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Abstract：A coupled thermoelastic model with fractional order derivative which 

incorporates the microstructural effects and thermoelastic coupling effects 

simultaneously at small scale is provided and is used to study wave dispersion and 

bandgap features of Bloch waves in one-dimensional phononic crystals. Dipolar 

gradient elasticity is used to account for the effects of microstructure while the 

non-Fourier heat conduction with fractional order derivatives is used to model thermal 

conduction at small scale. The interaction of thermo-elastic coupled waves with a 

periodic structure leads to Bloch waves, and the transfer matrix method is used to 

obtain the dispersion equation of the Bloch waves based on the Bloch theorem. A 

parameter study is performed in the numerical example to investigate the influence of 

the strain gradient parameter, the micro-inertial parameter, the relaxation time and the 

fractional order on the dispersion and bandgap of Bloch waves. 
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differential, Thermoelastic wave, Phononic crystal. 

1. Introduction   

Phononic crystals are composite materials with a designed artificial periodic structure. 

Due to the interaction between elastic waves and a periodic structure, propagation of 

the elastic waves is observed within the specific frequency range, while the elastic 

waves outside the specific frequency range cannot propagate through this structure. 

That is, phononic crystals exhibit frequency selectivity which is also known as the 

band gap feature of phononic crystals. Furthermore, phononic crystals have many 

other special physical properties such as negative refraction that can be utilize in 

developing a flat lens, perfect lens, etc.. Therefore, phononic crystals have attracted 

extensive attention [1-7] as soon as they were proposed. Apart from the periodicity of 

the lattice, the material properties of the component materials are also important for 

creating band gaps. Zhao and Wei [8,9] studied the influence of viscoelastic properties 

on the dispersive relation and the appearance of band gaps in 1-D and 2-D phononic 

crystals with viscoelastic host by using complex moduli. Zhan and Wei [10,11] 

studied band gaps of a 2-D phononic crystal with orthotropic cylindrical fillers and a 

3-D phononic crystal with orthotropic spherical inclusions embedded in the isotropic 

host. Fomenko et al [12] investigated wave transmission and band-gaps by 

considering in-plane wave propagation in layered phononic crystals composed of 

functionally graded interlayers and proposed a classification of band-gaps in layered 

phononic crystals. Wang et al. [13,14] studied the influences of the mechanical and 

electrical coupling effects on the dispersive relation and band gaps in phononic 
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crystals consisting of piezoelectric or piezomagnetic elastic solids. Lan and Wei 

[15,16] further studied the dispersive characteristics of elastic waves propagating 

through a laminated piezoelectric phononic crystal with mechanically imperfect 

interfaces and the gradient interlayer.  

These above-mentioned investigations are applicable to Bloch waves with long 

wavelength. Because the wavelength of Bloch waves is much larger than the 

characteristic length of the microstructure in an equivalent macroscopic homogeneous 

medium, the microstructure effects can be ignored. However, when the Bloch wave’s 

wavelength is comparable to the characteristic length of material microstructure, the 

material size effect gradually appears, and the microstructure effect, i.e. the dispersion 

and attenuation of waves due to microstructure, cannot be ignored anymore. In order 

to take the microstructure effects into consideration, classical linear elasticity theory 

should be replaced by generalized elasticity theories, for example the couple stress 

theory [17,18], the non-local theory [19], or the micropolar and micromorphic theory 

[20,21]. In 1964, Mindlin [22] proposed a linear elastic theory with microstructure, 

namely strain gradient theory. Strain gradient theory is a generalized continuum 

theory developed to capture the size effect of materials at micro and nano scales. 

According to strain gradient theory, the stress of a point is not only related to the 

strain of the point but also to higher-order gradients of the strain gradient at that point. 

However, in the traditional strain gradient elasticity theory established by Mindlin 

[22], the second-order deformation gradient includes 18 independent constitutive 

constants, and even for isotropic materials there are still seven linear elastic constants 
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in the second-order deformation gradient. In contrast, much simpler generalized 

elasticity models were formulated by Eringen[23] and Aifantis and coworkers[24-26] 

where a linear isotropic medium can be described by the two Lamé constants and one 

additional microstructural parameter. Similarly, in order to reduce the number of 

additional material constants, Lazar and Maugin [27] and Yang et al. [28] proposed a 

simple model in which only one additional material characteristic length parameter 

was added. Georgiadis [29] proposed the theory of dipolar gradient elasticity when he 

studied the problem of cracks in microstructured solids. Georgiadis et al. [30] studied 

the propagation of Rayleigh waves and Gourgiotis et al. [31] studied the reflection of 

elastic waves on free surfaces based on the theory of dipolar gradient elasticity. Using 

the theory of dipolar gradient elasticity, Li et al. studied the reflection and 

transmission of elastic waves [32], the propagation of waves in sandwich 

structures[33], the distribution law of "band gap" in infinite periodic composites [34], 

and the distribution of incident wave energy between reflected and transmitted under 

different interface conditions [35, 36]. These investigations show that there are four 

types of waves in dipolar strain-gradient solids, namely P wave, SV wave, SP surface 

wave and SS surface wave. These waves are all the dispersive waves due to the 

material property, and the shorter the wavelength or the higher the frequency, the 

more significant the microstructural influences.  

The thermo-elastic coupled problem is not only of theoretic significance but also of 

important application value [37]. As discussed above, the bandgap nature of phononic 

crystals is widely studied although, but the thermo-elastic coupled effects are taken 
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into account less frequently. The governing equation of heat conduction based on 

classical Fourier law is a diffusion equation, therefore thermal disturbance has an 

infinite velocity of propagation. In order to eliminate this paradox, Fourier's law is 

modified into non-Fourier heat conduction and generalized thermoelastic theory 

[38-42]. In the generalized thermoelastic theory, the diffusion equation in the context 

of classical heat conduction is replaced by the wave equation, so that the thermal 

disturbance has a finite velocity of propagation [43]. At present, three kinds of 

generalized thermoelastic theories exist, namely Lord-Shulman (L-S) theory with one 

relaxation time, Green-Lindsay (G-L) theory with two relaxation times and 

Green-Naghdi (G-N) theory with three relaxation times. Different from L-S and G-L 

theories, the concept of thermal displacement is introduced in the G-N theory. The 

thermal displacement is the mean free path of phonon at micro scale and its time 

derivative is defined as temperature at macro scale. Based on the L-S theory and G-L 

theory, Kumar [44] studied (i) the propagation of plane waves in a microstretch 

thermoelastic diffusion solid of infinite extent, and (ii) the reflection and transmission 

of plane waves at a plane interface between inviscid fluid half-space and micropolar 

thermoelastic diffusion solid half-space. It is found that for a two-dimensional model, 

there exist four coupled longitudinal waves, that is, longitudinal displacement wave, 

thermal wave, mass diffusion wave and longitudinal microstretch wave, as well as 

two coupled transverse waves. Considering the strain gradient theory and coupled 

stress theory, Li et al. [45-48] further derived the governing equations of thermoelastic 

waves corresponding to the L-S, G-L and G-N generalized thermoelastic theories, and 
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studied the dispersion and attenuation characteristics of thermoelastic waves, as well 

as the characteristics of reflection and transmission. It was found that the 

thermo-mechanical coupling effect only affects the longitudinal wave, not the shear 

wave. Wu et al. [49] studied the propagation of thermoelastic wave in the phononic 

crystals by using G-N theory. 2D and 3D thermoelastic wave band were derived by 

using the plane wave expansion method. Hosseini and Zhang [50] computed the 

dispersion relation of thermoelastic waves by using G-N theory and Bloch’s theorem, 

and analyzed thermoelastic waves propagating by employing a meshless collocation 

method in a cylindrical phononic crystal. Based on generalized thermoelasticity, Li et 

al. [51-53] studied thermal shock problem of a transient heated thick viscoelastic plate, 

thermal diffusion problems with fractional order strain and transient 

thermo-electromechanical responses of multi-layered piezoelectric laminated 

composite structure. Besides, Bouazza et al studied the thermoelastic buckling behavior of 

functionally graded rectangular plates [54-58] and the Laminated Beams [59-60] based on 

hyperbolic shear deformation theory. And then, Bouazza et al studied hygro-thermo-mechanical 

buckling of laminated plates [61-62] and beam [63] and analyzed the impacts of micromechanical 

approaches on the wave propagation in a functionally graded plate [64]. 

Although, the microstructure effects and the thermoelastic effects have been 

studied in the existing literatures. The model which incorporates the microstructure 

effects and the thermoelastic effects simultaneously is still rare. Consider that not only 

the mechanical behavior but also the heat conduction behavior at small scale are both 

different from that at macro scale. In this paper, a new coupled model with the 
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fractional order derivative which incorporate the microstructure effects and 

thermo-elastic coupled effects at small scale simultaneously is provided. Strain 

gradient elasticity is used to take into account the microstructural effects while 

non-Fourier heat conduction with fractional order derivatives is used to model the 

thermal conduction at small scale. The interaction of the thermo-elastic coupled 

waves with the periodic structure leads to Bloch waves in one-dimensional phononic 

crystals. The dispersion equation of the Bloch waves are derived based on the transfer 

matrix method. The influence of the microscale parameters and the heat conduction 

parameter, including the strain gradient parameter, the micro-inertial parameter, the 

relaxation time and the fractional order on the dispersion and bandgap of Bloch waves 

are established via a parameter study. 

2. Formulation of thermoelasticity with fractional order derivatives  

Fractional differentials are a generalization of integer differentials. Of particular 

relevance to the present paper is the property that fractional differentials introduce 

non-local properties of functions. In the problem of elastic wave propagation, the 

fractional differential of   0i t
u t e

  needs to be considered. Therefore, in Section 

2.1, the Caputo-type differential operation results of   0i t
u t e

  are derived by 

applying Laplace and Fourier transforms. For a thermoelastic solid, the small scale 

thermoelastic response exhibits size effects. The classic heat conduction, i.e. Fourier's 

law, is not applicable anymore and replaced by non-Fourier heat conduction. 

Fractional heat conduction can well reflect the thermodynamic behavior of 

thermoelastic waves at high frequency and in small size. Therefore, LS fractional heat 



8 

 

conduction equation is given in Section 2.2. 

2.1 Fractional order derivative of the exponential function  

Let  u t  be defined in an infinite interval  t  ，and n N , then the 

left and right Caputo-type fractional differential and integral are defined as, 

respectively, 
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where 0   and n  is the smallest integer greater than  .  z is the gamma 

function, i.e.     1

0
,Re 0 .t z

z e t dt z C z
      Caputo-type fractional 

differentials satisfy the following operational relationship  

          ,n nC C n C C C n

t t t t tD u t D D u t D D u t
     

                       (3a) 
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t t t tD u t D D u t D D u t
     

                        (3b) 

The Laplace transform is defined by 

     
0

st
L u t e u t dt u s


                           

 
(4) 

The Laplace transform of Caputo-type fractional differential is  

        
1

1

0

0

0 , 1
n

kC k
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L D u t s u s s u n n
   


 
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
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(5a) 

Especially, 
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0 0 , 0 1C
L D u t s u s s u

   
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(5b) 

The Fourier transform and its inverse are defined as, respectively.  

     = ,i t
F u t u t e dt u

 
 
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                             (6) 
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The Fourier and Laplace transforms satisfy  

           = ,F u t v t F u t F v t u s v s                                   (8) 
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where   represents convolution operation, i.e.        u t v t u v t d  



   . 

Next, let’s turn to the Fourier transform of Caputo-type fractional differentials of 

time. Let      
1

t
h t H t







 


, where  
1 0

=
0 0

t
H t

t


 

 is the Heaviside function, 

Then, Fourier transform of  C

t
D u t


  can be written as 
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     ,                            (12)  

According to Eqs. (11) and (12), the Fourier transform of  C

t
D u t


  can be written 

as 
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     C

t
F D u t i F u t

  
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Applying Eqs.(3) and (11), the Fourier transform  C

t
D u t


  can be written as 
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In similar way, we can get the Fourier transform  C

t
D u t


  as 
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2.2 The heat transport and thermo-elastic equations with fractional-order 

derivatives 

In a dipolar gradient elastic solid, the total kinetic energy G , the total 

deformation energy E , and the total work done by external forces W , can be 

expressed as, respectively [29-31],  

2
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1 1
,

2 6
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k k k l l k

S S
W Pu dS R n u dS                                 (19c) 

where  is the mass density, and are the Lamé constants of classic elastic  
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material, and c  is a microstructural constant with the dimension of m2. 
k

u is 

displacement,  , ,

1

2
ij i j j i

u u    represents infinitesimal strain, 
,ij k  represents 

strain gradient. 
k

P is monopolar traction tensor while 
k

R  is the dipolar traction 

tensor. d  is the micro inertia parameter with the dimensions of m. The dot on the 

letters represents the derivative of time.  

When the total kinetic energyG , the total deformation energy E , and the total 

work done by external force W , are inserted into Hamilton variational principle  

1 1

0 0

( ) 0
t t

t V t S
G E dVdt WdSdt       ,                        (20) 

the following governing equation and the boundary conditions can be obtained [50] 

 
2

, ,, 3
jk ijk i k k jjj

d
u u

       in V ,                                  (21a) 
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d
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       
 
on surface S , (21b) 

k i j ijkR n n   on surface S ,                                      (21c) 

for a dipolar gradient elastic solid. Here, volume forces are ignored, jk is Cauchy 

stress, ijk  is high order stress with the dimension of Nm-1, and

     
,j jj

D n D  ,    
,l l

D n . 

If the thermal effect is considered in a dipolar gradient elastic solid, a 

phenomenological simplified version of the Helmholtz free energy density for a 

centrosymmetric and isotropic material can be written as [45,48],  

   
2

, , , ,

0

1 1
2 2 ,

2 2 2

r
ii jj ij ij ii k jj k ij k ij k pp

C
c

T

                   (22) 

where  3 2    is the thermo-elastic coupling coefficient,  is the linear 

thermal expansion coefficient,   is the free energy per unit mass, T is the absolute 
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temperature, 
r

C is the specific heat capacity per unit mass,
0T T    is the 

temperature change, and 
0T  is the reference temperature.  

The constitutive equations that are consistent with Eq.(22) are  

 
2ij ij pp ij ij

ij


    




   


,                        (23a) 

   , ,

,

2jk pp i jk iijk

jk i

c 





  


 


 ,                        (23b) 

 
0

r
pp

C

T

   



   


,                             (23c) 

where  is the entropy density. Base on L-S generalized thermoelasticity of the 

fractional order differential,  

 0 ,1
i i

q
t




 
 
    

   0 1                          (24) 

where the scalar  is the thermal conductivity of solid, 
0  is called the thermal 

relaxation time,   is a fractional order parameter, and 
i

q is the heat flux.  

The thermoelastic equation of fractional order derivative can thus be derived as [50] 

  2

0 01 .rC T
t




    
 
      

u

                 
(25) 

Eq. (25) reduces to the classical heat conduction equation when =0 and, similarly, it 

reduces to L-S generalized heat thermoelastic equation when =1 . Therefore, Eq. 

(25) can describe the arbitrary intermediate situation between classical heat 

thermoelasticity and L-S generalized heat thermoelasticity via 0 1  . Thus the 

thermoelastic equation with the fractional derivative is a more flexible model which 

can be used to describe the heat conduction feature at small scale.  

3. Propagation thermo-elastic coupled waves  


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Inserting Eq. (23a,b) into Eq. (20a) leads to the equation of motion in terms of 

displacement in isotropic material of dipolar gradient thermo-elasticity 

   2
2

2 21
3

1
d

c     
 

          


 


u u u .           (26) 

The propagation of in-plane wave is only investigated because the thermal effect does 

not affect SH wave, in other words, the mechanical waves and thermal waves are 

uncoupled in the case of the anti-plane wave.  

In the case of in-plane wave, the solution of Eq. (26) can be derived by the application 

of Helmholtz vector decomposition,   

     , , , ( , ) ( , ) ,    
x x y y z

x y u x y u x y x y x y    u e e e           (27a) 

  2, ( , )x y x y u ,    2, ( , )
z

x y x y  u e ,             (27b,c) 

where ( , )x y  and ( , )x y  are the potential functions of displacements. The wave 

propagation is assumed to occur in the oxy  plane, so that, the displacement 

component 0
z

u   while 
x

u  and 
yu  are dependent only on  ,x y .  

Inserting Eq. (27a) into Eq. (26), we obtain  

   
2

4 2 22 2 0
3

d
c

                  ,             (28a) 

2
4 2 2 0

3

d
c

            .                    (28b) 

From Eq. (28), it is observed that the thermal effects influence the dilatational waves 

only while the distortional waves are insusceptible. This follows from Eq. (22) where 

the thermoelastic coupling is expressed in terms of volumetric strain only. 

Simultaneous application of Eq. (28a) and Eq. (25) leads to the following equation  

6 4 2

1 2 3+ 0b b b         ,                        (29) 
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where
2 2

1 2

1

3

r

P

i X Cd
b

c cV

 


    ,
22 22

0
2 2 2 23

r r

P P P

TC d C
b i X

cV c c V c V

   
  

 
     

 
,

2

3 2

r

P

C
b i

c V




  ,  01X i
   and ( 2 ) /

P
V      is the dilatational phase 

velocity of classical elastic solids.  

Eq. (29) can be factorized as  

   2 2 2 2 2 2

1 2 3 0
MT MT MT

          ,                      (30) 

where 1MT , 2MT and 
3MT

  are the wave numbers of the thermo-elastic coupled 

waves. The coupled wave with wavenumber 1MT , 2MT  and 
3MT

  is called MT1 

wave, MT2 wave and MT3 wave, respectively. It is noted that MT1 wave, MT2 wave, 

and MT3 wave are all dispersive due to microstructure effect as well as thermal effect. 

By applying Cardano’s formula of roots of a cubic equation with one variable, 2

1MT  

2

2MT and 2

3MT  can be obtained by  

2 2 1
1 ,

3
MT

b
pm p n      

 
2 2 1

2 ,
3

MT

b
p m pn      

 
2 1

3 ,
3

MT

b
m n      
 

 

where 3m s r  , for s r s r   ; 
3m s r  , for s r s r   ; if 0,m   

2

1 23

9

b b
n

m


 ; if 0,m   0n  .

 
1 3

2

i
p

 
 ,

3

1 2 3 19 27 2
,

54

b b b b
s

 


 3 2 2 2 3

2 1 2 1 2 3 3 1 33 4 18 27 4

18

b b b b b b b b b
r

   
 .  

Let 2 2 2

1 1MT MT    , 2 2 2

2 2MT MT    , 2 2 2

3 3MT MT    , where   is  the 

apparent wavenumber. Accordingly, the potential function   and the temperature 

field   can be expressed as  

       1 1 2 2

1 2 1 2= MT MT MT MTi x y t i x y t i x y t i x y t
Ae A e B e B e

                       

   3 3

1 2
MT MTi x y t i x y t

C e C e
          ,                               (31a) 
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       1 1 2 2

1 1 2 2 1 2=g gMT MT MT MTi x y t i x y t i x y t i x y t
Ae A e B e B e

                             

   3 3

3 1 2+MT MTi x y t i x y t
g C e C e

            ,                            (31b) 

where
2

0 1
1 2

1

MT

r MT

XT
g

X C


 





,

2

0 2
2 2

2

MT

r MT

XT
g

X C


 





, 

2

0 3
3 2

3

MT

r MT

XT
g

X C


 





. ,

i i
A B  and 

i
C are the amplitudes of coupled MT1 wave, coupled MT2 wave and coupled MT3 

waves, respectively. The time harmonic dependence is assumed as i t
e

 throughout 

the paper. 

From Eq. (28b), we can derive the wave numbers of the distortional waves. Eq. (28b) 

can be rewritten as  

2 2 2
4 2

2 2

1
0

3
S S

d

c cV cV

   
 

      
 

,                    (32a) 

where /
S

V    is the phase speeds of distortional waves in the classic elastic 

solids. 

If Eq. (32a) is factorized as  

   2 2 2 2 0
SV SS

       ,                          (32b) 

then,  

     
1 2

2
2 2 2 2 2 2 2 2 2 23 36 3 6SV S S S SV d cV V d cV             

, 

     
1 2

2
2 2 2 2 2 2 2 2 2 23 36 3 6SS S S S SV d cV V d cV             

,      

Let 2 2 2

SV SV    , 2 2 2

SS SS    , where
SV

  is the wave number of the SV wave 

with consideration of microstructure effect and 
SS

  is a S type surface wave with 

imaginary wavenumber 
SS

i  and is called SS wave. It is noted that SV wave and SS 

waves are both dispersive due to the microstructural effect. Accordingly, the potential 
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function   can be expressed as  

       
1 2 1 2= +SV SV SS SSi x y t i x y t y i x t y i x t

Fe F e De D e
                      ,       (33) 

where i
F  and i

D are the amplitudes of SV wave and SS surface wave, respectively. 

4. Dispersion relation of Bloch waves in oblique propagation situation 

Consider a one-dimensional laminated structure that consists of dipolar gradient 

thermal elastic solids. The single cell is composed of two different dipolar gradient 

thermal elastic solids with thickness of 
1a  and 

2a , see Fig.1. The wave propagation 

plane is assumed to be in the oxy plane, where y  axis is along the normal direction 

of the laminated structure and x  axis is along the interface, see Fig.2.  

The thermomechanical coupled physical fields in any layer in a typical single 

cell are formed by the forward and the backward coupled MT1, coupled MT2, 

coupled MT3 and SV bulk waves plus two S type surface waves propagating along 

interface. 

 Define the state vector  

   , ,

T

x y x y y y x y x y yV u u u u P P R R q .                  (34) 

Inserting Eq. (23a,b) into Eq. (21b,c), we can obtain monopolar traction and the 

dipolar traction, namely,   

   
2

22 1 2
3

x yx xx,xy yy,xy x,y

d
P c c u ,

             
              

   

   
2

2

, ,1 2 2 ,
3

y yy xx xy xy y y

d
P c c u

                              

,2 ,x yx yR c     , ,2 ,
y yy y xx y

R c          0 ,1 y yq
t




 
 
    

. 

Then, the state vector at the left and right boundaries of a layer can be expressed as 
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     
1 2 1 2 1 2 1 2 1 2, , , , , , , , ,

T i x tL L
V P A A B B C C F F D D e

     ,            (35a) 

     
1 2 1 2 1 2 1 2 1 2, , , , , , , , ,

T i x tR R
V P A A B B C C F F D D e

     ,            (35b) 

where  

 0
L L

P P G       ,  0
R R

P P G       ,  R L
jG G G a           , 

3 31 1 2 2( , , , , , , , , , )MT MT SV SV SS SSMT MT MT MT y i y i y i y y yi y i y i y i yL
G diag e e e e e e e e e e

               

  1 1 2 2 3 3( , , , , , ,MT j MT j MT j MT j MT j MT ji a i a i a i a a i a
jG a diag e e e e e e

          
 

      , , , ,SV j SV j SS j SS ji a i a a a
e e e e
         (j=1or 2).    

 0P is listed in the appendix A. 

It is noted that the state vectors at the left and right sides of a layer are related by  

      1
R R L L L

V P P V T V


        ,                  (36) 

where the transfer matrix of the  jth layer is defined by 

 1

0 0( )j j j jT P G a P


               .                           (37) 

The transfer matrix jT    is determined by the material coefficients, the thickness of 

the layer and the wave modes in the j-layer for a given frequency .  

For a perfect interface (displacement, displacement gradient, monopolar traction, 

dipolar traction, temperature and heat flux are all continuous across the interface), the 

state vector is continuous across the interface between layer A and layer B, namely, 

   L R

A A
V V .                            (38) 

This interface condition leads to 

     R L
B B A AV T T V ,                          (39) 

The Bloch theorem for the wave propagation in the periodic structure can be 

expressed as 
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    R ika L
B AV e V ,                          (40) 

where 
1 2a a a   is the thickness of a typical single cell, and k  is the wavenumber 

of the Bloch wave in the periodic laminated structure. 

  Inserting Eq. (40) into Eq. (39) leads to 

         0ika L
B A AT T e I V  ,                    (41) 

The existence of a non-trivial solution requires 

       det , , 0ika
B AT T e I f k    ,                (42) 

which is the dispersion relation of Bloch wave. The transfer matrix method is used to 

derive the transfer matrix of single cell of the periodic structure in the present work. 

The advantage of the transfer matrix method is that the total transfer matrix of single 

cell can be obtained by the continued multiplication of the transfer matrix of single 

layer.   

5. Dispersion relation of Bloch wave in normal propagation situation 

In the normal propagation situation, the longitudinal waves and transverse waves 

are decoupled from each other. The dispersive equations of Bloch longitudinal waves 

and Bloch transverse waves have the same form, namely,  

       det , 0ika
B AT T e I f k   ,                    (43) 

The displacement field of Bloch longitudinal waves and the corresponding 

monopolar traction and the dipolar traction are  

       1 1 2 2

1 1 2 1 1 2 2 2
MT MT MT MTi y t i y t i y t i y t

y MT MT MT MTu Ai e A i e B i e B i e
                    

   3 3

1 3 2 32MT MTi y t i y t

MT MT
C i e i e

        ,                         (44a) 

       1 1 2 22 2 2 2

, 1 1 2 1 1 2 2 2
MT MT MT MTi y t i y t i y t i y t

y y MT MT MT MTu A e A e B e B e
                     
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   3 32 2

1 3 2 3
MT MTi y t i y t

MT MT
C e C e

        ,                          (44b) 

       1 1 2 2

1 1 2 2 1 2=g MT MT MT MTi y t i y t i y t i y t
Ae A e g B e B e

                        

       3 3

3 1 2
MT MTi y t i y t

g C e C e
         ,                                (44c) 

  
2

2

, ,1 2 ,
3

y y y y y

d
P c u u

                                 (44d)  

  ,2
y y yy

R c u   , 
 

,

01

y

yq
i






 

 
,                          (44e,f) 

The displacement field of Bloch transverse waves and the corresponding 

monopolar traction and the dipolar traction are 

   
1 2 1 2= +SV SV SS SS

i y t i y t y i t y i t

x SV SV SS SS
u Fi e F i e D e D e

                 ,        (45a) 

   2 2 2 2

, 1 2 1 2= +SV SV SS SS
i y t i y t y i t y i t

x y SV SV SS SSu F e F e D e D e
                  ,      (45b) 

 
2

21
3

x x,y x,y

d
P c u u ,

     , .x x yyR cu
                      

 (45c,d) 

The explicit expressions of the transfer matrix T for longitudinal waves and transverse 

waves are given in Appendix B and C, respectively. 

6. Numerical results and discussion 

The dispersive relation (the dependence of wavenumber k  upon the angular 

frequency  ) of Bloch waves in the periodical laminated structure is dependent upon 

(1) the thickness  1 2a ,a  of two dipolar gradient thermoelastic solids; (2) the material 

constants 0 0( )
r

, , ,c,d ,C , , ,T , ,      of two dipolar gradient thermoelastic solids; 

(3) the apparent wavenumber    of Bloch waves (in the oblique propagation 

situation). In general, the dispersive equation can be written as 

 1 1 1 1 1 1 1 1 01 01 1 1r
f , , ,c ,d ,C , , ,T , ,a , ,                                 

2 2 2 2 2 2 2 2 02 02 2 2 =0
r

, , ,c ,d ,C , , ,T , ,a , ,k, ,        ,            (46) 
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where 1 1 1 1 1 1 1 1 01 01 1 1( , )
r

, , ,c ,d ,C , , ,T , ,a       are the material constants in layer A, 

while 2 2 2 2 2 2 2 2 02 02 2 2( , )
r

, , ,c ,d ,C , , ,T , ,a       are the material constants in layer 

B. we choose material A is lead and material B is brass in here. Choosing ( 1 1 01a , ,T ) 

and 
1 2
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/ /
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Therefore, the dispersion equation can be rewritten as 

 1 1 1 11 1 1 1 11 1 1
r

f , , , ,d ,C , , , , , ,c     ,                            

0 0
R R R R R rR R R R R R R

, , ,c ,d ,C , , ,T , ,a , ,k , ,         ,       (35) 

In this numerical example, we mainly focus on the influences of the following 

parameters: the fractional parameters 
R

 , the thermal relaxation time 1 ,
R

  as well 

as the microstructure parameters 
1c ,

R
c , 1d  and 

R
d . The remaining parameters are 

given as follows: 

5

1 10a m
 , 3 3

1=7.5 10 kg m  , 10

1=2.3 10 Pa  , 01 300T K , 8

0 =4.1 10 Hz  , 

1 0 928.  , 1 0 182.  , 1 0 069rC . , 1 0 0167.  , 
-5

1 2 3 10.   , 0 047
R

.  , 

0 056
R

.  , 0 157
R

.  , 2 257
rR

C . , 0 057
R

.  , 0 407
R

.  , 0 1
R

T  , 
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 1 21
R

a a a  . 

Fig. 3 shows the comparison of bandgaps for the three cases of classical elasticity, 

gradient elasticity and gradient thermo-elasticity. It is observed that strain gradient 

effects and thermal effects each have an evident influence on the dispersion curves 

and thus on the bandgaps of laminated structures. For example, the first bandgap 

becomes evidently wider when the strain gradient effects are taken into account but 

becomes narrower when the thermal effects are taken into account.  

In order to ensure the reliability of the numerical results, the comparison with the 

existing literature is performed. Fig.4 shows the comparison of the dispersion and 

bandgap obtained by the present model with that reported in the existing literature. 

Fig.4(a) and Fig 4(b) show the dispersion curves and the bandgap obtained from the 

present model when the thermoelastic effects and the microstructure effects are both 

ignored and that reported in literature [65] and [34] for the classical elastic solids. It is 

founded that there is a good consistence. The deviation at the higher frequency is 

more bigger. Fig.4(c) shows the dispersion and bandgap for the dipolar gradient 

elastic solids but ignoring the thermoelastic coupling in the present model. It is noted 

that there is still a good consistence between our results and that reported in literature 

[34]. these comparisons provide a verification of the reliability of the present model to 

some extent.  

Fig. 5 shows the influence of fractional parameter   of non-Fourier heat conduction 

on the dispersion curves and the band gaps of Bloch waves. It is noted that the 

dispersion curves shift toward the higher frequency region with the increasing . As 



22 

 

the result of this shift, the bandgap widens. Figs. 6 and 7 show the influence of the 

thermal relaxation   and the thermal relaxation time ratio 
R

  on the dispersion 

curves and the band gaps of Bloch waves. Obviously, the relaxation time have evident 

influences on the dispersion curves and the dispersion curves seem become more flat 

with the increasing relaxation time. Fig.7 show the influences of the thermal 

relaxation time ratio of layer A and layer B in single unit. It is noted that the larger 

difference of relaxation times makes the dispersion curves shift towards the low 

frequency region and become flatter. This suppresses the formation of a bandgap.    

Fig. 8 shows the influence of micro-stiffness length scale parameter ratio 
R

c  on 

the dispersion curves and the band gaps of Bloch waves. Fig. 9 shows the influence of 

micro-inertial length scale parameter ratio 
R

d  on the dispersion curves and the band 

gaps of Bloch waves. Because the influences of strain gradient effects are notable 

only at the higher frequency region, the dispersion curves at lower frequency region 

are not shown. By comparison of Figs. 8 and 9, it is observed that an increase of 

micro-stiffness length scale parameter ratio 
R

c  decrease the number of curves within 

the specified frequency region while an increase of the micro-inertial length scale 

parameter ratio 
R

d  increase the number of curves. The increase of the number of 

curves means an increase of the state density. Therefore, the micro-structure 

parameter c  and d  mainly have an influence on the state density and thus also 

influence the bandgap distribution. In general, the increase of micro-stiffness length 

scale parameter ratio 
R

c  helps the formation of a bandgap while the opposite effects 

is noted for the increase of the micro-inertial length scale parameter ratio
R

d . 



23 

 

Figs. 10 and 11 show the influence of the fractional parameter ratio 
R

  and the 

thermal relaxation time   on the dispersion curves and the band gaps of Bloch 

waves in the case of oblique propagation. Similar in the case of vertical propagation, 

the increase of fractional parameter ratio 
R

  mainly shifts the curves towards the 

low frequency region, while the increase of relaxation time mainly flattens the curves. 

7. Conclusions 

   The periodically laminated structure causes frequency selection properties for 

wave propagation, also known as the bandgap property. The present work mainly 

focuses on the influence of microstructure and thermal effects on this bandgap feature. 

The microstructure effects are modelled with strain gradient elasticity and the thermal 

effects are captured by thermoelasticity with non-Fourier heat conduction. Based on 

the analytical formulation and the numerical example, the following conclusions can 

be drawn. 

1) The strain gradient effects only have evident influences on the dispersion curves 

for relative high frequencies. The increase of the micro-stiffness parameter makes 

the dispersion curves shift toward higher frequency region. 

2) The micro-inertial parameter has opposite effects compared with the 

micro-stiffness parameter. In general, the increase of the micro-inertial parameter 

makes the state density increase while the increase of the micro-stiffness 

parameter makes the state density decrease. 

3) The non-Fourier heat conduction and the thermo-elastic coupled effects create the 

“second sound” phenomenon which greatly increases the mode complexity of 
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Bloch waves. In general, the thermal effects make the dispersion curves shift 

towards the low frequency region. 

4) The influence of the fraction order mainly changes the mode frequency of Bloch 

waves while the increase of the relaxation time mainly flattens the dispersion 

curves, which helps the formation of bandgaps.  

The merits of present model is that the microstructure effects and the 

thermoelastic effects can be considered simultaneously. The transfer matrix method 

can also be extend to the single cell which consists of multiple layers and the study of 

reflection and transmission problem of the finite laminated structure. The present 

work only is limited to the perfect interface, however, the imperfect interface with 

jump physical fields is expected in the future work. 
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72 71p p , 

   2 2 4 2 2 2

73 2 2 2 2 2 22 2
MT MT MT MT MT

p D g c c               ,
74 73p p , 

   2 2 4 2 2 2

75 3 3 3 3 3 32 2
MT MT MT MT MT

p D g c c               ,
76 75p p , 

   2 2

77 2 2
SV SV SV

p D c         ,
78 77p p  , 

   2 2

79 2 2
SS SS SS

p D i ci         , 7,10 79p p  ; 

2

81 12 MTp ci   ,
82 81p p ; 2

83 22 MTp ci   ,
84 83p p ; 2

85 32 MTp ci   ,
86 85p p , 

 2 2

87 2
SV SV

p ci     
88 87p p  ,  2 2

89 2
SS SS

p c      , 8,10 89p p  ; 

2 3

91 1 1 12MT MT MTp c i ci       , 92 91p p  , 2 3

93 2 2 22MT MT MTp c i ci       ,

94 93p p  , 2 3

95 3 3 32MT MT MTp c i ci       ,
96 95p p  , 2

97 2 SVp ci  ,
98 97p p ,

2

99 2 SSp ci   , 9,10 99p p , 10,1 1 1MTp Mg i , 10,2 10,1p p  , 10,3 2 2MTp Mg i ,

10,4 10,3p p  , 10,5 3 3MTp Mg i , 10,6 10,5p p  10,7 10,8 10,9 10,10 0p p p p    , 

Where 
2 2

3

d
D

 
 , 

 01+
M

i





 


. 

Appendix B 

11 1MT
p i , 12 1MT

p i  , 13 2MT
p i , 14 2MT

p i  , 15 3MT
p i , 16 3MT

p i  ;

2

21 22 1MTp p   , 2

23 24 2MTp p   , 2

25 26 3MTp p   ; 31 32 1p p g  , 33 34 2p p g  ,



33 

 

35 36 3p p g  ; 

   2 4

41 42 1 1 12 2
MT MT

p p D g             , 

   2 4

43 44 2 2 22 2
MT MT

p p D g             , 

   2 4

45 46 3 3 32 2
MT MT

p p D g             ; 

  3

51 2
CP

p c i     ,   3

52 2
CP

p c i    , 

  3

53 2
CT

p c i     ,   3

54 2
CT

p c i    , 

  3

55 2
SP

p c      ,   3

56 2
SP

p c     ; 

61 1 CP
p Mg i ,

62 1 CP
p Mg i  ,

63 2 CT
p Mg i , 

64 2 CT
p Mg i  ,

65 3 SP
p Mg   ,

66 3 SP
p Mg  . 

Appendix C 

11 SV
p i ,

12 SV
p i  ,

13 SS
p   ,

14 SS
p  ; 2

21 22 SVp p   , 2

23 24 SSp p   ; 

  2 4

31 32 SV SV
p p D c        ,   2 4

33 34 SS SS
p p D c       ; 

3

41 SVp c i   , 3

42 SVp c i  , 3

43 SSp c  , 3

44 SSp c . 


