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Abstract

Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry

(SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2

+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in

mammals and has been implicated in numerous diseases, including cardiovascular disease

and cancer. A number of small molecules have been identified as inhibitors of SOCE with a

variety of potential therapeutic uses proposed and validated in vitro and in vivo. These

encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of

SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of

assay setups, making an accurate comparison of the activity of different SOCE inhibitors

challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293

cells to generate dose-response data for many published SOCE inhibitors. We were able to

directly compare potency. Most compounds were validated with only minor and expected

variations in potency, but some were not. This could be due to differences in assay setup

relating to the mechanism of action of the inhibitors and highlights the value of a singular

approach to compare these compounds, as well as the general need for biorthogonal valida-

tion of novel bioactive compounds. The compounds observed to be the most potent against

SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5),

GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candi-

dates for future development of SOCE inhibitors for therapeutic use.

Introduction

The calcium (Ca2+) ion is involved in key cellular processes including signalling, mitochon-

drial regulation, motility and apoptosis. It is typically found at ~100 nM intracellular free
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concentration and ~2 mM extracellularly, a ~20,000× difference [1]. The main source of Ca2+

influx into non-excitable cells is store-operated (or capacitative) Ca2+ entry (SOCE), in which

eukaryotic cells store Ca2+ in the endoplasmic reticulum (ER), using sarco-/endoplasmic retic-

ulum Ca2+ ATPase (SERCA) pumps to counteract the continual leakage back into the cyto-

plasm. If the SERCA pump is blocked, or during a signalling event, the ER Ca2+ stores will

deplete, and SOCE is activated. This model of Ca2+ influx was first proposed in 1986 [2], and

the resulting current, known as the Ca2+-release activated Ca2+ current (ICRAC), was identified

in 1997 [3]. ORAI1 is the pore-forming plasma membrane (PM) protein subunit of the CRAC

channel encoding SOCE. It was identified in 2006 [4–6] and has three mammalian homologs,

ORAI1, ORAI2, and ORAI3. They share no close homology with any known proteins [7]. The

ER membrane (EM) protein stromal interaction molecule 1 (STIM1) was identified in 2005 as

a transmembrane ER Ca2+-sensor [8]. STIM1 units cluster forming punctae with ORAI1 open-

ing the channel pore allowing Ca2+ influx into the cytosol allowing ER store refilling [9]. The

X-ray crystal structure of Drosophila melanogaster ORAI1, (73% sequence homology with

humans) was solved in 2012 to a 3.35 Å resolution [10] revealing four transmembrane

domains and a hexamer about the pore and supported by recent functional and cryo-EM

structural data [11–13].

Loss-of-function mutations in ORAI1 and STIM1 are associated with immunodeficiency

[14–16], autoimmunity [17], muscle hypotonia [18,19] and dental enamel defects [20]. Whilst

gain-of-function mutations have been linked to platelet disorders [21] and myopathy [22].

Much research has focused on ORAI1 and SOCE as a drug target in immunology and inflam-

matory disease [23–26]. However, a growing body of evidence links SOCE/ORAI1 to cardio-

vascular and cardiorespiratory pathologies [27–30]. Small molecule inhibition of SOCE and

genetic disruption of Orai1 using a dominant negative mutant (in cardiac myocytes) was car-

dioprotective following pressure overload heart failure induction [31]. Both ORAI1 and

ORAI2 are upregulated in pulmonary arterial smooth muscle cells (PASMCs) under hypoxic

conditions and so could prove therapeutic targets for hypoxia-induced pulmonary hyperten-

sion [32]. SOCE and basal [Ca2+] are increased in high fat-fed apolipoprotein E-knockout

mice, which have elevated blood lipids but no atherosclerotic plaques [33], and ORAI1 knock-

down or chemical inhibition reduced atherosclerotic plaque size in this model [34] suggesting

a potential therapeutic role to treat atherosclerosis and neointimal hyperplasia [35,36]. SOCE

in platelets is required for thrombus formation [37] making it a target for the development of

antithrombotic drugs [38,39]. Several small molecule SOCE inhibitors have been shown to

reduce thrombus formation in whole blood, and 2-APB reduced thrombus formation in a

murine stroke model [40]. These are thought to function by inhibition at ORAI1, although

this remains to be definitively proven. Other potential therapeutic targets for SOCE inhibitors

include skeletal muscle diseases [41], cancers [42–44], neurology and pain [45–48] and secre-

tory epithelial cell disorders [49–51]. Although none are currently licensed for clinical use, a

number have reached clinical trials for conditions including acute pancreatitis and COVID-

19-associated pneumonia [52–54]. The success of these compounds in reaching clinical trials

highlights the plausibility of SOCE inhibition as a safe therapeutic strategy in humans.

While the potencies of several SOCE inhibitors are published, they have been studied by

different research groups/companies using different experimental approaches and cell lines for

assessment. A direct comparison between the literature compounds using a single assay and a

non-disease specific cell line is lacking. The existing SOCE inhibitors have been reviewed

extensively and recently [36,55–59]. Here we report a direct comparison of the published

SOCE small molecule inhibitors (presented in S1 Fig) using a fluorescence based Ca2+ record-

ing system to measure thapsigargin (TG) induced SOCE in Human Embryonic Kidney 293

(HEK293) cells. These Ca2+ events were measured with Fura-2, a ratiometric dye that is a
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popular tool for the study of Ca2+ events due to its brightness, resistance to photobleaching,

high affinity for Ca2+, and its selectivity over other divalent cations [60,61]. Thapsigargin, a

widely used natural SERCA pump inhibitor with high potency and selectivity, was used to

deplete the ER Ca2+ stores in the absence of extracellular Ca2+, before extracellular Ca2+ was

added back, triggering SOCE [62,63]. HEK293 cells are frequently used for the initial assess-

ment of SOCE inhibitors. Recent studies in which knock-out of ORAI1, 2 or 3 either alone or

in combination have clearly demonstrated ORAI1 to be the main store-operated channel in

this cell line [64,65] making it an excellent model system for screening compounds with poten-

tial for therapeutic use.

Materials and methods

Cell culture

HEK293 cells (CRL-1573, ATCC, Teddington, UK) were maintained in Dulbecco’s Modified

Eagle’s Medium (DMEM, Gibco, Thermo Fisher Scientific, UK) supplemented with 10% fetal

bovine serum (FBS, Gibco, Thermo Fisher Scientific, UK) and 100 unit mL-1 penicillin-strep-

tomycin (Gibco, Thermo Fisher Scientific, UK) at 37˚C in a humidified 5% CO2 incubator.

Cells were grown to 95% confluence before passage and utilised at 95% confluence for experi-

ments. Cells were used up to passage number ~30 before being discarded.

Chemicals

All chemicals and solvents were used as supplied. SKF96365 (1), CAI (2), 2-APB (3), Pyr2 (4),

Pyr3 (5), Synta-66 (6), RO2959 (7) AnCoA4 (10), leflunomide (15), Gd3+, (18) and La3+ (19)

were purchased from Sigma-Aldrich (UK). CM4620 (14) was purchased from MedChemEx-

press (Insight Biotechnology Ltd, UK). Teriflunomide (16) was purchased from APExBIO

(UK). MRS1845 (11) was purchased from Santa Cruz Biotechnology (Insight Biotechnology

Ltd, UK). Compounds that were not commercially available were synthesised. CM3457 (13)

was synthesised by Dr Rajendra Gosain (unpublished). JPIII (17) was synthesised as previously

reported [31]. The synthetic route for GSK7975A (9) and GSK5503A (8) largely followed the

patent protocol and is summarised in S2 and S3 Figs, respectively [66]. Synthesis of the

7-azaindole series compound (12) (S4 Fig) loosely followed the patent protocol [67]. Detailed

chemistry methods for compound syntheses can be found in S1 Appendix and NMR data for

all compounds and intermediates synthesized can be found in S5–S17 Figs.

Fura-2 Ca2+ addback assay

Fluorescence measurements were recorded using a FlexStation III (Molecular Devices Limited,

UK), running software Softmax Pro version 4.7.1 or 7.0.3. HEK293 cells were seeded onto Cell-

coat Poly-D-Lysine 96-well plates (Greiner, UK) at a seeding density of 60,000 cells per well

and incubated overnight at 37˚C in a 5% CO2 incubator. The Ca2+ addback protocol used here

followed published protocols [31,68,69]. Briefly, cells were incubated in 1.5 mM Ca2+ SBS

(standard bath solution, NaCl 135 mM, KCl 5 mM, MgCl2 1.2 mM, Glucose 8 mM, HEPES

10mM, CaCl2 1.5 mM, pH 7.4) containing Fura-2AM (Molecular Probes, Thermo Fisher Sci-

entific, UK) (2 μM) and 0.01% pluronic acid (in DMSO) for 1 hour at 37˚C in the dark and

then washed with 1.5 mM Ca2+ SBS. Thapsigargin (Sigma, UK) (1 μM) and test compound

(concentrations below) or vehicle in 0 mM Ca2+ SBS (NaCl 135 mM, KCl 5 mM, MgCl2 1.2

mM, glucose 8 mM, HEPES 10 mM, EGTA 0.4 mM, pH 7.4) were added and the cells incu-

bated for a further 30 minutes at room temperature in the dark. Afterwards, 1.5 mM Ca2+ SBS,

also containing test compound at the same concentration as the pre-treatment, was added to
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enable SOCE upon Ca2+ addback (0.3 mM final Ca2+ addback concentration after the 1:5 dilu-

tion). The 0.3 mM Ca2+ addback concentration was selected based on the demonstration that

subtle changes in SOCE may be masked when higher Ca2+ addback concentrations are used

[4]. Fluorescence measurements were recorded every 5 seconds for 200 seconds using 340/380

nm excitation wavelength and 510 nm emission. A schematic of this process is shown in Fig 1.

AnCoA4 (10) and MRS1845 (11), were also tested with a longer exposure to compound, via

inclusion of compound during the 1 hour Fura-2 loading step, such that a total exposure time

of 90 mins was tested to determine whether a longer preincubation improved potency.

Calculations and statistics

The ratio between excitation at 340 nm and 380 nm was calculated at each timepoint (ΔF340/

380). The mean of the first three readings was used as the baseline and subtracted from each

value to calculate the baseline corrected ΔF340/380. The IC50 curves were calculated using the

peak baseline corrected ΔF340/380 at concentrations of 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM

and 10 μM [compound] after subtraction of the no TG control peak value. Values were then

normalized to the vehicle containing TG and a modified Hill equation was fitted to the data.

The exceptions to this (where literature indicated that the standard concentration range would

be inappropriate due to reduced compound potency) were: SKF96365 (1) and AnCoA4 (10)

(assessed at 2.5, 5, 10, 20, 40 and 80 μM); Carboxyamidotriazole (2) (assessed at 2 nM, 20 nM,

200 nM, 2 μM, 10 μM and 20 μM); 2-APB (3) (assessed at 5, 10, 25, 33, 66, and 100 μM);

MRS1845 (11) (assessed at 1 nM, 10 nM, 100 nM, 1 μM, 10 μM and 50 μM); CM4620 (14)

(assessed at 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM and 5 μM); leflunomide (15) (assessed at 10,

100, 200, 300, 400 and 500 μM); teriflunomide (16) (assessed at 10, 50, 100, 200, 300 and

400 μM); JPIII (17) (assessed at 20 nM, 70 nM, 300 nM, 1.25 μM, 5 μM and 20 μM). A DMSO

concentration of 0.1% v/v was consistent in all solutions. The mean ± SD was calculated from

three independent experiments (n = 3), with each condition tested in triplicate for each experi-

ment (N = 3/n = 3). To perform a comparison of SOCE inhibitory activity the % vehicle of

each inhibitor at 10 μM was analyzed using an ANOVA one-way test with Dunnett’s post-hoc

test using GraphPad Prism 9.0. A p value < 0.05 was considered significant.

Results

Evaluation of the SOCE inhibitors in HEK293 cells

The TG induced SOCE method was used to monitor ΔF340/380 fluorescence over time as a

proxy for intracellular Ca2+ concentration (Fig 2) and used to generate dose response curves

Fig 1. A time series schematic for the Ca2+ addback protocol.

https://doi.org/10.1371/journal.pone.0296065.g001
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for each compound (Fig 3) with a standard pre-incubation of 30 mins. All data used for subse-

quent IC50 calculations can be found in S1 Dataset.

SKF96365 (1) was originally identified as an inhibitor of receptor-mediated Ca2+ entry [70],

and of nonselective cation currents [71]. It is better known as a TRP channel inhibitor [72,73],

and it also inhibits T-type Ca2+ channels [74]. It reportedly inhibits SOCE with an IC50 of

4 μM in patch clamp studies of rat peritoneal mast cells using Fura-2 as a Ca2+ indicator [75].

It has also been reported to inhibit SOCE with an IC50 of 12 μM in Jurkat E6-1 lymphocytes,

using the Indo1 dye in a fluorescence assay, which was supported by patch clamp data [76].

Under our assay conditions SKF96365 (1) showed almost complete block of SOCE at 40 μM,

but only partial block at 10 μM (Fig 2A), which generated an IC50 of 16 μM (Fig 3A), roughly

consistent with the previously published values observed in Jurkat T cell assays.

Carboxyamidotriazole (CAI, 2) was originally identified as a Ca2+ influx inhibitor. It is also

a general inhibitor of non-voltage gated Ca2+ influx [77]. A dose-dependent reduction in Ca2+

influx by CAI has been reported using an assay setup similar to ours, with an IC50 of 0.5 μM

when a 5-minute pre-incubation was used [78]. In our hands, CAI (2, used as the free amine)

showed partial inhibition of SOCE in HEK293 cells at 10 μM with better inhibition at 20 μM,

the highest dose tested (Fig 2B). We therefore generated an IC50 of 18.1 μM (Fig 3B), which

was significantly higher than the published values.

2-APB (3) was originally identified as an inhibitor of inositol trisphosphate (IP3)-modulated

Ca2+ release [79], but it has a less straightforward effect on SOCE than other inhibitors–the

Fig 2. Example fluorescence versus time graphs for each of the inhibitors studied at the concentrations used to

generate the dose response curves (Fig 3). ΔF340/380 refers to the ratio of fluorescence emission following excitation at

340 nm and 380 nm. Data has been baseline corrected to zero. Ca2+ addback is initiated at t = 30 seconds. Data points

are presented as mean ± SEM (n = 3).

https://doi.org/10.1371/journal.pone.0296065.g002
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Fig 3. IC50 curves for SOCE inhibitory activity of the compounds profiled. Data presented as mean ± SD (n = 3).

IC50 value derived from a fitted Hill1 equation.

https://doi.org/10.1371/journal.pone.0296065.g003

PLOS ONE Comparison of small molecule inhibitors against store-operated Ca2+ entry

PLOS ONE | https://doi.org/10.1371/journal.pone.0296065 January 23, 2024 6 / 22

https://doi.org/10.1371/journal.pone.0296065.g003
https://doi.org/10.1371/journal.pone.0296065


current is rapidly enhanced at low concentrations (~1–5 μM), but is inhibited at�10 μM in

Jurkat T cells, RBL cells and DT40 B lymphocytes [80]. 2-APB was challenging to work with

due to its activating effect at the lowest concentrations we tested (Fig 2C). It was difficult to

record complete inactivity and therefore generating a reliable IC50 curve for 2-APB (3) was

challenging (Fig 3C). In our hands the IC50 of 2-APB was calculated as ~19 μM which was

three to five-fold less potent than published for CHO, HeLa and DT40 cells [81].

The 3,5-bis(trifluoromethyl)pyrazole (BTP) series were identified from a high-throughput

screen to find novel IL-2 inhibitors for clinical use as immunosuppressants [82]. They are

believed to block the nuclear import of nuclear factor of activated T-cells (NFAT) and thereby

prevent NFAT-dependent transcription of pro-inflammatory genes. BTP2, (also known as

Pyr2) was identified from this study [83]. Pyr2 was found to inhibit SOCE in Jurkat T cells

with an IC50 of 10–100 nM, depending on the incubation time [84,85]. A different publication

reported IC50 values of 0.59 μM for Pyr2 (4) and 0.54 μM for its sister compound, Pyr3 (5), for

endogenous SOCE in RBL-2H3 cells [86]. In our hands, Pyr2 (4) showed complete inhibition

of SOCE at 10 μM (Fig 2D), resulting in an IC50 of 990 nM (Fig 3D). Its close relative Pyr3 (5)

showed very similar behaviour with slightly more potent block of SOCE at 1 μM concentration

(Fig 2E), producing an IC50 of 304 nM (Fig 3E). Our Pyr2 (4) IC50 appears a little higher than

the previously reported values, whilst our Pyr3 (5) IC50 is in agreement with published IC50

values recorded in RBL-2H3 cells [86].

Synta Pharmaceuticals (now Madrigal Pharmaceuticals) hold a patent on a series of SOCE

inhibitors for immune and inflammatory disorders [87]. Lead compound Synta-66 (6) has

been screened against a commercial panel of membrane proteins and ion channels and no sig-

nificant activity was found [24]. It is a moderately potent SOCE inhibitor in blood cells, with

IC50 values of ~1 μM in Jurkat T [24], 1.4 μM in RBL [24] and 3 μM in RBL-1 cells [88], respec-

tively. However, it is highly potent in VSMCs and HUVECs, with an IC50 of ~26 nM for both

[68,69] and shown to have no effect on STIM1/STIM1 clustering, TRP channels or the nonse-

lective cationic current in VSMCs, which implies that it is not a general ion channel inhibitor

[68,69] Synta-66 (6) was moderately potent showing almost complete block at 1 μM (Fig 2F).

The IC50 of 209 nM (Fig 3F) falls well within the range of IC50 values obtained across a range

of cell types.

Hoffmann-La Roche holds patents on SOCE inhibitors for the treatment of immune or

inflammatory disorders, one of which claims their lead compound RO2959 (7) to have an IC50

of 15 nM for IL-2 inhibition [89]. It had an IC50 for SOCE inhibition of 402 nM in RBL-2H3

and 265 nM in CD4+ T cells [90]. RO2959 demonstrated an IC50 of 25 nM for T-Rex-CHO

(Chinese hamster ovary) cells overexpressing ORAI1/STIM1 vs. 530 nM in ORAI3/STIM1

overexpressing cells as measured by patch clamp [90], which represents a 20-fold selectivity

ratio for ORAI1. RO2959 (7) in our hands produced complete inhibition at 10 μM (Fig 2G)

producing an IC50 of 457 nM (Fig 3G) which are consistent with data obtained from RBL-2H3

cells and CD4+ T-cells [90].

GlaxoSmithKline (GSK) holds a patent on a series of pyrazole-based SOCE inhibitors for

the treatment of allergic and immune disorders [66]. GSK5503A (8) and GSK7975A (9) were

confirmed to block Ca2+ currents at 10 μM in patch clamp experiments in HEK293 cells [91].

GSK7975A was further characterized to demonstrate a very similar IC50 for ORAI1 and

ORAI3 inhibition (4.1 vs 3.8 μM), but GSK5503A was not further studied [91]. This study also

found them to have no effect on STIM1/STIM1 clustering or the STIM1/ORAI1 interaction,

implying an extracellular binding site. This finding is supported by the reduced ability of

GSK7975A to inhibit SOCE against the ORAI1 E106D pore mutant (reduced Ca2+ selectivity),

implying that a conformational change in the glutamate selectivity filter may affect compound

binding [91]. GSK7975A was screened against a small panel of ion channels and receptors
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overexpressed in HEK293 cells and was found to be selective against all of them (IC50 >

10 μM), except for an IC50 of 8 μM against CaV1.2 [91]. In our hands, GSK5503A (8) was

found to completely inhibit SOCE at 10 μM (Fig 2H) and generated an IC50 of 200 nM (Fig

3H). This appeared to be slightly more potent than the related compound GSK7975A (9)

which also completely blocked SOCE at 10 μM (Fig 2I) with an IC50 of 638 nM (Fig 3I) which

was in close agreement to previously reported findings of 0.8 μM in RBL-2H3 [91] and 0.5 μM

in Jurkat cells, respectively [92].

AnCoA4 (10) was identified as an ORAI1 inhibitor using a commercial small molecule

microarray, which screened against minimal functional domains–purified isolated domains of

ORAI1 and STIM1 that are known to be vital for SOCE activity [93]. Using this technique,

only small molecules that bind to ORAI1 or STIM1 should be identified as hits, avoiding indi-

rect SOCE inhibitors. AnCoA4 has an IC50 of 880 nM in HEK293T cells calculated from an

NFAT reporter gene luciferase assay [93]. AnCoA4 (10) failed to inhibit SOCE at 10 μM in our

assay and only demonstrated partial inhibition when tested up to 80 μM (Fig 2J) producing an

IC50 of 19.6 μM (Fig 3J). We tested AnCoA4 over the same concentration range with a slightly

longer exposure time, by including the compound during the Fura-2 loading step, which

yielded a marginal improvement to produce an IC50 of 12.5 μM (S18 Fig).

N-propargylnitrendipine (MRS1845) was identified in a screen of 1,4-dihydropyridines as

potential SOCE inhibitors, demonstrating an IC50 of 1.7 μM in HL-60 cells although it was

also shown to have a similar potency for inhibition of L-type calcium channels (IC50 = 2.1 μM)

[94]. In our hands, MRS1845 gave approximately a 50% block at 50 μM, the highest dose tested

(Fig 2K) with an IC50 of 1.43 μM (Fig 3K), although this should be interpreted with caution

given the lack of a sigmoidal curve upon fitting the Hill1 equation. We noted a solubility issue

at 50 μM in the aqueous solution and therefore retested the compound at a slightly lower con-

centration of 30μM, with a longer exposure time, by including compound during the Fura-2

loading step. This yielded a higher IC50 of 9.06 μM (S19 Fig) although the fit of the Hill1 equa-

tion is more accurate indicating that MRS1845 performs better with a longer exposure time.

Based on the structures of Pyr2 and Synta-66, a series of 7-azaindole SOCE inhibitors were

developed as potential treatments for asthma [95]. Lead compound 7-azaindole 14d (12) is a

potent SOCE inhibitor with an IC50 of 150 nM in Jurkat T cells, showing dose-dependent inhi-

bition of eosinophils in a rat model of allergic respiratory inflammation [95]. In our hands

7-azaindole 14d (12) showed strong, but not complete inhibition at 10 μM, (Fig 2L). The IC50

was calculated as 132 nM (Fig 3L) which was almost in complete agreement with the IC50 gen-

erated with Jurkat cells in a similar assay set-up [95].

CalciMedica holds several patents on CRAC inhibitors. Their lead compound CM4620 (14)

[96], has reportedly completed Phase II clinical trials for treatment of acute pancreatitis with

systemic inflammatory response syndrome (SIRS), and others are ongoing [53,97–99]. A

related compound, CM3457 (13), has shown immunomodulatory effects in different cell lines,

including interleukin inhibition [100] and was shown to be selective for ORAI1 inhibition

over several other K+, Na+ and Ca2+ channels [100]. CM4620 (14) has an IC50 of ~0.1 μM in

ORAI1/STIM1 overexpressing HEK293 cells, measured by whole-cell patch clamp experi-

ments, as well as ~0.7 μM in murine pancreatic acinar cells [101]. The related compound,

CM3457 (13), potently inhibits endogenous SOCE in RBL-2H3 cells with an IC50 of 25 nM

and Jurkat T-cells with an IC50 of 17 nM, which were comparable to the IC50 of 34nM

observed for HEK293 cells stably overexpressing ORAI1/STIM1 [100]. Of the CalciMedica

inhibitors, CM4620 (14) showed almost complete inhibition of SOCE at 10 μM (Fig 2N) gen-

erating an IC50 of 374 nM (Fig 3N). This is in good agreement with a previously observed IC50

of ~0.1 μM in ORAI1/STIM1 overexpressing HEK293 cells [101]. The older compound
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CM3457 (13) failed to show complete SOCE inhibition at 10 μM (Fig 2M) and therefore the

calculated IC50 of 264 nM may be an overestimate of its potency (Fig 3M).

Several FDA-approved drugs have been identified as weak to moderately potent SOCE/

ORAI1 inhibitors in a single study, using a ligand-based virtual screen [102]. Five drugs (leflu-

nomide, teriflunomide, tolvaptan, lansoprazole and roflumilast) showed substantial (�60%)

SOCE inhibition at 10 μM, and a dose-response curve was generated. Leflunomide (15) and its

active metabolite teriflunomide (16) showed SOCE inhibition at clinically relevant concentra-

tions, with IC50 values of ~10 μM (leflunomide) and ~21 μM (teriflunomide), respectively

[102], which is lower than most other reported inhibitors. Leflunomide is approved as a dihy-

dro-orotate dehydrogenase inhibitor used to treat rheumatoid arthritis and psoriatic arthritis

[103]; teriflunomide was later approved for the treatment of multiple sclerosis [104]. Under

our conditions leflunomide (15) and teriflunomide (16) showed no inhibition at 10 μM, so the

compounds were tested up to 500 μM and 400 μM, respectively. Partial SOCE inhibition was

observed with 400 and 500 μM leflunomide (15) (Fig 2O) generating an IC50 of 196 μM (Fig

3O). Teriflunomide (16) was more potent providing more of a dose-response with strong inhi-

bition above 200 μM (Fig 2P) generating an IC50 of 86 μM (Fig 3P), a value significantly less

potent than previously quoted IC50 values.

Based on the structure of Synta-66, JPIII (17) was recently developed in-house as a more

water-soluble alternative [31]. It is moderately potent and highly selective for ORAI1 over

other Ca2+-permeable channels and was well-tolerated and effective in a mouse model of car-

diac hypertrophy [31] and rat model of pulmonary hypertension [105]. Overexpression of

ORAI1 did not affect the potency of JPIII, only the amplitude of the fluorescence signal due to

increased [Ca2+] [31]. JPIII (17) demonstrated partial SOCE inhibition in a dose-response

manner (Fig 2Q) with an IC50 of 185 nM (Fig 3Q), similar to the IC50 of 399 nM previously

reported in HEK293 cells [31].

The trivalent lanthanide cations, such as gadolinium (Gd3+) (18) and lanthanum (La3+)

(19) are known to block SOCE in the low micromolar range, with 1 μM Gd3+ causing complete

channel block in a range of cell lines [106–108]. Gd3+ inhibits SOCE with an IC50 of 34 nM in

the rat smooth muscle A7r5 cell line [107]. La3+ has been found to potently inhibit SOCE in

Jurkat T cells stimulated with either thapsigargin or CD3 monoclonal antibody with an IC50 of

20 nM [106]. Gd3+ (18) showed moderate inhibition of SOCE at 10 μM (Fig 2R), whilst La3+

(19) demonstrated partial inhibition of SOCE at 10 μM (Fig 2S). These generated IC50 values

of 0.67 μM (Fig 3R) and ~0.5 μM (Fig 3S), respectively, which were around 20-fold less potent

than reported in the literature.

To allow a cross-wise comparison of the potency of the compounds we calculated the

SOCE inhibitory activity as % vehicle of each inhibitor at 10 μM in Fig 4. With the exception

of CAI (2), 2-APB (3), AnCoA4 (10), MRS1845 (11), leflunomide (15) and teriflunomide (16)

all tested compounds showed significant SOCE inhibitory activity at this concentration. For

ease of reference our calculated IC50 values are shown alongside comparable values obtained

from the literature in Table 1.

Discussion

A variety of reported SOCE inhibitors were tested in a standard HEK293 cell Ca2+ addback

assay with Fura-2 as the indicator dye and thapsigargin to deplete stores. Native HEK293 cells

were chosen as a model system to study SOCE, as the Ca2+ addback response following TG

depletion has been demonstrated to be highly specific to ORAI1 [64]. Knockout of ORAI1,

either alone or in combination with ORAI2 or 3 knockout completely ablated Ca2+ entry

whilst knockout of either ORAI2, ORAI3 or double knockout of ORAI2/3 had no effect on
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Ca2+ entry in a similar assay [64] Interestingly, overexpression of ORAI2 in ORAI1/2/3 triple

knockout cells lead to a greater influx of Ca2+ compared to native cells, which the authors rea-

soned was due to the much lower expression of ORAI2 and ORAI3 compared to ORAI1 in

native HEK293 cells [64]. Differing IC50 values have been reported for compounds between

native HEK293 cells and those overexpressing ORAI1 and/or STIM1 [93]. These studies high-

light the caution needed when extrapolating data from overexpression systems to the native in
vivo environment. Under our assay conditions most compounds showed significant SOCE

inhibition. We were able to demonstrate that the most potent inhibitors in this side-by-side

comparison were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8),

CM4620 (14) and RO2959 (7)—all giving IC50 values< 0.5μM. Of the compounds tested:

SKF96365 (1), Pyr3 (5), Synta-66 (6), RO2959 (7), GSK7975A (9), MRS1845 (11), 7-azaindole

14d (12), CM4620 (14), and JPIII (17) generated IC50 values consistent with the literature.

Conversely, CAI (2), 2-APB (3), Pyr2 (4), AnCoA4 (10), CM3457 (13), Leflunomide (15), Teri-

flunomide (16), Gd3+ (18) and La3+ (19) generated IC50 values greater than published values.

In our assay, CAI (2) did not demonstrate full inhibition of SOCE at 20 μM, the highest dose

tested. This was surprising given that a one hour pretreatment with 5 μM CAI inhibited SOCE

in three different ovarian cancer cell lines using a similar assay setup [109] and in another study

an IC50 of 0.5 μM was generated when a 5-minute pre-incubation was used [78]. The authors

noted inhibition to be time-dependent, with 40% inhibition seen at 10 μM after a 10-second

pre-incubation with CAI, compared with complete block after 5 minutes [78]. The time-depen-

dence was also confirmed by whole-cell patch clamp experiments, and it was suggested to act

via a complex mechanism affecting mitochondrial membrane polarisation rather than as a sim-

ple ion channel blocker [78]. In our assay setup cells were pre-incubated with test compound

for 30 minutes, which should be sufficient to observe an effect for CAI based on the literature.

Fig 4. A comparison of the SOCE inhibitory activity as % vehicle of each inhibitor at 10 μM in the Ca2+ addback assay. Statistical significance was

calculated using an ANOVA one-way test with Dunnett’s post-hoc test, where *p<0.05, and ****p<0.0001 (n = 3).

https://doi.org/10.1371/journal.pone.0296065.g004
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2-APB (3), proved technically challenging to work with due to its well established activating

effect at the lowest concentrations tested and inhibitory effect at higher concentrations [80].

Given these difficulties the IC50 we recorded was -three to -fivefold less potent than published

values. The effects of 2-APB are variable between ORAI1/ORAI2/ORAI3 [110]. 2-APB can

interact with other ion channels and receptors that influence SOCE, including TRP channels,

the IP3 receptor and the SERCA pump [111], alongside ORAI2 and ORAI3 [112].

Pyr2 (4) was initially described as the first selective CRAC channel inhibitor [83,85] but was

later found to inhibit TRPC3 and TRPC5 channels, and to activate TRPM4 [113,114]. It has

been proposed to inhibit from the extracellular space based on patch clamp experiments [85].

Table 1. SOCE inhibitory activity (IC50 ± SE) of the SOCE inhibitors studied, compared to their reported IC50 values.

Compound name Residual Ca2+ entry at 10μM IC50 (HEK293) / μM ± SE Reported SOCE inhibition IC50 / μM Cell line for reported IC50

SKF96365 (1) 64.9% 16.0 ± 1.8 4

12

rat peritoneal mast cells [75]

Jurkat E6-1 lymphocytes [76]

CAI (2)

75.4% 18.1 ± 61.8

0.5 HEK293 [78]

2-APB (3) 69.5% 18.8 ± 2.2 2.9 ± 0.1

4.8 ± 0.6

6.5 ± 0.3

CHO [81]

IP3R-knockout DT40 [81]

HeLa [81]

Pyr2 (4) 0% 0.990 ± 0.030 0.01–0.1

0.59

Jurkat T cells [84, 85]

RBL-2H3 [86]

Pyr3 (5) 0% 0.304 ± 0.021 0.54 RBL-2H3 [86]

Synta-66 (6) 3.6% 0.209 ± 0.06 0.026

0.026

1.4

~1

3

VSMC [68,69]

HUVEC [68,69]

RBL [24]

Jurkat T cells [24]

RBL-1 [88]

RO2959 (7) 0% 0.457 ± 0.036 0.265 ± 0.016

0.402 ± 0.129

human CD4+ T-cells [90]

RBL-2H3 [90]

GSK5503A (8) 0%

0.204 ± 0.01

Full block at 10 μM HEK-293 overexpressing ORAI1/STIM1 [91]

GSK7975A (9) 0% 0.638 ± 0.124 0.5

0.8 ± 0.1

human CD4+ T-cells [92]

RBL-2H3 [91]

AnCoA4 (10) 95.8%

19.6 ± 6.1

0.88 IC50 in HEK293T, NFAT inhibition [93]

MRS1845 (11)

75.7%

1.43 ±?? 1.7 HL60 cells [94]

7-azaindole (12) 6.2% 0.132 ± 0.01 0.150 ± 0.022 Jurkat T cells [95]

CM3457 (13) 38.8% 0.264 ± 0.037 0.017

0.025

0.034

Jurkat T cells [100]

RBL-2H3 [100]

HEK293 overexpressing ORAI1/STIM1

[100]

CM4620 (14) 0% 0.374 ± 0.007 0.1

0.7

HEK293 overexpressing ORAI1/STIM1

[101]

human pancreatic acinar cells [101]

Leflunomide (15) 80% 196 ± 16 ~10 RBL-1 [102]

Teriflunomide

(16)

90% 86 ± 8.2 ~21 RBL-1 [102]

JPIII (17) 15.3% 0.185 ± 0.028 0.399 HEK293 [31]

Gd3+ (18) 2.96% 0.672 ± 0.70 0.034 ± 0.005 A7r5 [107]

La3+ (19) 28.5% 0.514 ± 0.274 0.02 Jurkat T cells [106]

Reported inhibition refers to endogenous SOCE unless stated. Literature inhibition values only include those from similar cell-based Ca2+ addback assays, with standard

error reported where given. All IC50 values were generated in native HEK293 cells (n = 3).

https://doi.org/10.1371/journal.pone.0296065.t001
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Our IC50 value of ~1 μM was higher than the range of values reported (10–590 nM) [84–

86,90], possibly due to the difference in incubation time. In one study the cells were incubated

in test compound for a few minutes [84], whereas in another study they were incubated for 24

hours, with maximal block seen after 2 hours [85].

AnCoA4 (10) had a reported IC50 of 880 nM (HEK293T), as measured using an NFAT

reporter gene luciferase assay, which is an indirect measure of SOCE using a downstream sig-

nalling pathway [93]. It has been validated as a SOCE inhibitor by other groups [115–117],

and also showed 80% inhibition of Ca2+ current (20 μM) in patch clamp studies of ORAI1

[93], but a dose-response for direct inhibition of SOCE was not determined in any of these

studies. AnCoA4 was proposed to act intracellularly by blocking the ORAI1/STIM1 interac-

tion [93], Repurchased AnCoA4 failed to completely inhibit SOCE in our assay at 80 μM, the

highest dose tested. In the NFAT luciferase assay, the cells were pre-incubated with AnCoA4

for 6 hours before initiation of SOCE, whereas our assay only has a 30-minute compound

incubation step. We tested AnCoA4 with a longer pre-incubation by adding AnCoA4 during

the Fura-2 loading step such that cells were exposed to the compound for 90 mins in total. We

observed a modest improvement in IC50 with the longer pre-incubation, but still did not

achieve complete SOCE inhibition at the highest dose.

MRS1845 (11) was previously shown to have an IC50 of 1.7 μM in HL-60 cells [94], but ATP

was used as the stimulus for SOCE instead of thapsigargin. In our hands, MRS1845 achieved

approximately a 50% block of SOCE at 50μM with little to no block at 10 μM, although we

noted solubility issues at the higher concentrations in aqueous solution. Our results are in

agreement with a lack of potency observed against convulxin/thrombin stimulated SOCE in

platelets at concentrations up to 100 μM [118]. Others have reported potency of MRS1845

against thapsigargin-induced SOCE in a Fura-2 based assay in both ovarian carcinoma cells

[119] and human aortic smooth muscle cells [120,121] although exposure to MRS1845 was for

24 hours indicating it may act on SOCE in an indirect manner.

In our hands, CM3457 (13) failed to completely inhibit SOCE at the highest concentration

tested (10μM) and was around 10-fold less potent in native HEK293 cells than observed in a

Fluo-4 based assay of ORAI1 overexpressing HEK293 cells or immune cells [100]. Due to the

low amplitude of the ICRAC current, overexpressing cells are often used to increase the ampli-

tude of the addback response by fluorescence imaging for ease of measurement and this could

account for the observed difference. The FDA-approved drugs although still active in our

assay were significantly less potent–leflunomide (16) by ~10-fold and teriflunomide (17) by

~4-fold. This is a large discrepancy when the only major difference is the cell line (RBL-1),

-assay, pre-incubation times, dye and the mode of store depletion were similar [122].

The trivalent lanthanide cation Gd3+ (18) inhibits SOCE with an IC50 of 34 nM in the rat

smooth muscle A7r5 cell line [107]. This study used a similar assay setup, with thapsigargin

and Fura-2, although the imaging technique and cell line differed [107]. It also inhibited with a

similar potency (IC50 = 50 nM) in patch clamp studies in the Drosophila S2 cell line [123]. La3

+ (19) has been found to potently inhibit SOCE in Jurkat T cells stimulated with either thapsi-

gargin or CD3 monoclonal antibody with an IC50 of 20 nM [106]. This assay used a fluores-

cence-activated cell sorter (FACS)-based measurement system with Indo-1 as the indicator

dye, which could account for the observed difference in potency. Both Gd3+ and La3+ are less

potent than the literature value in our hands, by around 20-fold, but both still retain their char-

acteristic sub-micromolar potency. Lanthanides are not cell-permeable, and so are believed to

act by simply blocking the pore [106]. However, they may act at a different binding site to Ca2

+, as no change in La3+ block is seen for the well-established E106D pore mutant, which is

characterised by a loss of Ca2+ selectivity [124]. Whilst lanthanides are widely used to study
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channel blockade in vitro, they would not be useful therapeutically as they block a variety of

cation channels, and various toxic effects have been observed [125].

Although approximately half of the compounds tested were confirmed to display similar

potencies to those recorded in the literature there were discrepancies in potency observed for

the remaining compounds. This could be due to differences in assay setup, choice of fluores-

cent dye, equipment used to quantify [Ca2+], or differences in SOCE pathways in different cell

lines. As compound binding to ORAI1 has not been empirically proven for most inhibitors, it

is possible that some act upstream of the SOCE pathway rather than directly targeting it. This

could also be the reason some compounds require longer pre-incubation periods and so did

not appear to be active in this assay. This highlights the difficulty in developing a ‘one-size-fits-

all’ assay, as a short pre-incubation step may lead to compounds with a slower mechanism of

action being missed during screenings, but longer pre-incubations may not be feasible for a

cell-based assay as extended Ca2+ depletion is cytotoxic.

The choice of cell line is likely to be an important reason for variability in potency data.

Studies using RBL cells for SOCE assays are often inconsistent with the results acquired here

in HEK293 cells. Synta-66 (6) is much less potent in RBL-1 cells than in HEK293 cells (3 μM

vs. 130 nM). In the related line RBL-2H3, Pyr3 (5), RO2959 (7) and GSK7975A (9) show com-

parable potency to that observed in HEK293 cells, although CM3457 (13) is around 10-fold

less potent (0.264 vs. 0.025 nM). Native RBL-2H3 cells express higher levels of ORAI1 and

ORAI2 than HEK293 and they thus demonstrate a larger SOCE amplitude [126]. There may

also be differences between species–HEK293, Jurkat T, HeLa and CD4+ cells are human cell

lines, while RBL cells are from rats, CHO cells from hamsters and DT40 cells from chickens.

GSK7975A (9) and its analogue GSK5498A have been previously observed to have species-

dependent effects. They inhibit production of mast cell mediators and pro-inflammatory T cell

cytokines in human and rat mast cells, but not in mouse or guinea pig [92]. Differences in

potency of compounds may be observed between native and ORAI1-overexpressing cells, the

latter being of particular use in patch clamp experiments, where the native ORAI1 current can

be difficult to isolate, an issue that is not apparent when recordings are obtained from a conflu-

ent layer of cells, as occurs when using the FlexStation. Patch clamp is widely used to study ion

channel inhibitor binding and was used to validate many of the profiled compounds in the lit-

erature. However, patch clamp is technically challenging and so time-consuming it is unsuit-

able for routine screening on drug discovery projects, although high-throughput automated

patch clamp technologies have become available [127]. Although no assay is perfect the Fura-2

based assay of thapsigargin induced store depletion is well established as a reliable method of

monitoring SOCE and when performed on the FlexStation III it can be used as a high-

throughput screening tool. Limitations of the current study include that the TG-induced store

depletion phase fell outside of the recording window as to record it would have necessitated

significantly lengthening the recording window, with concomitant lengthy exposure to Ca2

+-free conditions having an adverse effect on cell viability. Additionally, we have made the

assumption that the SOCE signal was derived from activity of ORAI1 given recent reports that

confirm knock-out of ORAI1 in HEK293 largely abolishes the TG-induced SOCE signal

[64,65]. However, it is beyond the scope of this study to characterize all of the Ca2+ selective

channels that could have been affected by each of the compounds.

Nonetheless, inhibitors of SOCE represent a valuable class of compounds as potential thera-

peutics in a variety of disease areas, including immunoinflammatory disease, cardiovascular

disease and cancer. This study highlights the importance of assay design and use of biorthogo-

nal assays to validate a novel compound. These data also provide a fair comparison of most

SOCE inhibitors in a standard and well-validated assay, and so may aid others in choosing the

most suitable molecule for a specific application.
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Supporting information

S1 Fig. Chemical structures of the small molecule SOCE inhibitors examined in this study

and their common names.

(TIF)

S2 Fig. Convergent synthetic route to GSK7975A (9).

(TIF)

S3 Fig. Synthesis of GSK5503A (8) from intermediate 21.

(TIF)

S4 Fig. Synthetic route to 7-azaindole (12).

(TIF)

S5 Fig. 1H NMR (400 MHz, DMSO-D6) (top) and 13C NMR (100 MHz, DMSO-D6) (bot-

tom) spectra of 2,6-difluoro-N-(1H-pyrazol-3-yl)benzamide (21).

(TIF)

S6 Fig. 1H NMR (500 MHz, methanol-D4) (top) and 13C NMR (100 MHz, methanol-D4)

(bottom) spectra of 3-trifluoromethyl-4-(hydroxymethyl)phenol (18).

(TIF)

S7 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of [4-(benzyloxy)-2-(trifluoromethyl)phenyl]methanol (19).

(TIF)

S8 Fig. 1H NMR (500 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of N-(1-{[4-(benzyloxy)-2-(trifluoromethyl)phenyl]methyl)-1H-pyrazol-3-yl)-

2,6-difluorobenzamide (22).

(TIF)

S9 Fig. 1H NMR (500 MHz, methanol-D4) (top) and 13C NMR (100 MHz, methanol-D4)

(bottom) spectra of 2,6-difluoro-N-(1-{[4-hydroxy-2-(trifluoromethyl)phenyl]methyl}-

1H-pyrazol-3-yl)benzamide (9).

(TIF)

S10 Fig. 1H NMR (500 MHz, methanol-D4) (top) and 13C NMR (125 MHz, methanol-D4)

(bottom) spectra of 2,6-difluoro-N-{1-[(2-phenoxyphenyl)methyl]-1H-pyrazol-3-yl}benza-

mide (8).

(TIF)

S11 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of [(2-chloro-6-fluorophenyl)ethynyl](trimethyl)silane (25).

(TIF)

S12 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of 1-chloro-2-ethynyl-3-fluorobenzene (26).

(TIF)

S13 Fig. 1H NMR (400 MHz, DMSO-D6) (top) and 13C NMR (100 MHz, DMSO-D6) (bot-

tom) spectra of 5-bromo-3-[(2-chloro-6-fluorophenyl)ethynyl]pyridin-2-amine (27).

(TIF)
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S14 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of 5-bromo-2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[2,3-b]pyridine (28).

(TIF)

S15 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of 5-bromo-2,4-dimethoxypyridine (29).

(TIF)

S16 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of 4,6-dimethoxypyridin-3-yl)boronic acid (30).

(TIF)

S17 Fig. 1H NMR (400 MHz, CDCl3) (top) and 13C NMR (100 MHz, CDCl3) (bottom) spec-

tra of 2-(2-chloro-6-fluorophenyl)-5-(4,6-dimethoxypyridin-3-yl)-1H-pyrrolo[2,3-b]pyri-

dine (12).

(TIF)

S18 Fig. Example fluorescence over time graph (A) and IC50 (B) for AnCoA4 following 30

minute preincubation and example fluorescence over time graph (C) and IC50 (D) for

AnCoA4 following 90 minute preincubation.

(TIF)

S19 Fig. Example fluorescence over time graph (A) and IC50 (B) for MRS1845 following 30

minute preincubation and example fluorescence over time graph (C) and IC50 (D) for

MRS1845 following 90 minute preincubation.

(TIF)

S1 Appendix. Detailed methods for compound synthesis.

(PDF)

S1 Dataset. Raw data used to calculate IC50 values. Baseline corrected Δ340/380 ratios from

three independent biological replicates (Plate A, B and C) which each included three technical

replicates for each condition tested.

(XLSX)
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