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Abstract

Recent research documents that exposure to air pollution can trigger various behav-

ioral reactions. This article presents novel empirical evidence on the causal effect of

pollution risk on life insurance decisions. We create a unique dataset by linking micro-

geographic air quality information to the confidential UK Wealth and Assets Survey.

We identify an inverse N-shape relationship between pollution risk and life insurance

adoption by exploiting the orthogonal variations in meteorological conditions. Over

a given range above a threshold of exposure, rising pollution is associated with ris-

ing demand for life insurance, whereas at lower than the threshold levels of pollution,

higher exposure risk reduces demand for insurance. Our findings indicate—for the first

time—a nonlinear relationship between local pollution risk and life insurance demand.

K E Y W O R D S

air pollution, life insurance, modeled microgeographic data, N-shaped relationship, United Kingdom

1 INTRODUCTION

Environmental pollution—the classic negative externality—

poses a considerable risk to human well-being and economic

livelihoods. Air pollution leads to poor health (Chen et al.,

2013; Dockery et al., 1993; Pope et al., 2002; Seaton et al.,

1995) and adverse economic outcomes such as reduced

worker productivity, lower income, higher conflict inci-

dence, and criminal activity (Adetutu et al., 2023; Binder &

Neumayer, 2005; Herrnstadt et al., 2021; Maddison, 2005;

Samakovlis et al., 2005; Zivin & Neidell, 2012).

Beyond academic research, the knowledge about pollution

risk is also well-established within public domains.1 Mean-

while, the growing awareness of air pollution risk evokes

wide-ranging behavioral responses. For instance, some indi-

viduals adopt the preventive response of avoiding outdoor

activities (Bresnahan et al., 1997) or relocating to areas with

better air quality (Banzhaf & Walsh, 2008). Additionally,

1 For instance, see Maione et al. (2021). See also a recent global Pew Research sur-

vey https://www.pewresearch.org/fact-tank/2019/04/18/a-look-at-how-people-around-

the-world-view-climate-change/.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

exposure to pollution risk can elicit defensive responses such

as the use of medication (Peters et al., 1997) and particulate-

filtering facemasks (Zhang & Mu, 2018). More recently, a

stream of studies suggests that exposure to pollutants can trig-

ger more severe behavioral outcomes such as suicide (Chen

& Samet, 2017).

One behavioral reaction to risk, widespread in the face of

probable loss, is the decision to purchase insurance coverage.

Recent developments in insurance research highlight the lim-

ited understanding of the behavioral drivers of demand for

insurance, especially in the context of environmental and cli-

mate risks (Corcos et al., 2020). Although there is a strand of

the literature providing evidence on the management of envi-

ronmental risk through insurance, it often focuses on natural

disasters2 (Botzen & van den Bergh, 2012; Nguyen & Noy,

2020; Raschky et al., 2013) and pollution liability insurance

in the context of the polluter (Boomhower, 2019; Katzman,

1988). However, a few studies have emerged on how pol-

lution risk affects the purchase of insurance products (e.g.,

Chang et al., 2018; Chen & Chen, 2020). Such literature, as

it does exist, suffers from two main drawbacks.

2 For instance, earthquakes, flooding, and hurricanes.

Risk Analysis. 2024;1–24. wileyonlinelibrary.com/journal/risa 1



2 ADETUTU ET AL.

First, it tends to focus on health insurance, with little

work investigating whether/the extent to which life insurance

demand responds to changes in pollution exposure. How-

ever, we note the economic differences between health and

life insurance. Compared to life insurance which mainly per-

tains to insuring the quantity of life, health insurance covers

treatments that enhance well-being (quality of life) and life

expectancy (quantity). By implication, subscribers to these

products face distinct benefit–cost trade-offs that may inform

varying behavioral and demand decisions across both prod-

ucts (see Koijen & Van Nieuwerburgh, 2020). This distinction

is consistent with the notion that health insurance may be

more sensitive to pollution risk than life insurance, reflecting

the palpable (direct) effect of pollution on well-being, which

ultimately affects mortality outcomes3 (Zhao, 2020).

We depart from the above literature by focusing on the

impact of local pollution on life insurance. A key thesis

underlying our focus is the well-grounded economic reason-

ing that households often choose to maintain and transfer

significant fractions of their wealth in bequeathable forms

through life insurance coverage (Bernheim, 1991; Yuji &

Ventura, 2022). Moreover, academics and policymakers4 are

starting to recognize air pollution as an emerging risk factor

for life insurance decisions: long-term exposure to pollution

drives mortality. Although a large body of research links

mortality and life expectancy to life insurance demand (e.g.,

Gaganis et al., 2020; He, 2009; Koijen & Yogo, 2015; Lewis,

1989), neither the causal effect of air pollution on life insur-

ance decisions nor the mechanisms via which this effect

manifests have been studied in the literature.

Second, the limited focus on life insurance may be due to

the lack of appropriate microdata to implement a clear iden-

tification strategy to investigate the pollution-life insurance

relationship. For instance, although the few existing studies5

have provided helpful insight into the pollution-insurance

demand nexus, they suffer from a common fundamental

problem in measuring and specifying pollution risk. Specifi-

cally, the use of aggregate (country, city, or province level)

proxies for pollution risk raises the issue of a compelling

identification strategy through which we can causally inter-

pret the effect of pollution on life insurance. A key novelty

of our approach is that we address the measurement issues

arising from aggregate pollution measures, which make it

difficult to disentangle the impact of pollution exposure and

other unobserved aggregate shocks. Research shows that

regional covariates, such as aggregate income growth and

cohort/network effects, shape the demand for private insur-

3 According to the World Health Organisation (WHO) (2011), air pollution accounts

for several millions of global premature deaths every year. In the same vein, around 9

million annual excess deaths have been linked to outdoor air pollution (Burnett et al.,

2018). These estimates are consistent with a recent study by Lelieveld et al. (2020)

which indicates that the loss of life expectancy arising from air pollution is around 2.9

years on average, bigger than losses from smoking tobacco (2.2 years), violence (0.3

years lost), and HIV/Aids (0.7 years lost). In short, outdoor air pollution is the leading

environmental risk factor for all-cause mortality (Cohen et al., 2017).
4 See Zhao (2020) and https://www.partnerre.com/opinions_research/poor-air-quality-

an-emerging-risk-factor-for-life-insurance-underwriting-and-pricing/.
5 See Chang et al. (2018) and Chen and Chen (2020)

ance.6 Furthermore, such aggregate air pollution measures

are inadequate for capturing the variation in pollution concen-

tration, considering that a significant gradient of pollutants

can exist within short distances and small spatial dimensions

(Borck & Tabuchi, 2019; Herrnstadt et al., 2021; Zhou &

Levy, 2007).

In this study, we examine how local exposure to pollution

affects the demand for life insurance and make two contri-

butions to the literature. First, we measure air pollution risk

at the individual level using a measure of air quality around

the sampled individuals’ residential location. In essence, we

exploit the microgeography of local pollution risk and house-

hold life insurance decisions by linking a 1 km-by-1 km

grid-level (modeled) pollution data to the nationally repre-

sentative United Kingdom (UK) Wealth and Asset Survey

(WAS) during the period 2006–2018. This approach allows us

to compare changes in life insurance decisions over time and

between households facing different pollution risks, but at a

hitherto unexplored spatial granularity, while also controlling

for various factors that shape insurance demand.

Furthermore, we tackle the endogeneity of pollution risk

arising from individuals’ residential choices by similarly

exploiting the variation in 1 km-by-1 km wind and precip-

itation to instrument for variation in local pollution levels.

Following recent studies (Herrnstadt et al., 2021; Schlenker

& Walker, 2016), our identification strategy exploits how the

spatial diffusion of environmental pollutants is driven mainly

by meteorological processes such as wind velocity and wet

deposition (e.g., precipitation) over a given location. This

approach enables us to address the panel identification issues

relating to omitted variables correlated with pollution risk

and insurance demand. Consequently, we can interpret our

results as the causal impact of pollution risk on life insurance

decisions.

Second, our article adds a new dimension to the pollution

risk-insurance literature by exploring the effects of environ-

mental pollution on individuals’ risk decision-making, that

is, the acquisition of life insurance. To date, the pollution-

life insurance nexus is a priori unclear, given that there

is only scant empirical evidence regarding the extent to

which life insurance demand responds to changes in pol-

lution risk. For instance, although some studies suggest a

positive relationship between the likelihood of death and life

insurance demand (Beck & Webb, 2003; Levy et al., 1988;

Lewis, 1989), others contrastingly find a negative relation-

ship (Browne & Kim, 1993; Outreville, 1996). Consequently,

we explore—for the first time—the nonlinearity between

pollution risk and life insurance decisions.

Our empirical analysis is informed by a theoretical frame-

work that draws on the seminal work by Friedman and

Savage (1948) and suggests a nonlinear relationship between

pollution and life insurance demand. Hence, our article high-

lights a novel behavioral response to environmental pollution

risk that advances the discourse around the impact and

implications of air pollution on life insurance decisions.

6 See Townsend (1994) and Propper et al. (2001).
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MICROGEOGRAPHIC EVIDENCE FROM THE UK 3

Finally, our study embodies clear policy implications.

Our work underscores the potential demand for new

environmental-related insurance products and the liability

risk arising from environmental pollution—made even more

critical by the emerging public policy drive to engender

accountability regarding pollution-related risks across finan-

cial markets.7 The remainder of the article is as follows. In

Section 2, we critique the existing literature on the effect of

pollution on health, human capital, and life insurance. Sec-

tion 3 sets out the theoretical framework, whereas Section 4

describes our data and empirical strategy. Section 5 discusses

the empirical findings, and Section 6 concludes.

2 RELATED LITERATURE

We review the literature on the adverse effects of air pollu-

tion first and, subsequently, the literature on the uptake of

life insurance products. The former spotlights the range of

adverse effects of air pollution, whereas the latter examines

the antecedents of their adoption. In the following, we pro-

vide an illustrative overview focusing on the most relevant

research in these categories and discuss how our research

contributes to the current literature.

2.1 The adverse effects of air pollution

Research investigating the adverse effects of air pollution on

health is omnipresent in different disciplines. For instance,

the impact of pollution on infant health dates back to the 19th

century. Using a novel wind pattern for identification, Beach

and Hanlon (2018) showed that Britain’s heavy reliance on

coal had significant infant mortality effects. More recently,

economic factors such as the recession-induced reduction in

air pollution in the United States (Chay & Greenstone, 2003)

and China’s increased export intensity have also driven infant

mortality (Bombardini & Li, 2020). Similarly, Arceo et al.

(2016) showed that the negative effect of pollution on infant

mortality holds in both developing and developed country

contexts. A significant body of knowledge shows that high-

volume exposure to city-level pollution from automobiles has

profound adverse effects on infant health (Currie et al., 2015).

In turn, several scholars (e.g., DeCicca & Malak, 2020)

argue that regulation can significantly mitigate the effect of

city-level air pollution on infant health.

Moreover, increased exposure to air pollution can have

wide-ranging effects on adults, such as increased hospital-

izations (Schlenker & Walker, 2016), high mortality rates

(Anderson, 2020; Deschênes & Greenstone, 2011), mental

health challenges (Samakovlis et al., 2005), reduced produc-

tivity (Zivin & Neidell, 2012), and broader societal impacts

such as aggressive behaviors and violent crime (Herrnstadt

et al., 2021).

7 For instance, see https://www.bankofengland.co.uk/-/media/boe/files/prudential-

regulation/publication/impact-of-climate-change-on-the-uk-insurance-sector.pdf.

In response to the adverse effects of air pollution, individ-

uals often adopt a range of short- and long-term decisions.

For the former, studies find that individuals avoid outdoor

activities (Bresnahan et al., 1997; Zivin & Neidell, 2012), use

medication (Peters et al., 1997), and adopt defensive mea-

sures such as using particulate-filtering facemasks (Zhang &

Mu, 2018) to mitigate the effects of air pollution. For the lat-

ter, optimization behaviors such as residential sorting, that is,

residential choices and relocation to areas with better air qual-

ity (Banzhaf & Walsh, 2008; Chen & Chen, 2020), have been

observed in extant literature.

The above studies on the effects of air pollution on a range

of behavioral outcomes are closely aligned with our analysis

but with a few limitations. First, they focus more on avoid-

ance behaviors in response to air pollution. Second, with

some exceptions (Chang et al., 2018; Chen & Chen, 2020;

Zhao, 2020), few studies investigate how air pollution affects

the demand for insurance products. Of this, existing insights

focus on limited contexts, and not all the studies inform a

causal relationship between pollution and life insurance deci-

sions (Chang et al., 2018; Chen & Chen, 2020). Although

some studies observe insurance decisions at the individual

level, these are matched with air quality data at a more agger-

ate level. To address this issue, we use a microgeographic

approach that combines UK microdata with 1 km-by-1 km

grid-level modeled data on air pollution. Thus, our analysis

is timely in responding to the recent calls for more research

to understand the behavioral responses to air pollution better

(Corcos et al., 2020).

2.2 Behavioral responses to the demand for
life insurance

Life insurance has long been a hedge against mortality risk

(Chen et al., 2006). It captures the source of uncertainty

derived from wage earners’ preretirement death and the asso-

ciated loss of labor income to the surviving dependents of the

household (Campbell, 1980) and is grounded in the altruistic

bequest motive (Barro, 1974; Becker, 1974). The theoreti-

cal foundations for the demand for life insurance are rooted

in the lifetime consumer allocation theory, whereby con-

sumer preferences depend on consumption and wealth (Yaari,

1964, 1965). Compared to other policies, death is an eventual

certainty, which air pollution expectedly exacerbates.

In the literature, Pratt (1964) was one of the first scholars to

derive absolute and relative risk aversion. However, Karni and

Zilcha (1986) did not find that higher risk aversion stimulates

life insurance demand. Some researchers use education as a

proxy for risk aversion and find positive and negative asso-

ciations, raising questions about causality (Outreville, 2015).

Recently, research has found risk perceptions as an essential

optimization behavior that informs the demand for insur-

ance products such as index-based insurance (Belissa et al.,

2020; Visser et al., 2020). Compared to avoidance behaviors,

insurance optimization behaviors broadly aim to recognize

how individuals internalize the trade-offs associated with the
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4 ADETUTU ET AL.

adverse effects of air pollution. Furthermore, studying opti-

mization behaviors in greater detail can thus offer a more

comprehensive understanding of the mechanisms that inform

longer term strategies adopted in response to air pollution.

To date, aside from some of the studies mentioned above,

understanding the behavioral mechanisms of the pollution-

life insurance nexus has received limited attention in the

literature.

Consequently, our study makes two significant contribu-

tions to this literature. First, we estimate the effect of risk

perceptions as a novel optimization behavior shaping the

demand for life insurance products in response to the adverse

effects of air pollution. Second, we contribute to the literature

on the consequences of air pollution by studying its causal

impact on the demand for life insurance products. Life insur-

ance is a unique product and evokes special considerations so

far as the demand is concerned. Recent figures for life insur-

ance products show that the UK ranks as the fourth largest

market in the world and the largest life insurance market in

Europe, followed by Germany and France (Statista, 2020). By

2024, it is estimated that life insurance gross written premi-

ums will be £195.8 billion. Thus, our focus on the UK context

is relevant and timely.

3 THEORETICAL FRAMEWORK

In this section, we present a simple theoretical framework

to inform our empirical analysis. As households recognize

risks, they are motivated to purchase insurance; hence, we

are interested in the optimal level of life insurance.

Consider the head of a household who faces the possibility

of consuming C0 with probability p and C1 with probability

1 − p where p is the probability of death of the head of the

household and C1 > C0, and who is averse,8 that is, in max-

imizing expected utility, certainty is preferred over a gamble

with the same actuarial value as the certain consumption

level.

In this model, we consider pollution and, in particular, the

exposure of the individual to pollution, and we assume that

the probability of death p is a function of exposure to pollu-

tion 𝜆 > 0, where p(𝜆) is increasing in exposure to pollution,

p′(𝜆) > 0.

We also assume that the head of household has a bequest

motive, that is, he gets utility from providing consumption

for some purpose after death. In other words, there is a

desire to maintain a consumption level for his dependents

beyond death. Intuitively, this assumption explains life insur-

ance demand as without the need to provide for dependents

after death, which would not be rational to purchase life

insurance.

We can derive the household’s demand for life insur-

ance following the seminal work by Friedman and Savage

8 The risk aversion assumption means that the decision-maker desires to eliminate

uncertainty and diversify against risk through purchasing life insurance.

(1948).9 In particular, the decision-maker/head of household

would purchase life insurance that maximizes the following

expected utility function:

max EU (I) = pV (C0 + I − prem) + (1 − p) U (C1 − prem) ,

where V is the bequest function (the utility of the household’s

future consumption after the death of the decision-maker), C0

is the expected consumption level of the household after the

death of the head of household in the future, I denotes the

face value of the insurance policy, U denotes the utility of the

household’s future consumption if the head of household is

alive, the strictly concave function, C1 denotes the expected

consumption level of the household if the head is alive in the

future, and prem is the premium on insurance which can be

expressed as apI + L where a ≥ 1 is the variable loading fac-

tor of the insurance and L ≥ 0 the fixed loading factor of the

insurance.

The bequest function V can be rewritten as 𝛽 U where

𝛽 ≥ 0 is the bequest parameter, and U is the utility of con-

sumption function given that the head of the household is

still alive. We assume U =
1

1−𝛾
C1−𝛾 which describes a broad

class of functions and is commonly used in the literature,

and 𝛾, 0 < 𝛾 < 1, denotes the risk aversion parameter. For

𝛽 = 0 , the decision-maker has no bequest motive, whereas

for 𝛽 = 1 , he receives equal utility from consumption during

his life as from wealth passed on to their dependents. Hence,

to purchase life insurance, we assume that 𝛽 > 0.

We can then rewrite the expected utility function that the

head of household maximizes as follows:

max EU (I) = p (𝜆) 𝛽
(C0 + I − ap (𝜆) I − L)

1−𝛾

1 − 𝛾

+ (1 − p (𝜆))
(C1 − ap (𝜆) I − L)

1−𝛾

1 − 𝛾
. (1)

The first order condition of Equation (1) with respect to I

gives us

𝜕EU(I)

𝜕I
= p (𝜆) 𝛽(C0 + I − ap (𝜆) I − L)

−𝛾
(1 − ap (𝜆))

+ (1 − p (𝜆)) (C1 − ap (𝜆) I − L)
−𝛾

(−ap (𝜆)) = 0

⇒
[
𝛽(1−ap(𝜆))

a(1−p(𝜆))

]1∕𝛾

=
C0+I−ap(𝜆)I−L

C1−ap(𝜆)I−L

.

(2)

9 Although here we follow the standard expected utility model, our results do not change

qualitatively if we assume a prospect theory model with the value function being char-

acterized by loss aversion and the value of each outcome being multiplied by a decision

weight (not a probability itself, but a function of the probability). We can still show that

there is a nonlinear relationship between insurance demand and exposure to pollution.

Please see further discussion in Appendix A.
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MICROGEOGRAPHIC EVIDENCE FROM THE UK 5

Solving for the I and denoting [
𝛽(1−ap(𝜆))

a(1−p(𝜆))
] = A gives us the

optimal level of life insurance demanded10:

I∗ =
A1∕𝛾 (C1 − L) − C0 + L

1 − ap (𝜆)
(
1 − A1∕𝛾

) . (3)

Examining I∗ to understand our finding, we can see that the

effect of C1 is positive as
𝜕I∗

𝜕C1

> 0; hence, as the given con-

sumption, if the head of the household is alive, increases, the

higher the demand for life insurance, whereas the effect of C0

is negative as
𝜕I∗

𝜕C0

< 0, and hence, as the amount of the cur-

rent consumption increases, less insurance is demanded as the

higher the current consumption, the gap in future consump-

tion if the head of the household dies declines. Additionally,

we can see that the effect of the bequest parameter 𝛽 is pos-

itive as
𝜕I∗

𝜕𝛽
> 0 as long as C0 ≥ L (please see Appendix A),

which is an intuitive assumption that the level of future con-

sumption, if the head of the household dies, would be higher

than the fixed loading costs for the insurance. This supports

the altruistic bequest motive as life insurance is used to hedge

against the household head’s death for the dependents in the

household.

More importantly, looking at the effect of exposure to

pollution, we can see that taking the derivative of Equation

(3) with respect to 𝜆, the sign of the numerator is ambiguous,

that is,

𝜕I∗

𝜕𝜆
=

1

𝛾
A

1

𝛾
−1 𝜕A

𝜕𝜆
(C1 − L) (1 − ap (𝜆))

(1 + Aap (𝜆))
2

,

−

[(
A

1

𝛾 (C1 − L)

)(
−ap′ (𝜆)

(
1 − A

1

𝛾

))
+ (−C0 + L)

(
−ap′ (𝜆)

(
1 − A

1

𝛾

)
+

1

𝛾
A

1

𝛾
−1 𝜕A

𝜕𝜆
ap (𝜆)

)]

(1 + Aap (𝜆))
2

,

where
𝜕A

𝜕𝜆
= −

𝛽ap′(𝜆)a(1−p)+[𝛽(1−ap(𝜆(𝜃)))ap′(𝜆)]

[1−ap(1−A

1

𝛾 )]

2 < 0.

Hence, the relationship between exposure to pollution and

the demand for life insurance is not linear. Consequently,

one could argue that the relationship between pollution and

insurance is highly complex and may be shaped by sev-

eral factors. In particular, depending on the parameter values

and functional form used, it can take different forms. In

Appendix A, we demonstrate that this relationship can take

10 The second derivative of the expected utility with respect to I∗ is negative,
𝜕2EU (I)

𝜕I2
<

0, ensuring that the optimal solution is maximizing EU(I) (see Appendix A).

various shapes based on simulations according to certain

parameters.11 Therefore, the intuitively complex relationship

between pollution and insurance informs our analysis in the

empirical part of the article where we look at the case of

the UK and explore the particular shape of the air pollution

exposure-life insurance demand nexus in that market.

4 DATA AND EMPIRICAL STRATEGY

In this section, we discuss the data used in our empirical

analysis, along with their sources. Furthermore, we describe

the construction of our key variables of interest. Our air

quality information is modeled on pollution data from the

UK Air Information database, maintained by the Depart-

ment for Environment, Food & Rural Affairs (DEFRA).12

This air quality database provides modeled background pollu-

tion maps of the annual concentration of different pollutants

at 1 km × 1 km resolution. We focus on fine particulates,

namely, PM2.5 (i.e., particles with diameters of 2.5 µm or

less) for two main reasons. First, from a broad methodologi-

cal point of view, it is generally recognized that particulate

matter emissions are a good proxy for many pollutants

(Herrnstadt et al., 2021). Empirical economics and epidemi-

ological research link fine particulate matter pollution to

mortality and adverse health conditions (Adhvaryu et al.,

2019; Dockery et al., 1993; Miller et al., 2007; Pope et al.,

2009). In essence, particles with a diameter of 2.5 µm or less

can penetrate the lungs and blood system, raising the risk of

respiratory and cardiovascular diseases and lung cancer.13

Second, particulate matter emission has become the focus

of air and environmental quality regulation in advanced

countries14 (Anderson, 2020). Thus, our focus on PM2.5

has both methodological and practical policy advantages.

Nevertheless, we include estimates relying on the second

most concerning UK pollutant, nitrogen dioxide NO2, as a

11 We thank an anonymous referee for their suggestion and guidance on the use of

simulations to demonstrate the complexity of the relationship between pollution and

insurance.
12 https://uk-air.defra.gov.uk/data/pcm-data
13 https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-

and-health.
14 For instance, air quality regulations by the US Environmental Protection Agency

(US EPA) (e.g., the Clean Air Act Amendments) embody standards focusing

on fine particulates (see US EPA, 2011; Anderson, 2020). Similarly, the UK

environmental agencies treat particulate matter as one of the two most concern-

ing pollutants. See report by the Department for Environment and Rural Affairs

(DEFRA, 2017) and https://www.london.gov.uk/what-we-do/environment/pollution-

and-air-quality/health-and-exposure-pollution.
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6 ADETUTU ET AL.

robustness test of the sensitivity of our results to alterna-

tive pollutants’ risks. Thus, our two pollution risk measures

are the modeled annual means of the pollutants at the

1 km × 1 km grid level, expressed in µg m−3.

Our life insurance data comes from the UK WAS,15 pro-

vided by the Office for National Statistics (ONS). Because the

underlying microdata of the WAS is confidential/restricted, it

can only be accessed by approved users/researchers through

the secure access program of the ONS. The WAS is a biennial

longitudinal survey launched in 2006. It contains informa-

tion16 about individuals’ assets, savings, debt, and other

financial products that shape their financial decisions. Using

the available six waves (2006–2008, 2008–2010, 2010–2012,

2012–2014, 2014–2016, 2016–2018), we follow the extant

literature (e.g., Bauchet & Morduch, 2019; Brown & Gools-

bee, 2002) by constructing two measures of the dependent

variables as life insurance ownership and the life insurance

value. The life insurance ownership variable is a dummy vari-

able that takes the value of 1 if a sampled individual holds a

valid life insurance policy, whereas the insurance value is the

inflation-adjusted cash (face value) of the life policy.

4.1 Matching WAS to pollution data

Figure 1 portrays a visual presentation of our spatial data

matching exercise, which consists of two crucial stages.

First, we collect information on modeled PM2.5 concentra-

tion (µg m−3) at the 1 km × 1 km grid level. The different

color shades in Panel A of Figure 1 depict the spatial vari-

ability of pollution concentration. By representing the annual

average pollution levels on the map of Great Britain at the

local administrative district level, we show air quality rang-

ing from lower pollution levels (lighter shades) to higher

pollution levels (darker shades).

The regional distribution of PM2.5 pollution is stark. For

example, pollution levels are particularly higher in the south-

ern districts relative to their Northern counterparts. This

observation is consistent with reports17 highlighting that over

75% of British districts that exceed the WHO’s annual PM2.5

limit of 10 µg m−3 are in the Southern part of the coun-

try (46% in London and 33% in the Southeast). Hence, it

is unsurprising that these districts have become the target of

a renewed public policy drive to expand low or clean emis-

sion zones at the local level (see Adcock & Smith, 2020).

To further shed light on the pollution distribution depicted in

Figure 1, we note that the higher levels of pollution in Lon-

don and the Southern regions reflect some composition and

scale effects underpinning UK pollution distribution. First,

we highlight that PM2.5 pollution across the UK is mainly

15 https://www.ons.gov.uk/peoplepopulationandcommunity/

personalandhouseholdfinances/debt/methodologies/wealthandassetssurveyqmi
16 See Vermeulen (2018) for a comprehensive technical description of the WAS dataset.
17 https://www.lgcplus.com/services/health-and-care/revealed-more-than-70-areas-

have-dangerous-levels-of-pm2-5-air-pollution-06-12-2019/ and https://www.centre

forcities.org/reader/cities-outlook-2020/air-quality-cities/

from industrial, domestic, and road transport sectors.18 Sec-

ond, further geographical investigations indicate that London

and the Southern regions jointly account for 36% of the total

UK population19 and have the most road vehicles (33% of the

total UK).20 Furthermore, available data from the UK pollu-

tion inventory21 shows that 20% of the plants and production

units responsible for mass releases of air pollutants across the

UK are also located across these regions.

Given the granular (grid-level) pollution data from the

UK air quality database, we require microgeographic infor-

mation on individual locations to match pollution risks at

the micro-level. Ideally, we need an accurate data matching

scheme driven by a spatial granularity of household location

information, that is, as close as possible (in local precision) to

the grid-level pollution data. As a result, we use confidential

micro-neighborhood data on household output areas (OAs)

in the WAS data, the lowest spatial unit available within the

UK census geography.22 OA sizes range from a minimum

of 40 resident households to around 125 households, with an

average of about 100 resident households.

To create a microgeographic measure of air pollution, we

match the geo-coded grid-level pollution data to the WAS

OAs. Essentially, this allows us to calculate the average pol-

lution level across the 1 km grids covering each OA. Given

that the WAS data is stratified by NUTS level 2 regions, we

make point plots in Panel B of Figure 1 using the centroid

of the local authority districts of all sampled OAs within the

WAS. These point plots depict the nationally representative

nature of the survey, showing that it covers most of the UK

districts, except for the northernmost parts of Scotland (north

of the Caledonian Canal), the Scottish Islands, and the Isles

of Scilly.

As the modeled pollution data is not available at

1 km × 1 km resolution, such granular air monitoring

data has been calibrated using a network23 of around 300

Environment Agency-managed monitoring sites. The air

quality monitoring process is underpinned by an external cer-

tification process (i.e., the MCERTS24 performance standards

for ambient monitoring) that embodies rigorous performance

requirements, standards, and testing regimes for measuring

air pollutant concentrations.25 Thus, it is unsurprising that

the high-impact analysis of pollution and meteorological

18 https://www.gov.uk/government/statistics/emissions-of-air-pollutants/emissions-of-

air-pollutants-in-the-uk-particulate-matter-pm10-and-pm25
19 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/

populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandn

orthernireland
20 https://www.gov.uk/government/statistical-data-sets/vehicle-licensing-statistics-

data-tables#all-vehicles
21 https://www.data.gov.uk/dataset/cfd94301-a2f2-48a2-9915-e477ca6d8b7e/

pollution-inventory
22 https://www.ons.gov.uk/methodology/geography/ukgeographies/

censusgeography#:∼:text=Output%20areas%20(OA)%20were%20created,UK%

20at%20the%202001%20Census.
23 https://uk-air.defra.gov.uk/networks/
24 https://www.gov.uk/government/publications/mcerts-performance-standards-

for-ambient-monitoring-equipment/mcerts-performance-standards-for-ambient-

monitoring-equipment
25 https://uk-air.defra.gov.uk/networks/monitoring-methods?view=PM-Environment-

Act-MonitoringMethods
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MICROGEOGRAPHIC EVIDENCE FROM THE UK 7

F I G U R E 1 Spatial concentration of PM2.5 and Wealth and Assets Survey (WAS) areas in 2018. Notes: Panel A shows the annual average PM2.5

(µg m−3) across 1 km × 1 km grids, aggregated to the official local United Kingdom (UK) district levels and plotted in different colors as presented by the

legend. Panel B contains small point plots that are WAS survey areas at the district level.

conditions are increasingly relying on these high-resolution

data (Adhvaryu et al., 2019; Bruederle & Hodler, 2019;

Harari & Ferrara, 2018; Pinchbeck et al., 2023).26

Our final data is an unbalanced panel dataset contain-

ing observations spanning 12,196 individuals during the 6

time periods/waves covering 2006–2018. Therefore, our unit

of analysis is at the individual × wave level. The above

sample results from our data matching exercise across the

air quality data and WAS. We particularly note an impor-

tant sampling limitation of the WAS survey. Unlike some

financial and wealth surveys, it suffers from low response

rates and some households provide incomplete responses (see

Alvaredo et al., 2016; Mumtaz & Theophilopoulou, 2020).

Further, our sample size was reduced by instances where we

dropped some households due to the lack of location infor-

mation which prevented us from mapping and deriving their

pollution risk measures.

4.2 Trends and descriptive statistics

Figure 2 displays the overall trend in the average annual con-

centration of PM2.5 and life insurance adoption during our

26 We thank an anonymous referee for their guidance on this issue.

F I G U R E 2 Trends in PM2.5 concentration and life insurance

decisions.

study period. Between 2006 and 2010, the average PM2.5 pol-

lution rose by more than 80%, from 7.9 to 14.36 µg m−3. By

2012, the average pollution level spiked by around 22% rel-

ative to 2011, stabilizing around 10–11 µg m−3 mark. The

declining overall trend in PM2.5 concentration is due to the

significant decrease in coal burning and the higher emission

standards for primary sources of particulate matter, such as
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8 ADETUTU ET AL.

TA B L E 1 Descriptive statistics.

Mean Std. Dev.

Life insurance policy face value (£) 13,686.77 66,939.25

Has a life insurance policy (dummy = 1) 0.129 0.335

Other insurance policies (£) 2656.582 17,970.13

British citizen (dummy = 1) 0.629 0.483

Age (years) 55.90 14.73

Male (dummy = 1) 0.475 0.499

Married (dummy = 1) 0.658 0.474

Degree (dummy = 1) 0.274 0.446

Employed (dummy = 1) 0.434 0.496

Islam (dummy = 1) 0.014 0.115

White (dummy = 1) 0.885 0.319

Household size (persons) 2.151 1.130

Real income (£) 12,976.77 22,537.22

PM2.5 (µg m−3) 11.630 9.617

Nitrogen oxide (µg m−3) 27.848 29.712

Wind speed (miles per second) 5.101 1.307

Precipitation (mm) 1440.87 488.73

Observations 33,454 33,454

industrial processes and transport sectors.27 Meanwhile, we

observe a generally declining trend in adopting life insurance

policies within our sample. The adoption rate fell from about

24% in 2006 to 17% in the 2016–2018 wave. The trend in

life insurance penetration seems consistent with the overall

demand trends in the global and UK life insurance market

(McKinsey & Company, 2017). A report by the Association

of British Insurers (2019) showed that the UK notably expe-

rienced negative growth in the life insurance business due to

economic uncertainties and a declining number of firms with

authorizations to underwrite insurance risks during our study

period.

Table 1 presents the definitions of the variables and their

descriptive statistics for our unbalanced panel dataset. The

descriptive statistics presented in Table 1 suggest nearly half

(48%) of the sample are male, approximately two thirds are

married (66%) and British (63%). Twenty-seven percent of

the individuals in the sample have a higher degree or above,

43% are employed, and 88% are white. On average, two indi-

viduals live in a household with an average health score of 4

and an average age of 56.

In terms of our dependent variables, we note that life insur-

ance ownership is a dummy variable, with a mean of 0.13

over the entire data sampling period. The mean value suggests

an average life insurance penetration of 13%, which is higher

than most comparable economies, such as the United States,

France, and Germany (see Organisation for Economic Co-

operation and Development, 2022). However, Figure 2 shows

27 See the national statistics of the Department for Environmental and Rural Affairs

(DEFRA, 2022).

our sample’s rapid decline in life insurance ownership. For

the insurance face value variable, we deflate the nominal face

values of the insurance policies by applying the UK consumer

price index. The inflation-adjusted insurance values yield a

mean of £13,686.77, which is 1.05 times the average income

within the data sample. Turning to the pollution data, we find

a sample mean value of 11.63 µg m−3 which is bounded by

the less stringent annual EU limit28 of 25 µg m−3 and the

more stringent WHO limit29 of 5 µg m−3.

4.3 Instrumental variables

Our empirical analysis aims to estimate the causal effect of

pollution risk on life insurance ownership. However, tradi-

tional estimators such as probit and ordinary least squares

(OLS) cannot identify the causal impact of exposure to pollu-

tion risk on insurance decisions. The reason is twofold. First,

pollution risk is possibly a choice variable arising from indi-

vidual residential location decisions. Such residential choices

potentially cause endogeneity issues due to selection bias.

Second, there may be unobserved characteristics that drive

both insurance and location decisions. For instance, house-

hold location decisions may be driven by unobservable family

considerations (e.g., care responsibilities and proximity to

certain social services such as hospitals), which may also

influence insurance decisions. Thus, simultaneity or omitted-

variable bias may be present, causing some components of

the error term to be correlated with local air pollution.

Thus, our identification strategy must address the possi-

ble endogeneity of residential decisions by instrumenting the

pollution variable. Selected instruments variables (IVs) have

to satisfy two crucial assumptions: (i) that a significant first-

stage relationship exists between the IVs and local pollution

levels and (ii) that the IVs are random such that they only

impact life insurance decisions only through their effect on

local pollution risk, that is, there is no correlation between

IVs and the error term.

As a result, we instrument for pollution by exploiting the

exogenous contribution of atmospheric conditions to the local

concentration of pollutants and air quality. Specifically, we

employ average wind speed and rainfall as instruments for

local pollution levels. In principle, another potentially rele-

vant instrument is inversion temperature pertaining to rising

temperature with location height. However, the lack of suit-

able information on inversion temperature at granular the

geographical level employed in this study means that we are

unable to call on this IV.

Given that our local pollution variable is computed at the

granular 1 km × 1 km grid level, our instruments should

reflect this microgeographic level of the pollution variable.

As a result, we can exploit the annual HadUK-Grid data from

the UK Met Office, which provides 1 km × 1 km modeled

28 https://ec.europa.eu/environment/air/quality/standards.htm
29 https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-

and-health.
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MICROGEOGRAPHIC EVIDENCE FROM THE UK 9

climatic data across UK land surfaces using data from

meteorological stations (Met Office et al., 2021). Using

raw data from the HadUK-Grid database provided by the

Centre for Environmental Data Analysis,30 we compute

annual average wind speed (mile per second: m s−1) and

precipitation amount (mm) at the 1 km grid level. As with

the pollution variable, the modeled meteorological instru-

mental variables have been calibrated in a similar way to the

pollution variables.

Our identifying assumption draws on a robust body of

meteorological and geophysical literature, which shows that

atmospheric diffusion conditions shape pollution concen-

tration. These conditions include horizontal atmospheric

transport (surface wind speed) and wet deposition (precip-

itation) (Horton et al., 2014; Wang et al., 2016). Thus, the

principal determinants of the spatial diffusion of pollutants

are the physical processes (e.g., wind velocity and direc-

tion) that cause pollution to be dispersed or become more

concentrated (see Perman et al., 2011).

Given the above meteorological assumption, the empiri-

cal economic literature on pollution dispersion often exploits

these physical climatic properties to identify the effects of

local pollution conditions (Chen et al., 2020; Herrnstadt et al.,

2021; Schlenker & Walker, 2016). Regarding the identifying

assumption (i), the above literature documents that these cli-

matic variables are strongly correlated with pollution levels.

Given that both the pollution and weather data are captured at

the 1 km-by-1 km resolution, along with the above empirical

evidence, we expect that the meteorological instruments drive

the pollution predictions. We assess this assumption using

OLS in the first stage by checking either the statistical sig-

nificance or explanatory power of the relationship between

the IVs and pollution risk. Turning to assumption (ii), our

identifying intuition is that the physical processes embodied

in our climatic IVs are exogenously determined by nature.

This argument would suggest that assumption (ii) seems to

be satisfied as households cannot affect the atmospheric con-

ditions of their location. Hence, the IVs should not directly

affect life insurance decisions except through their impact on

the local pollution risk variable. We, however, note that it is

almost impossible to confirm with certainty that our exclusion

restrictions hold, considering the potential violation arising

from households who may choose to reside in a geographic

location due to weather considerations.

Yet, we think that the exclusion restrictions are likely to

hold. Even if a household makes location decisions based on

weather considerations, the heterogeneity in the IVs at the

microgeographic level makes it quite unlikely such weather

considerations are boiled down to the grid level. In essence,

the sort of variation that we are exploiting for the instrument

is at a very fine-grained level, at which variation in weather

conditions should not drive household location decisions.

This approach is a crucial benefit of our microgeographic

identification strategy (see Herrnstadt et al., 2021). Moreover,

30 https://catalogue.ceda.ac.uk/uuid/786b3ce6be54468496a3e11ce2f2669c

because we have more IVs than our single endogenous vari-

able, we can at least implement an overidentification test to

establish whether the additional instrument is valid.31

4.4 Analytical framework

Figure 3 presents our analytical framework detailing our

causal method for identifying the effect of pollution expo-

sure on insurance demand. The empirical framework relies

on survey, and pollution as well as weather conditions as

data inputs. The survey data is based on information taken

from the UK WAS, whereas the pollution information is

based on modeled air quality data produced by the DEFRA.

Both datasets yield a final database used for conducting our

econometric analysis (path 1).

In the econometric component of the framework, we depict

the two-stage endogeneity-correction in which we use mod-

eled meteorological variables (wind speed and precipitation)

as exogenous instruments to address the endogeneity of the

pollution variable (path 2). The relationship between the

endogenous pollution variable and the outcome variable (i.e.,

insurance demand) is captured by the parameter estimate 𝛽
that measures the direct or causal effect of pollution risk

exposure on insurance demand, as depicted by path 3. The

bottom arc running from pollution risk to insurance demand

portrays the residuals from the first-stage regression of pol-

lution and weather conditions and control variables. Path 3

(the stage-two regression) shows the direct effect of pollu-

tion risk on insurance demand, independent of the correlation

(corr) between the residuals for pollution (u), and the insur-

ance outcome variable (v). The pollution effect is identified

by the presence of the weather IVs that are assumed to influ-

ence the insurance adoption decision exclusively via its effect

on the pollution variable (path 2).

4.5 Econometric model

The dependent variable that captures an individual’s behav-

ior with respect to life insurance demand is nonnegative and

characterized by a mass point at zero (78.76% of individuals

in the sample do not have life insurance). It also has a long tail

on the right-hand side. Such excess zeros are due to “corner-

solutions” (Silva et al., 2015), as individuals tend to dismiss

low-probability risks. The observed zeros combine two types

of individuals: those who would not hold a life insurance

policy regardless of the policy price and those who would

consider buying a life insurance policy if prices were differ-

ent. Given these data features, linear estimators such as OLS

and 2SLS models are unsuitable for analyzing restricted data

(corner solutions) with excess zeros. In essence, our modeling

31 Although Hansen-J test cannot be estimated when control function approach is

used, 2SLS model is run instead to test the relevance and validity of the selected

instruments. Hansen-J test p-value = 0.2664 and statistically significant F-test (96.92,

p-value= 0.000) support validity and relevance of the selected instruments, respectively.

See Appendix D.
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10 ADETUTU ET AL.

Inputs Endogeneity-corrected Model Output  

UK-WAS data

Survey data on 

insurance decisions

DEFRA data

Modelled pollution 

data at 1km grids

Panel database

12,196 individuals 

2006-2018

Met Office data

Modelled meteorological 

data at 1km grids

DEFRA data

Endogenous var: 

Modelled pollution data

UK-WAS data

Outcome var: 

insurance demand

1

2

3

F I G U R E 3 Analysis framework.

technique must take cognizance of the above data compli-

cations and potential bias arising from using linear models

(see King, 1988; Wooldridge, 2010; Silva & Tenreyro, 2006,

2011; Gillingham & Tsvetanov, 2019).

Consequently, we employ a zero-inflated negative binomial

(ZINB) model to handle the right-skewed insurance data with

a large proportion of zeros. The details of the ZINB model

are given in Appendix B. As the negative binomial overdis-

persion parameter is larger than one, the negative binomial

variance is greater than its mean. By implication, this can be

either a consequence of unobserved heterogeneity or excess

zeros. However, we note that the ZINB model does not have

an analog of the 2SLS that jointly estimates the first and

second-stage regressions. Hence, we employ the control func-

tion (CF) technique which is also a well-known approach in

the literature32 for addressing endogeneity in nontraditional

data settings, as in this study. Under the CF approach, we first

obtain the first-stage residuals by regressing the endogenous

pollution variable on the instrumental variables and other

control variables. The residuals are then included as a regres-

sor in the second stage regression of insurance demand on

pollution.

As we observe individuals over multiple periods, we con-

trol for the panel data structure by clustering the data at the

individual level. We also address the potential endogeneity

of pollution by employing a CF approach. To this end, we

use wind speed and precipitation as instruments for air pollu-

tion. For comparison, we also check the overall consistency

of our results by estimating a two-part model that treats the

dependent variable as continuous.

Additionally, when the outcome variable is nonnegative

and skewed with a mass point at zero, two-part and Tobit

models have also been employed in the literature. The Tobit

model allows only one type of zero observation (potential

participants) and excludes decision-makers who would never

32 For a technical treatment of the CF approach, see Imbens and Wooldridge (2007)

and Wooldridge (2010, 2015). For empirical applications, see Aghion et al. (2009),

Gillingham and Tsvetanov (2019), Kieschnick and Moussawi (2018).

participate irrespective of the circumstances (Engel & Mof-

fatt, 2014); for example, some individuals would not buy

life insurance regardless of price. The major drawback of the

Tobit model is that the probability of a positive outcome and

the value of the outcome are driven by the same vector of

parameters (Burke, 2009).

On the other hand, two-part models assume that differ-

ent mechanisms with different densities generate zeros and

positive observations. Hence, the censoring mechanism is

modeled by a binary estimator and the continuous part by

OLS or generalized linear model (GLM). In comparison to

two-part models, the negative binomial estimator is remark-

ably robust to violations in variance assumption as long as

the data is overdispersed (Gould, 2011). Nonetheless, we

also estimate a two-part model for comparison and robust-

ness checks. The details of the two-part model are given in

Appendix C.

5 FINDINGS AND DISCUSSION

5.1 Baseline results

Table 2 presents the estimation results from the ZINB model,

where columns 1 and 2 contain the estimates for the exoge-

nous specification where we ignore the endogeneity of the

pollution variable. However, in columns 3 and 4, we address

the endogeneity of air pollution.

In the ZINB model, we can separate the effect of air pollu-

tion on the probability of buying life insurance policies (i.e.,

the binary component) from the value of the policies (i.e.,

the continuous component). Focusing on the endogeneity-

adjusted model, we note the statistical significance of the

first-stage residuals in the continuous part, suggesting the

presence of endogeneity within the model. The larger coef-

ficient magnitudes of the endogenous model compared to

the exogenous specification further underscore the potential

endogeneity problem. We also note that the first-stage regres-

sion yields statistically significant coefficients on wind speed
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MICROGEOGRAPHIC EVIDENCE FROM THE UK 11

TA B L E 2 The impact of pollution on life insurance

decisions-zero-inflated negative binomial (ZINB).

Exogenous model Endogenous model

Binary Continuous Binary Continuous

(1) (2) (3) (4)

PM2.5 −0.018 −0.090*** −0.015 −0.215***

(0.011) (0.016) (0.027) (0.036)

(PM2.5)
2

0.001* 0.002*** 0.001* 0.002***

(0.000) (0.001) (0.000) (0.000)

(PM2.5)
3

−0.000 −0.000*** −0.000 −0.001***

(0.000) (0.000) (0.000) (0.000)

British 0.095*** −0.029 0.131*** −0.153***

(0.036) (0.044) (0.046) (0.053)

Age 0.018*** −0.0432*** 0.022*** −0.061***

(0.002) (0.004) (0.004) (0.006)

Male −0.118** 0.297*** −0.141*** 0.382***

(0.050) (0.066) (0.054) (0.066)

Married −0.571*** 0.050 −0.479*** −0.297***

(0.059) (0.069) (0.092) (0.110)

Degree −0.152*** 0.480*** −0.112* 0.322***

(0.051) (0.070) (0.061) (0.078)

Employed 0.256** 0.024 0.230** 0.137

(0.101) (0.157) (0.102) (0.161)

Islam 0.990*** −0.348 0.832** 0.250

(0.316) (0.245) (0.335) (0.284)

White 0.044 −0.107 0.142 −0.517***

(0.082) (0.090) (0.113) (0.137)

hh/d size −0.147*** 0.176*** −0.223*** 0.474***

(0.020) (0.022) (0.062) (0.075)

Health −0.067** 0.154*** −0.049 0.082*

(0.028) (0.039) (0.032) (0.043)

Income −0.058*** 0.018 −0.058*** 0.018

(0.010) (0.014) (0.010) (0.014)

Other policies −0.156*** 0.003 −0.152*** −0.014*

(0.006) (0.006) (0.006) (0.007)

First-stage residual −0.034 0.131***

(0.026) (0.033)

Constant 2.399*** 5.8363*** 1.675*** 8.587***

(0.225) (0.3461) (0.611) (0.804)

N 33,454 33,454 33,454 33,454

Notes: The ZINB model is applied, where the binary process is estimated by the logit

model, whereas the continuous part has a negative binomial distribution. We control for

our panel data structure by clustering the data at the individual level. Standard errors in

parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.

and wet conditions at the 1% level (see Table D1 in Appendix

D). The F-test statistic of 96.92 far exceeds the suggested

critical value of 10, whereas the Hansen test p-value of 0.26

indicates that the over-identifying restrictions are valid.

TA B L E 3 Joint significance tests.

ZINB

χ2 p-Value

PM2.5 38.11*** 0.0000

(PM2.5)
2

21.80*** 0.0000

(PM2.5)
3

19.55*** 0.0001

Notes: As the p-value is less than the significance level of 0.05, we can conclude that

PM2.5, (PM2.5)
2
, and (PM2.5)

3
are jointly statistically significant for the two parts of

the model.

Abbreviation: ZINB, zero-inflated negative binomial.

*p < 0.1, **p < 0.05, ***p < 0.01.

The binary parts of both models (columns 1 and 3) indicate

weak statistical significance or a lack of it for the effect of

PM2.5 on the probability of taking out life insurance.33 How-

ever, for the continuous part, the effect of pollution risk is

statistically significant at the 1%-level both in the exogenous

and endogenous models. Notably, we observe an alternating

sign pattern on the level, squared and cube terms of partic-

ulate matter, indicating an inverted N-shaped relationship

between the value of life insurance policies and pollution.

Given the mixed picture of the statistical significance of

air pollution within the two model components, we test

for the joint significance across both model components,

as presented in Table 3. The test indicates that pollution,

its squared, and cubed terms are jointly statistically signif-

icant across the two parts of the model, that is, overall,

pollution matters for life insurance decisions. We argue that

the relationship between local pollution risk and life insur-

ance decisions is nonlinear. This finding chimes with the

ambiguous relationship between the probability of death and

life insurance demand, as suggested by the broad insurance

demand literature (Levy et al., 1988; Lewis, 1989; Outreville,

1996).

Using theory and empirics, we have jointly explored the

negative and positive dynamics in the pollution-insurance

nexus within a single analytical framework. This approach

allows us to show—for the first time—that the relationship

between pollution and insurance demand depends on the

threshold of pollution concentration. More formally, over

a given range above a threshold of exposure, rising pollu-

tion magnifies the death probability and is associated with

rising demand for life insurance, whereas at lower than the

threshold levels of pollution, higher exposure risk reduces

demand for insurance. The revealed pattern aligns with the

theoretical model’s prediction of the nonlinear relationship

and is also consistent with medical research34 that relaxes the

assumption of linearity in the relationship between pollution

and health outcomes.35

Figure 4 provides a diagrammatic depiction of our main

empirical finding. Specifically, we plot the predicted aver-

age values of insurance coverage from our model against

PM2.5 across different pollution thresholds. The plot shows

33 This finding, coupled with the fact that the majority of individuals do not possess life

insurance, could be explained by individual’s errors in the assessment of life expectancy,
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12 ADETUTU ET AL.

F I G U R E 4 Predicted life insurance coverage across PM2.5

concentration levels.

that an increase in pollution initially decreases the value and

probability of life insurance policy coverage. However, over

a certain higher threshold ranging from 10 to 30 µg m−3,

the predicted values on the insurance coverage increase,

conversely decreasing over the higher threshold. Interest-

ingly, given the WHO’s recommended annual PM2.5 limit

of 10 µg m−3, the plot from our estimated model suggests

that individuals exceeding this pollution limit are more likely

to purchase a life insurance policy. Beyond the 30 µg m−3

threshold insurance demand falls at a much slower rate rela-

tive to the initial fall. This inverse N-shape relationship could

be supported by studies that show a bimodal response to

low-probability risks where either subjects significantly over-

weight the probability and have a high willingness-to-pay for

insurance, or under-weight the probability and consider insur-

ance as unnecessary (Robinson & Botzen, 2019). The latter

response may offer an explanation for our finding where ini-

tially there is a drop in insurance demand for low-probability

risks. As pollution risk increases (above 10 µg m−3), indi-

viduals may be able to form a subjective estimate of the true

risk probability by using some anchor probability (e.g., an

expert guess or publicly available information from reputable

institutions such as the WHO’s recommended annual limit of

10 µg m−3 for PM2.5 exposure). Thus, individuals are able to

decipher the increased pollution risk and hence demand more

insurance.

Furthermore, the empirical results in Table 2 support the

altruistic bequest motive as the marginal effects on house-

hold size and marital status are positively associated with the

probability of taking out life insurance. These findings align

with the theoretical model’s prediction of the positive impact

of the bequest parameter 𝛽 on the demand for life insurance

and are consistent with the notion that life insurance acts as

a hedge against mortality risk (Chen et al., 2006). They also

a strong preference for the present the lack of insurance literacy (Corcos et al., 2020)

and time-inconsistent behavior due to its dynamic nature (Tang et al., 2018).
34 For instance, Schwartz et al. (2001); Zoeller and Vandenberg (2015).
35 Such health studies have assessed the relationship between pollution and health out-

comes, with the majority of nonlinear functions being modeled using cubic splines,
where the estimated curve is restricted to be smooth (three times differentiable) with no

constraint on the shape (e.g., Powell et al., 2012).

TA B L E 4 Results for zero-inflated negative binomial (ZINB) model

with interaction terms.

Coeff. (p-value)

PM2.5 0.040

(0.029)

PM2.5 × married −0.016***

(0.005)

PM2.5 × income −0.000***

(0.000)

PM2.5 × other policies −0.000**

(0.000)

PM2.5 × health 0.001

(0.003)

PM2.5 × degree 0.009*

N 33,454

Notes: The same control variables are included as in the main model presented in

Table 2. Due to the inclusion of interaction terms, squared and cubed terms of PM2.5 are

removed from the specification. Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.

reflect the implicit uncertainty derived from the wage earners’

preretirement death and the associated loss of labor income to

the surviving dependents of the household (Campbell, 1980).

Moreover, age is negatively associated with the probabil-

ity and size of life insurance premiums, as the proportion

of insured capital decreases with age (Campbell, 1980). We

also find a positive association between income and the

probability of taking out life insurance. This finding sup-

ports the lifetime consumer allocation theory (Yaari, 1964,

1965), whereby individuals maximize lifetime consumption

and bequest upon death. Furthermore, older adults control

more financial resources, which might become more com-

plex in the context of age-related decline in cognitive ability

(Agarwal et al., 2009).

Possessing a higher degree is positively associated with

the probability of taking out life insurance and the insurance

premium size, supporting previous findings (Kumar, 2019).

Education could also indicate that individuals are more aware

of pollution health risks and the availability of various life

insurance products. We also find a positive and statistically

significant relationship between the possession of other insur-

ance products (a proxy for risk aversion) and the probability

of taking out life insurance. The positive relationship indi-

cates that more risk-averse individuals are more likely to take

out life insurance.

5.2 Exploring the channels of impact

Next, we aim to understand better if the pollution-life insur-

ance relationship manifests via different channels. In Table 4,

the interaction terms between PM2.5 and three variables (i.e.,

marital status, income, and taking out other insurance prod-

ucts) are negative and statistically significant. The interaction
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TA B L E 5 Estimation results for the two-part model.

Binary Continuous

PM2.5 −0.024 −0.208***

(0.027) (0.035)

(PM2.5)
2

−0.001 0.002***

(0.000) (0.000)

(PM2.5)
3

0.000 −0.000***

(0.000) (0.000)

All controls Yes Yes

N 33,454 33,454

Notes: The binary part is modeled using the logit regression, whereas the continuous

part is modeled using GLM with the log link and gamma distribution. We control for

the panel data structure by clustering the data at the individual level. Standard errors in

parentheses.

Abbreviation: GLM, generalized linear model.

*p < 0.1, **p < 0.05, ***p < 0.01.

terms with health status and education lack statistical sig-

nificance. More specifically, PM2.5 is positively36 associated

with the probability of taking out life insurance for individu-

als with higher income, as they possess more resources to buy

life insurance coverage; individuals who are married, as mar-

ried individuals are more likely to have an incentive to protect

their partner’s income; and those who have other insurance

policies, as the possession of other insurance covers might

indicate higher risk aversion and, therefore, more willingness

to extend such protection across different domains.

5.3 Alternative estimator

Next, we present the estimation results from an alternative,

two-part model estimator. In this specification, the binary

component is modeled with the logit estimator, whereas the

continuous part is modeled using GLM (i.e., the log link and

gamma distributions) (see Table 5). For brevity, we do not

report the estimation results on the control variables and only

present results for pollution terms. The estimation results

mirror the direction and statistical significance of the ZINB

model, supporting the nonlinear inverse N-shape relationship

between PM2.5 and the size of the life insurance premium.

Given the differences in the estimators employed to accom-

modate the nature of the dependent variable, the magnitudes

of estimated coefficients are not comparable across the two

models. To aid comparison, we present the joint marginal

effects of pollution across the ZINB and two-part models in

Table 6. The estimates show that the statistical significance

and direction of the estimated coefficients and the magnitudes

of the joint marginal effects for ZINB and two-part models

are very similar. Thus, our overarching finding of an inverse

N-shaped relationship between pollution and life insurance

holds.

36 In the binary part, we are modeling the probability of zero, which means that we need

to interpret the signs in the opposite way.

TA B L E 6 Joint marginal effects for the zero-inflated negative

binomial (ZINB) and generalized linear model (GLM) models.

ZINB model Two-part model

MA t-Stats MA t-Stats

PM2.5 −3.2586*** −5.37 −3.2378*** −5.20

(PM2.5)
2

0.0242*** 3.05 0.0242*** 3.04

(PM2.5)
3

−0.0002*** −2.91 −0.0002*** −2.96

All controls Yes Yes Yes Yes

Notes: The marginal effects capture the joint effects of PM2.5, (PM2.5)
2
, and (PM2.5)

3

across the two parts of each model.

*p < 0.1, **p < 0.05, ***p < 0.01.

TA B L E 7 Estimation results for the zero-inflated negative binomial

(ZINB) and two-part models.

ZINB Two-part

Binary Continuous Binary Continuous

NO2 0.005 −0.047*** −0.007 −0.045***

(0.005) (0.008) (0.005) (0.007)

(NO2)
2

0.000 0.000*** −0.000 0.000***

(0.000) (0.000) (0.000) (0.000)

(NO2)
3

−0.000 −0.000*** 0.000 −0.000***

(0.000) (0.000) (0.000) (0.000)

All controls Yes Yes Yes Yes

N 33,454 33,454 33,454 33,454

Notes: Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.

5.4 Alternative pollutant

We conduct further robustness tests to check the sensitivity

of our results to variations in pollution type. To do this, we

study the effects of the UK’s second most concerning pollu-

tant, nitrogen dioxide (NO2) on the purchase of life insurance

(DEFRA, 2017). Table 7 presents the NO2 results across the

ZINB and two-part models. Similar to our baseline PM2.5

results, we confirm the inverse N-shape relationship between

pollution and life insurance decisions, albeit with a lack of

statistical significance in the binary part.

5.5 Accounting for regional effects

Finally, there might be concerns that our empirical work fails

to account for regional effects adequately. Although we have

attempted to control for the different sources of endogene-

ity (e.g., residential selection bias) in the estimation process,

we carry out further robustness checks to inform whether

regional shocks or characteristics may alter our findings. For

instance, areas with better air quality might have higher house

prices. At the same time, houses in urban areas, where pollu-

tion tends to be higher, may also have higher property prices.

Concurrently, local house valuations may predict insurance

adoption decisions and policy values. Hence, we introduce
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TA B L E 8 Estimation results for the zero-inflated negative binomial

(ZINB) and two-part models including house prices.

ZINB Two-part

Binary Continuous Binary Continuous

Ln(house price) −0.068 0.393*** 0.082* 0.383***

(0.046) (0.061) (0.045) (0.060)

PM2.5 0.009 −0.163*** −0.015 −0.158***

(0.028) (0.033) (0.027) (0.032)

(PM2.5)
2

0.001* 0.002*** −0.001* 0.002***

(0.000) (0.000) (0.000) (0.000)

(PM2.5)
3

−0.000 −0.000*** 0.000 −0.000***

(0.000) (0.000) (0.000) (0.000)

All controls Yes Yes Yes Yes

N 33,454 33,454 33,454 33,454

Notes: Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.

the real values of local house prices (£) into our estimations.

Ideally, capturing these house price dynamics at our OA level

of geographic aggregation is preferable. However, the lack

of house price data at the OA level means that we resort to

the available information at a higher level of geographical

aggregation (i.e., the ONS data on Median house prices by

lower layer super output area [LSOA]).37 Table 8 presents

the results from this extended regional analysis for the ZINB

and two-part models. In addition to the house price variable

being statistically significant for both estimators, the inverse

N-shape relationship between pollution and life insurance

decisions holds for both estimators.

Further robustness checks are carried out by including the

year and regional dummies in the ZINB and a two-part model

for both pollutants, namely, PM2.5 and NO2. The estima-

tion results presented in Appendix E show that the inverse

N-shape relationship between pollution and life insurance

decisions remains for both estimators.

6 CONCLUSIONS

It is widely acknowledged that air pollution can have devas-

tating health, economic, and behavioral consequences. In this

article, we examine how local exposure to pollution affects

the demand for life insurance. More specifically, we extend

the emerging literature by testing a new hypothesis that sug-

gests a nonlinear relationship between pollution risk and the

demand for life insurance coverage. To empirically test this

hypothesis, we create a unique dataset by linking microgeo-

graphic information on air quality data to a confidential UK

individual-level survey from 2006 to 2018. By employing

ZINB and two-part models, our estimates account for the

skew of the life insurance variable with a mass point at zero.

37 While an OA typically contains around 100 households, LSOAs could contain from

400 to 1200 households.

Additionally, as we also control for the self-selection bias

arising from individuals’ choices regarding their residential

locations, we interpret our results as the causal effect of the

air pollution risk on life insurance decisions. Our main find-

ing is that over a given range above a threshold of exposure,

rising pollution magnifies the death probability and is associ-

ated with rising demand for life insurance, whereas at lower

than the threshold levels of pollution, higher exposure risk

reduces demand for insurance. This result suggests that, at

very high levels of pollution exposure, the demand for life

insurance increases as exposure rises, whereas, for low levels

of exposure, the insurance demand reduces.

This assessment of the pollution-life insurance relation-

ship offers three implications for research, practice, and

policy. First, our estimated results support the notion that

the effect of pollution risk on life insurance demand fol-

lows a nonlinear pattern. Therefore, our analysis advocates

a research approach that jointly explores the negative and

positive dynamics in the pollution-insurance nexus within a

single analytical framework. Second, insurance practitioners

have a growing consensus38 that air pollution is an emerging

risk factor for life insurance decisions as long-term exposure

to pollution drives mortality. Our study constitutes an addi-

tional step toward an evidence base that informs practitioners

about the different behavioral responses to air pollution

that may shape future development and refinement of new

pollution-related insurance products.

Finally, it has never been more critical for public policy

drive to engender accountability regarding pollution-related

risks across financial markets.39 It seems vital for policy-

makers to understand better how local pollution sufferers

respond to pollution risk. For instance, we note that the non-

linear effect documented in this study is not the entirety

of the behavioral mechanisms that may drive the pollution-

insurance demand relationship. As microgeographic house-

hold datasets become more abundant, we expect future

research to explore the role of additional behavioral mech-

anisms such as individual avoidance behaviors. We also

anticipate that researchers will further exploit questions

on how regulatory interventions could draw up compensa-

tion mechanisms that transfer payments from polluters to

sufferers.40

6.1 Disclaimer

This work contains statistical data from ONS, which is crown

copyright and reproduced with the permission of the con-

troller of HMSO and Queen’s Printer for Scotland. The use

of the ONS statistical data in this work does not imply the

endorsement of the ONS in relation to the interpretation

38 For instance, see https://www.partnerre.com/opinions_research/poor-air-quality-an-

emerging-risk-factor-for-life-insurance-underwriting-and-pricing/
39 For instance, see https://www.bankofengland.co.uk/-/media/boe/files/prudential-

regulation/publication/impact-of-climate-change-on-the-uk-insurance-sector.pdf
40 This compensation idea is theoretically well established in economics under the

“Coase theorem” (Coase, 1960).
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or analysis of the statistical data. This work uses research

datasets, which may not exactly reproduce National Statistics

aggregates.
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A P P E N D I X A : C O M PA R AT I V E S TAT I C S

Second derivative of EU (I) with respect to I

𝜕2EU (I)

𝜕I2
= −

(1 − ap (𝜆)) (C1 − ap (𝜆) I − L)

−[(C0 + I − ap (𝜆) I − L) (−ap (𝜆))

(C1 − ap (𝜆) I − L)
2

< 0.

Effect of C1 on I∗

𝜕I∗

𝜕C1

=
A1∕𝛾

1 − ap (𝜆)
(
1 − A1∕𝛾

) > 0.

Effect of C0 on I∗

𝜕I∗

𝜕C0

=
−1

1 − ap (𝜆)
(
1 − A1∕𝛾

) < 0.

Effect of 𝛽 on I∗:

denoting A

1

𝛾 = k

𝜕I∗

𝜕𝛽
=
𝜕I∗

𝜕k

𝜕k

𝜕𝛽
,

where

𝜕I∗

𝜕k
=

1 − ap (𝜆) (1 − k) (C1 − L)

−[k ((C1 − L) − C0 + L) ap (𝜆)

1 − ap (𝜆) (1 − k)
,

if L ≤ C0 then
𝜕I∗

𝜕k
> 0

and

𝜕k

𝜕𝛽
=

1

𝛾

𝛽 (1 − ap (𝜆))

a (1 − p (𝜆))

1

𝛾 (1 − ap (𝜆))

a (1 − p (𝜆))
> 0.

Hence,

𝜕I∗

𝜕𝛽
> 0.

PROSPECT THEORY APPROACH

Although we follow an expected utility approach, we can

make some remarks regarding using a prospect theory

approach with its two prominent features, probability weight-

ing and loss aversion (Kahneman & Tversky, 1979; Tversky

& Kahneman, 1992).

In this case, the objective probabilities p(𝜆) and 1 − p(𝜆)

are replaced by subjective decision weights 𝜋(p(𝜆)) and

𝜋(1 − p(𝜆)), respectively,41 which can be computed with the

help of a weighting function whose argument is an objective

probability. The utility function is replaced by a value func-

tion, v(⋅), that is defined over changes in wealth rather than

final asset position.

Empirical applications of PT often employ the follow-

ing functional form of the value function where xi indicate

possible consequences:

v (x) =

{
x𝜎 if x ≥ 0

−𝜑 (−x𝜎) if x < 0
.

Τhis value function exhibits diminishing sensitivity for 𝜎 <
1 and loss aversion for 𝜑 > 1.

Hence under PT, Equation (1) can be written as

𝜋 (p (𝜆)) 𝛽 v (I − prem) + 𝜋 (1 − p (𝜆)) v (−prem)

Using the functional form of the value function v(x) above,

the FOC for the insurance demand I now reads

𝜋 (p (𝜆)) 𝛽 𝜎(I − (ap (𝜆) I + L))
𝜎−1

(1 − ap (𝜆))

+𝜋 (1 − p (𝜆)) 𝜑 𝜎 (ap (𝜆) I + L)
𝜎−1

(−ap (𝜆)) = 0.

Solving for I∗, gives us I* = (L(Bˆ(1/σ − 1)+1))/(1 − ap

(λ) − ap(λ)Bˆ(1/σ − 1)) for B = (π(1 − p(λ))φ(ap(λ)))/(β
π(p(λ))(1 − ap(λ))). Hence, we find that the effect of 𝜆 on

the demand for insurance is still ambiguous, and hence, there

is a nonlinear effect as also shown in our empirical part.

Thus, as we are interested in the effect of exposure on

life insurance demand, the expected utility approach followed

allows us to show this effect in a tractable manner along with

highlighting the channels (comparative statics) that affect

this relationship. It still shows and aligns with the case of

underinsuring low-probability events with high losses which

is a common in insurance and usually highlighted through

prospect theory models (Friedl et al., 2014).

41 We assume 𝜋 is increasing in p, as in Prelec (1998) where the probability weighting

function takes the form exp(−(− ln(p)
𝛿
)), 0 < 𝛿 < 1.
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A P P E N D I X B : Z E R O - I N F L AT E D

N E G AT I V E B I N O M I A L ( Z I N B ) M O D E L

Following Greene (1994), we can specify our base model as

yi ∼ 0 with probability qi

yi ∼negative binomial (𝜆i, 𝜃) with probability 1 − qi

(yi = 0, 1, 2, 3…)

where qi =
ezi𝛾

1+ezi𝛾
. This splitting mechanism separates indi-

viduals into non-holders of life insurance with probability qi

and potential holders of life insurance with probability 1 − qi.

Then, the fully observed dependent variable yi is generated

as a product of two latent variables zi and y∗
i
:

yi = ziy
∗
i
, (B1)

where zi is a binary variable that takes the values of 0 or 1,

and y∗
i

is distributed as a negative binomial (𝜆i, 𝜃). Therefore,

Pr (yi = 0) = Pr (zi = 0) + Pr
(
zi = 1, y∗

i
= 0

)
= qi + (1 − qi) f (0) ,

(B2)

Pr (yi = k) = (1 − qi) f (k) , k = 1, 2, … ,

where f (⋅) is the negative binomial probability distribution for

y∗
i
. The binary part of the model (the splitting mechanism)

is modeled with either binary probit or logit models. If the

ZINB model is applied where the binary process is estimated

by the logit model and y∗
i

has a negative binomial distribution,

the variance is as follows:

Var (yi) = 𝜆i (1 − qi)
[
1 + 𝜆i (qi − 𝛼)

]
, (B3)

Var (yi)

E (yi)
= 1 +

[
qi + 𝛼

1 − qi

]
E (yi) , (B4)

This shows that the negative binomial overdispersion

parameter is larger than one, indicating that the negative

binomial variance is greater than its mean.

A P P E N D I X C : T W O - PA R T M O D E L

Following Belotti et al. (2015), the zeros in two-part mod-

els are captured by modeling the probability of a positive

outcome:

𝜙 (y > 0) = Pr (y > 0|x) = F (x𝛿) , (B5)

where x is a vector of explanatory variables, 𝛿 is the cor-

responding vector of parameters to be estimated, and F is

a cumulative distribution function of the error term, which

is typically either extreme value or normally distributed

depending on whether logit or probit estimator is chosen. The

continuous part of the model can then be written

𝜙 (y |y⟩ 0, x) = g (x𝛾) , (B6)

where x is a vector of explanatory variables, 𝛾 is the cor-

responding vector of parameters to be estimated, and g is a

density function for y|y⟩0.

The overall mean is then the product of expectations from

both parts, where the joint distribution is decomposed into

marginal and conditional distributions:

E(y|x) = Pr (y > 0|x) × E (y |y⟩ 0, x) , (B7)

In this article, Pr(y > 0|x) is modeled using the logit regres-

sion, whereas E(y|y⟩0, x) is modeled using GLM with the log

link and gamma distribution:

E (y |y⟩ 0, x) = g−1 (x𝛾) , (B8)

where g is the link function in the GLM. Alternatively,

the continuous part of the two-part model is often modeled

with OLS regression on ln(y); therefore, a retransformation

of l̂n(y) to ŷ is required. The retransformation in two-part

models is based on homoscedastic and normally distributed

errors. If the errors are heteroscedastic, the log-linearization

of the model leads to inconsistent estimates as the trans-

formed errors are correlated with the covariates (Silva et al.,

2015). The gamma GLM with log link ensures the consistent

estimation of coefficients and marginal effects.

A P P E N D I X D : F I R S T - S TAG E O L S

R E G R E S S I O N O F P O L L U TA N T O N

I N S T R U M E N T S

TA B L E D 1 First stage of 2SLS test analysis.

Dep var.: PM25

Wind 0.633***

(0.170)

Rain −0.010***

(0.000)

Constant 72.686***

(1.386)

R-squared 0.209

All controls Yes

F-test of excluded instruments 96.92

Hansen-J test (p-value) 0.266

Obs. 33454

Note: Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.
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A P P E N D I X E : E S T I M AT I O N R E S U LT S

W I T H Y E A R A N D R E G I O N A L D U M M I E S

TA B L E E 1 Estimation results for zero-inflated negative binomial

(ZINB) model with year and regional dummies.

(1) (2)

Nitrogen Particulate matter

NO2 −0.052***

(0.008)

(NO2)
2

0.000***

(0.000)

(NO2)
3

−0.000***

(0.000)

First-stage residual 0.026***

(0.007)

PM2.5 −0.233***

(0.037)

(PM2.5)
2

0.002***

(0.000)

(PM2.5)
3

−0.000***

(0.000)

First-stage residual 0.141***

(0.034)

British −0.016 −0.089

(0.091) (0.098)

Age −0.054*** −0.066***

(0.005) (0.007)

Male 0.343*** 0.390***

(0.061) (0.062)

Married −0.151* −0.334***

(0.088) (0.113)

Degree 0.394*** 0.277***

(0.069) (0.073)

Employed 0.115 0.115

(0.178) (0.176)

Islam 0.433 0.433

(0.317) (0.293)

White −0.456*** −0.545***

(0.140) (0.153)

hh/d size 0.288*** 0.476***

(0.038) (0.074)

Health 0.086** 0.064

(0.039) (0.041)

Income 0.012 0.019

(0.015) (0.015)

(Continues)

TA B L E E 1 (Continued)

(1) (2)

Nitrogen Particulate matter

Other policy −0.008 −0.015**

(0.006) (0.007)

2006 0.000 0.000

(.) (.)

2008 0.094 0.149

(0.108) (0.113)

2010 0.064 0.134*

(0.076) (0.078)

2012 −0.120 −0.060

(0.114) (0.114)

2014 −0.046 0.043

(0.226) (0.231)

2016 −0.115 −0.039

(0.223) (0.229)

1. region_id 0.000 0.000

(.) (.)

2. region_id −0.040 0.000

(0.190) (0.179)

3. region_id 0.494** 0.393**

(0.204) (0.195)

4. region_id −0.478** −0.529**

(0.213) (0.212)

5. region_id −0.208 −0.337*

(0.200) (0.191)

6. region_id −0.020 0.014

(0.186) (0.177)

7. region_id −0.270 −0.144

(0.200) (0.189)

8. region_id −0.414** −0.347*

(0.203) (0.191)

9. region_id −0.242 −0.265

(0.196) (0.187)

10. region_id −0.189 −0.233

(0.185) (0.177)

Constant 7.490*** 9.165***

(0.576) (0.856)

Inflate

NO2 0.010*

(0.006)

(NO2)
2

0.000

(0.000)

(Continues)
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TA B L E E 1 (Continued)

(1) (2)

Nitrogen Particulate matter

(NO2)
3

0.000

(0.000)

First-stage residual −0.008

(0.006)

PM2.5 0.037

(0.029)

(PM2.5)
2

0.000

(0.000)

(PM2.5)
3

−0.000

(0.000)

First stage residual −0.048*

(0.028)

British 0.025 0.050

(0.109) (0.110)

Age 0.023*** 0.026***

(0.003) (0.005)

Male −0.142*** −0.156***

(0.052) (0.054)

Married −0.510*** −0.452***

(0.074) (0.095)

Degree −0.132** −0.108*

(0.054) (0.062)

Employed 0.144 0.140

(0.108) (0.108)

Islam 0.667** 0.661*

(0.340) (0.340)

White 0.117 0.151

(0.133) (0.142)

hh/d size −0.177*** −0.243***

(0.037) (0.066)

Health −0.044 −0.038

(0.031) (0.032)

Income −0.050*** −0.051***

(0.010) (0.010)

Other policy −0.152*** −0.149***

(0.006) (0.007)

(Continues)

TA B L E E 1 (Continued)

(1) (2)

Nitrogen Particulate matter

2006 0.000 0.000

(.) (.)

2008 −0.189 −0.164

(0.115) (0.116)

2010 −0.165*** −0.142**

(0.058) (0.060)

2012 0.041 0.054

(0.072) (0.073)

2014 −0.373** −0.381**

(0.179) (0.179)

2016 −0.318* −0.327*

(0.176) (0.176)

1. region_id 0.000 0.000

(.) (.)

2. region_id −0.246** −0.244**

(0.100) (0.101)

3. region_id −0.038 0.037

(0.131) (0.127)

4. region_id 0.059 0.050

(0.132) (0.132)

5. region_id 0.095 0.104

(0.106) (0.107)

6. region_id −0.081 −0.080

(0.098) (0.098)

7. region_id 0.111 0.100

(0.110) (0.110)

8. region_id 0.252* 0.234*

(0.137) (0.137)

9. region_id 0.091 0.110

(0.112) (0.112)

10. region_id −0.205* −0.198*

(0.107) (0.107)

Constant 1.772*** 1.421**

(0.418) (0.653)

N 33454 33454

Note: Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.
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TA B L E E 2 Estimation results for two-part model with year and

regional dummies.

(1) (2)

Nitrogen Particulate matter

NO2 −0.012**

(0.006)

(NO2)
2

0.000

(0.000)

(NO2)
3

−0.000

(0.000)

First-stage residual 0.009

(0.006)

PM2.5 −0.046

(0.029)

(PM2.5)
2

−0.000

(0.000)

(PM2.5)
3

0.000

(0.000)

First-stage residual 0.053*

(0.028)

British −0.026 −0.053

(0.108) (0.110)

Age −0.025*** −0.028***

(0.003) (0.005)

Male 0.154*** 0.169***

(0.051) (0.053)

Married 0.504*** 0.440***

(0.073) (0.094)

Degree 0.143*** 0.114*

(0.053) (0.061)

Employed −0.138 −0.134

(0.108) (0.108)

Islam −0.646* −0.642*

(0.339) (0.339)

White −0.131 −0.168

(0.131) (0.141)

hh/d size 0.185*** 0.256***

(0.036) (0.066)

Health 0.047 0.040

(0.030) (0.032)

Income 0.050*** 0.051***

(0.010) (0.010)

Other policy 0.150*** 0.147***

(0.006) (0.006)

2006 0.000 0.000

(.) (.)

2008 0.190* 0.168

(0.115) (0.115)

(Continues)

TA B L E E 2 (Continued)

(1) (2)

Nitrogen Particulate matter

2010 0.166*** 0.147**

(0.058) (0.060)

2012 −0.045 −0.055

(0.071) (0.072)

2014 0.372** 0.384**

(0.178) (0.177)

2016 0.314* 0.327*

(0.175) (0.175)

1. region_id 0.000 0.000

(.) (.)

2. region_id 0.243** 0.242**

(0.099) (0.100)

3. region_id 0.053 −0.024

(0.131) (0.127)

4. region_id −0.074 −0.067

(0.131) (0.132)

5. region_id −0.100 −0.114

(0.105) (0.106)

6. region_id 0.078 0.078

(0.097) (0.098)

7. region_id −0.120 −0.104

(0.110) (0.109)

8. region_id −0.266* −0.245*

(0.137) (0.136)

9. region_id −0.099 −0.118

(0.111) (0.111)

10. region_id 0.195* 0.188*

(0.106) (0.106)

Constant −1.697*** −1.286**

(0.413) (0.645)

Inflate

NO2 −0.050***

(0.008)

(NO2)
2

0.000***

(0.000)

(NO2)
3

−0.000***

(0.000)

First-stage residual 0.025***

(0.007)

PM2.5 −0.226***

(0.036)

(PM2.5)
2

0.002***

(0.000)

(PM2.5)
3

−0.000***

(0.000)

(Continues)
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TA B L E E 2 (Continued)

(1) (2)

Nitrogen Particulate matter

First-stage residual 0.137***

(0.033)

British −0.017 −0.088

(0.089) (0.095)

Age −0.052*** −0.064***

(0.005) (0.006)

Male 0.332*** 0.377***

(0.058) (0.060)

Married −0.143* −0.321***

(0.085) (0.110)

Degree 0.382*** 0.268***

(0.067) (0.071)

Employed 0.106 0.106

(0.171) (0.170)

Islam 0.424 0.423

(0.310) (0.286)

White −0.443*** −0.528***

(0.136) (0.148)

hh/d size 0.280*** 0.462***

(0.037) (0.072)

Health 0.084** 0.063

(0.038) (0.039)

Income 0.012 0.019

(0.014) (0.014)

Other policy −0.008 −0.015**

(0.006) (0.007)

2006 0.000 0.000

(.) (.)

2008 0.089 0.143

(0.105) (0.109)

2010 0.064 0.131*

(0.073) (0.075)

(Continues)

TA B L E E 2 (Continued)

(1) (2)

Nitrogen Particulate matter

2012 −0.117 −0.059

(0.110) (0.109)

2014 −0.054 0.031

(0.217) (0.222)

2016 −0.124 −0.051

(0.214) (0.221)

1. region_id 0.000 0.000

(.) (.)

2. region_id −0.037 0.002

(0.184) (0.174)

3. region_id 0.480** 0.383**

(0.199) (0.190)

4. region_id −0.466** −0.516**

(0.206) (0.205)

5. region_id −0.205 −0.330*

(0.193) (0.185)

6. region_id −0.018 0.015

(0.180) (0.171)

7. region_id −0.260 −0.139

(0.194) (0.183)

8. region_id −0.399** −0.333*

(0.196) (0.185)

9. region_id −0.239 −0.261

(0.189) (0.180)

10. region_id −0.182 −0.224

(0.179) (0.171)

Constant 7.414*** 9.038***

(0.556) (0.827)

N 33454 33454

Note: Standard errors in parentheses.

*p < 0.1, **p < 0.05, ***p < 0.01.
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