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Abstract—A domain-specific language (DSL) can have graph-
ical, textual or hybrid syntaxes. Certain domain concepts are
better suited to be represented graphically, whereas a textual
representation is often more appropriate for modeling the behav-
ior, complex expressions, and fine details of a domain. As such,
the best of both worlds of graphical and textual modeling can be
delivered by a DSL that has a hybrid (part-graphical and part-
textual) syntax. The engineering of hybrid graphical-textual DSLs
and their supporting workbenches is a non-trivial endeavor, as a
substantial amount of hand-written code is required. Existing
workbenches for hybrid graphical-textual DSLs pose several
limitations, e.g., they do not enforce the consistency between the
graphical and textual parts of the model and do not provide
uniform error reporting. This work will propose a methodology
and provide tooling for systematic engineering that aims to
minimize the accidental complexity involved in designing and
developing hybrid graphical-textual DSLs and their supporting
workbenches.

Index Terms—Domain-Specific Languages, Graphical-Textual
Modeling, Language Engineering, Model Editors

I. INTRODUCTION

Graphical syntaxes are convenient for the simplification

of the high-level concepts of a system, and are efficient at

representing graph-like structures, however, it can often be

tedious and error-prone to capture and maintain graphically

fine details such as precise behavior and complex expressions.

Furthermore, graphical syntaxes can reduce the time spent

linking model elements together, whereas textual syntaxes can

reduce the number of clicks when creating and editing mod-

els [1]. As such, textual syntaxes can complement graphical

syntaxes to deliver the best of both worlds of graphical and

textual modeling.

Hybrid graphical-textual DSLs and their supporting work-

benches can surely be developed with projectional editors such

as JetBrains MPS, however, projectional editors do not provide

a pure textual editing experience and they are often perceived

as problematic, due to the unfamiliar editing experience and

challenges in the integration with existing infrastructure [2].

Accordingly, the intent of this work is to use non-projectional

editors, i.e., parser-based editors for textual sub-syntaxes.

This work is focused on languages that are predominantly

graphical, but which would benefit from embedded textual

sub-syntaxes to define complex expressions or behavior. This

is an often encountered pattern in interactions with industrial

collaborators, e.g., the Rolls-Royce CaMCOA DSL [3] and

state machines that provide a graphical syntax for states and

transitions and a textual syntax for guards and actions.

II. TERMINOLOGY

The term hybrid graphical-textual syntax is used to refer

to a part-graphical and part-textual syntax. In addition, the

term hybrid graphical-textual language is used to refer to

a language that has a hybrid graphical-textual syntax. When

using a hybrid graphical-textual DSL, some parts of the model

are graphical, i.e., they are expressed with a graphical syntax,

whereas others are textual, i.e., they are expressed with a

textual syntax. The term graphical model elements is used

to refer to the graphical parts of the model, whereas the term

textual model elements is used to refer to the textual parts

of the model. The term textual expression is used to refer to

any text that conforms to the syntax specified by a formal

grammar. The term model editor is used rather than the term

workbench, as a model editor is included in a workbench. A

workbench covers a broader scope, as it contains a wide range

of components, e.g., menus, toolbars, perspectives [4].

III. PROBLEM

A small number of prior research efforts have been carried

out to facilitate the engineering of hybrid graphical-textual

DSLs and their supporting model editors. The past research

works have rather focused on DSLs that have both a graphical

syntax and a textual syntax, that are designed and used

independently of each other. Several different notations are

provided for the same concepts of the abstract syntax, and

users can choose to use the syntax that is preferred or that

is most appropriate for editing specific model elements. The

DSLs used in the prior works are not hybrid graphical-textual

DSLs, as they do not have a part-graphical and part-textual

syntax, but rather they have a graphical syntax and a textual

syntax, both being independent of each other.

A limited amount of works target the same line of research

as the one presented in this paper, and they are summarized

in Section VI. They address hybrid graphical-textual DSLs, as

defined in this paper. However, the DSLs are not systematically

engineered and their supporting model editors pose several

open challenges.

When developing a hybrid graphical-textual DSL, a lan-

guage designer must specify which parts of the language’s syn-



tax are graphical and which parts are textual. For this purpose,

one would ideally use a declarative specification for aiding the

language engineer in the definition of the language’s syntax.

For defining the graphical parts of the language’s syntax, one

should declaratively associate graphical representations with

some parts of the abstract syntax. Similarly, for defining the

textual parts of the language’s syntax, one should declaratively

associate parts of the abstract syntax with one or more formal

grammars to which they must conform. In the past solutions,

the graphical parts of the language’s syntax can be defined

via a declarative specification, e.g., via a Sirius Viewpoint

Specification Model (VSM) [5]. However, no techniques have

been proposed for defining the textual parts of the language’s

syntax via a declarative specification.

Q1 How to specify which parts of the language’s syntax are

graphical and textual by using a declarative specification?

The development of state-of-the-art hybrid graphical-textual

model editors for DSLs is based on hand-written code that

integrates custom textual model editors into graphical model

editors. For each property from the metamodel (i.e., abstract

syntax) that is expressed through a textual syntax, hand-written

glue code is required for embedding a custom textual model

editor into the graphical model editor. This solution design

is prone to human errors, and can largely be automated by

leveraging model-driven engineering techniques that generate

the required glue code automatically.

Q2 How can the development of hybrid graphical-textual

model editors be streamlined?

Hybrid graphical-textual model editors from prior works

do not provide consistency checking or enforcement as the

model evolves, across the graphical and textual parts of the

model. A model editor should enforce consistency between the

graphical and textual parts of the model, e.g., when a graphical

model element is deleted from the diagram, then the textual

expressions that were referencing the graphical model element

must be updated accordingly, to reflect the lost reference.

Q3 How to maintain consistency across the graphical and

textual parts of the model?

Error reporting has not been thoroughly addressed by state-

of-the-art hybrid graphical-textual model editors. They provide

error reporting capabilities that are either not uniform or are

not efficient. Model inconsistencies should be uniformly and

transparently reported as errors, such that users can navigate to

problematic model elements from a reported error. An example

of model inconsistency is when a textual expression refers to a

graphical model element that no longer exists in the diagram.

Q4 How can the model editors report model inconsistencies

uniformly and efficiently?

IV. REQUIREMENTS FOR HYBRID GRAPHICAL-TEXTUAL

MODEL EDITORS

This section presents the required capabilities for hybrid

graphical-textual model editors that have been motivated by

prior works with industrial partners [1], [6].

R1 The textual editors must support syntax-aware editing

features, such as syntax highlighting, auto-completion,

refactoring, and error detection markers.

R2 The textual expressions must be able to reference model

elements that have been defined graphically in the dia-

gram. Furthermore, one should be able to navigate from

a textual expression to a referenced graphical model

element in the diagram.

R3 As the model evolves, the model editor must automati-

cally enforce the consistency of the references between

the textual and graphical parts of the model. For instance,

when a graphical model element is deleted from the

diagram, any textual expressions that were referencing

the deleted graphical model element must be updated

accordingly, to reflect the lost reference.

R4 The model editor must uniformly report inconsistencies

from the textual and graphical parts of the model as

errors. One should be able to navigate to the problematic

model element from a reported error.

R5 The model that is expressed through a hybrid graphical-

textual syntax must be exposed to model management

programs (e.g., model-to-model and model-to-text trans-

formations, model validation operations) as a single uni-

fied abstract syntax graph (ASG) that integrates elements

from both the textual and graphical parts of the modeled

system. The textual expressions must not be exposed to

model management programs as plain text, but rather as

model element(s).

V. MOTIVATING EXAMPLE

This section presents a minimal contrived example [6]

to demonstrate the motivation of this work while keeping

accidental complexity to a minimum. Note that the complete

metamodel of the example is presented in [6].

Listing 1 presents the metamodel of a DSL for modeling

project plans, that has been defined in Emfatic [7]. Note that

Emfatic is a convenient textual syntax for Ecore metamodels.

The metamodel specifies that a Project contains a list of tasks

and a list of people. A Task has a name and a list of efforts.

Each Effort is assigned to a person and has a number of

months. For the purpose of this example, it is preferred to

use a textual syntax for specifying the efforts.

Figure 1 displays a modeled project in a hybrid graphical-

textual model editor, in which the tasks and the people

are modeled graphically, whereas the efforts are expressed

with a YAML-like textual syntax, for which each effort is

specified on a separate line, as a key-value pair in the form

{person}:{months}. Therefore, the tasks and the people model

elements represent the graphical parts of the model, whereas

the efforts represent the textual parts of the model. The task

named Implementation is selected in the diagram, therefore

its properties (i.e., the name and the efforts) are displayed

in the properties view. Each line from the efforts textual

expression represents an effort model element, e.g., the first

line is an effort that refers to a person named Alice and has



Fig. 1. Hybrid Graphical-Textual Model Editor [6]

package workload;

class Project {

val Task[*] tasks;

val Person[*] people;

}

class Task {

attr String name;

val Effort[*] efforts;

}

class Person {

attr String name;

}

class Effort {

ref Person person;

attr int months;

}

Listing 1. Metamodel of the Project Workloads DSL

a value of 3 months. The efforts textual expression references

graphical model elements, i.e., person model elements that

are modeled graphically in the diagram. It is desirable for the

textual editor that contains the textual expression to support

developer assistance features, such as syntax highlighting,

auto-completion, and error detection. The envisioned model

editor should automatically enforce consistency between the

textual and graphical parts of the model. For instance, when

the person named Alice is renamed into David in the diagram,

then the first line from the textual expression would be

updated, by replacing Alice with David. The first line from the

textual expression references the person named Alice, however,

if the person named Alice was not graphically defined in the

diagram, an error would have been reported in the problems

view. Users only see and modify the textual representation of

the efforts, however, it is desirable that they interact behind

the scenes with a concrete instance of the efforts list from

the metamodel (i.e., val Effort[*] efforts). The efforts

textual expression is parsed whenever it is modified, and

resulting effort model elements are derived. Accordingly, it

is desirable to have the textual representation of the efforts

exposed to model management programs as a list of effort

model elements, rather than as plain text.

VI. RELATED WORK

There are four main works [8]–[11] that follow the same line

of work presented in this paper. These works address hybrid

graphical-textual DSLs and their supporting model editors that

meet several of the requirements presented in Section IV.

Other related works are based on blended modeling [12] and

on Capella [13], however, these two approaches do not target

hybrid graphical-textual DSLs, as justified in [6].

A technique for embedding textual modeling into graphical

modeling has been presented in [8]. The solution is based

on the integration of the Textual Editing Framework (TEF)

and Graphical Modeling Framework (GMF). In [8], parts of

the abstract syntax are associated with a graphical syntax,

and one can view the textual representation of a graphical

model element in a TEF textual editor. Note that TEF editors

provide developer assistance features, such as syntax high-

lighting, code completion, and error markers. This approach

has the advantage that one can have a high-level graphical

representation of a domain concept and can view the low-

level details of the same domain concept using a textual

representation. References between the textual expressions

and the graphical model elements are supported, however,

techniques for reporting model inconsistencies as errors are

not addressed. When the textual representation is modified

and saved, the changes are committed and merged with the

underlying graphical model element. Therefore, the modeled

system can transparently be exposed to model management

programs as a unified ASG.

Obeo [14] and Typefox [15] have presented two case studies

on the integration of Xtext and Sirius in [9]. In the second case

study, users can edit the model graphically and textually from

within the same model editor. An Xtext textual editor has been

embedded into the Sirius graphical model editor. The graphical

model elements have textual properties that contain textual

expressions. When a graphical model element is selected in the

diagram, the textual editor is displayed in the properties view.

The textual expressions can be written using syntax-aware

editing features and can reference graphical model elements

defined in the diagram. Additionally, one can navigate from

the textual editor to a referenced graphical model element

in the diagram. Errors are only reported when the textual

editor associated with a textual expression is being displayed.

Otherwise, if the textual editor is no longer displayed, then

the user would not be aware of whether an error exists in

the textual expression. It can be concluded that errors are not

reported uniformly. Moreover, model management programs

only see the textual expressions as plain text, rather than as

model elements.

Further research has been carried out in [10] with the aim

of embedding textual DSLs into graphical model editors. The

textual expressions can be written using developer assistance

features and can reference graphical model elements defined

in the diagram. Error reporting has been realized uniformly,

but inefficiently, by implementing a custom builder that is ex-

ecuted each time the project is built, parsing all textual expres-



sions to identify potential errors and report them. Furthermore,

the textual expressions are exposed to model management

programs as plain text, instead of model elements.

Capgemini Engineering [16] (previously known as Altran)

has extended the work from [9] by embedding Xtext textual

editors into Sirius graphical diagrams, in addition to the

properties view [11]. The textual expressions can be written

using developer assistance features and can reference graphical

model elements. Errors are not reported in the problems view,

however, they are reported in a pop-up window whenever

users type syntactically incorrect textual expressions. The

textual editors that are embedded in the diagrams display

the textual representation of the underlying model element.

Whenever one modifies a textual expression in a textual editor

that is embedded in the diagram, the textual expression is

parsed and the derived model element(s) is merged with the

underlying model element. Therefore, the textual expressions

can transparently be exposed as model elements to model

management programs.

None of the prior works propose consistency enforcement

techniques to ensure that as the model evolves, consistency is

maintained across the graphical and textual parts of the model.

Furthermore, the prior solutions are realized via a considerable

amount of lines of hand-written code. Moreover, a declarative

specification is used in the prior works for specifying which

parts of the language’s syntax are graphical, however, no

techniques have been proposed for declaratively defining the

textual parts of the syntax.

VII. PROPOSED SOLUTION

Considering that all prior works that follow the same line

of work are based on EMF, it has been decided to build on

the existing works [9]–[11], by proposing a solution based on

EMF as well. Therefore, EMF-based language workbenches

have been chosen as the basis for this research project, i.e.,

Sirius and Xtext.

The requirements R1 and R2 can conveniently be fulfilled

with the out-of-the-box facilities provided by Xtext. To address

R1, Xtext will be used to define textual syntaxes and to

generate their supporting textual editors that provide syntax-

aware editing features. Note that with an Xtext grammar, one

can derive an Ecore-based metamodel for representing the

abstract syntax of the language, or can import an existing

Ecore-based metamodel of a language. In this case, the latter

is used, as the purpose of the grammar is to define the textual

syntax of various parts from an existing metamodel. An Xtext

grammar will be defined, that will import the metamodel of

the Project Workloads DSL, and will define a YAML-like

textual syntax for the efforts property. For addressing R2,

the grammar must declare rules that define cross-references

to model element types from the metamodel that will be

expressed with a graphical syntax. As such, the language

engineer must be aware of the model element types that

will be expressed with a graphical syntax and then declare

grammar rules that define references to those specific types.

For instance, the grammar that specifies the textual syntax of

the efforts must declare a rule that defines a reference to model

elements of type Person.

To address R5, one option is to generate a textual projec-

tion whenever the underlying model elements are accessed.

The textual expressions are not stored but rather generated

at runtime based on the underlying model elements. The

advantage of this approach is that the underlying model

elements of the textual expression can be directly accessed

by model management programs. However, by using this

technique, temporary inconsistencies are not tolerated by the

model editor, as justified in [6]. For the purpose of tol-

erating temporary inconsistencies [6], it has been decided

to modify the metamodel, such that for each property that

will be expressed with a textual syntax, an additional string

attribute will be added to the metamodel that will record

the textual expressions. Consequently, each property that is

expressed with a textual syntax is associated with a string

attribute that contains an equivalent projection of its textual

representation, whilst the property and the string attribute are

bidirectionally synchronized. For instance, a string attribute

called effortsExpression will be added to the metamodel, which

will record the textual representation of the list of efforts. The

bidirectional synchronization will be realized via serialization

and deserialization, i.e., each time the list of efforts is modified,

it is serialized as text that will replace the current value of

effortsExpression, whereas each time the textual expression is

modified, it is parsed and the derived effort model elements

will overwrite the content of the efforts property. A property

that is expressed through a textual syntax (e.g., the efforts

property) will be called a derived property, for the reason that

it contains the model elements that are derived from parsing

the string attribute containing the textual expression.

In regard to addressing Q1, a Sirius VSM will be used

for declaratively specifying which parts of the abstract syntax

are associated with a graphical representation. Additionally,

the metamodel will be annotated by defining annotation

mappings between a derived property, its associated string

attribute that contains an equivalent textual representation,

and the grammar that specifies the textual syntax to which

the textual representation must conform. For instance, an

annotation will be added to the metamodel that will specify

that the effortsExpression property must be parsed using the

defined grammar for the YAML-like textual syntax, and that

it represents an equivalent textual projection of the efforts

list. The annotated metamodel will be passed as input to a

model-to-text transformation that will generate the glue code

for the bidirectional synchronization of the derived properties

and their associated textual expressions, and for embedding a

textual editor with assistance features in the Sirius properties

view for each derived property.

For addressing Q3 and R3, each time a graphical model

element that is referenced by a textual expression changes

its identifier, then the content of the derived property must

be serialized as a textual expression that will overwrite the

content of the corresponding string attribute. To realize this

behavior, an efficient technique would be to identify the



references from a textual expression during parsing, and attach

event listeners to each reference. For instance, when parsing

the textual expression from the motivating example, three

references would be identified, i.e., the person objects named

Alice, Bob, and Charlie, and an event listener will be attached

to each person. When a referenced model element changes

its identifier, the event listener will trigger the serialization of

the content of the derived properties that are referencing the

model element, and the resulting serialized text will overwrite

the content of the associated string attributes. For example,

when the person named Alice is renamed into David, an event

listener will trigger the serialization of the efforts into a textual

expression that will overwrite the content of effortsExpression.

In regard to addressing Q4 and R4, the diagnostics informa-

tion will be stored in memory, i.e., the errors that are produced

when parsing syntactically incorrect textual expressions and

when reference resolution fails. When a validation operation is

triggered in the model, then the diagnostics information that is

stored in memory will be used to populate error markers in the

problems view. This approach is efficient only when applied

in conjunction with the consistency enforcement techniques

that have been proposed for addressing Q3. By applying the

consistency enforcement techniques, the textual expressions

are parsed only when necessary. Therefore, this solution is

efficient, as opposed to the technique from [10], where a

custom builder parses all textual expressions each time the

project is built to report errors, although no errors may exist.

Finally, for addressing Q2, a framework will be developed

that provides facilities for the fulfillment of all requirements

presented in Section IV. Via model transformations that take

the declarative specification(s) as input, code that delegates

API calls to the framework will be generated automatically.

By using this technique, one would require little or no hand-

written code for the development of hybrid graphical-textual

model editors.

VIII. EXPECTED CONTRIBUTIONS

The expected contributions of this work are:

• a methodology for systematic engineering of hybrid

graphical-textual DSLs and their supporting model editors;

• automated facilities and tools that streamline the develop-

ment of hybrid graphical-textual model editors for DSLs;

• hybrid graphical-textual DSLs and their supporting model

editors implemented using the developed facilities;

• guidelines for applying the methodology with language

workbenches, other than Sirius and Xtext.

IX. PLAN FOR EVALUATION AND VALIDATION

The methodology for the systematic engineering of hybrid

graphical-textual DSLs and their supporting model editors will

be evaluated through case studies from industry and academia.

A full-scale case study is provided by NetApp [17], a global

software company that delivers hybrid cloud data services and

data management services. A hybrid graphical-textual DSL

and its supporting model editor will be developed for modeling

NetApp public cloud services, to lower the entry barrier to

cloud services adoption. The DSL uses a graphical syntax

for simplification of high-level infrastructure components, and

textual syntaxes for defining low-level details. Another case

study will involve developing a hybrid graphical-textual DSL

and its supporting model editor in the context of the SESAME

project [18]. The DSL specifies the testing space for testing

multi-robot systems (MRS) in simulation, via a graphical

syntax for defining the high-level elements of the testing

space, and via a textual syntax for defining simulation-specific

conditions. Additional case studies could involve OCLInEcore

[19] and the RecordFlux [20] protocol specification language.

Moreover, user studies will be carried out, in which the average

language engineer will assess the usability of the supporting

tooling that will be provided for the systematic engineering of

hybrid graphical-textual DSLs.

The following criteria will be evaluated:

• Completeness and Correctness. Test cases will be used for

assessing completeness and correctness (e.g., for bidirec-

tional synchronization between the derived properties and

their associated textual expression, for checking that consis-

tency is maintained as the model evolves, for checking that

errors are reported in the case of model inconsistencies) by

measuring the percentage of passed test cases.

• Amount of effort. The amount of effort (e.g., the number

of lines of hand-written code) for meeting the requirements

will be compared against state-of-the-art solutions.

• Parse Operations. The number and total duration times of

executed parse operations for applying the proposed consis-

tency enforcement and uniform error reporting techniques

will be compared against naive and inefficient approaches.

• Scalability. The execution time of various events (e.g.,

loading and storing the model) will be measured in the

case of an increasing number of textual expressions.

X. CURRENT STATUS

A paper [6] has been published based on the progress to

date. The work proposes Graphite [21], a tool that streamlines

the development of hybrid graphical-textual model editors

(Q2) based on Sirius and Xtext, whilst fulfilling the require-

ments from Section IV. The solution has been evaluated in

the industrial case study provided by NetApp. Furthermore,

no experimental evaluations related to performance aspects

have been carried out. Moreover, the above work has partially

addressed the definition of a declarative specification (Q1),

consistency enforcement techniques (Q3), and uniform and

efficient error reporting (Q4), however, no evaluation has yet

been conducted.
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