
The TM classifier was developed in an attempt to work around
the largest drawback of using an ML-based classifier: the need
for a large labeled data set. The aim of the TM classifier is to
have a model that is able to make independent classifications of
the state of a scanning probe tip using set algorithms that can
be applied to images without the need for any training.

The TM classifier we developed uses standard image analysis
techniques, specifically CC and a measure of circularity. We
find that these methods are sufficient to classify the state of a
probe tip using only a single image when applied to the
systems being shown here; we discuss an additional attempted
metric in the SI.
Cross-Correlation. Cross-correlation is a fundamental

technique used in image processing and computer vision to
analyze the similarity between different parts of an image. It
plays a crucial role in tasks such as object recognition, image
registration, and feature extraction. By measuring the similarity
between two images or by comparing a template with an
image, we can identify patterns, locate objects, and align
images. At its core, CC involves scanning a reference (or
kernel) over an image and computing a similarity measure at
each position (known here as the cross-correlation ratio
(CCR)).

The calculation of the CCR for our use first requires a single
small reference image taken from a topograph scan where the
scanning probe tip is in an ideal state. The principle of this
method is to scan this small section (the reference image) of
an ideal image over an input image and measure how closely
the reference image resembles the area of the input underneath
it at each point. Because of this, care must be taken in choosing

Figure 2. Cross-correlation method as applied to Si(111) - 7 × 7. (a) The reference image used; in this case, the chosen image is a tight
square image surrounding a corner-hole feature. (b) An input image over which the reference image will be scanned. Centered over each
pixel, the reference image outputs a number between 0 and 1 describing how similar the area is to that of the reference image. The result of
this is shown in the cross-correlation feature map in (c). The stars overlaid on (b) show the top 20 highest correlated positions, which
correspond to the peaks in (c). (d) Top four highest correlated positions with the colored stars corresponding to the same colored stars in
(b). (e) CCR values obtained for the areas shown in (d).
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the reference image, as a poor choice could lead to inaccurate
classifications. The chosen reference image should contain
enough information so as to be able to capture a commonly
appearing structure, such as a molecule adsorbed on the
surface or a unit cell, while being as small as possible. A smaller
reference image both reduces the chance of defects in the input
image being contained within a highly correlated position and
increases the likelihood of multiple instances of the feature
being found in the input image. For example, the reference
image chosen for the B:Si(111) surface is an image of a single
Si DB surrounded by six surface atoms. This structure appears
as a bright feature, around which six spheres are arranged in a
hexagon. This was chosen for the B:Si(111) surface, as the
defect is a common feature and was found to provide higher
selectivity for identifying tip quality than the pristine surface. In
cases where the tip is not ideal, the surface atoms can appear
similar to those when scanning with a “Good” tip, but the DBs
often appear misshapen or doubled. In contrast, on the Si(111)
- 7 × 7 surface we found the reference image of six atoms
surrounding a corner hole was suitable (shown in Figure 2a).
Using the chosen reference image, a CC feature map can be
calculated using eq 1:27

i j
f x y f t x i y j t

f x y f t x i y j t
( , )

( , ) ( , )

( , ) ( , )

x y i j

x y i j

, ,

, ,
2 2

=
[ ][ ]

[ ] [ ]
(1)

where γ(i, j) is the CCR at position (i, j), f(x, y) is the input
image, t(x − i, y − j) is the reference image at position (i, j), t ̅
is the mean of the reference image, and fi̅,j is the mean of the
area of f(x, y) underneath the reference image at position (i, j).
This was used to generate the feature map, an example of
which can be seen in Figure 2c. The reference image is scanned
over the input image at every position with the reference
centered on each pixel in the input image. The feature map
produced will be of the same size as the input image and
comprises pixels with values between 0 and 1, with 0 being no
correlation at that position and 1 corresponding to an exact
match. Bright peaks can be seen in the feature map,
corresponding to positions with high input image correlation
to the reference image, i.e., areas which appear similar to the
center of a corner hole in the example shown (see Figure 2a).

By choosing the top N values in the CC feature map and
taking an average of these, an overall value for the CCR can be
obtained from the input image, which shows overall how
closely it resembles the features present in the reference image.
The value of N here can be chosen depending on how
commonly the reference image feature appears in the system in
question. Although higher N values avoid the chance of a
spurious high correlation, for the data sets investigated here, N
= 1 produced similar results to N = 5 and gives the advantage
that only one instance of the feature needs to be present in the
scan, which could be useful when evaluating surfaces where a
high defect density could be present (e.g., in the case of
Si(111) - 7 × 7).

Using the technique described above, one obtains a single
numeric metric that describes how closely the image matches
one taken with an “ideal” tip and can therefore be used as a
measure of the quality of the probe tip. For a given sample
system, the CCR threshold for a “Good” tip was defined
empirically by running a small test set of images (around 20
images would be sufficient) through CC evaluation. Practically,
it was found that using a precision of 2 significant figures in the

CC value was adequate for high-quality discrimination
between tip states using this technique. This process only
needs to be performed once for a given sample system and can
be easily modified later if it is practically found that the
threshold is too strict or too lenient.
Circularity Measurement. An additional method was

developed in order to allow for classifications of the Cu(111)
surface using deposited copper adatoms as a comparison point.
This method starts by using the same CC algorithm to obtain
the highest correlated position of the surface compared to a
chosen reference image containing a single adatom. Although
this locates adatoms successfully, we found that due to the lack
of distinct features within the adatom, we were unable to
define a metric using CC that reliably distinguished between
“Good” and “Bad” tips. We therefore introduced an additional
image classification stage using the measured circularity of
adatoms on the surface.

The appearance of the adatoms is highly dependent on the
shape of the probe apex, with any irregularities in the tip
causing the spherical shape of the adatom to appear deformed.
Hence, we find it effective to measure the circularity of the
adatoms for use as a metric in our classifier.

Once the adatom has been located on the surface using CC,
the image is normalized to be between 0 and 1 and then
thresholded to binarize the image, with all values above a
specific threshold having a pixel value of 1 and those below
having a value of 0. This is repeated for four image thresholds
(0.4, 0.5, 0.6, and 0.7), resulting in four output images for each
adatom. A range of image thresholds is chosen, as each
binarized image corresponds to the shape of the feature at
different radii from the center. Thus, by taking an average of a
range, it is possible to check how spherical the feature appears.
From here, the circularity is measured using eq 2 for each
image:

C
r

r
( )=

(2)

where σ(r) is the standard deviation of the radius and r ̅ is the
mean. This results in an output which measures how similar
the feature is to a perfect circle, with a perfect circle measuring
0. The Python library PyDIP was used to measure the radius of
the feature in each binarized image at various rotations. The
average of the four circularity measurements was taken and
used as the final metric used in the TM classification. Similar to
the CCR metric, an image is classified as “Good” based on a
threshold, which is discussed further in Results and Discussion
section.

RESULTS AND DISCUSSION
Before discussing the results in detail, we first outline the key
metrics for evaluating the classifiers: accuracy and true positive
precision (TPP). Accuracy is the simpler of the metrics
discussed here and is the percentage of the time that the model
is correct in its predictions. Precision, in contrast (specifically
TPP), is the proportion of time the model predicts a tip to be
“Good” and is correct in that prediction. TPP does not take
into account the number of “Good” tips that are incorrectly
predicted as “Bad” or in fact any tips classified as “Bad” at all.
For the purposes of creating a tip state classifier for an
automated tip preparation scheme, this metric is prioritized
over accuracy, as it is more essential for this model to be
certain in its positive predictions than it is advantageous for it
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to achieve a high accuracy. A higher accuracy here would
contribute to the model taking less time to achieve a “Good”
tip classification (as fewer “Good” tips would be considered to
be “Bad” and so disregarded), which, while advantageous, is
secondary to being certain of a “Good” tip when it identifies
one.
Silicon Surfaces at Room Temperature. A primary

objective of this study was to compare the application of ML
versus TM classifiers in the classification of a tip state through
the interpretation of topographic images. To achieve this, we
compared the performance of both classifiers for two
prototypical surfaces along with classifications made by
human operators.

The values for the accuracy and TPP of the CNN and TM
methods (shown in Table 1) were calculated by using a sample
set of images that were not included in the CNN training set.
The total number of images used for these evaluations was 174
for Si(111) - 7 × 7 and 259 for B:Si(111), both with a roughly
70:30 ratio of “Bad” to “Good” images. For the final TM
results, the CCR thresholds used were >0.92 for both surfaces.
The specific choice of threshold for the TM metric being used
can be selected based on user preference; in our case, we chose
to prioritize a high TPP at the slight expense of accuracy, as
discussed above. The results for the operator column in Table
1 were calculated as described previously. The total number of
images used for this was 130 for Si(111) - 7 × 7 and 170 for
B:Si(111) with the same 70:30 ratio of “Bad” to “Good”
images.

For the Si(111) - 7 × 7 surface, the final TPP values
obtained for the TM- and CNN-based classifiers were 97% and
92% respectively, which shows a slightly higher TPP for the
TM classifier. When considering the B:Si(111) results, the final
TPPs were 95% and 97% for the TM- and CNN-based
classifiers, respectively, showing very similar values. The values
obtained for the accuracy, in contrast, show a slightly different
trend: for the Si(111) - 7 × 7 surface, final accuracies obtained
for the TM- and CNN-based classifiers were 90% and 96%
respectively, while for the B:Si(111) surface, the TM- and
CNN-based classifiers obtained accuracies of 89% and 90%,
respectively. This slightly lower overall accuracy incurred by
the TM classifier is almost entirely due to the misclassification
of “Good” tips as “Bad” (as is shown by the high TPP) and
thus, as mentioned previously, only contributes to slowing the
overall process of exiting with a “Good” tip.

Given the similarity in performance between both models,
we note the main apparent advantage of using TM image
analysis techniques for classification versus ML-based methods
is the significantly reduced overhead in their creation. As
noted, the sufficiently large data sets that are required for ML
are not always available, as was the case for this study, which
necessitated the development of an automated data set
generation script. In addition to the need for large data sets,
manual labeling has to be carried out on these data sets, which
is a very time-consuming process and requires careful
forethought and trained microscopists to obtain adequate
labels. When compared to large labeled data sets used in other
fields, it is not possible to outsource the process of labeling a
data set, primarily due to the instrumental expertise and
physical understanding required to make the distinction
between “Good” and “Bad” tips. Conversely, the TM methods
require a much smaller data set, comprising a single “Good”
sample image, and no time is needed for training. Therefore,
when attempting to automate tip state classification on a new

system, much less time and effort is needed with very similar
overall results being obtained.

Additionally, the results from the presented ML networks
show accuracy and TPP values comparable to those of
previous attempts published in the literature, as shown in
Table 2. The average accuracy and TPP values obtained in

previous works were 94% and 93%, respectively, compared to
the averages of 93% and 95% obtained in our ML attempts. We
note here that direct comparisons between ML networks
trained on entirely different data sets are difficult to make due
to the variability in the data sets themselves (differences
include size, variability of features, and data preprocessing).
Therefore, caution should be taken when making quantitative
comparisons between the results of different ML-based
classifiers. Nevertheless, the results indicate that the ML
method presented here is able to classify tip states with high
accuracy and TPP, and it performs similarly to other ML SPM
image classifiers.13,14,18

For the Si(111) - 7 × 7 surface, the operator-based
classification resulted in an accuracy of 92% and a TPP of 93%.
These results show very similar values when compared to both
the TM- and CNN-based classifiers with a standard deviation
of 4% in accuracy and 2% in TPP. Similar results were found
for the B:Si(111) surface. Additionally, the results from Table
1 support the results from previous works,13,14 with the
accuracy and TPP values calculated using a traditional CNN
being comparable to the results of manual labeling by an
operator.
Adsorbates on Cu(111) at Low Temperature. In

addition to the two silicon-based surfaces described above,
two data sets were obtained using a Cu(111) surface at 5 K:
one with a low coverage of copper adatoms and CO molecules
and another with the addition of C60 molecules. When imaging
high aspect ratio features such as Cu adatoms and C60
molecules on Cu(111), imaging is much more sensitive to
the shape of the tip, and it is more likely for one to encounter
secondary apexes further up the tip shank. As a result, it is
more difficult to obtain a tip that is sufficiently sharp to image
these high aspect ratio features without observing tip-related
artifacts such as “doubled” features. Consequently, this results
in a higher proportion of tips being classified as “Bad” on this
surface. Due to random tip preparation on these surfaces being
less likely to give “Good” tips on these features, the custom
LabVIEW script that was used to obtain data sets on the
silicon-based surfaces was not as successful at obtaining a
balanced data set here. Compared to the roughly 70:30 ratio of
“Bad” to “Good” images obtained on the silicon surfaces, the
copper surface data sets contained a ratio of 49:1. This hugely
unbalanced data set resulted in the training of the CNN-based
classifiers failing, even when augmentation strategies were used
on the data sets. The specific augmentation strategies used

Table 2. Accuracy and TPP of Multiple ML-Based Binary
Classification Attempts in the Literature on Various
Surfacesa

RW13 GM14 Krull18

H:Si(100) H:Si(100) Au(111) MgPc/Ag(100)

accuracy 97% 93% 91% 94%
TPP not given 96% 97% 87%

aThe Rashidi−Wolkow (RW),13 Gordon−Moriarty (GM),14 and
Krull18 models all use convolutional neural networks.
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here were horizontal and vertical inversions as well as 90°
rotations to artificially increase the size of the data sets. In
addition to these augmentations, class weighting was
implemented, which should allow the model to adapt to the
imbalance; however, the training was still unsuccessful.

While attempts at classifying the Cu(111) surface using ML
were unsuccessful, it was possible to make classifications using
TM methods. Here, the adatoms were used to assess the
quality of the tip, and an attempt was made to use a single
adatom as a reference image to calculate the CCR. However,
this method was found to lack sensitivity, and so a different
approach was used: the circularity measurement. The reason
for the lack of sensitivity is possibly due to the simplicity of the
Cu adatom, with small differences in the shape of the circle
(such as the oval-shaped adatoms shown in Figure 3c, which
were due to slightly misshapen tips) resulting in little change to
the CCR.

Using the circularity method with a threshold of <0.035, a
final accuracy of 99% and a TPP of 81% were achieved. We
note that for highly unbalanced data sets, the accuracy metric is
a poor measure, as simply classifying all images as the majority
class would result in a high accuracy. Therefore, the TPP
provides a much more robust metric by which to assess the
performance of the model. For example, the results here were
obtained using the entire data set of 2036 images, of which
1996 were classified by a human operator as “Bad” and 40 were
classified as “Good”. Because of this, if all images were
classified simply as “Bad”, the final accuracy would be 98%.

For the Cu(111) surface with adsorbed C60 molecules, it was
possible to identify whether the primary apex of the probe tip
was “Good” or “Bad” by using CC with a single C60 molecule
as the reference image. We note that only the primary apex of
the tip can be classified, as the height of the molecule can easily
result in widely spaced multi-tip features due to tunneling
occurring with secondary apexes further up the shaft than is
usually considered in imaging. The “shadows” produced by
multi-tips are also difficult to identify, as they can often appear
similar to the feature shown by the main tip; this is discussed
further in the SI. Given the similar imbalance in this data set,
when compared to the other copper-based data set, we did not

attempt to train this data set with a ML-based classifier and
thus did not label all images. Because of this, a final accuracy
could not be calculated. However, a TPP was calculated by
labeling the images that the CCR method classified as “Good”
for a given threshold. It was found that a CCR threshold of
>0.99 produced the best results with a TPP of 87% on primary
apex identification.
Automated Tip Preparation Tool. Once a computation-

ally based tip state classification scheme has been produced, it
is possible to implement an automated STM tip preparation
tool. This tool, similar to the data set generation tool, was
implemented in LabVIEW. The tool, schematically shown in
Figure 4a, works by repeatedly obtaining topographies of the
surface and making classifications of each image. If the
topograph is classified as “Bad”, the system moves a predefined
distance away from the scan area and attempts to condition the
tip in situ. Manual in situ tip preparation involves
combinations of two processes: bias pulses applied to the tip,
which facilitate the ejection of matter from its surface, and
indentations of the tip into the surface in an attempt to refine
and sharpen the tip through the detachment or attachment of
matter on the tip apex. To emulate this manual procedure, the
shaping events themselves were chosen beforehand to increase
in magnitude over successive attempts to reduce the chance of
getting stuck in a blunt but robust tip state.

The distance the tip needs to move away from the imaging
site varies but is usually around 200 nm to ensure the imaging
area is not affected by the shaping events, as they can cause the
scattering of contaminants in the area. In addition, the script
counts the number of attempts taken so far in the preparation,
and when the counter exceeds a predetermined threshold, the
tip will move macroscopically away from the current scan area
by stepping away using the coarse motor. This is done because
if the area is damaged or otherwise unsuitable, the automated
tip preparation tool will be unable to identify the tip as ever
being “Good”.

This tool was implemented using the TM classifier, and
proof-of-principle experiments were performed on the Si(111)
- 7 × 7 surface. In a trial of 20 runs, the automated tip
preparation tool was able to prepare a tip from “Bad” to
“Good” after an average of 12 shaping events (full details on a
sample set of runs are shown in the SI), which corresponds to
approximately 10 min at the scan size and speeds chosen here
(scanning a 20 × 20 nm2 area with a pixel density of 256 × 256
and a scan speed of 76.8 ms/line). This tool allows for the very
time-consuming and tedious process of tip preparation to be
completely automated, leaving the user to use their time
elsewhere.

An example of a tip preparation run using this tool is shown
in Figure 4b, and further example videos are included as online
supporting data sets (see Videos S1−S3).
Applicability and Limitations. The ability of the

proposed TM method to make accurate classifications on
multiple surfaces using only a single image of the surface being
studied makes it a valuable tool; however, there are some
limitations which should be noted.

The main metric used is the CCR, which relies on a
repeating structure being present on the surface being studied.
While this is the case for a very large number of surfaces
studied using atomic-resolution STM, as in many of the
systems presented here, there are situations where nothing on
the surface could be used as a reference image. For example,
with the imaging parameters used in Figure 1d, the atomic

Figure 3. (a) STM image of Cu(111) with a low coverage of Cu
adatoms and CO molecules taken at 5 K with an imaging bias of
100 mV and a 100 pA set point. (b) Two examples of Cu adatoms
imaged with a “Good” tip, showing a round appearance. (c) Two
examples of Cu adatoms imaged with a slightly misshapen tip,
which would be classified as “Bad”. (d) Two examples of Cu
adatom images attributed to extremely misshapen tips or tips with
multiple apexes.
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structure of the Cu(111) surface is not resolved, with only the
electron standing wave patterns being visible. These standing
wave patterns can vary by a large amount, depending on
localized scattering potentials from features such as atomic step
edges and adsorbates. We note in passing that it is also difficult
for a human operator to assess the quality of the tip from an
image of this type.

Conversely, where the appearance of the atomic resolution
of the surface changes with bias (e.g., as is the case for positive
and negative bias images of Si(111)), the TM model can be
“retrained” to assess images at a different bias using only one
example image; a ML-based model would require an entirely
new training data set and reclassification to adapt. In addition
to the need for a repeating structure, the chosen structure
needs to contain sufficient detail such that a measurement of
the CCR will differ between the tip states. For example, the
CCR measurement was not suitable for use on the Cu(111)
surface with a low coverage of Cu adatoms and CO molecules
(when using a tight crop of either adsorbates as a reference
image) due to the fact that the oval-shaped appearance of the
adatoms/CO molecules (Figure 3c) caused by slightly
misshapen tips still gave high CCR values when compared to
a “Good” tip reference image. This resulted in the addition of
the circularity measurement metric, which, when combined
with feature finding through CC, was able to accurately classify

the state of the probe tip. It seems likely, therefore, that a very
broad range of atomic- and molecular-scale structures are
amenable to classification via a combination of these TM
methods.

We also consider the applicability of the TM methods to
other surfaces that have previously been classified by ML
methods in the literature, in each case commenting on whether
the surfaces would suit CC-based methods and, where
possible, applying our TM classifier to publicly available data
sets.

In the work carried out by Aldritt et al.,19 ML was used to
classify images of CO molecules to assess the quality of a CO-
functionalized tip, which was prepared using an automated
tool. Using a CNN, the authors were able to achieve an overall
binary accuracy of 95% and a TPP of 90%. When imaging a
CO molecule with a “Good” CO-functionalized tip, the
molecule appears as a sombrero-like feature with a protrusion
centered inside a ring-shaped depression. With this knowledge
and by using the publicly available data set used for this work, a
“Good” image of this sombrero-like feature was extracted and
was chosen as a reference image. This reference image was
then used to create a CC-based TM classifier, which was able
to achieve an accuracy of 62% and a TPP of 99%. These results
show that, while the CC-based method would disregard a
larger portion of the “Good” tips compared to the ML-based

Figure 4. (a) Schematic of the automated tip preparation tool. (i) The process starts by scanning an area to obtain an image of the surface.
The image is processed to make it appear flat and to remove the bottom 20 lines from the scan to avoid visible creep before it is then
classified. (ii) A cross-correlation-based analysis script compares the input image to a reference and outputs an estimated binary
classification of “Good” or “Bad”. (iii) If the tip is classified as “Good”, the script then exits. (iv) If the tip is classified as “Bad”, the script will
move away and attempt to reprepare it. (v) If the tip has already been through a set number of shaping events at this point, the script will
instead reposition the scan area away macroscopically using the coarse motor, under the assumption that the area being scanned is not
suitable to classify the tip. (b) Representative sequence of constant current images showing the Si(111) - 7 × 7 surface at 2 V and 100 pA.
The images show the operation of the automated tip preparation tool, which was able to prepare the tip from an initial “Bad” state (far left)
to a “Good” tip (far right) in five shaping attempts.
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method, it would be more precise in its final classification of a
“Good” tip, which follows the trend we observed in our own
data and supports the robustness of the method.

In the work of Krull et al.,18 ML was used to classify images
of magnesium phthalocyanine (MgPc) on Ag(100) as part of
an automated imaging tool. MgPc should be an ideal candidate
for classification via CC, as when it is imaged with a “Good”
tip, the MgPc molecule has a distinct cross-shaped appearance
that would, in theory, allow for the CCR metric to distinguish
between tip states. It should be noted that at higher coverages,
the appearance of the molecule may change, for example, with
the formation of molecular islands. It would therefore be
necessary to select a reference image that best reflects the
appearance of the molecule on the surface for a given coverage.
An attempt was made to classify the open-source data used by
Krull et al..18 However, the very low resolution of the images in
the available online data18 for training prevented accurate
classification due to a lack of detail in the images.

In the work carried out by Rashidi et al.,13 images of DBs on
the H:Si(100) surface were used to train an ML-based classifier
to determine the state of the probe tip between two states:
“sharp” and “double”. The state of the probe tip on the
H:Si(100) surface can be characterized in multiple ways,
depending on the desired tip mode. The H:Si(100) surface
appears as rows, and the state of the tip is classified based on a
DB defect in the structure, which appears as a diamond-shaped
protrusion. It is possible that the CCR metric would be able to
distinguish between a “Good” and “Bad” tip using a cropped
image of this defect as a reference image; however, since the
aim of their work was to distinguish specifically between
“sharp” and “double” tip states, other metrics could be used to
make this classification, such as thresholding of the image
combined with a way of counting features present in the scan.

There are also cases in the literature in which surfaces have
been imaged that would not be suitable to classification via TM
methods, such as the work carried out by Gordon et al.14 In
this work, the authors imaged the Au(111) surface without
atomic resolution and in the absence of adsorbates, which
showed only the characteristic herringbone structure. Similar
to the standing wave pattern visible on the Cu(111) surface,
the herringbone structure shows no specific regular features
that could be used as a CC reference image, and so, ML-based
methods seem necessary.

CONCLUSION
A comparison between common machine learning techniques
and more traditional image analysis techniques has been
presented in the case of scanning tunneling microscope tip
state classification using atomic- or molecular-resolution
topographical images. We found that using relatively simple
image analysis techniques such as cross-correlation produces
comparable accuracy and true positive precision values,
massively reduces the time needed to create a classification
scheme, and drastically reduces the amount of data needed to
create a functioning classifier when compared to machine
learning methods. Using this method, we were able to classify
data sets that were not possible to classify using machine
learning, and we also applied our methodologies to publicly
available experimental data sets, obtaining comparable
classification precision results. This suggests that the TM
classifier is a robust, easily implemented, and widely applicable
methodology for atomic-resolution studies.

In addition, an automated tip preparation tool was
implemented using the TM classifier, which is able to
successfully obtain and maintain a stable probe tip, highlighting
the proof-of-principle application of this technique in the
automation of scanning tunneling microscopy experiments.

We note that scripts such as this could be included in any
automated experiment script that involves periodically
scanning the surface, meaning it is applicable for both
obtaining a usable tip to start an experiment and maintaining
it throughout random tip change events. An automated script
such as this could be implemented alongside the autonomous
manipulation of individual atoms and molecules on a surface
for device fabrication or setting up precise experiments.28,29

We have shown that TM techniques are able to achieve
comparable accuracies and precisions in the case of tip state
classification when compared to frequently used machine
learning-based classifiers. As noted above, there remain
instances in which machine learning is a more suitable choice,
and thus, it remains essential to consider the problem at hand
when making a choice of what computational tool to use.

METHODS
Experimental Methods. All topographical images used for

training were acquired in constant-current mode with a scan frame
of size 20 × 20 nm2 and a resolution of 720 × 720 pixels. Si(111) - 7
× 7 scans were obtained using a tunnel current set point of 200 pA
and a bias voltage of 2 V. B:Si(111) scans were obtained using a
tunnel current set point of 250 pA and a bias voltage of 2 V. Cu(111)
scans were obtained using a tunnel current set point of 100 pA and a
bias voltage of 100 mV.

Room-temperature data were acquired using a commercial
Omicron NanoTechnology VT-STM/AFM instrument that was
operated using an RC5 Nanonis controller, with all experiments
being carried out under ultrahigh vacuum (UHV) conditions. Clean
Si(111) - 7 × 7 surfaces were prepared by flash annealing an n-type
Si(111) wafer (0.001−0.005 Ω cm) at ∼1200 °C, cooling them to
∼900 °C quickly, and then slowly cooling them to room temperature
over a period of a few minutes while maintaining a pressure of <2 ×
10−9 mbar. A clean B:Si(111) - (√3 × √3)R30° surface was
prepared via flash annealing heavily boron-doped Si(111) wafers
(0.001−0.005 Ω cm) to ∼1200 °C for 10 s before quickly cooling
them to ∼800 °C and annealing them at ∼800 °C for 1 h. This was
followed by cooling the surface slowly to room temperature over a
period of roughly 20 min, maintaining a pressure of <3 × 10−9 mbar
throughout. Low-temperature data were acquired using a commercial
Omicron NanoTechnology LT-STM instrument that was operated
using an RC5 Nanonis controller, with all experiments being carried
out under UHV conditions. Clean Cu(111) surfaces were prepared by
standard sputter−annealing cycles with a beam energy of 1.5 keV and
an annealing temperature of 500 °C. A low coverage of Cu and C60
was deposited on the Cu(111) surface by direct sublimation into the
scan head from a FOCUS EFM 3T evaporator, during which the
sample was held at ∼5 K. A low coverage of CO on Cu(111) was
achieved by leaking CO (to a pressure of around 10−8 mbar) into the
chamber for 30 s while the sample was kept below 10 K. All images on
the Cu(111) surface were recorded at ∼5 K. Electrochemically etched
tungsten STM tips were used with the addition of cleaning prior to
imaging via electron bombardment for the room-temperature data.
Small alterations to the tip were made in situ via standard STM
techniques.
Computational Methods. Scripts for automated image acquis-

ition and the tip preparation tool were created by using LabVIEW and
interfaced directly with the Nanonis controller. Scripts for training the
machine learning network and the TM classification were written in
Python. For the ML training, the TensorFlow package was used.
PyTorch was also explored, and a comparison between the two
packages was performed; however, it was found that there was no
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significant difference between the two packages for the data sets
analyzed in this paper.
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