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Abstract 

Machine learning presents opportunities for tracking evidence on climate change adaptation, 

including text-based methods from Natural Language Processing. In theory, such tools can 

analyse more data in less time, using fewer resources, and with less risk of bias. However, the 

first generation of adaptation studies only deliver proof-of-concepts. Reviewing these first 

studies, we argue that future efforts should focus on creating more diverse datasets, 

investigating concrete hypotheses, fostering collaboration and promoting “machine learning 

literacy,” including understanding bias. More fundamentally, machine learning enables a 

paradigmatic shift towards automating repetitive tasks and makes interactive ‘living evidence’ 

platforms possible. Broadly, the adaptation community is failing to prepare for this shift. 

Flagship projects by organisations like the IPCC could help lead the way.  
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Introduction 

As the climate crisis continues, the need to respond to unavoidable impacts is increasing. This 

is known as adaptation – “[t]he process of adjustment to actual or expected climate and its 

effects in order to moderate harm or exploit beneficial opportunities” 6, Box TS.1. Consequently, 

the importance of tracking adaptation also increases: good high-level overviews of adaptation 

efforts can help communities learn from each other and direct resources to where they are 

most needed7. Yet despite political urgency 8, par. 74-77 and a multitude of frameworks and 

methodologies to do this 9-12, global tracking of the effectiveness and progress of adaptation 

actions has proven difficult 13,14. Current efforts tend to use proxies, including policies texts or 

funding flows 9,10,15 or they document the state of scientific evidence, for example in the form 

of systematic maps 4,5,16. Such approaches do not measure adaptation outcomes – i.e. how 

much risk is being reduced – but they do provide insight into adaptation processes – i.e.  where 

and how adaptation is taking place.  

In the age of ‘Big Literature’ 19,  part of the problem is the sheer volume and variety of the 

evidence base – e.g. tens of thousands of climate change papers are published each year 23, 

with adaptation evidence often stemming from case studies 24. Evidence of ongoing adaptation 

processes at the same time has become more widely available due to digitalisation and the 

increasing interest in adaptation in general 5..  

Additionally, there is an ongoing debate on how to define adaptation in general 25,26, and 

adaptation success 9,13 in particular. Add to this the urgency of the climate crisis, and it 

becomes clear that any attempt to track adaptation progress will need to be at the 

simultaneously capable of rapidly handling large and varied datasets, while still remaining 

sensitive to fine-grained distinctions and context-dependant meanings.  

In theory, this is exactly what Machine Learning (ML) promises: taking human-like decision 

at scale rapidly 27,28. 



3 
 

Recently, that promise is increasingly put to the test in a first generation of articles that use 

ML methods to assess adaptation evidence in practice 5,7,29-31. The goal of this Perspective is to 

contrast these two strands of literature – the theoretical potential and the practical application 

of ML for adaptation tracking – as there appears to be a mismatch: while the former paints an 

overwhelmingly positive image of both current and future ML, the newly emerging 

experiences of those who have done this work are more mixed.  

We include ourselves in that last category, having piloted various ML methods in an 

adaptation context. Our expertise lies especially with Natural Language Processing (NLP), 

which, as a field, analyses all sorts of text, from social media posts to policy documents. This 

Perspective is rooted these personal experiences and related literature on tracking evidence 

through textual data; readers interested in ML applications for areas like image processing, 

remote sensing and risk modelling may wish consider additional literature also 32-34.  

Overall, despite all concerns and criticisms voiced here, we continue to believe that ML could 

transform climate change research in general and adaptation research in particular. However, 

realising this potential will require researchers and practitioners to be clear-eyed about the 

limitations of ML and to think strategically on where it can best be applied. Big Literature and 

ML, like climate change, are here to stay. The adaptation community urgently needs to discuss 

how to make the most of it.  

Machine Learning: both cutting-edge and established 

Theoretical papers on ML and adaptation tend to focus on the future potential of ML, 

describing it as being novel and relatively unexplored 27-29,35. In the meantime, a first 

generation of application studies has emerged. A rapid review of the literature which either 

uses or substantially discusses the use of machine learning for adaptation evidence finds 54 

relevant papers in Web of Science and Scopus (see Supplementary Materials for the protocol 

and included papers). Note that this excludes virtually all modelling and remote sensing work: 

although ML applications are gaining ground here too, 32-34 these studies typically assess 

impacts and risks, rather than adaptation. Consequently, the works discussed here largely rely 
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on textual data. As stated, this is also where our personal expertise lies. Additionally, a 

substantial number of additional papers discusses ML in contexts closely related to 

adaptation, such as vulnerability, climate change in general, or sustainability. These are not 

included in our review but do support the notion that ML approaches are gaining traction. 

Table 1: examples of studies using machine learning in an adaptation context. The full list 

of articles can be found in the Supplementary Materials. LDA = Latent Dirichlet Allocation; 

COP = Conference of the Parties, the main United Nations forum for climate change.  

Reference Dataset ML method Sample findings 

Berrang-

Ford et al., 

2021 7 

Primary research 

articles indexed in 

Web of Science, 

Scopus or 

Medline 

Supervised learning to 

select and categorise 

implemented 

adaptation projects; 

pre-trained algorithm 

to extract geographic 

locations 

Number of adaptation 

projects growing quickly, but 

research gaps persist: 

evidence is largely local and 

fragmented; evidence on 

transformational adaptation 

is limited. 

Biesbroek et 

al., 2022  

UNFCCC 

National 

Communications 

Structural Topic Model 

(unsupervised learning) 

Emphasis is on climate 

impacts, but shifting towards 

adaptation, governance and 

vulnerability; significant 

North-South differences 

Boussalis et 

al., 2019 36 

Press releases of 

82 cities in the 

United States 

Support Vector 

Machine (supervised 

learning) to select 

climate-relevant texts; 

content analysis using 

seeded LDA 

(unsupervised learning 

with some user input) 

Salience of adaptation is 

increasing overall; cities that 

are especially vulnerable 

discuss adaptation more, 

including some cities with 

Republican mayors. 

Lesnikowski 

et al., 2019 
29 

Speeches at 

COPs; council 

minutes from 25 

municipalities in 

Canada 

LDA (unsupervised 

learning) 

Disconnect in the discourse: 

Global South focusses on 

adaptation planning and 

feasibility; North on finance 

and overlaps with mitigation. 

Municipalities focus on 

extreme events and the built 

environment.  

Zander et 

al., 2022 37 

Hand-selected 

primary research 

articles on human 

mobility and the 

environment in 

Scopus 

LDA (unsupervised 

learning) with a 

clustering algorithm 

(not machine learning) 

Literature is diverse; 

Adaptation and impact 

literature relatively separate; 

focus on sudden hazards over 

long-term climate change. 
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All included papers are published in or after 2015 and 40 of these contain primary research; 

the remainder describes theory or are literature reviews. We summarize the findings of a few 

illustrative studies in Table 1.  

Although many different ML methods exist, the extant literature mostly uses a fairly small 

subset of methods, especially topic models and other clustering algorithms 16,31,36-43. Topic 

models are used to create an overview of a collection of texts by identifying and quantifying 

topics – i.e. groups of words that occur frequently together in a subset of the documents.  

Common topic models, such as Latent Dirichlet Allocation (LDA), are over two decades old  

and extremely widely cited 44.   

Such unsupervised machine learning seeks patterns in the input data without needing any 

kind of hand-labelled data. This means they are more or less “plug and play”: find a dataset, 

run the model, and you will get results fairly quickly.  

Of course, gathering and preparing data could still be time intensive, for example when to the 

data come from survey responses 43,45. Generally though, adaptation researchers opt for 

existing datasets, such as self-reported data from cities 38,39, or for data that is relatively easy 

to obtain in a structured manner, such as UNFCCC documents 29,31,42 and especially scientific 

literature 5,16,37,46.  Note that in all these cases, text-based data are used as a proxy for 

adaptation processes; evaluation of outcomes is generally not possible based on these data. 

Further, these datasets tend to have poor coverage in the Global South, even though 

adaptation needs here are generally high 5,16,31. 

Supervised machine learning by contrast is less commonly used for adaptation. These types 

of methods “learn” from a so-called training set with labelled data. For example, human coders 

can screen scientific or policy documents to see whether they deal with “adaptation” or not; 

the ML model then learns from these examples to select adaptation documents from a much 

larger unseen text corpus  5,7,16,30. By contrast, if the same body of text is given to an 

unsupervised model, it will look for patterns, but there is no guarantee that the pattern it finds 
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distinguishes between adaptation and non-adaptation. Supervised methods therefore have a 

clear advantage: they can be trained to perform a specific pre-determined task. The 

disadvantage however is equally clear: labelled data is rare and producing the required labels 

can be costly.  

Still, some adaptation-relevant papers have used supervised methods 5,7,16,30,47,48, and here 

again we find that these projects tend to rely on relatively well-established implementations, 

including Support Vector Machines 5,7,36,49 and Neural Nets 30,47,48. The specific workings of 

these widely used models are discussed elsewhere 50,51 as both have a wide variety of use cases, 

but in the extant NLP-adaptation literature, they are typically used for categorising texts in a 

supervised manner. There are not many examples of Large Language Models (LLMs) or 

Transformer Models used for adaptation4,52,53 – the relatively small Transformers-based 

ClimateBERT is a noteworthy recent addition here. Such models have been trained on large 

text corpora to gain a relatively detailed general understanding of language, which in turn 

allows them to perform well on a variety of NLP tasks through so-called “transfer learning” 54. 

There are also pre-trained models 5,16,38,42,55 – i.e. ML algorithms that have been trained 

already on a different dataset for a specific task. Adaptation scholars generally use these for 

the relatively well-known tasks of sentiment analysis (i.e. identifying what emotion is 

associated with a statement) or identifying geographic locations.  

In sum, based on this scoping review, the prevailing image is that ML applications for 

adaptation tracking so far mostly provide a first proof-of-concept using established methods 

and data. This is understandable: when trying something new, it makes sense to start with 

well-documented approaches. However, given that we find a few dozen examples of recent ML 

projects in adaptation, we argue that broadly, the concept has already been shown to work – 

or at least, has shown enough promise to warrant further development.  

Two next steps are important for the field to make a transition from the first generation of 

applications to a more mature use of ML for adaptation tracking: 1) to learn from best practices 
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and common pitfalls, where the literature is relatively mature; 2) to reflect on both the 

strategic priorities field and the opportunities afforded by machine learning methods that are 

still emerging. We will discuss each in turn. 

Promise meets practice 

Subsequently, we take three of the most oft-repeated promises of ML in the adaptation 

tracking literature and provide critical reflections, as well as ideas on how to make progress. 

We summarize each point in Table 2.  

Table 2: Comparison of the theoretical promises of Machine Learning (ML) against the 

practical findings of projects which use ML to analyse adaptation evidence from text data, 

with some suggestions on how to move forward. Each of the rows is elaborated upon in the 

subsequent sections. 

Promise Practice Progress 

Scale: ML methods can 

analyse more (diverse) data 

in less time. 

Time savings possible, but 

data availability and 

heterogeneity frequently a 

limitation. 

Prioritise projects using new 

data sources; establish and 

share systematically 

collected datasets. 

Efficiency: ML approaches 

require fewer resources, 

including less expertise, for 

complex assessments. 

Technical- and subject-

specific expertise required, 

sometimes in same person; 

current lack leads to bad 

science. 

Collaboration within 

universities and flagship 

projects; provide training on 

basics; actively develop and 

require standards.  

Discovery: ML methods 

are value free tools that can 

provide unbiased novel 

insights. 

Biases in data remain, bias in 

models harder to counteract; 

models are good at creating 

general overviews but not at 

critical assessments. 

Combine multiple datasets 

in one project; at the outset 

of the project, set clear goals 

and hypotheses.  

Time savings are possible but data are a bottleneck 

The most-cited reason to use ML for adaptation tracking is its ability to assess more data in 

less time. This is an exciting promise, and the good news is that ML often manages to deliver 

on this in practice.  

Supervised methods have shown good results for literature reviews in particular and these 

need not require any programming skills: there are multiple off-the-shelf platforms which use 

NLP methods to prioritise documents that are likely to be relevant 56,57. This can cut the review 

time in half or less 56,58. Such approaches are especially useful for searches that return a few 
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thousand results, of which perhaps a few hundred are relevant, meaning that after the initial 

screening, detailed analysis can still take place by hand. These kinds of numbers are common 

for reviews of sub-topics within adaptation 59-61. 

For even larger subjects, it may be better to train a new ML-model 56. This requires additional 

knowledge and time to set up and annotate the training data. Based on our personal 

experience, training a supervised model to select relevant abstracts of scientific papers often 

requires a few hundred positive examples, depending on the complexity of the task which, in 

our experience, often translates to 2-4 thousand screened articles. This implies a significant 

amount of time labelling articles – even if one article would cost one minute to label, that is 

around 50 hours – but if the complete search returned, for example, 15 thousand documents, 

manual screening of all abstracts would take roughly 5 times longer still. Larger searches may 

benefit even more 4,5 though care should be taken that this also increases the risk that some 

areas of the literature are not sufficiently present in the training sample, which would lead 

them to be under-represented in the final outcome.  

The picture changes somewhat when we consider unsupervised NLP methods such as topic 

modelling or word embeddings from LLMs. Because there is no need for a labelled training 

set, the most time-consuming component of many supervised approaches is removed. This 

means the time investment is broadly similar to for example bibliometric analyses; however 

those rely on relatively crude heuristics (e.g. keywords or the number of times a single word is 

used), whereas methods like topic modelling can provide more granular insights into the 

content of a document set. Note, conversely, that meaningful validation of unsupervised 

methods can be complex and time intensive, requiring a mixture of statistical and quantitative 

methods 62– a step that is often marginalized in practice. Overall, unsupervised ML is not 

necessarily quicker than established alternatives, but it can provide detailed insights relatively 

easily, making it well-suited to exploratory analyses and tracking trends in larger datasets 

where more qualitative analyses are no longer feasible.  
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This begs the question of what an appropriate size dataset is. The lower limit depends on both 

the model and the task. When tracking evidence from text data, this limit is most likely to be 

a concern for specialist topics: the model probably needs more examples to “learn” to make 

the required fine-grained distinctions, but at the same time, these specialist examples are rare 

and therefore difficult to find. Additionally, for such smaller datasets, manual analysis is 

usually feasible and will provide more detailed insights, so the added value of ML is negligible. 

In our experience, for document analysis, machine learning tools therefore are useful if there 

are at least a few hundred documents on the subject of interest. 4,5,16 Note however that this 

threshold may be lowered in the near future; LLMs in particular are getting better at a wide 

range of tasks,  which include zero-shot learning63 and generating synthetic data 64. More 

generally, their “emergent abilities” 65 mean they are capable of performing tasks which they 

were never formally trained for at all. While promising, this also highlights the urgent need for 

evaluating the performance and trustworthiness of such models. 

The upper limit on dataset size is even less clear. One limiting factor may be computing power; 

especially when using LLMs like ChatGTP or Bard, or when training Transformer models like 

BERT and its successors, computer clusters with generous amounts of memory and graphics 

cards may be required. Less well-resourced projects therefore may reasonably consider 

whether the improvements in classifier performance are worth this cost. Still, the wide 

availability of cloud computing platforms and Application Programming Interfaces (API) 

means that the size of the dataset is rarely, if ever, the main limitation for well-resourced NLP 

projects.  

Instead, the upper limit is often set by data availability and heterogeneity. As noted earlier, 

adaptation tracking literature to date tends to focus on well-established data sources. A 

common suggestion is that future research should include more diverse sources, especially so-

called “grey literature”. However, combining different datasets or manually annotating data is 

time intensive, and grey literature in particular is difficult to work with: the Global Adaptation 

Mapping Initiative 7 relied on a large team of 126 researchers, but even this proved insufficient 
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to systematically include grey literature. Relatedly, Hsu and Rauber 39 provide one of the few 

examples where a substantial number of databases are combined, but they still caution that  

their data largely originates from Europe and “is limited by the lack of time-series data, regular 

and repeated reporting on climate actions, strategies, and policies” (p. 9). In other words, 

rather than analysing “more data in less time”, often, NLP projects analyse “more of the same 

data in less time” because different data might not exist or are too difficult to retrieve 

systematically.  

This is not to say that including alternative sources should not be done, but rather that it will 

take considerably more effort in the absence of standardised databases 66 and methods. 

Researchers could, for example, use web scrapers to specifically target government websites 

of areas where traditional data coverage is poor (e.g. many areas in the Global South). 

Combining different sources will require additional experimentation, for example with 

automated summarisers to create document sets of a more homogenous length, by translating 

non-English data automatically, or by using multi-language models. For adaptation tracking 

in scientific texts, we see a large role for database providers and libraries 67 who could more 

systematically index non-academic sources and make them available in a standardised 

computer-readable format. This would broaden the scope of reviews in general, as well as 

making it easier to leverage the time savings and broader scope of ML-assisted reviews. 

Topical expertise and machine learning literacy both needed 

A second commonly cited promise of ML approaches is that they can efficiently handle 

complex data. Because ML systems can adapt to a wide variety of inputs and can learn to make 

relatively granular distinctions without explicitly being programmed to, the implication is that 

ML approaches require smaller teams who need to spend less time becoming a topical expert 

as “the computer” in many ways does the heavy lifting. In practice however, this is not only 

untrue but can also lead to bad science, including poorly designed or executed research and 

problems with peer review.  
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Even if technical skill could substitute topical expertise, these technical skills are often lacking 

in the adaptation community 27,29. Platforms and well-designed tools may lower this barrier to 

entry, and the difficulty of writing computer code itself may also decrease as ML models 

become better at translating plain language instructions into code – though it may be some 

time yet before this is sufficiently reliable 68. These positive developments notwithstanding, 

some technical expertise is always required. Without it, researchers may have unrealistic 

expectations of what the ML system can achieve, or they might over-interpret the results. 

A lack of technical expertise also affects the peer review process for projects using ML. 

Consider, for example, performance scores for classifiers: the easiest option is simple accuracy 

– i.e. the percentage of correct classifications – but if only 10% of documents are relevant, a 

(practically useless) classifier can still have an accuracy of 90% by predicting that all 

documents are irrelevant. Computer scientists therefore commonly report an F1 score instead, 

which compensates for unbalanced data. It is typically around 70-90% for binary problems 

4,5,23,30, but it may be much lower for complex tasks 52,69. Unless the reviewer has a background 

in ML, they will likely have no appropriate frame of reference to evaluate whether a given score 

is reasonable for the problem at hand. As a result, researchers may report the accuracy or other 

well-known statistics anyway 47,70 or place accuracy numbers in the supplementary materials 

e.g. 7,53,71 which avoids technical explanations and questions from reviewers but makes results 

more difficult to interpret. A broader community with technical expertise would avoid this.  

Further, in our experience, topical expertise remains as important as in traditional research 

set-ups. Without it, researchers will neither be able to ask the right questions, nor to 

operationalise and execute the projects adequately. To give an NLP example, consider how one 

might find documents on adaptation. Given that a large dataset is less of a concern for NLP 

methods, one might opt for a simple query with general terms, combining different forms of 

“climate” and “adaptation” (e.g. climat* AND adapt*). ML methods could then be used to 

remove the irrelevant results afterwards. However, relying only on general terms can give a 

false sense of completeness. The previous example would miss many relevant articles, 
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including from the disaster risk reduction literature, as the climate component of many 

natural disasters is not always explicitly named in the abstract; a researcher may even want to 

include keywords for mitigation (e.g. mitigat*) in the search as “risk mitigation” is sometimes 

used instead of “adaptation” 59,72. The easiest – and arguably least visible – way of introducing 

bias is by leaving out data that you did not know existed. Domain-specific knowledge is 

required to cover such blind spots. 

A similar dynamic plays out when analysing the results. Take for example the outcomes of a 

topic model. Although these models “discover” topics, this does not mean that the background 

knowledge needed to construct viable topics is obsolete, as topic models require knowledge of 

the subject to interpret 29. There are two caveats here: first, some quantitative measures for 

topic model quality do exist 73; second, some use topic models purely to explore the data, in 

which case it is more defensible to have limited a priori knowledge. For most analyses though, 

including scientific research, results need to be contextualised and critically analysed, which 

requires domain-specific expertise. 

Collaborations between computer scientists and domain experts may help bring the required 

knowledge together. For academia, the climatechange.ai community 35 has set up climate 

change tracks at computer science conferences. Conversely, we would urge the organisers of 

adaptation conferences to also actively invite the machine learning community (e.g. 

Adaptation Futures or European Climate Change Adaptation). Universities and individual 

academics can foster interdisciplinary collaborations too; for reasons of space, we will point to 

recent overview by Lyall 74 for this much broader topic. 

Still, in our personal experience, it is not always enough to simply create a team with a domain 

expert and a topic expert. Interdisciplinarity research broadly recognises that combining 

different domain-specific epistemologies is often difficult and time consuming.75,76 In ML 

projects specifically, the model parameters will influence the outcome and are dependent on 

the data. This means a deep understanding of both the methods and the data is required, first 
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to select the appropriate methods, as well as to distinguish between methodological artifacts 

and meaningful results. In other words, we find that topical- and domain knowledge are at 

times required in the same person.  

Ultimately, what is needed is an active community of practice. Training would help create this 

in theory; however, training materials on ML, including NLP, have been widely available for 

quite some time, yet adaptation applications are few and far between. We therefore believe 

adaptation organisations should focus first on improving “machine learning literacy” – i.e. 

consciously aiming for breadth over depth so that a wider subsection of the community will 

have a basic understanding of the central concepts and methods. This helps adaptation 

practitioners recognise opportunities for ML in their own work, while also ensuring that 

results can be fruitfully discussed and that researches can critically reflect on possible 

improvements and next steps. This, in turn, could feed into concrete guidelines and best 

practices for ML in climate change research. In our view, open science  and systematic review 

standards 77 should be the starting point of such guidelines, both to increase transparency and 

to accelerate progress. In sum, focussing on the basis can help create space for a new 

generation of researchers to develop shared goals and norms.  

Models repeat biases and conventional wisdoms 

The third promise we wish to examine is perhaps best exemplified by the creators of the 

Structural Topic Model, who state that a topic model “allows the researcher to discover topics 

from the data, rather than assume them” 78 p. 1066. This quote and similar formulations are used 

to make two closely related points: first, it suggests topic models are less biased e.g. 29,37,39; 

second, these tools would lead to new insights as they can “uncover hidden patterns” 79, p. 136 

and “identify facts and relationships that would otherwise remain buried” 55, p. 4. Such sweeping 

claims deserve scrutiny. 

Strictly speaking, it is true that computers simply “do as they are told” but this does not 

necessarily equate to less bias; rather, computational methods shift where bias is introduced 

80. Running a topic model on biased data will still have biased results. An argument could even 
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be made that, by treating all the data as equally valuable, topic models are less suited than 

more critical qualitative methods to deal with unbalanced datasets. Equally, we have ourselves 

found that topic models can be useful for identifying quantitative gaps in adaptation evidence 

7,16 52, but this requires the researcher to know the field well enough to see which topics should 

be in the outcome but are not.  

For supervised methods, the model will replicate the bias of the people who created the 

training data – e.g. there is an ongoing and politically-charged debate on what differentiates 

adaptation from general development 25, so if one is trying to teach a supervised classifier to 

make this distinction, the personal beliefs of an individual reviewer may well influence their 

judgements. The remedy here is the same as with a traditional review: publish a clear protocol, 

preferably with a diverse group of stakeholders.  

However, this is impossible to do with pre-trained models. There are a variety of methods to 

quantify or adjust fort biases in these models,81,82 but to some degree, one simply has to trust 

the original creators. This is especially true for LLMs, as training these models takes enormous 

amounts of resources 83. Meanwhile, LLM’s bias around gender, race, and religion, among 

others, are well documented84,85. How much this affects adaptation specifically has not studied 

systematically; doing so is beyond the scope of this Perspective, but we give some examples in 

Table 3. Since climate impacts, vulnerabilities and adaptive capacities are intertwined with 

broader issues of justice and inequality, such bias can be highly problematic. 

To be clear, we do not mean to imply that ML methods are always inherently flawed. But where 

scientists have over the years built up a considerable arsenal of methods to account for bias in 

traditional methods, these tools are still very much under development for ML approaches.  

Table 3 ( next page): examples of potential bias in a large language model. Examples were 

generated using a transformer-based model. Such models are created by training on large 

sets of documents – here we use climateBERT, of which the training includes climate change 

documents. The model can be used, as we did here, to calculate what word is most likely to 

occur in a given place in a sentence (i.e. “fill in the blank”). We give the two most likely words 
with their assigned probabilities and explain why this can be seen as evidence of bias.  
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Prompt Most likely Bias 

Climate change adaptation 

[blank] women 

for (34.5%) 

by (13.6%) 

Women are seen as victims who are 

recipients of adaptation efforts 

rather than actors with agency 86,87 Climate change adaptation 

[blank] men 

by (27.7%) 

for (23.3%) 

Adaptation in the USA is 

[blank]. 

underway (15.0%) 

ongoing (9.0%) 

The focus in Bangladesh is on the 

vulnerability and the need for more 

action, while the USA is depicted as a 

place where adaptation is already 

happening.  

Adaptation in Bangladesh is 

[blank]. 

critical (10.9%) 

urgent (10.5%) 

Effective adaptation 

requires [blank]. 

partnerships (17.6%) 

innovation (17.2%) 

Adaptation is seen as a local effort in 

vulnerable places who need to work 

together to overcome climate risks. 

Mitigation is something one can 

start doing. 

Effective mitigation 

requires [blank]. 

action (16.6%) 

innovation (14.8%). 

Ali [blank] climate change. denies (9.1%) 

blamed (6.6%) 

A common name in predominantly 

Muslim countries is associated with 

negative terms and climate denial, 

while a common name in English 

speaking countries results in neutral 

words. 

Smith [blank] climate 
change. 

on (11.1%) 

discussed (7.2%)  

The task was given to the 
project leader; [blank] 
completed it. 

he (49.1%) 
they (21.0%) 

Project leaders are assumed to be 
men more often than other genders 
(“she” scored 2.5% probability in the 
first example; “they” scored 3.5% in 
the second). 

Adaptation support was 
provided by the minister; 
[blank] visited personally. 

he (53.1%) 
she (10.3%) 

The storm made landfall in 
[blank]. 

Louisiana (36.2%) 
Alabama (13.4%) 

The model assumes an American and 
northern hemisphere perspective, 
likely because a disproportionate 
amount of climate research 
originates here 5 (September scores a 
6.7% probability in the second 
example). 

The summer starts in 
[blank]. 

June (13.9%) 
May (13.1%) 

 

Similarly, ML methods can certainly be used to generate novel insights, but it is “data hubris” 

88 to think that with sufficient data and algorithms, such insights will simply reveal themselves. 

Even the most cutting-edge NLP models have been called “stochastic parrots” 89 which lack 

critical thinking and cannot distinguish between what is widely stated versus what is widely 

(dis)proven. Further, in the rare cases where ML outcomes are compared to expert opinions 

(e.g. 5,38), the model is more likely to agree with expert opinion than to lead to fundamentally 

new understandings.  



16 
 

Overall, if done right, ML can be a useful tool to produce new knowledge, but using a novel 

method by itself does not guarantee novel outcomes. In our experience, there are two main 

ingredients that increase the likelihood of original insights. First, using unconventional or 

understudied sources of data and layering different data sources makes it easier to identify 

diverging patterns – e.g. comparing twitter discourse to academic publishing 90, overlaying 

grid-cell climate models and observations with the location and topics of climate impact 

studies 4. As noted earlier, however, heterogenous datasets will take considerable effort to 

create.  

Secondly, it helps to go in with a clear notion of what is expected or desired. Obviously, “fishing 

expeditions” should be avoided, but an uncritical analysis is virtually guaranteed to only result 

in well-known broad trends. Examples include looking for shifts in national reporting post-

Paris Agreement and finding such shifts are barely perceptible 91; and investigating whether 

the intended interlinkages between different Sustainable Development Goals are also found 

in practice 92. In this light, it is worth noting that formal hypothesis testing and error ranges 

are often not reported in ML-assisted syntheses (by contrast: 4,5).  

Treating Machine Learning as a Transformation 

So far, we have focussed on the main promises of ML in existing literature. We find that the 

majority of this literature is concerned with fitting ML into business as usual – i.e. the same 

report but bigger. In our opinion, however, the real revolution enabled by abundant data and 

computational power is not one of degree, but one of kind. Traditional research leans on a few 

highly trained individuals, but ML excels at doing simpler tasks thousands of times, which 

opens up entirely new approaches.  

To be clear, we are not arguing for the wholesale replacement of established qualitative 

methods. Manual and computer-based methods can and should co-exist. But they will 

compete for resources. It is therefore worth thinking critically on the types of insights that are 

most urgently needed at different stages of adaptation projects, and what combination of 

methods and final products can create diverse, complementary and comprehensive lines of 
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evidence. Insofar as that includes NLP, we contend that in many cases, the best approach is 

unlikely to be a decades-old method applied to whatever dataset happens to be easy to get. 

Rather, ML applications should be ambitious, build on the work that has been done already 

and play to the strengths of the method. 

An underrated element to the ML revolution is how easily such projects can be repeated. 

Curating the dataset and developing the initial model is often the time-consuming part; once 

the code for this has been written, it is relatively straightforward to re-run the code on either 

a different time point or different dataset (although updating or fine-tuning the model may be 

necessary). This makes ML especially useful for the types of repetitive tasks that form the 

foundation of many adaptation projects, such as finding adaptation-relevant passages in 

policy documents 30, linking adaptation evidence to locations and impact models 4, identifying 

knowledge gaps 5,93, or, more ambitiously, creating a standardised global database of 

adaptation interventions66. As an aside, the training of models to perform such general tasks 

could be conceived as a public service, which therefore should receive public funding. This 

would also help alleviate the inequal access to computational power. 

In addition, if one re-runs the whole “pipeline” of an NLP-based tracking system at regular 

intervals, one could create a near-real-time overview of the evidence. To some, self-updating 

tracking systems may seem futuristic, but the reality is that technologically, this is feasible 

already. So-called “living” evidence approaches have recently gained popularity, especially in 

the health sciences 94,95. Although living reviews may still have a manual component (e.g. 

updating models), it is easy to foresee (semi-)automated systems to track adaptation in 

science, policy and society – similar to some of the platforms that emerged during the COVID-

19 pandemic 96.  

These platforms highlight another missing component for the optimal use of ML: interactivity. 

Given its context-dependent nature and reliance on case studies, a global overview of 

adaptation evidence is likely too general to be useful for practitioners. ML (and data science 
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more broadly) can be used to augment such messy data with key characteristics– typical NLP 

examples would be the topic, geographic location, time-period – which can then form the basis 

for an easily searchable platform and interactive graphics. There are recent examples of 

projects which incorporate some of these suggestions, such as Climate Policy Radar, 97 but 

overall, interactive platforms are rare. Scientific outputs especially often take the form of a 

Textbox 1: why organisations like the IPCC should create flagship projects 

A pressing example of the need for novel tracking methods is the IPCC, which is entering 

its 7th assessment period. Their mandate to synthesise all available climate research is 

increasingly difficult to meet: the latest Working Group II report relies on hundreds of 

authors and includes over 34 thousand references,1 yet despite this mammoth effort, the 

number of relevant articles is several times larger still and the share of this wider literature 

that the IPCC can incorporate is decreasing 2-4; similarly, because the reports are only 

issued every few years, they can lag behind the research frontier on key emerging issues 5.  

Building on much older critiques 17,18, some have recently argued that the science is clear, 

that the IPCC has therefore served its purpose and now should be transformed into a more 

agile entity that produces targeted reports 20,21 (e.g. on policy implementation 22). In our 

view, it is clear that the IPCC at least needs to innovate, and the organisation would be 

especially well-placed to maintain an interactive living evidence platform.  

The practical advantages are clear: more timely and more transparent overviews of 

evidence where users can easily tailor the information to their own needs. As an example, 

a policy maker could use such a platform to select evidence on the topic of coastal flood 

defences, filter for documents from government websites, select only those from tropical 

countries and sort the result by publication date to quickly find the most relevant passages. 

At the community level, such a project could have positive knock-on effects, as it would help 

establish a “gold standard” for ML work in climate change, showcase what is currently 

possible and attract additional talent, which, over time, will pay dividends. 

There are other organisations too, which could play such a role, for example UNEP, which 

writes the Adaptation Gap Reports. Depending on political circumstances, this may be 

more expedient, though the IPCC is a trusted source, which would help ensure that the 

platform is used in practice.  Either way, funding bodies, and in the case of the IPCC also 

national governments, hold the key to unlocking this potential.  
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table or comma-separated file. Why does research rely so heavily on old standards with less 

functionality than the website of almost any online store? 

A large part of the answer is the continued importance of traditional publishing. Interactive 

figures, too, are technically entirely feasible in online editions – data science blogs routinely 

include runnable code – but papers are mostly still considered a finished and therefore static 

entity. Since datasets are relegated to the supplementary materials, maintaining a database 

does not result in new publications. Regrettably, we do not see this changing any time soon, 

but do encourage researchers to start exploring tools for making interactive dashboards, such 

as Shiny apps in R. We expand upon a “gold standard” interactive and living evidence platform 

in Textbox 1. 

Repeatability and interactivity are just two examples. More conceptually, we urge the 

adaptation community to take seriously the paradigmatic shift presented by computational 

methods, including ML. This is not easy: technological advances are rapid, and some 

techniques may have applications that are difficult to foresee. This is particularly true for text-

based analyses, where the full effects of the recent LLM revolution defy prediction 98,99. 

Researchers need to tread a careful line here: while LLMs can remove common bottle necks, 

in the absence of robust domain-specific evaluation metrics, human-in-the-loop systems may 

be a more prudent path.100 Even so, making the most of the full breadth of ML tools will require 

some foresight and planning, especially around identifying the types of tasks that ML would 

be best suited for. When combining this sense of purpose with both an open mind to practices 

from other fields and a realistic understanding of current possibilities and limitations, 

adaptation evidence tracking could help protect people globally to adapt effectively. But this 

is no small task; the adaptation community has work to do.  
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