
This is a repository copy of Causal test adequacy.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208652/

Version: Accepted Version

Proceedings Paper:
Foster, M. orcid.org/0000-0001-8233-9873, Wild, C., Hierons, R. et al. (1 more author) 
(2024) Causal test adequacy. In: 2024 IEEE Conference on Software Testing, Verification 
and Validation (ICST) Proceedings. 2024 IEEE Conference on Software Testing, 
Verification and Validation (ICST), 27-31 May 2024, Toronto, Canada. Institute of Electrical 
and Electronics Engineers (IEEE) , pp. 161-172. ISBN 9798350308198 

https://doi.org/10.1109/ICST60714.2024.00023

© 2024 The Author(s). Except as otherwise noted, this author-accepted version of a paper 
published in 2024 IEEE Conference on Software Testing, Verification and Validation (ICST)
Proceedings is made available via the University of Sheffield Research Publications and 
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International 
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any 
medium, provided the original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Causal Test Adequacy

Michael Foster, Christopher Wild, Robert M. Hierons, and Neil Walkinshaw

The University of Sheffield, UK

Email: {m.foster, c.wild, r.hierons, n.walkinshaw}@sheffield.ac.uk

Abstract—Causal reasoning is becoming an increasingly pop-
ular technique for testing software. In this setting, the tester
starts from a simple directed graph that captures their underlying
understanding of causal relationships between relevant variables
in the program, and this knowledge is then used to reason
about causal input-output relationships that are observed during
testing. One question that has not yet been addressed in this
context is how to measure test adequacy: How do we know
whether a causal relationship (or set of relationships) has been
properly established by a test set? In this paper we present a
metric inspired by Weyuker’s notion of inference adequacy. For
a given causal relationship, we estimate the causal effect from the
test data. The basis of our adequacy metric is then an estimate
of the convergence of this estimate, which we calculate using
statistical bootstrapping. We evaluate our metric on tests for three
diverse computational models. The results show a statistically
significant correlation between our metric and a test suite’s ability
to detect mutants, and also that it is a good indicator of whether
a sufficient number of system executions have been observed to
trust the outcome of the test.

Index Terms—software testing, causal inference, test adequacy

I. Introduction

Causal reasoning and causal inference is becoming an

increasingly popular topic of research in the field of software

testing [1], [2], [3], [4]. The basic idea is to employ causal

reasoning and statistical modelling to enable existing runtime

data to be used as part of the testing process without biasing

test outcomes.

This family of techniques has emerged in response to the

increasing prevalence of stochastic and classically “untestable”

[5] software, such as computational models, autonomous

drivers, and cyberphysical systems. Testing these systems

is fundamentally different from testing traditional software

as tests typically cannot be framed as simple assertions of

equality between expected and observed values. Due to the

inherent stochasticity, tests are instead framed as statistical

properties over multiple executions of the software. Thus, there

is no longer a one to one correspondence between executions

and tests.

While these techniques have been shown to be promising,

they are still subject to the fundamental question of test

adequacy [6]: How can we determine if we have collected

enough test data?

For classical software, a popular solution is to monitor the

coverage of test objectives such as source code statements

[7], [8]. The relatively poor correlation between code coverage

of a test set and its ability to expose faults [9], [10] makes

This work was funded by the EPSRC CITCoM grant EP/T030526/1.

this a questionable metric even in the traditional context.

However, there are more fundamental reasons why coverage

is inappropriate in the context of causal testing.

The main reason for this is the fact that tests are phrased

as statistical properties over multiple runs of a system. This

means that a test could fail because there is insufficient data to

enable the correct conclusion to be drawn, even if the software

actually satisfies the property being tested. In such cases, re-

evaluating a failing test using more runs may enable it to pass,

although this may not change the coverage of the test set.

In this paper, we present causal test adequacy, a test

adequacy criterion which is well-suited to causal testing. Our

approach is inspired by inference adequacy [11], a theoreti-

cal approach to assessing test adequacy, which is based on

the ability to reverse engineer an accurate model of system

behaviour from a test set. Our metric assesses test adequacy

by estimating model convergence. That is, whether observing

additional runs of the system would change the output of the

inferred model. In the context of causal testing, this is a causal

effect estimate. We do this by repeatedly retraining the model

on samples of the test data and examining the distribution of

model outputs. Our main contributions are as follows:

• A test adequacy metric based around causal reasoning.

• An openly available implementation [12].

• An empirical evaluation based around three case study

systems. This shows that causal test adequacy can poten-

tially indicate the fault finding capability of a test suite.

Furthermore, given a failing test, causal test adequacy

can indicate whether a test is failing because of a fault

or simply due to a lack of data.

The remainder of this paper is structured as follows. Sec-

tion II provides the necessary background for our technique in

the context of a running example. Section III presents causal

test adequacy. Section IV presents our research questions and

empirical evaluation in the context of three subject systems.

Section V discusses related work. Finally, Section VI con-

cludes the paper and discussed potential future work.

II. Background

This section discusses the necessary background for this

work. We first review existing software adequacy metrics. We

then introduce causal testing in the context of a motivating

example.

A. Software Test Adequacy

The aim of software testing is to discover faults in a

program by executing it with concrete inputs, with the aim



of discovering deviations between the program’s specified and

actual behaviour. A test adequacy criterion can determine

whether a program has been tested “enough” [6] – i.e. whether

a sufficient range of program inputs have been attempted so

as to offer a high degree of confidence that there are no

remaining faults lurking in the system. Traditional metrics tend

to be based around program elements such as statements or

branches. The aim is then to cover (i.e. execute) every unit

at least once. However, there is a relatively poor correlation

between code coverage of a test set and its ability to expose

faults [9], [10].

In contrast to these approaches, inference adequacy [11]

involves the use of test data to infer the behaviour of the

program. A test set is classed as adequate when it enables the

inference of a model which satisfies the specification and per-

fectly reproduces the behaviour of the program. Definition II.1

gives a formal definition.

Definition II.1. For a program P, specification S , test set T ,

and inferred model IT , T is said to be inference adequate if

IT ≡ P (1) IT ≡ S (2)

Establishing the first equivalence IT ≡ P is challenging in

practice, because it is essentially a model-based testing prob-

lem in and of itself. A typical approach (also proposed by [11])

is to create a further “reference” test set R (possibly by random

generation [11]). Then, IT ≡ P ⇐⇒ ∀r ∈ R.P(r) = IT (r).

B. Causal Testing

Causal testing is an emerging technique for testing causal

relationships between variables (typically inputs and outputs),

especially in nondeterministic systems such as computational

models [1], [2], cyberphysical systems [3], and autonomous

driving [4]. The basic idea is to use a causal model to specify

domain knowledge about the expected causal relationships

between different variables. This typically takes the form of

a directed acyclic graph (DAG) in which nodes represent

variables, and an edge X → Y represents a direct causal effect

of X on Y .

Despite their lightweight nature, causal DAGs underpin a

powerful family of causal inference techniques [13]. Here,

causal analysis is typically carried out in two parts: (1)

identification of the estimand (isolating the causal effect by

identifying variables which must be controlled for to block

non-causal paths through the DAG), and (2) estimation (using

statistical models that adjust for the identified confounding

variables to estimate the causal effect using a causal effect

measure such as the average treatment effect (ATE)). This

estimate is also typically accompanied by 95% confidence

intervals [14]. Causal testing then introduces a third step of

checking whether the estimated effect is what we expect. For

example, we can validate the presence of a causal effect by

checking that the confidence intervals of the estimated ATE

do not contain zero [15].

Definition II.2. Given a causal DAG G = (V,W) which

represents the causal relationships between relevant inputs and

outputs of the system under test (SUT), a causal test case is a

triple (X,Y, E), in which X and Y are nodes in V (representing

SUT inputs and outputs, respectively), and E is the expected

causal effect of X on Y . A causal test suite is a set of causal

test cases.

C. Running Example: Testing Causality in a COVID Model

Covasim [16], [17] is an epidemiological agent-based model

that has been used to inform COVID-19 policy decisions in

several countries [18], [19], [20], [21]. Given this critical

application, it is of paramount importance that this model is

adequately tested.

Figure 1 shows a causal DAG for a simple scenario of

Covasim investigating how Population and Location affect

the number of Infections. Here, Population and Location are

relevant inputs to the model. Contacts and Susceptibility are

intermediate, internal variables, and Infections is an output of

the model.

Population

Location

Contacts

Susceptibility

Infections

Fig. 1: Causal DAG of a simple run of Covasim.

The causal DAG in Figure 1 specifies the causal relation-

ships we expect to be present in this setting. Indeed, it is

possible to automatically transform any DAG into a suite

of causal test cases that validate the specified relationships

and independences [1]. However, because causal testing views

test cases as statistical properties over multiple runs of the

software, these test cases — the relationships we want to

validate — exist in complete isolation from the test data which

is used to evaluate them, with neither providing much testing

value without the other.

This is a sharp contrast from traditional testing approaches,

in which test cases and test data are almost synonymous, but

gives rise to a very powerful feature of causal testing, which

is that we do not require carefully controlled test executions,

which can be time-consuming and costly to collect. Instead,

we can reuse existing runtime logs or test data [1]. The

mathematical underpinning of causal inference still allows us

to draw causally valid conclusions from such data, even if

the data is biased [22], because our causal DAG allows us to

identify and adjust for this.

One causal test case we can derive from Figure 1 is

the effect of Contacts on Infections. Since there is an edge

connecting these two nodes, we expect there to be a nonzero

causal effect. To isolate this causal effect, we need to adjust

for Population, since this is a common cause of both. It

therefore confounds the causal effect. We also need to adjust

for Location since this also has causal pathways to both

Contacts and Infections through Susceptibility, which we could

adjust for directly instead of Location.



0 200 400 600 800 1000
Data points

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005
Ef

fe
ct

 e
st

im
at

e
Confidence intervals
Point estimate

Fig. 2: Causal effect estimate vs. data set size

D. Motivation

An overarching problem in this setting is that there is no

published approach that can serve to establish the adequacy of

a given set of test data for evaluating a given causal test case.

To illustrate this, consider again the causal effect of Contacts

on Infections in Covasim. Figure 2 shows how the causal effect

estimate changes as we increase the amount of test data.

Initially, the confidence intervals are very wide, and even

contain zero, indicating a possible lack of causal effect and so

the test will fail. The confidence intervals then get gradually

narrower, with the impact on the confidence intervals from

adding test data gradually diminishing up to about 800 exe-

cutions. After this, additional test data has very little effect,

indicating that convergence has been reached.

Crucially, there is no standard technique in the literature

for establishing whether this point of convergence has been

reached, nor how many data points are required to get there.

Intuitively, we could say that we have reached convergence

when our confidence intervals become sufficiently narrow.

However, this varies greatly between systems to so there is

no universal notion of what “sufficiently narrow” means. A

common approach is to simply use a predefined large number

of data points [23], [24], but there is no way to know if this

is sufficient, or is unreasonably high. In Section III, we will

present an alternative criterion which can be used to estimate

whether the point of convergence has been reached.

E. Statistical Techniques

The technique we present in Section III is based around two

statistical techniques, which we define here.

1) Bootstrapping: Bootstrapping [25] is a common statis-

tical approach used to assign measures of accuracy (such as

confidence intervals) to estimated quantities (such as causal

effects). The process works as follows: first, we repeatedly

resample our dataset (with replacement) to generate many

samples1 which are the same size but with a few values

duplicated and a few missing. We then use these samples to

estimate the quantity of interest (e.g. the causal effect), and

Normal
Light tailed
Heavy tailed

Fig. 3: Kurtosis of different distributions

use the distribution of these estimates to estimate the accuracy

measure we are interested in (e.g. the confidence intervals).

For example, to estimate the 95% confidence intervals of

a causal effect, we could resample our dataset 200 times,

estimate the causal effect using these samples, and estimate the

confidence intervals by sorting these estimates into increasing

order and taking the 5th and 195th values. By leaving out the

top and bottom 5 values (i.e. 2.5% of our 200 samples), our

intervals then cover 95% of our bootstrap estimates.

Bootstrapping is attractive because it can be used to estimate

almost any statistical quantity (bias, variance, confidence inter-

vals, hypothesis tests, etc.). Furthermore, it is non-parametric,

so makes no assumptions on the underlying distribution of

the dataset. Whatever this is, the distribution of bootstrapped

estimates will converge on the true value [25], although the

dataset must be representative of the underlying population.

The only drawback is that we must repeatedly calculate our

statistical estimate, which may be time consuming.

2) Kurtosis: Kurtosis, like variance, relates to the shape

of a distribution. Where variance intuitively controls how

“wide” a distribution is, kurtosis measures the “tailedness”

of a distribution. That is, how much of the probability mass

of a distribution is sitting in the tails, away from the centre.

Light tailed (i.e. “pointy”) distributions indicate a high degree

of certainty, in that sampled values are likely to be close

to one particular value. Conversely, heavy tailed (i.e. “flat”)

distributions are more uncertain and are closer to the uniform

distribution. This is illustrated in Figure 3.

Formally, kurtosis is calculated as the fourth central mo-

ment divided by the square of the variance [26]. That is
E(X−µ)4

/(E(X−µ)2)2 in which E is the expectation operator and

µ is the mean. In this work, we use Fisher’s definition,

which subtracts three from this value, giving a more intuitive

measurement. A perfect normal distribution then has a kurtosis

of zero. Heavy tailed distributions have positive kurtoses, and

light tailed distributions have negative kurtoses. There are no

bounds in either direction, so a distribution could have an

arbitrarily positive or negative kurtosis.

1The exact number of samples is a parameter of the technique. While more
samples will give a more accurate estimate, there is no standard number.



III. Causal Test Adequacy

This section defines causal test adequacy, our model-based

test adequacy criterion which indicates the adequacy of a

given dataset for testing a particular causal relationship within

a given causal DAG. The objective is to determine whether

sufficient test data has been collected that the statistical model

used to evaluate a causal test case has reached convergence.

This will indicate whether we can trust a test outcome or

whether we should collect more data.

A. Computing Causal Test Adequacy

Algorithm 1 shows how we estimate the adequacy of a

dataset for a causal test case. Essentially, we do this by

applying statistical bootstrapping; we repeatedly resample the

data and use these samples to estimate the causal effect of

interest. We then use the distribution of these effects as a

measure of test adequacy. Our algorithm takes four inputs. The

first is a causal test case as per Definition II.2 with a treatment

X, an outcome Y , and an expected causal effect. The second

input is a statistical model which can be used to estimate the

causal effect of X on Y , accounting for any other variables in

the DAG which may need to be adjusting for. For example, this

may be a linear regressor or a machine learning model. The

third argument is our set of test data. The final argument is a

positive integer representing the number of bootstrap samples

to take.

Algorithm 1 Causal data adequacy.

1: fun adequacy(causalTestCase, estimator, data, nSamples)

2: (X,Y, expected)← causalTestCase

3: samples← [resample(data) | _ ∈ [1..nSamples]]

4: estimates = []

5: for sample ∈ samples do

6: estimator.train(sample)

7: estimate = estimator.estimate(X, Y)

8: estimates.append(estimate)

9: kurtosis← kurtosis(estimates)

10: outcomes← [testOracle(e, expected) | e ∈ estimates]

11: passRate← numPassing(outcomes)

12: return (passRate, kurtosis)

1) Resampling (line 3): The first step is to resample the

dataset the specified number of times. As discussed in Sec-

tion II, this involves randomly generating samples (with re-

placement) that are the same size as the original dataset. These

samples will be approximately the same as our original dataset,

but with a few missing values and a few duplicated values,

leading to slight variations in the resulting estimates. These

variations can then be used to estimate accuracy measures as

they should reflect the underlying population [25].

2) Effect Estimation (lines 5-8): For each of the data sam-

ples we took in line 3, we train the provided statistical model

to estimate the causal effect, adjusting for other variables in

the DAG if necessary. Here, we expect to be estimating the

adequacy of a causal test which has already been executed.

Thus, the identification of the estimand will already have been

performed. The provided statistical estimator should then be

the same one used to execute the test originally. In this step, we

are simply retraining the model using our resampled datasets

and then estimating the corresponding causal effect.

3) Kurtosis (line 9): Having estimated the causal effect for

each sample, a classical application of bootstrapping would be

to estimate the confidence intervals as described in Section II.

However, we cannot simply use the confidence intervals as a

measure of test adequacy as they do not indicate whether our

model has converged or whether observing more data would

change the estimates. Instead, we use the kurtosis, which looks

at the shape of the distribution.

Let us examine this in the context of Figures 2 and 3. The

central limit theorem [27] tells us that the distribution of our

effect estimates will tend towards the normal distribution as

our dataset increases in size. As this happens, the kurtosis will

tend towards zero, and the model will converge on a stable

estimate. If we do not have enough test data, the distribution

of the sampled causal effect estimates will not tend towards the

normal distribution no matter how many times we resample

it. Instead, we will tend towards either a heavy or light tailed

distribution.

A heavy tailed distribution indicates that the model has not

yet converged and its estimate is affected by the few values

which are duplicated and omitted from the sample. Thus, we

will observe a fairly uniform spread of effect estimates. As

we observe more test data, individual values will have less

of an effect and our model will converge on the true effect

estimate. However, this does not mean the distribution will

become arbitrarily light tailed as underlying nondermininsm

in the system under test will always lead to some variation in

the data. A light tailed distribution indicates that our dataset

is so small that we have not fully observed the underlying

nondeterminism of the system as the causal effect estimates

from our samples are “too similar” to each other.

4) Test Outcomes (lines 10-11): Having calculated the

causal effect estimate which corresponds to each sample, we

can use this to determine the corresponding pass/fail test

outcome. We call this the bootstrap pass rate. Ideally, each of

the bootstrapped samples should give the same test outcome

as for the original data set. However, due to the underlying

stochasticity of the systems under test, we may encounter

samples with different outcomes. If many of our bootstrap

samples lead to a test outcome which is different from the

true outcome, this again indicates insufficient test data. We

will examine the relationship between kurtosis and bootstrap

pass rate as part of our evaluation in Section IV.

B. Example Application

Having defined the abstract process of our causal test

adequacy metric, let us now examine how it works in the

context of our running Covasim example from Section II.

As in Section II-C, we will test the presence of a causal

effect of Contacts on Infections in the context of the DAG in

Figure 1. For the purposes of this example, say that we have



3.003 4.001 5.009 6.006 7.004
Coefficient 1e 17+7.173870118e 4

0

2

4

6

8

10

12

14

Fr
eq

ue
yc
y

Fig. 4: The distribution of the 100 bootstrapped causal effect

estimates.

run Covasim 50 times with different locations and population

sizes. This data is available in our replication package [28].

When we execute our causal test case on this data, it fails.

We want to calculate the causal test adequacy to work out

whether there is a fault or whether we simply need to collect

more data.

The first step is to resample the data with replacement

(line 3). We will do this 100 times in this example. We then

use each of these sampled datasets to train our statistical

estimator, and then estimate the corresponding causal effect

(lines 5-8). In this case, we used a linear regressor of the form

Infections = a · Contacts + b · Population + c · Susceptibility.

Here, we include a term for our treatment Contacts and

additional terms for (Population) and (Susceptibility) as the

causal structure of the DAG in Figure 1 means we must adjust

for these to properly isolate the causal effect of Contacts on

Infections. We can then use the coefficient a as our causal

effect estimate, as this represents the expected change in

Infections if we increase Contacts by 1.

Figure 4 shows the distribution of our 100 causal effect

estimates. While this does not give a smooth plot like in

Figure 3, we can see that the distribution is somewhat heavy-

tailed, and certainly not a bell-shaped curve. Indeed, we have

a kurtosis of 2.55. We then call the test oracle on our effect

estimates (line 10). In this case, we are looking for the simple

presence of a causal effect. That is, the confidence intervals

of each effect estimate should not contain zero. In this case,

all 100 of our effect estimates lead to a failing test outcome.

On its own, the fact that both our original dataset and

all 100 bootstrap samples lead to a failure might suggest a

problem. However, the high kurtosis suggests that we may

want to collect some additional runs of the system and rerun

the test. Using a sample of 800 runs, which we can see from

Figure 2 is about the point of convergence, gives a kurtosis of

0.003, corresponding to an almost perfect normal distribution.

Furthermore, all 100 of the associated effect estimates, as well

as the original test data, lead to a passing test outcome. Since

there are no known faults in Covasim, this is the outcome we

are expecting.

This shows that kurtosis can potentially be used to to judge

whether we have observed enough data to be able to trust the

outcome of a given causal test case, with kurtoses closer to

zero indicating a more reliable outcome and kurtoses further

from zero suggesting we should collect additional data values.

In our evaluation in Section IV, we will investigate the extent

to which this is the case.

IV. Evaluation

This section provides an evaluation of our coverage metric

in the context of three evaluative case studies [29]. Our

research questions are as follows:

1) (Fault finding) What is the relationship between causal

test adequacy and fault finding?

a) To what extent can causal test adequacy be used as a

test adequacy metric?

b) To what extent can causal test adequacy be used as a

test adequacy criterion?

2) (Coverage) What is the relationship between causal test

adequacy and traditional coverage-based metrics?

3) (Data) What is the relationship between causal test ade-

quacy and the amount of test data?

RQ1 investigates the extent to which a high degree of

causal test adequacy (i.e. a kurtosis close to zero and a high

bootstrap pass rate) indicates that our system is fault-free.

This is split into two subquestions. RQ1a investigates whether

causal test adequacy can be used as a fine-grained measure of

test adequacy, for example to guide a test generation tool. If

this is the case, we would expect a strong correlation between

kurtosis and fault finding ability. RQ1b investigates to what

extent causal test adequacy can be used to classify a test set

to be adequate or not. Here, we would expect tests with high

fault finding capability to have a corrsponding kurtosis close

to zero and tests with poor fault finding to have a kurtosis far

from zero (either positive or negative).

RQ2 compares causal test adequacy with traditional code

coverage to investigate whether code coverage alone can serve

as a basis for judging whether we have enough test data. Given

the complexity of the systems causal testing is designed for,

we hypothesise that this will not be the case. Finally, RQ3

investigates how causal test adequacy changes with the amount

of test data. Here, we expect kurtosis to tend towards zero as

we observe increasingly many data points.

A. Subject Systems

We carry out our evaluation in the context of three subject

systems. For each of these, we constructed a causal DAG to

represent a realistic scenario involving some or all of the inputs

and outputs of the system.

Poisson Line Tessellation. The Poisson line tessellation

(PLT) model [30] uses a Poisson process to generate a

series of lines that are positioned and oriented at random

within a given area of interest, referred to as the sampling



window, to form a tessellation. The model takes three

numerical input parameters: the width (W) and height

(H) of the sampling window, and the intensity (I) of

the process, with higher intensities leading to more lines.

The intersections of these lines then form polygons. The

model has four main outputs: the total numbers of lines

(Lt) and polygons (Pt) within the sampling window, and

the numbers of lines (Lu) and polygons (Pu) per unit area

of the sampling window.

We selected this model because it has been the subject of

prior research on causal testing [1]. In addition, Poisson

processes are commonly used to model random processes

for a range of important applications, including simulat-

ing road networks [31], [32] and modelling photon arrival

in 3D imaging [33]. Here, we consider the same testing

scenario considered in [1], which has the DAG shown in

Figure 5.

W

I

H

Lt Pt

Lu

Pu

Fig. 5: Causal DAG of the PLT model.

Covasim. Covasim is the epidemiological agent-based model

that was introduced as a motivating example in Section II.

It is primarily used to simulate detailed COVID-19 sce-

narios to evaluate the impact of various interventions,

such as vaccination and contact tracing [16], in specific

demographics. These scenarios are configured via 64

input parameters and described by 56 time-series outputs.

It has been used to inform important policy decisions

across a range of countries, including the UK, US, and

Australia [34], [18], [20], [35]. Here, we cover the testing

scenario from the motivating example from Section II.

Like the PLT model, Covasim has already been used in

prior research on causal testing [1]. For our evaluation,

we use the testing scenario from Section II, which has

the DAG shown in Figure 1.

Spanish Flu Model. The Spanish Flu model [36] is an

equation-based susceptible-infected-recovered (SIR) epi-

demiological model, which predicts how the numbers

of individuals susceptible to a disease, infected with

it, and recovered (or dead) evolve over the course of

a pandemic. It has 14 parameters, 7 of which change

over time. Because the model is equation based, there is

no stochasticity, so it is deterministic for any given set

of parameters. This makes the model very different to

Covasim, but still challenging to test since the outcomes

for any given set of parameters are difficult to predict,

and the precise values of the expected outcomes (or even

the parameters) for any given disease may not be known.

We chose this particular model as it has previously been

used in testing research [36], which we could use as a

basis to draw our causal DAG, shown in Figure 6, in

which I is the total number of infections and the other

nodes represent various inputs of the model.

Pm Tr Tm Pt Re Ti

I

Fig. 6: Causal DAG of the Spanish Flu model.

These systems all present a significant testing challenge

in that they are nondeterministic systems which implement

complex behaviour that cannot be easily predicted from the

input configuration. This puts them firmly in the category of

systems that causal testing was designed for. Furthermore, they

are all well used by existing testing literature and sufficiently

well-documented and intuitive that we could draw causal

graphs for our respective testing scenarios.

B. Methodology

Our evaluation consists of two studies2. The first study con-

cerns RQ1 and examines the relationship between the causal

adequacy of a test suite and its ability to detect faults in the

context of the same three subject systems. The second study

concerns RQs 2 and 3, and examines the relationship between

our adequacy metric, the number of system executions, and

code coverage in the context of the three subject systems

discussed above. To facilitate our evaluation, we implemented

Algorithm 1 as a module within the causal testing framework

[1], which we use as a platform to carry out our causal testing.

Our code for this can be found at [12].

Both of our studies required a suite of causal tests for each

of our three systems. To generate our causal tests, we used the

tool from [2] to systematically generate a causal test for each

pair of nodes in the respective DAG. For pairs with an X → Y

edge connecting them, we generated a causal test to validate

either a positive or negative causal effect of treatment X on

outcome Y . For unconnected pairs of nodes, we generated a

causal test to validate the absence of such a causal effect.

Our two studies then involve evaluating the causal tests us-

ing different datasets. As discussed in Section II, this involves

training a statistical model to estimate the causal effect. In all

cases, we used a regression model and used the coefficient of

the treatment variable as our causal effect measure. Since our

goal is to evaluate our causal test adequacy metric rather than

to precisely test each of our subject systems, we did not spend

time precisely tailoring models for each subject system.

1) Study 1: Investigating the relationship between causal

test adequacy and fault finding: To answer RQ1, we carried

out mutation analysis using the python package cosmic_ray

to generate mutants for each system. For each mutant, we

collected data sets of varying sizes, and used these to evaluate

2Code and data for our replication package can be found at [28]. Our
implementation of causal test adequacy forms part of the causal testing
framework [12].



our causal tests. We collected datasets in increments of 10

between 20 and 100 runs, and then in increments of 100

between 100 and 1000 runs. For the Spanish flu model, we

also collected datasets in increments of 1000 between 1000

and 10000 runs as even 1000 points was not enough to reach

convergence.

The values of our input parameters were sampled uniformly

from a range of realistic values for each system. The precise

ranges can be seen in our replication package [28]. To mitigate

for the effect of stochasticity, we used 30 data sets of each size.

We then evaluated our causal test suite using each data set

from each mutant and calculated the mutation score associated

with each data set. For each causal test, we calculated both the

kurtosis and bootstrap pass rate, using 100 bootstrap samples.

Since our systems are stochastic, it is possible for tests to

fail on the original program, especially for small datasets. To

prevent such tests from artificially inflating our mutation score,

we only considered tests which passed on the original program

and failed on the mutant. This is discussed in more detail in

Section IV-D.

To answer RQ1a, we performed a Spearman ρ test to mea-

sure the correlation between kurtosis and mutation score across

all three systems. This gives a value between -1 and 1, with

-1 representing a perfect negative correlation, 1 representing a

perfect positive correlation, and 0 representing no correlation.

We used this test as it is non-parametric, i.e. it does not make

the assumption that the underlying data is normally distributed.

Here, we had to take an average kurtosis across all of the tests

in the test suite for each data set since a mutation score only

applies to test suites3. This essentially tells us the relationship

between the average kurtosis of a test suite and its ability to

detect faults. For kurtoses below zero, we expect a positive

correlation such that increasing the kurtosis improves fault

finding ability. For positive kurtoses, we expect a negative

correlation such that a kurtosis of zero gives the highest fault

finding capability.

To answer RQ1b, we performed another Spearman ρ test,

this time measuring the correlation between the kurtosis and

the number failing tests in the test suite. We measure this

separately for tests which fail on the unmutated program (i.e.

false failures) and on the mutatant (i.e. true failures). This

tells us whether we can use kurtosis as a way of interpreting a

failing test such that we can direct testing effort towards either

collecting additional test data or investigating a potential fault.

2) Study 2: Examining the relationship between causal test

adequacy, coverage, and the number of test executions: To

answer RQs 2 and 3, we collected random data sets of different

sizes, as per the previous study, for each SUT. We measured

the statement coverage associated with each data set and then

used it to evaluate the causal test suite, calculating the causal

test adequacy for each causal test, again using a bootstrap

size of 100. To mitigate for the stochasticity of the subject

3Other aggregations such as the maximum, minimum, and mean absolute
value led to similar results.

systems and data generation, we again collected 30 datasets

of each size with different random seeds.

C. Results and Discussion

1) RQ1 (Fault finding): For kurtoses below zero, we have

the expected positive correlation of 0.23 with p-value of 8.01e-

7 (both to 3sf), so we can expect to discover more mutants as

the kurtosis increases towards zero. For kurtoses above zero,

we have correlation coefficient of -0.168 and a p-value of

1.33e-10 (both to 3 sf.), so we will discover less mutants as

we continue to increase kurtosis beyond zero.

While these results are as expected, the correlations are

weak, and it is possible to achieve a very low mutation score

even with a kurtosis very close to zero. It is therefore worth

noting that kurtosis, like any test adequacy metric, can only be

taken as an indication of the quality of a test set rather than

a direct measure. One contributing factor here may be our

test oracles. Simply looking for positive or negative causal

effects may not detect every mutant. For example, changing

an addition operation to a multiplication would still maintain

a positive relationship between variables, so the causal test

would still pass and the mutant would not be discovered.

Another contributing factor is the fact that we removed tests

which failed on the original program (which we call “false

failures”) when calculating the mutation score. Such tests

cannot then be used to detect mutants. A detailed examination

of our results suggests that this happens more for smaller data

sets with larger kurtoses, but can still happen even with a

kurtosis close to zero, especially for causal independence tests

and when the causal effect between variables is weak. It is

therefore useful to examine how kurtosis affects these false

failures.

Figure 7 shows how the number of failing tests in each

test suite varies with the (averaged) kurtosis. Here, a “false

failure” is a test which has failed on the unmutated version

of the program, so cannot have detected a fault. This can

happen due to the stochastic nature of the systems under test

and the fact that tests are therefore statistical properties over

multiple runs of the system. A “true failure” is a test which has

failed on the mutant, so has detected the fault. The plot shows

two noteworthy results. Firstly, it shows a positive correlation

between the kurtosis and the number of false failures. The

Spearman ρ test gives a coefficient of 0.244 with a p-value

of 0.04. Secondly, it shows that there is negligible correlation

between the kurtosis and the number of true failures (i.e. tests

failing when there is a fault in the system), with the median

kurtosis remaining around zero. Spearman ρ gives a coefficient

of 0.049 with p-value=4.86e-226.

This result is interesting because it shows us how kurtosis

can be used to help interpret a failing test and direct subsequent

testing effort. In essence, if a test fails and has a high kurtosis,

this indicates that the failure may not necessarily be genuine

and that it is worthwhile collecting additional test runs to help

4While p = 0 is theoretically impossible, it indicates that the p-value is too
small to be represented using floating point numbers.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Failures

1

0

1

2

3

4

5

6

7
Ku

rto
sis

False Failures
True Failures

(a) PLT

0 1 2 3 4 5 6 7
Failures

1

0

1

2

3

4

5

6

7

Ku
rto

sis

False Failures
True Failures

(b) Covasim

0 1 2 3 4 5 6
Failures

1

0

1

2

3

4

5

6

7

Ku
rto

sis

False Failures
True Failures

(c) Spanish Flu

Fig. 7: Mutation score vs causal test adequacy for each subject system.

0 10 20 30 40 50 60 70 80 90 100
Statement Coverage (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ku
rto

sis

Poisson Line Process
Covasim
Spanish Flu

Fig. 8: Coverage vs kurtosis for each subject system.

increase the adequacy of the test set. Conversely, if the kurtosis

is close to zero, collecting additional runs of the system may

still change the test outcome, but it is more likely that the

failure is genuine and that there is a problem with either the

system or the test.

There is a statistically significant correlation between

kurtosis and mutation score. Kurtoses close to zero have

better fault detection capability. There is also a statisti-

cally significant, and stronger correlation between kurtosis

and the number of false failures in a test suite, such that

the higher the kurtosis, the more likely it is that a failure

is a result of insufficient data rather than a genuine fault.

2) RQ2 (Coverage): Figure 8 shows statement coverage

plotted against causal test adequacy for the three systems. We

again take the average causal adequacy of each test case in

the respective causal test suites, since each test was executed

with the same test data. A striking result here is that statement

coverage remains almost constant, meaning there is clearly no

relationship with causal test adequacy.

This is not necessarily as surprising as it initially seems

because each of our testing scenarios, represented by the

respective causal DAGs and the test input distribution, can

only exercise a certain amount of program functionality. Once

this has been achieved, further runs of the software will merely

execute the same code with different data values, so will not

affect statement coverage but may still significantly change

causal test adequacy as additional data values may change the

causal effect estimate.

This is especially true for Covasim, which is extremely

stochastic, meaning the estimated causal effect can vary wildly.

When we resample test datasets, especially small ones, we get

a wide and uniform spread of causal effect estimates, leading

to the broad spread of kurtoses we see in Figure 8.

In Figure 8, negative kurtoses are fairly rare, only occurring

in about a third of cases on average. This is because they

only occur for samples with very similar values. Since our test

inputs were generated uniformly, such samples are relatively

uncommon, especially for larger amounts of of test data.

There does not appear to be a relationship between

statement coverage and causal test adequacy. This sug-

gests that statement coverage is not a good indicator as to

whether we have collected enough data for causal testing.

3) RQ3 (Data): Figure 9 shows how causal test adequacy

varies with dataset size for each subject system. Again, causal

adequacy is averaged for each causal test suite. Here, we can

see that kurtosis tends towards zero as we increase the size of

the dataset. This represents our model converging on a stable

estimate, as in Figure 2. Once we reach this point, additional

test executions do not significantly change causal adequacy.

The number of data points that are required to achieve this

convergence is naturally dependent on the system. For the

PLT model, this happens at around 200 data points. For our

Covasim scenario, this happens at around 60 data points. The

Spanish Flu model needs a larger number of data points, only

converging at 5000 runs.

Figure 9 also shows the bootstrap pass rate for each subject

system (again averaged for each test suite). That is, the number



20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Dataset Size

1

0

1

2

3

4

5

6
M

ea
n 

Te
st

 S
ui

te
 K

ur
to

sis

0

10

20

30

40

50

60

70

80

90

100

Pa
ss

in
g 

Te
st

s (
%

)

(a) PLT

20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Dataset Size

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
ea

n 
Te

st
 S

ui
te

 K
ur

to
sis

0

10

20

30

40

50

60

70

80

90

100

Pa
ss

in
g 

Te
st

s (
%

)

(b) Covasim

20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Dataset Size

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n 
Te

st
 S

ui
te

 K
ur

to
sis

0

10

20

30

40

50

60

70

80

90

100

Pa
ss

in
g 

Te
st

s (
%

)

(c) Spanish Flu

Fig. 9: Dataset size vs causal test adequacy for each subject system.

of bootstrap samples for which the inferred model led to a

passing outcome. Here, we are looking for all tests to pass

since there are no (known) faults in the program. We see that

as the kurtosis tends towards zero, the percentage of passing

tests tends towards 100%, and that the two measures converge

at a similar number of observed executions.

This result ties in nicely to Weyuker’s inference adequacy

[11], which deems a test suite adequate if it enables the

inference of a model which matches the behaviour of both the

specification and the implementation. Here, the bootstrap pass

rate effectively gives us a relatively fine-grained way to assess

whether the test data matches the specification, i.e. whether

the expected causal effect is present.

Kurtosis tends towards zero as we observe increasingly

many test executions. At the same time, the bootstrap

pass rate tends towards 100%. The two measures appear

to converge after similar numbers of data points, after

which additional executions no longer improve adequacy.

However, the precise number of data points required

varies greatly between systems.

D. Threats to Validity

1) Threats to internal validity: In study 1, our mutation

scores ignore tests which failed on the original program.

This likely reduces our overall mutation scores as it reduces

the number of tests which can be used to detect a mutant,

potentially affecting the correlation between mutation score

and test adequacy. However, the alternative to this would

be to include such tests, which would have falsely inflated

our mutation scores, again potentially affecting the correlation

between kurtosis and mutation score.

In both studies 2 and 3 our test inputs were generated

uniformly. This gives rise to the risk that different distributions

could have led to differently sized data sets with different

coverage. We opted for the uniform distribution because

this mitigates the risk of cherry-picked data values biasing

results, and amounts to the tests that would be generated by

conventional random testing [37].

2) Threats to external validity: In studies 2 and 3, our sub-

ject systems were published computational models written in

Python. While the three systems have very different domains,

causal structures and implementation styles, our results were

consistent across all three systems. In our future work we will

investigate other types of systems to ensure that the results

generalise.

Our conclusions from RQ1 (relationship with fault finding

ability) are based on the use of mutation analysis. For this we

used the Cosmic Ray mutation engine. This gives rise to the

threat that the mutants used here are not reflective of genuine

faults. One focus of future work would be to replicate this

study on curated sets of real faults, such as Defects4J [38].

V. RelatedWork

There is a plethora of software test adequacy metrics in the

literature [39]. Many of these are related to code elements,

with the general approach being to cover some sort of graph

representation. While Weyuker has presented seven axioms

which all test adequacy metrics should follow [40], several of

these are specifically related to implementational elements of

a program, so cannot be applied here.

In the context of testing scientific models, techniques such

as sensitivity [41] and uncertainty analysis [42] are often

employed, but these techniques do not solve the problem

of determining how many test inputs are sufficient, and can

require prohibitively many test executions [43]. While surro-

gate modelling [44], [45] can provide an economical way of

approximating the output of the system, thereby enabling more

test inputs to be run, the problem of judging how many test

inputs to run still remains. Causal test adequacy addresses this

problem by providing an estimate as to whether sufficiently

many runs have been observed that additional runs are not

likely to change the output of the inferred model.

In the field of health economics, providing evidence of

model convergence is a key issue. This is typically addressed

by collecting a predefined “large number” of data points such

as 1000 or 10000 [23], [24]. One technique [46] suggests

using the confidence intervals around the mean outcome,

with the dataset being deemed to be sufficient once these

confidence intervals no longer contain zero. However, as

discussed in Section II, this does not indicate whether the



model has reached the point of convergence. Our causal test

adequacy metric directly tackles this, and provides an estimate

of whether convergence has been reached.

In this paper, and other works on causal testing [1], [2],

it is assumed that causal DAGs are specified manually by a

domain expert. While this is widely accepted in fields such

as epidemiology and social sciences, there are two potential

methods that could, in theory, (partially) automate this process.

Firstly, causal DAGs can be generated using static analysis of

source code [47], [48]. Secondly, the field of causal discovery

(CD) [49] provides methods to infer causal structures from

data by exploiting asymmetries that distinguish association

from causation [50]. Furthermore, one work [51] places a

bound on the number of samples needed for this. However,

they only do so in the context of generalisation rather than

causal discovery. Additionally, for all of these techniques, it

must be noted that any faults in the source code would also

be reflected in the DAG, meaning the correctness DAG would

still need to be validated.

As with Weyuker’s inference adequacy [11], causal test

adequacy is based on the ability to infer a model from test data.

This aspect of our work relates to a significant body of work

on machine learning approaches for inferring models from

test executions. Most of these techniques work in the context

of regression testing, where the inferred model represents

correct behaviour which can then be used to identify any faults

arising in subsequent software versions. The inferred models

include standard linear regression [52], state machines [53],

and decision trees [54] amongst others. What distinguishes

our work from these techniques is that, as with Weyuker’s

original work [11], we are specifically focussed on providing

an estimate of the adequacy of the test set. However, where

[11] seeks to infer an accurate behavioural model, causal

test adequacy seeks to infer a stable one. This enables our

technique to judge the adequacy of tests which assert that

certain aspects of the program should not be related, in

which cases the inference of an accurate model should not

be possible, thereby limiting the applicability of inference

adequacy.

VI. Conclusion

A critical question when testing software systems is “at what

point can we stop testing?” [6]. For nondeterministic, hard to

test software such as computational models, this question is

particularly challenging to answer since there is not a one

to one correspondence between tests and system executions.

Instead, tests tend to be phrased as statistical properties over

multiple executions, with the same set of executions potentially

being used to evaluate multiple tests [1]. This, in addition

to the relatively poor correlation with the ability to expose

faults [9], [10], makes traditional coverage based metrics

inappropriate here.

In this paper, we have presented a causality-driven test

adequacy metric which indicates whether we have observed

enough program executions to enable model convergence. That

is, whether the observation of additional program executions

would change our estimated causal effect. We do this by

measuring the kurtosis of the causal effect estimates calculated

using bootstrap samples of the test data, with a kurtosis of zero

being optimal. We also measure and report the number of these

bootstrapped estimates which lead to a passing test outcome.

Our evaluation suggests that, as we observe more executions

of the software, the kurtosis converges on zero, and the

bootstrap pass rate approaches 100%. However, there is no

relationship with code coverage which, in our systems at least,

remained more or less constant no matter how many runs

are observed. There is a statistically significant correlation

between kurtosis and mutation score, implying that test suites

with a kurtosis closer to zero are better able to find faults.

Furthermore, there is also a significant positive correlation

between the kurtosis of a test suite and the number of tests that

fail because of a lack of data, as opposed to the presence of an

actual fault. Tests with a kurtosis closer to zero indicate that the

failure is more likely to be genuine. This gives an indication as

to whether testing effort is better spent investigating a potential

fault or simply collecting additional runs of the software.

In future work, we plan to examine how causal test ade-

quacy can be used to more efficiently generate datasets for

causal testing. For example, the datasets we used in our

evaluation were of a fixed size and sampled uniformly. Instead,

we could pair our technique with some form of adaptive

random testing [55] to generate datasets which give close to

zero kurtosis for all causal tests in a test suite. We could also

include a search for boundary values [56] to help ensure we

sufficiently exercise all of a system’s functionality.

Currently, causal test adequacy evaluates the suitability of

a dataset to evaluate a single causal test. A desirable line of

future work would be to investigate ways to aggregate this

to provide the user with a single, meaningful value which

covers the entire DAG (i.e. causal test suite). We believe this

would improve the intuitive usability of causal test adequacy,

especially if we could provide a percentage adequacy in line

with common traditional metrics.

Furthermore, we intend to investigate the applications of

this metric beyond causal, or indeed software, testing as it

essentially presents a way of judging model convergence. For

example, this seems to be an important problem in the field of

health economics, as their current state of the art [46] admits to

being “essentially arbitrary”. With a more robust mathematical

analysis, our causal test adequacy could potentially provide a

more systematic solution.

References

[1] A. G. Clark, M. Foster, B. Prifling, N. Walkinshaw, R. M. Hierons,
V. Schmidt, and R. D. Turner, “Testing causality in scientific modelling
software,” ACM Trans. Softw. Eng. Methodol., 2023, just Accepted.

[2] A. G. Clark, M. Foster, N. Walkinshaw, and R. M. Hierons, “Metamor-
phic testing with causal graphs,” in 2023 IEEE Conference on Software

Testing, Verification and Validation (ICST). IEEE, 2023, pp. 153–164.

[3] C. M. Poskitt, Y. Chen, J. Sun, and Y. Jiang, “Finding causally
different tests for an industrial control system,” in Proceedings of

the 45th International Conference on Software Engineering, ser.
ICSE ’23. IEEE Press, 2023, p. 2578–2590. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00215



[4] L. Giamattei, R. Pietrantuono, and S. Russo, “Reasoning-based software
testing,” 2023. [Online]. Available: https://arxiv.org/abs/2303.01302

[5] E. J. Weyuker, “On testing non-testable programs,” The Computer

Journal, vol. 25, no. 4, pp. 465–470, 1982. [Online]. Available:
https://doi.org/10.1093%2Fcomjnl%2F25.4.465

[6] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1483–1498, 1988.

[7] A. Arcuri and L. Briand, “Adaptive random testing: An illusion of
effectiveness?” in Proceedings of the 2011 International Symposium on

Software Testing and Analysis, 2011, pp. 265–275.

[8] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage
at google,” in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 955–963.

[9] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th international

conference on software engineering, 2014, pp. 435–445.

[10] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An
empirical study on mutation, statement and branch coverage fault
revelation that avoids the unreliable clean program assumption,” in
2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE). IEEE, 2017, pp. 597–608.

[11] E. J. Weyuker, “Assessing test data adequacy through program infer-
ence,” ACM Trans. Program. Lang. Syst. Transactions on Programming

Languages and Systems, vol. 5, no. 4, pp. 641–655, 1983.

[12] C. Wild, M. Foster, N. Walkinshaw, A. Clark, F. Allian, and R. Somers,
“CITCOM Software Release,” 2023. [Online]. Available: https://orda.
shef.ac.uk/articles/software/CITCOM_Software_Release/24427516

[13] J. Pearl, The book of why : the new science of cause and effect. London,
UK: Penguin Books, 2019.

[14] S. F. O’Brien and Q. L. Yi, “How do i interpret a confidence interval?”
Transfusion, vol. 56, no. 7, pp. 1680–1683, 2016.

[15] M. A. Hernán and J. M. Robins, Causal Inference: what if. Boca Raton:
Chapman & Hall/CRC, 2020.

[16] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld,
G. R. Hart, R. C. Núñez, J. A. Cohen, P. Selvaraj, B. Hagedorn et al.,
“Covasim: an agent-based model of COVID-19 dynamics and interven-
tions,” PLOS Computational Biology, vol. 17, no. 7, p. e1009149, 2021.

[17] Institute for Disease Modelling, “Covasim,”
https://github.com/InstituteforDiseaseModeling/covasim, 2022.

[18] C. C. Kerr, D. Mistry, R. M. Stuart, K. Rosenfeld, G. R. Hart, R. C.
Núñez, J. A. Cohen, P. Selvaraj, R. G. Abeysuriya, M. Jastrzębski et al.,
“Controlling COVID-19 via test-trace-quarantine,” Nature Communica-

tions, vol. 12, no. 1, pp. 1–12, 2021.

[19] J. A. Cohen, D. Mistry, C. C. Kerr, and D. J. Klein, “Schools are not
islands: Balancing covid-19 risk and educational benefits using structural
and temporal countermeasures,” medRxiv, 2020.

[20] J. Panovska-Griffiths, C. C. Kerr, R. M. Stuart, D. Mistry, D. J. Klein,
R. M. Viner, and C. Bonell, “Determining the optimal strategy for
reopening schools, the impact of test and trace interventions, and the
risk of occurrence of a second COVID-19 epidemic wave in the uk: a
modelling study,” The Lancet Child & Adolescent Health, vol. 4, no. 11,
pp. 817–827, 2020.

[21] N. Scott, A. Palmer, D. Delport, R. Abeysuriya, R. Stuart, C. C. Kerr,
D. Mistry, D. J. Klein, R. Sacks-Davis, K. Heath et al., “Modelling the
impact of reducing control measures on the COVID-19 pandemic in a
low transmission setting,” Med J Aust, vol. 214, no. 2, pp. 79–83, 2020.

[22] E. Bareinboim and J. Pearl, “Causal inference and the data-fusion
problem,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 113, no. 27, pp. 7345–7352, 2016.
[Online]. Available: https://www.jstor.org/stable/26470690

[23] A. Hatswell, A. Bullement, M. Paulden, and M. Stevenson,
“Probabilistic sensitivity analysis in health economic models; how
many simulations should we run?” Value in Health, vol. 20, no. 9, p.
A746, 2017. [Online]. Available: https://doi.org/10.1016%2Fj.jval.2017.
08.2074

[24] A. H. Briggs and A. M. Gray, “Handling uncertainty when performing
economic evaluation of healthcare interventions,” Health Technology

Assess, vol. 3, no. 2, pp. 1–134, 1999.

[25] C. Z. Mooney, R. D. Duval, and R. Duvall, Bootstrapping: A nonpara-

metric approach to statistical inference. sage, 1993, no. 95.

[26] L. T. DeCarlo, “On the meaning and use of kurtosis,” Psychological

Methods, vol. 2, no. 3, pp. 292–307, 1997.

[27] H. Fischer, A History of the Central Limit Theorem. New York:
Springer, 2011.

[28] M. Foster, C. Wild, R. Hierons, and N. Walkinshaw, “Causal Test
Adequacy,” 2023. [Online]. Available: https://orda.shef.ac.uk/articles/
dataset/Causal_Test_Adequacy/24422104

[29] P. R. et al., “Empirical standards for software engineering research,”
2021.

[30] R. Guderlei and J. Mayer, “Statistical metamorphic testing testing
programs with random output by means of statistical hypothesis tests and
metamorphic testing,” in Seventh International Conference on Quality

Software (QSIC 2007). IEEE, 2007, pp. 404–409.

[31] V. V. Chetlur and H. S. Dhillon, “Coverage analysis of a vehicular
network modeled as cox process driven by poisson line process,” IEEE

Transactions on Wireless Communications, vol. 17, no. 7, pp. 4401–
4416, 2018.

[32] F. Morlot, “A population model based on a poisson line tessellation,”
in 2012 10th International Symposium on Modeling and Optimization

in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE, 2012, pp.
337–342.

[33] D. Shin, A. Kirmani, A. Colaço, and V. K. Goyal, “Parametric poisson
process imaging,” in 2013 IEEE Global Conference on Signal and

Information Processing, IEEE. IEEE, 2013, pp. 1053–1056.

[34] J. Panovska-Griffiths, C. C. Kerr, W. Waites, R. M. Stuart, D. Mistry,
D. Foster, D. J. Klein, R. M. Viner, and C. Bonell, “The potential
contribution of face coverings to the control of sars-cov-2 transmission
in schools and broader society in the uk: a modelling study,” 2020.

[35] R. M. Stuart, R. G. Abeysuriya, C. C. Kerr, D. Mistry, D. J. Klein,
R. Gray, M. Hellard, and N. Scott, “The role of masks in reducing the
risk of new waves of covid-19 in low transmission settings: a modeling
study,” 2020.

[36] L. L. Pullum and O. Ozmen, “Early results from metamorphic testing
of epidemiological models,” in 2012 ASE/IEEE International Conference

on BioMedical Computing (BioMedCom). IEEE, 2012.

[37] R. Hamlet, “Random testing,” 2002. [Online]. Available: https:
//doi.org/10.1002%2F0471028959.sof268

[38] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in Pro-

ceedings of the 2014 International Symposium on Software Testing and

Analysis. New York: ACM, 2014.

[39] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, p. 366–427, 1997.

[40] E. J. Weyuker, “Axiomatizing software test data adequacy,” IIEEE Trans.

Software Eng. Transactions on Software Engineering, vol. SE-12, no. 12,
pp. 1128–1138, 1986.

[41] J. E. Oakley and A. O’Hagan, “Probabilistic sensitivity analysis of
complex models: a bayesian approach,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 66, no. 3, pp. 751–769,
2004.

[42] I. Farajpour and S. Atamturktur, “Error and uncertainty analysis of
inexact and imprecise computer models,” Journal of Computing in Civil

Engineering, vol. 27, no. 4, pp. 407–418, 2013.

[43] S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” Journal of statistical planning and

inference, vol. 140, no. 3, pp. 640–651, 2010.

[44] E. T. Chang, M. Strong, and R. H. Clayton, “Bayesian sensitivity
analysis of a cardiac cell model using a Gaussian process emulator,”
PloS one, vol. 10, no. 6, p. e0130252, 2015.

[45] I. Vernon, M. Goldstein, and R. Bower, “Galaxy Formation:
Bayesian History Matching for the Observable Universe,” Statistical

Science, vol. 29, no. 1, pp. 81 – 90, 2014. [Online]. Available:
https://doi.org/10.1214/12-STS412

[46] A. J. Hatswell, A. Bullement, A. Briggs, M. Paulden, and
M. D. Stevenson, “Probabilistic sensitivity analysis in cost-
effectiveness models: Determining model convergence in cohort
models,” PharmacoEconomics, vol. 36, no. 12, pp. 1421–1426, 2018.
[Online]. Available: https://doi.org/10.1007%2Fs40273-018-0697-3

[47] A. Podgurski and Y. Küçük, “Counterfault: Value-based fault local-
ization by modeling and predicting counterfactual outcomes,” in 2020

IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2020, pp. 382–393.

[48] S. Lee, D. Binkley, R. Feldt, N. Gold, and S. Yoo, “Causal program
dependence analysis,” 2021.

[49] D. Malinsky and D. Danks, “Causal discovery algorithms: A practical
guide,” Philosophy Compass, vol. 13, no. 1, p. e12470, 2018.



[50] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery
methods based on graphical models,” Frontiers in genetics, vol. 10, p.
524, 2019.

[51] T. Kyono, Y. Zhang, and M. van der Schaar, “Castle: Regularization via
auxiliary causal graph discovery,” 2020.

[52] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and
M. Arratibel, “Using machine learning to build test oracles: an industrial
case study on elevators dispatching algorithms,” in 2021 IEEE/ACM

International Conference on Automation of Software Test (AST). IEEE,
2021, pp. 30–39.

[53] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” Empirical Software

Engineering, vol. 21, pp. 811–853, 2016.
[54] L. C. Briand, Y. Labiche, Z. Bawar, and N. T. Spido, “Using machine

learning to refine category-partition test specifications and test suites,”
Information and Software Technology, vol. 51, no. 11, pp. 1551–1564,
2009.

[55] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive
random testing: The ART of test case diversity,” Journal of Systems

and Software, vol. 83, no. 1, pp. 60–66, 2010. [Online]. Available:
https://doi.org/10.1016%2Fj.jss.2009.02.022

[56] F. Dobslaw, R. Feldt, and F. de Oliveira Neto, “Automated black-box
boundary value detection,” 2022.


	Introduction
	Background
	Software Test Adequacy
	Causal Testing
	Running Example: Testing Causality in a COVID Model
	Motivation
	Statistical Techniques
	Bootstrapping
	Kurtosis


	Causal Test Adequacy
	Computing Causal Test Adequacy
	Resampling (line 3)
	Effect Estimation (lines 5-8)
	Kurtosis (line 9)
	Test Outcomes (lines 10-11)

	Example Application

	Evaluation
	Subject Systems
	Methodology
	Study 1: Investigating the relationship between causal test adequacy and fault finding
	Study 2: Examining the relationship between causal test adequacy, coverage, and the number of test executions

	Results and Discussion
	RQ1 (Fault finding)
	RQ2 (Coverage)
	RQ3 (Data)

	Threats to Validity
	Threats to internal validity
	Threats to external validity


	Related Work
	Conclusion
	References

