

This is a repository copy of Band gaps of thermoelastic waves in 1D phononic crystal with fractional order generalized thermoelasticity and dipolar gradient elasticity.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/208419/</u>

Version: Supplemental Material

Article:

Li, Y. orcid.org/0000-0003-1474-3529, Askes, H., Gitman, I.M. et al. (2 more authors) (2023) Band gaps of thermoelastic waves in 1D phononic crystal with fractional order generalized thermoelasticity and dipolar gradient elasticity. Waves in Random and Complex Media. ISSN 1745-5030

https://doi.org/10.1080/17455030.2023.2222189

This is an Accepted Manuscript of an article published by Taylor & Francis in Waves in Random and Complex Media on 9 June 2023, available online: http://www.tandfonline.com/10.1080/17455030.2023.2222189.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Fig.1 The periodic laminated structure consisting of dipolar gradient thermoelastic solids

Fig.2 The thermoelastic coupled waves in a typical single cell in oblique propagation

situation

Fig. 3 Comparison of the dispersion curves and band gaps of phononic structure based on three models in the case of the vertical propagation.

(a) Classical elasticity ($\overline{c}_1 = \overline{c}_2 = \overline{d}_1 = \overline{d}_2 = \overline{\tau}_1 = \overline{\tau}_2 = \alpha_1 = \alpha_2 = 0$);

(b) Gradient elasticity ($\overline{c_1} = 0.15$, $c_R = 1.5$, $\overline{d_1} = 0.25$, $d_R = 1.5$, $\overline{\tau_1} = \overline{\tau_2} = \alpha_1 = \alpha_2 = 0$);

(c) Thermal and gradient elasticity ($\overline{c_1} = 0.15$, $c_R = 1.5$, $\overline{d_1} = 0.25$, $d_R = 1.5$, $\tau_R = 1$, $\alpha_R = 1$).

Fig.4 Comparison of dispersion and bandgap with existing literatures.

(a) and (b) the dispersion curves for the classic elastic solids and the comparison with literature [59] and [34];
(c) the dispersion curves for the gradient elastic solids and the comparison with literature [34].

Fig.5. The influence of fractional parameter α on the dispersion curves and the band gaps of Bloch waves (vertical propagation) in the case of gradient thermo-elastic model.

$$(\overline{c_1} = 0.15, c_R = 1.5, d_1 = 0.25, d_R = 1.5, \tau_R = 1).$$

Fig.6. The influence of thermal relaxation time $\overline{\tau}$ on the dispersion curves and the band gaps of Bloch waves (vertical propagation) in the case of gradient thermo-elastic model.

 $(\overline{c}_1 = 0.15, c_R = 1.5, \overline{d}_1 = 0.25, d_R = 1.5, \alpha_R = 1).$

Fig.7 The influence of thermal relaxation time ratio τ_R on the dispersion curves and the band gaps of Bloch waves (vertical propagation) in the case of gradient thermo-elastic model.

 $(\overline{c_1} = 0.15, c_R = 1.5, \overline{d_1} = 0.25, d_R = 1.5, \alpha_R = 1, \overline{\tau_2} = 0.15$).

k k kFig. 8. The influence of micro-stiffness length scale parameter ratio c_R on the dispersion curves

and the band gaps of Bloch waves (vertical propagation) in the case of gradient thermo-elastic

model.. ($\overline{c_1} = 0.15, \overline{d_1} = 0.25, d_R = 1.5, \alpha_1 = 0, \alpha_2 = 0, \tau_R = 1$).

Fig.9. The influence of the micro-inertial length scale parameter ratio d_R on the dispersion curves and the band gaps of Bloch waves (vertical propagation) in the case of gradient thermo-elastic model. ($\overline{c_1} = 0.15$, $c_R = 1.5$, $\overline{d_1} = 0.25$, $\alpha_1 = 0$, $\alpha_2 = 0$, $\tau_R = 1$).

Fig.10. The influence of fractional parameter ratio α_R on the dispersion curves and the band gaps of Bloch waves (oblique propagation) in the case of gradient thermo-elastic model.

 $(\overline{c_1} = 0.15, c_R = 1.5, \overline{d_1} = 0.25, d_R = 1.5, \tau_R = 1, \alpha_2 = 0.1, \overline{\xi} = 2).$

Fig.11. The influence of thermal relaxation time $\overline{\tau}$ on the dispersion curves and the band gaps of Bloch waves (oblique propagation) in the case of gradient thermo-elastic model.

 $(\overline{c_1} = 0.15, c_R = 1.5, \overline{d_1} = 0.25, d_R = 1.5, \alpha_R = 1, \overline{\xi} = 3).$