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The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/
deformation paths are not the same for different soil material points. As a result, this problem cannot be
solved by the common self-similar-based similarity techniques. This paper proposes a novel, exact so-
lution for rigorous drained expansion analysis of a hollow cylinder of critical state soils. Considering
stress-dependent elastic moduli of soils, new analytical stress and displacement solutions for the non-
self-similar problem are developed taking the small strain assumption in the elastic zone. In the plas-
tic zone, the cavity expansion response is formulated into a set of first-order partial differential equations
(PDEs) with the combination use of Eulerian and Lagrangian descriptions, and a novel solution algorithm
is developed to efficiently solve this complex boundary value problem. The solution is presented in a
general form and thus can be useful for a wide range of soils. With the new solution, the non-self-similar
nature induced by the finite outer boundary is clearly demonstrated and highlighted, which is found to
be greatly different to the behaviour of cavity expansion in infinite soil mass. The present solution may
serve as a benchmark for verifying the performance of advanced numerical techniques with critical state
soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized
calibration chambers.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Cavity expansion theory is concerned with the changes in
stresses and displacements caused by the expansion of a cylindri-
cal/spherical cavity (Yu, 2000). This theory has been proved to be a
versatile and useful tool for the interpretation of pressuremeter
tests and cone penetration tests (Gibson and Anderson, 1961;
Hughes et al., 1977; Chang et al., 2001; Ghafghazi and Shuttle, 2008;
Mo et al., 2020), bearing capacity estimation of piles and anchors
(Vesic, 1972; Randolph et al., 1994; Zhuang and Yu, 2018, Zhuang
et al., 2021b), prediction of tunnel stability and deformation
(Mair and Taylor,1993; Yu and Rowe,1999; Zhuang et al., 2022). The
majority of previous studies focused mainly on cavities embedded
in an infinite soil mass, which might be suitable for the analyses of
many in situ geotechnical engineering problems. However,
ng).
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
significant outer boundary effect may exist in some geotechnical
problems, such as pressuremeter tests and cone penetration tests in
small-sized calibration chambers (Jewell et al., 1980; Fahey, 1986;
Schnaid and Houlsby, 1991; Salgado et al., 1997; Zhuang et al.,
2021a; Song et al., 2022; Li et al., 2023). Due to the outer bound-
ary effect, soil material points at different radial locations do not
share the same stress/deformation path, which means that the
cavity expansion process becomes non-self-similar (i.e. different
stress/deformation path).

Quasi-static cavity expansion is a typical boundary value prob-
lem that can generally be expressed into a set of governing equa-
tions such as stress equilibrium equations, displacement
compatibility conditions, and stress-strain relationships. Over the
past decades, numerous solutions for solving this problem have
been developed (Yu, 2000), among which the analytical/semi-
analytical approaches can be broadly categorised into two groups
(Yu and Carter, 2002), namely the auxiliary variable approach and
the total strain approach.

The auxiliary variable approach was first used by Hill (1950)
(also known as Hill’s incremental velocity method or similarity
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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technique) for the cavity expansion analysis in Tresca materials, in
which the radius of the elastic-plastic interface is taken as the
timescale. Hill’s approach was then followed for the analyses of
cavity expansion problems in dilatant cohesive-frictional Mohr-
Coulomb soils (Yu and Carter, 2002; Carter and Yu, 2022) and
critical state soils (Collins et al., 1992; Zhou et al., 2021). Another
branch of this approach transforms the governing partial differ-
ential equations (PDEs) in terms of material time and spatial de-
rivatives (i.e. Lagrangian and Eulerian descriptions, respectively)
into ordinary differential equations (ODEs) by auxiliary variables
(Chen and Abousleiman, 2013; Su, 2021). Taking more advanced
soil models, this powerful approach has recently been used to
investigate the effects of factors such as stress and material
anisotropy, soil structure, unsaturated state, and temperature on
the cavity expansion behaviour (Russell and Khalili, 2006; Li et al.,
2016, 2021a, 2021b; Zhou et al., 2018; Chen and Liu, 2019; Chen
et al., 2020; Yang et al., 2021; Chen and Mo, 2022; Mo et al.,
2022). Nevertheless, it needs to be highlighted that this approach
was developed on the basis of self-similarity of stress and strain
configurations (i.e. every material point shares the same stress/
deformation path) (Hill, 1950; Collins et al., 1992; Yu and Carter,
2002; Chen and Abousleiman, 2013; Yang et al., 2023). As such,
this approach is generally appropriate for the expansion of a cy-
lindrical/spherical cavity in an infinite soil mass, but not for cavity
expansion in the non-self-similar process (e.g. in a bounded soil
mass under drained conditions).

In the total strain approach, the incremental form of constitutive
equations is integrated directly to result in a relationship between
effective stresses and total strains. Then the time integral of
deformation rates can be expressed by logarithmic strains
(Chadwick, 1959), which enables Eulerian stresses/strains at an
instant of time to be related to the motion of each soil material
point. This approach has been successfully applied to the analyses
of cavity expansion problems in various perfectly elastic-plastic
materials (Gibson and Anderson, 1961; Bigoni and Laudiero, 1989;
Yu and Houlsby, 1991). When more sophisticated soil models (e.g.
critical state models) are employed, analytical or semi-analytical
solutions may also be obtained with this approach for undrained
cavity expansion analyses due mainly to the constant-volume
simplification (Collins and Yu, 1996; Cao et al., 2001; Silvestri and
Abou-Samra, 2012; Vrakas, 2016; Wang and Chen, 2022), whereas
solutions for drained analyses were rarely reported with the
approach. In addition, it needs to be mentioned that the total strain
method suits the analyses of both self-similar (e.g. cavity expansion
in infinite soils) and non-self-similar cavity expansion problems
(e.g. a pressurised cavity in soil mass of a finite radial extent) (Yu,
1992; Zhuang et al., 2021a).

There are only a few solutions for cavity expansion in a bounded
soil mass to account for the boundary effects. For example: (i) Using
the total strain approach, Yu (1992, 1993) derived large strain so-
lutions for the drained analysis of a pressurised hollow cylinder and
sphere, respectively, adopting the elastic-perfectly plastic Mohr-
Coulomb model. Zhuang et al. (2021a) proposed a general solu-
tion procedure for the expansion/contraction analysis of a hollow
cylinder/sphere of Cam Clay soils under undrained conditions, but
the approach can hardly be adopted for analyses under drained
conditions because the analytical form of stress-total strain rela-
tionship is difficult to be obtained; and (ii) For cavity expansion
analysis in bounded critical state soils under drained conditions,
only a few approximate solutions have been developed using the
self-similar-based auxiliary variable approach and assuming the
radius of the elastic-plastic boundary is always smaller than the
outer radius of the soil mass (Pournaghiazar et al., 2013; Cheng
et al., 2018; Cheng and Yang, 2019). Consequently, rigorous
drained analysis of boundary effects in the common cavity
expansion problem with advanced soil models highly relies on
cumbersome numerical methods (Osinov and Cudmani, 2001).

According to the above analyses, it can be concluded that
neither the total strain approach nor the auxiliary variable
approach can be directly applied to the drained cavity expansion in
a finite critical state (Cam Clay) soil mass. While rigorous analyses
for this kind of problem can depend on numerical methods such as
the finite element method (FEM), analytical/semi-analytical cavity
expansion solutions are equally important as they can: (i) provide
an alternative tool for validating the advanced numerical tech-
niques and (ii) be more accessible to a wide range of users to
incorporate complex constitutive models. To fill the gap, this paper
develops a rigorous semi-analytical method for the drained
expansion analysis of a hollow cylinder of critical state soils. The
considered problem is defined at first, which is followed by
developing the novel solution method and calculation algorithm.
The proposed method is validated by comparing with FEM and
other published solutions in special cases, and its relationships
with the auxiliary variable approach and total strain approach are
discussed. Then a thorough parametric analysis is conducted to
investigate the non-self-similar behaviour of cavity expansion in a
bounded soil mass. Finally, conclusions are drawn in the last part of
this paper.
2. Problem definition and assumptions

As depicted in Fig. 1a, a hollow cylinder of soil with an infinite
length is considered, which is initially subjected to horizontal stress
sh and vertical stress sv. The initial inner and outer radii of the
cylinder are a0 and b0, respectively. Then the cylinder is internally
pressurised with a sufficiently slow speed under perfectly drained
conditions, and the expansion analysis is conducted under plane
strain conditions with respect to the vertical direction. As the
pressure at the inner wall increases from sh to the current inner
pressure sa, the inner and outer radii of the soil cylinder become a
and b, respectively, and the vertical stress changes to be sz. The soil
is assumed to be isotropic and homogenous, which is modelled by
the Cam-Clay-type critical state models. Once yielding occurs, a
plastic zone with an outer radius of r may appear as shown in
Fig. 1b. In the concerned plane, a cylindrical coordinate system (r, q,
z) with the origin located at the cavity centre is used for the sake of
convenience.

As drained conditions are assumed, all stresses will be taken as
the effective stresses by default in this study. As defined in Fig.1, the
stress boundary conditions of the problem can be expressed as

srjr¼a ¼ sa (1)

srjr¼b ¼ sh (2)

where sr is the radial stress, and r is the current radial position of a
soil material point.

The body forces are neglected in the typical quasi-static cavity
expansion analysis (Yu and Houlsby, 1991; Chen and Abousleiman,
2013; Carter and Yu, 2022). With the axisymmetric assumption, the
stress equilibrium equation in the radial direction can be expressed
as

dsr
dr

þðsr � sqÞ
r

¼ 0 (3)

where sq is the circumferential stress, and dð $Þ is the spatial dif-
ferential of ($) for a given time (i.e. Eulerian description).



Fig. 1. Schematic of the cavity expansion problem: (a) Boundary conditions, and (b) Coordinate system.
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Rigorous definitions of the two stress invariants, namely the
mean effective stress and deviatoric stress (p, q), are followed as
given in Eqs. (4) and (5):

p ¼ 1
3
ðsr þsq þszÞ (4)

q ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsr � sqÞ2 þ ðsr � szÞ2 þ ðsq � szÞ2

q
(5)

Then the conjugated volumetric strain (εv) is defined as

εv ¼ εr þ εq þ εz (6)

where εr , εq, and εz denote the radial, circumferential, and vertical
strains, respectively. Note here the vertical strain remains zero (i.e.
εz ¼ 0) for the present plane strain problem.
Fig. 2. Definitions of the model parameters.

Table 1
f and pc for the selected Cam Clay models.

Model f ðp;q;pcÞ pcðp;qÞ Plastic flow rule

OCC h=M� lnðpc =pÞ p expðh =MÞ Associated
MCC ðh=MÞ2 � ðpc =p� 1Þ p½1 þ ðh=MÞ2� Associated

CASM ðh=MÞn � lnðpc=pÞ
ln r*

p exp½ln r*ðh=MÞn� Non-associated

Note: h ¼ q/p is the stress ratio; n and r* are material constants of the CASM, which
control the curvature of the yield surface and the intersection point of the CSL and
the yield surface, respectively.
3. Critical state soil models

Three widely-used critical state models are considered in this
study to describe the soil behaviour, including the original Cam Clay
model (OCC), themodified Cam Claymodel (MCC), and the Clay and
Sand model (CASM) (Yu, 1998). The reasons for choosing these
typical models are primarily to: (i) show the general characteristic
of the new solution in terms of different constitutive models; and
(ii) make it convenient for practical use (e.g. validation of numerical
methods). As shown in Fig. 2, the critical state line (CSL) and normal
consolidation line (NCL) are parallel with each other in the v-lnp
plane with a slope of l, and the specific volumes (v) at the inter-
sectionwith p¼ 1 kPa are G andN, respectively. In the p-q plane, the
slope of the CSL is denoted as M.

The swelling and recompression loop (i.e. reversible processes)
is represented by a single straight line:

v ¼ v0 � k lnðp = p0Þ (7)

where v0 denotes the initial specific volume; k is the slope of the
swelling line (SL) in the v-lnp plane; and p0 denotes the initial mean
stress. The elastic modulus E can be expressed as

Eðv; pÞ ¼ 3ð1� 2mÞvp=k (8)

where m is the Poisson’s ratio of the soil.
The yield function f and the plastic potential g for two-invariant

Cam Clay soil models can be uniformly expressed as
f ¼ f ðp; q;pcÞ ¼ 0 (9)

g ¼ g
�
p; q; pg

�
¼ 0 (10)

where pc and pg are size parameters for the yield surface and plastic
potential, respectively. pc0 is the initial value of pc (Fig. 2). The
evolution of pc is controlled by the volumetric-hardening law:

Dεpv ¼ l� k

v

Dpc
pc

(11)

where ε
p
v denotes the plastic volumetric strain; Dð$Þ denotes the

material time differential of ($) for a given soil material point (i.e.
Lagrangian description). Expressions of the yield function f and the
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isotropic consolidation pressure pc are summarised in Table 1 for
the OCC, MCC, and CASM models.

4. Analytical solution for the elastic analysis

Soil deformation in the elastic zone (i.e. r � r � b) is usually
very small so the small strain theory is commonly adopted in the
elastic analysis (Yu and Houlsby, 1991; Chen and Abousleiman,
2013), by which the stress-strain relationship can be expressed as

2
66664
Dεer
Dεeq
Dεez

3
77775 ¼

2
664
�dðDuÞ=dr
�Du=r

0

3
775 ¼ 1

Eðv; pÞ

2
664

1 �m �m

�m 1 �m

�m �m 1

3
775
2
664
Dsr

Dsq

Dsz

3
775
(12)

where ε
e
k (k ¼ r, q, z) denotes the elastic component of εk and is

taken as positive for compression; and u ¼ r � r0 is the radial
displacement of a soil material point whose initial radius is r0. It is
noted that Eq. (12) cannot be easily solved following conventional
approaches (e.g. Yu, 1992) because the stress-dependent elastic
moduli are influenced by the outer boundary effect. Elastic solu-
tions for stresses and displacements should be discussed separately
as follows.

4.1. Stress analysis

The compatibility equation in terms of strain components can be
obtained from Eq. (12) (Salgado et al., 1997; Yu, 2000):

d
�
Dεeq
�

dr
þ
�
Dεeq � Dεer

�
r

¼ 0 (13)

Substituting Eq. (12) into Eq. (13), the compatibility equation
will become

d
dr

½ � msr þð1� mÞsq� þ
sq � sr

r
¼ 0 (14)

Combination of Eqs. (3) and (14) leads to

d
dr

ðsr þ sqÞ ¼ 0 (15)

It is interesting to find that sr þ sq does not vary with radial
positions (but it may vary with time), and sr þ sq is denoted as
2sh � Br without loss of generality.

Then the elastic stresses can be readily obtained by solving Eqs.
(2), (3), (12) and (15):

sr ¼ sh þ Br
h
ðb=rÞ2 � 1

i
(16a)

sq ¼ sh � Br
h
ðb=rÞ2 þ 1

i
(16b)

sz ¼ sv � 2mBr (16c)

Br ¼ srr � sh

ðb=rÞ2 � 1
(16d)

where srr denotes the radial stress at the elastic-plastic boundary
(r ¼ r); and Br can be found to be a non-negative constant for a
given time (but it changes with r or time).

The mean effective stress and deviatoric stress at r ¼ r (i.e. pr
and qr) can be obtained by substituting Eq. (16) into Eqs. (4) and (5)
with the unknown of Br. Based on the stress continuity conditions
at r ¼ r, Br can be determined by substituting pr and qr into yield
function (9). Then the specific volume at r ¼ r (i.e. vr) can be
computed from Eq. (7).

4.2. Displacement analysis

Eqs. (4) and (16) indicate the mean effective stress in the elastic
zone varies during the expansion process. Accordingly, the elastic
moduli of soils vary as they are assumed to be stress-dependent in
these Cam Clay models. In this case the elastic displacement is
written in an incremental form by combining Eqs. (12) and (16):

Du ¼ rð1þ mÞ
Eðv; pÞ

h
1� 2mþðb=rÞ2

i
DBr (17)

An analytical solution for displacement analysis is innovatively
developed as follows.

Combining Eqs. (4) and (16), the mean effective stress in the
elastic zone can be expressed as

p ¼ p0 �
2ð1þ mÞ

3
Br (18)

where p0 ¼ ðsv þ2shÞ =3 denotes the initial mean effective stress.
Eq. (18) demonstrates that: (i) the mean effective stress is no longer
a constant in the elastic zone due mainly to the influence of the
outer boundary effect, which is different to published solutions for
cavity expansion in the infinite soil mass (e.g. Chen and
Abousleiman, 2013; Mo and Yu, 2018); and (ii) the mean effective
stress is only dependent on time (or Br), instead of varying with the
radial position. The latter conclusion is essential to develop the
analytical form of displacement solution.

For a soil material point in the elastic zone, the integral of Eq.
(17) together with Eqs. (7), (8), (16) and (18) can give the integral
form of particle displacements:

uðrÞ ¼
Zpr

p0

�rk
2ð1� 2mÞ

"
1� 2mþ ðb=rÞ2
v0 � k lnðp=p0Þ

#
Dp
p

(19)

Owing to the small strain assumption in the elastic zone, the
current radial position of a particle can be replaced by its original
position (i.e. r ¼ r0 and b ¼ b0) when calculating elastic dis-
placements. Therefore, elastic displacements can be obtained by
integrating Eq. (19) as

uðrÞ
r0

¼ 1� 2mþ ðb0=r0Þ2
2ð1� 2mÞ ln

�
1� k

v0
ln

pr
p0

�
(20)

In particular, the displacements at the elastic-plastic boundary
and the outer cylinder wall can then be obtained from Eq. (20) as

uðrÞ
r0

¼ 1� 2mþ ðb0=r0Þ2
2ð1� 2mÞ ln

�
1� k

v0
ln

pr
p0

�
(21)

uðbÞ
b0

¼ 1� m

1� 2m
ln
�
1� k

v0
ln

pr
p0

�
(22)

where r0 is the initial value of r. An iteration can be made by
replacing r0 and b0 in Eqs. (21) and (22) with the newly derived r

and b, respectively, which will give rather accurate results of r and
b.

Closed-form solutions for stresses and displacements in the
elastic zone are presented by Eqs. ((7), (16), (18) and (20). The
analytical expressions can greatly simplify calculation procedures
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for the analysis in the elastic zone and provide the boundary values
at r ¼ r for the PDEs in the plastic zone. In addition, these solutions
can also be used for the calculation of stresses and displacements
during the purely elastic expansion process (i.e. entire soil deforms
elastically) by replacing r and srr with a and sa respectively.

5. Governing equations for plastic analysis

In this section five first-order PDEs are formulated to solve the
unknowns (e.g. r, sr , sq, sz, and v) required for the analysis in the
plastic zone (a � r < r), which is achieved by the combined use of
Eulerian description (for a given time) and Lagrangian description
(for a given particle) as follows.

At first, to account for the large deformation effect in the plastic
zone, the Eulerian logarithmic strains are adopted (Chen and
Abousleiman, 2013; Mo and Yu, 2018):

εr ¼ � lnðdr =dr0Þ (23)

εq ¼ � lnðr = r0Þ (24)

εv ¼ � lnðv = v0Þ (25)

The radial, circumferential, and volumetric strains are not in-
dependent and should satisfy Eq. (6), thereby giving the compati-
bility equation in terms of r and v:

dr ¼ vr0
rv0

dr0 (26)

Combining Eqs. (3) and (26), the stress equilibrium equation can
be transformed to be the expression of sr in the Eulerian
description:

dsr ¼ ðsq � srÞ vr0rv0
dr0 (27)

Following Chen and Abousleiman (2012), the elastic-plastic
constitutive equations can be written in the Lagrangian form:2
4Dεr
Dεq
Dεz

3
5 ¼

2
4 Arr Arq Arz
Aqr Aqq Aqz
Azr Azq Azz

3
5
2
4Dsr
Dsq
Dsz

3
5 (28)

where Akl (k ¼ r, q, z; l ¼ r, q, z) is defined as

Akl ¼

8>>><
>>>:

�m

E
þ 1
Kp

vg
vsk

vf
vsl

; ksl

1
E
þ 1
Kp

vg
vsk

vf
vsk

; k ¼ l

(29)

Kp ¼ � vf
vpc

vg
vp

vpc
l� k

(30)
Table 2
Kp, vf =vsk , and vg=vsk for the selected Cam Clay models.

Model Functions

OCC Kp ¼ v

l� k

M � h

Mp
;

vf
vsk

¼ vg
vsk

¼ M � h

3Mp
þ

MCC Kp ¼ v

l� k

M4 � h4

M4p
;

vf
vsk

¼ vg
vsk

¼ M2 � h

3M2p

CASM Kp ¼ v

l� k

1
ln r*

27ðM � hÞ
pð3þ 2hÞð3� hÞ;

vf
vsk

¼ 1
Substituting Eqs. (6), (24) and (25) into Eq. (28), the circumfer-
ential stress, vertical stress, and specific volume can be expressed in
the incremental form:

	
Dsq
Dsz



¼
	
Aqq Aqz
Azq Azz


�1	�AqrDsr � Dr=r
�AzrDsr



(31)

Dv
v

¼ �
2
4 Arr þ Aqr þ Azr
Arq þ Aqq þ Azq
Arz þ Aqz þ Azz

3
5T
2
4Dsr
Dsq
Dsz

3
5 (32)

Five PDEs for the analysis in the plastic zone have been obtained
by the combination use of Eulerian description (i.e. Eqs. (26) and
(27)) and Lagrangian description (i.e. Eqs. (31) and (32)). Conse-
quently, the stresses and strains in the plastic zone can be calcu-
lated with the information at the elastic-plastic boundary. It is
noted that no specific constitutive models are restricted in the
above derivations so that these equations can be useful for a wide
range of materials. Taking the OCC, MCC, and CASM models as
example, detailed expressions for Kp, vg=vsk, and vf =vsk in Eq. (29)
are summarised in Table 2.

In addition, the entire soil cylinder may become plastic or enter
the fully plastic expansion stage. This is easy to occur when (i) The
thickness ratio of the soil cylinder (b0=a0) is small; (ii) The initial
overconsolidation ratio of soil (represented by R0 ¼ pc0=p0) is
close to 1; and (iii) The cavity expansion level gets sufficiently large.
In this case the above governing PDEs still work, but the boundary
values at r ¼ r should be replaced by those at r ¼ b.

6. Problem definition and assumptions

Both the material time derivative (Lagrangian description) and
the spatial derivative (Eulerian description) are involved in the
governing PDEs for the elastoplastic cavity expansion analysis, and
they cannot be transformed into ODEs easily for the present non-
self-similar problem, if not impossible. In this section, a novel so-
lution algorithm for solving this problem is developed as follows.

It is convenient to discrete the hollow cylinder of soil into (m�1)
concentric annuli, wherem represents the number of nodes (Fig. 3).
At the same time, the loading process is divided into a number of
continuous load steps. In the step prior to loading (i.e. step (0)),

each node is marked by its initial position rð0ÞðiÞ , where the subscript

i ¼ 1, 2, 3, ., m denotes the ith node and the superscript denotes
the number of load step. To improve calculation efficiency, the
distribution of nodes is set to follow the nonlinear function:

rð0Þðiþ1Þ ¼
�
b0
a0

�1=ðm�1Þ
rð0ÞðiÞ (33)

For convenience, the radial location, as well as stress and
deformation conditions, for the ith node at the jth load step is
stored in an information vector:
3ðsk � pÞ
2Mpq

2
þ 3ðsk � pÞ

M2p2

� n ln r*ðh=MÞn
3ðln r*Þp þ 3ðsk � pÞnhn�1

2Mnqp
;

vg
vsk

¼ 9½M � hþ ð9þ 3M � 2MhÞðsk � pÞ=2q�
pð3þ 2hÞð3� hÞ



Fig. 3. Discretisation of calculation nodes.
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xðjÞðiÞ ¼
h
rðjÞðiÞ ; sr

ðjÞ
ðiÞ; sq

ðjÞ
ðiÞ; sz

ðjÞ
ðiÞ; v

ðjÞ
ðiÞ
iT

(34)

where the superscript “(j)” represents the jth load step.
The loading process is controlled by gradually increasing the

radius of the elastic-plastic boundary. A special loading pattern that
the elastic-plastic boundary expands to the jth node at the end of

the jth load step (i.e. rðjÞ0 ¼ rð0ÞðjÞ and rðjÞ ¼ rðjÞðjÞ), is chosen to connect

the integrations with respect to time (for a given particle) and space

(for a given time). Therefore, the calculation of xðjÞðiÞ can be divided

into three cases (Fig. 4a):

(1) If (j)<(i), the ith node is within the elastic zone, which means

xðjÞðiÞ can be readily derived from the elastic solution;

(2) If (j)¼(i), the ith node is just on the elastic-plastic boundary.

In this case, xðjÞðjÞ can also be determined by the elastic solution

with r0 ¼ rðjÞ0 ¼ rð0ÞðjÞ ;

(3) If (j)>(i), the ith node is within the plastic zone and then xðjÞðiÞ
needs to be calculated by solving the governing PDEs in the
plastic zone.

Fig. 4b shows the increments of xwith respect to time and space
(i.e. Dx and dx) for the elastoplastic cavity expansion analysis. At
the jth load step, the increment of x from node (iþ1) to node (i) is
defined as

dx ¼ xðjÞðiÞ � xðjÞðiþ1Þ (35)

The explicit Euler method is chosen to solve the PDEs. Specif-
ically, dr and dsr can be obtained from Eqs. (26), (27) and (35) with

the known information of dr0 ¼ rð0ÞðiÞ � rð0Þðiþ1Þ and x ¼ xðjÞðiþ1Þ, and
Fig. 4. xðjÞðiÞ: (a) Two-dimensional schematic,
then rðjÞðiÞ and sr
ðjÞ
ðiÞ are determined. xðjÞðiþ1Þ with decreasing node

numbers can be determined node-by-node from the elastic-plastic

boundary to the inner cylinder wall (i.e. from node rðjÞðjÞ to node rðjÞð1Þ).

For the ith node upon loading from load step (j-1) to load step
(j), Dx is equal to

Dx ¼ xðjÞðiÞ � xðj�1Þ
ðiÞ (36)

where xðj�1Þ
ðiÞ is known from the previous step of loading. Having

calculated rðjÞðiÞ and sr
ðjÞ
ðiÞ from Eqs. (26), (27) and (35), DrðjÞðiÞ and Dsr

ðjÞ
ðiÞ

can be known by Eq. (36). Then, Dsq, Dsz, and Dv can be calculated

from Eqs. (31), (32) and (36) with x ¼ xðj�1Þ
ðiÞ , and sq

ðjÞ
ðiÞ, sz

ðjÞ
ðiÞ, and v

ðjÞ
ðiÞ

are also determined. By repeating the above work until a target
expansion level is reached (e.g. the inner radial reaches aend),
stresses and displacements during the continuous expansion pro-
cess can be computed, and the calculation procedures are sum-
marised in Fig. 5.
7. Special cases

In this section, the adaptability of the present solution approach
is further discussed taking two special cases as examples.
7.1. Self-similar cavity expansion problem

Assuming the outer radius of the soil cylinder to be infinite (i.e.
b0=a0 ¼ N), the cavitymay expand in a self-similar manner. In this
simplified case, all material points follow exactly the same and
unique stress/deformation path during the expansion process,
which implies that all the stress components and specific volume
for anymaterial point, could be functions of one single variable (e.g.
εq) (Chen and Abousleiman, 2013). On this basis, the preceding
governing PDEs in terms of time and spatial derivatives can be
transformed into a set of ODEs by introducing an appropriate
timescale or auxiliary variable. Normally, the auxiliary variable c is
the monotonic function of a dimensionless radial coordinate which
satisfies the equality relation of dc ¼ Dc, for example, r=r, ðr�
r0Þ=r, and r0=r (Collins et al., 1992; Chen and Abousleiman, 2013;
Su, 2021). The connection between the present method and the
auxiliary variable approach is discussed as follows.
and (b) Three-dimensional schematic.



Fig. 5. Calculation procedures for the elastic-plastic cavity expansion response.
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Following the above criteria, we can take c ¼ �εq (i.e. lnðr =r0Þ)
as a new auxiliary variable to link loading history for a material
point and field distribution for a given time. Then Dεq ¼ dεq gives

dr0
r0

¼ dr � Dr
r

(37)

Combining Eqs. (26) and (37), the term dr=r can be expressed by
Dr=r as

dr
r

¼
 

r20v

r20v� r2v0

!
Dr
r

(38)

With Eq. (38), the stress equilibrium equation (Eq. (3)) can be
converted into the expression of sr in the Lagrangian form. As a
result, the preceding PDEs for Dsr, Dsq, Dsz, and Dv have been
reduced to four ODEs in terms of Dr=r (i.e. � Dεq), which can be
readily solved using commercial ODE solvers. Therefore, the
auxiliary variable approach can be seen as a special case of the
present approach when b0=a0/N and c ¼ � εq.
7.2. Solution in elastic-perfectly plastic MC materials

The proposed solution method can also be extended to the
expansion analysis of a pressurised cylinder with the elastic-
perfectly plastic Mohr-Coulomb model, which has also been



Fig. 6. Cavity expansion curves with various b0/a0 values: (a) j ¼ 0� and (b) j ¼ 20� .

Table 3
Parameters used for the comparison with Chen and Abousleiman (2013).

R0 sh (kPa) sv (kPa) p0 (kPa) q0 (kPa) sh/ sv v0

1 100 160 120 60 0.625 2.09
3 120 120 120 0 1 1.97
10 144 72 120 72 2 1.80
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investigated by Yu (1992) using the total strain approach. Necessary
modifications for corresponding equations are given as follows.

As constant elastic moduli of soils were adopted in Yu (1992),
expressions for the specific volume and displacement, corre-
sponding to Eqs. (7) and (20), become

v0
v

¼ 1þ 3ð1� 2mÞðp� p0Þ
E0

(39)

uðrÞ
r0

¼ Brð1þ mÞ
E0

h
1� 2mþðb0=r0Þ2

i
(40)

where E0 is the constant elastic modulus.
The yield function and plastic potential for the non-associated

Mohr-Coulomb model are

f ¼ sr � 1þ sin 4

1� sin 4
sq �

2c cos 4
1� sin 4

¼ 0 (41)

g ¼ sr � 1þ sin j

1� sin j
sq �

2c cos j
1� sin j

¼ 0 (42)

where 4, c, and j denote the friction angle, cohesion, and dilation
angle. Then the PDEs for Dsq, Dsz, and Dv (i.e. Eqs. (31) and (32)) can
be simplified as	
Dsq
Dsz



¼ Dsr

1þ sin 4

	
1� sin 4

2m



(43)

Dv
v

¼ Cj
Dr
r

þ 1
E0

2
42m� 1� mCj

2m� 1þ Cj
2m� 1� mCj

3
5T
2
4Dsr
Dsq
Dsz

3
5 (44)

where Cj ¼ ð2 sin jÞ =ð1þsin jÞ is a material constant.
Yu and Houlsby (1991) and Yu (1992) demonstrated that sr and

sq can be directly obtained by combining the equilibrium equation
and yield function (Eqs. (3) and (41)) with the perfectly elastic-
plastic Mohr-Coulomb model (constant E0, 4, c, and j). Following
the loading history of a soil material point, Eqs. (43) and (44) can be
analytically integrated to derive the expressions of ðv� v0Þ and
ðsz � svÞ in terms of sr and sq, which allows the cavity expansion
analysis to be conducted by the total strain approach. Therefore, the
analytical solution derived in Yu (1992) by the total strain approach
can be seen as a special case of the present semi-analytical solution
with state-independent strength, stiffness, and dilatancy.
Note: MCC model parameters are: M ¼ 1.2, l ¼ 0.15, k ¼ 0.03, m ¼ 0.278, and
G ¼ 2.74. q0 is the initial deviatoric stress.
8. Results and discussion

8.1. Solution validation

The proposed solution method is validated by comparison with
some published results in the references. At first, the present so-
lution is compared with the large strain solution of Yu (1992) for
cavity expansion in a finite Mohr-Coulomb material, taking the
same soil parameters (E0=ða� 1Þ ¼ 500 sh, m¼ 0.3, c¼ 0, 4 ¼ 40�,
and j ¼ 0� and 20�). Fig. 6 shows that identical results are ob-
tained by these two methods, which validates the accuracy of the
proposed solution in this special case. The results also indicate that
the outer boundary may impose a significant effect on the cavity
expansion behaviour when the thickness ratio of the cylinder is
smaller than a limit value, and this effect is enhanced in the soil
with a larger dilation angle.

Using the auxiliary variable method, Chen and Abousleiman
(2013) developed a rigorous drained solution for a cylindrical
cavity expanding in an infinite soil mass adopting theMCCmodel. A
comparison is made between Chen and Abousleiman’s solution and
the proposed solution with a sufficiently large value of b0=a0 (e.g.
10,000), taking the same input parameters as summarised in
Table 3. In Figs. 7e9, the distributions of sr , sq, and sz at aend=a0 ¼ 2
are plotted in a semi-logarithmic scale, while the corresponding
stress paths for a material point at r0 ¼ a0 are presented in the p�
q plane. It can be found that Chen and Abousleiman’s solution can
be exactly recovered by the present solution when b0=a0/N. The
good agreement also means that simplifying r by r0 for displace-
ments in the elastic zone (see Eq. (20)) can satisfy the calculation
accuracy because of the sufficiently small strain.

Finally, the new solution is validated by comparison with FEM
with the same input parameters in Table 3. The one-dimensional
axisymmetric numerical model proposed by Zhou et al. (2021) is
followed in the numerical simulations with Abaqus 2019. The



Fig. 7. Stress distributions and stress paths for R0 ¼ 1: (a) Stress distributions, and (b) Stress paths at the inner cavity wall.

Fig. 8. Stress distributions and stress paths for R0 ¼ 3: (a) Stress distributions, and (b) Stress paths at the inner cavity wall.

Fig. 9. Stress distributions and stress paths for R0 ¼ 10: (a) Stress distributions, and (b) Stress paths at the inner cavity wall.
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thickness ratio b0=a0 is set as 20 and the MCC model built-in
Abaqus is adopted. Fig. 10 shows the comparison of cavity expan-
sion curves calculated by the present solution and FEM, and the
identical results once again validate the soundness of the present
solution.
8.2. Non-self-similar cavity expansion behaviour

For comparison, stress and deformation paths of soil material
points at different radial positions (e.g. r0 ¼ a0, 5a0, 15a0, and
30a0 ¼ b0) are captured during the expansion process. The results
are plotted both in the p� q and v� ln p planes as shown in



Fig. 10. Comparison of cavity expansion curves calculated by the present solution and
FEM.
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Figs. 11e13, in which the solid squares and circles mark the origin
and end of loading (i.e. aend=a0 ¼ 5), respectively.

During the continuous expansion process, it is known that all
material points around the cavity share the same stress and
deformation paths for self-similar cavity expansion problems (e.g. a
cylindrical cavity in an infinite soil mass of axisymmetric stress
conditions) (Collins et al., 1992; Chen and Abousleiman, 2013; Mo
and Yu, 2018). On the contrary, Figs. 11e13 show that these paths
differ significantly for particles at different radial positions, which
corroborates the non-self-similar nature of cavity expansion in soils
with a finite radial extent.

For the present non-self-similar problem, the stress states of soil
material points closely relate to the level of expansion, the radial
distance to the cavity wall, and the initial overconsolidation ratio.
Figs. 11e13 indicate the closer to the cavity wall the earlier the
stress state reaches the critical state, and soil material points with
larger initial radii generally take shorter paths to the CSL. With the
same expansion level, material points near the outer boundarymay
enter the plastic state in normally consolidated soils (e.g. R0 ¼ 1),
whereas only elastic deformation occurs (e.g. within the initial
Fig. 11. Stress paths of various soil particles for
yield surface in the p� q plane or purely move along the SL in the
v� ln p plane) in overconsolidated soils (e.g. R0 ¼ 3 and 10). The
stress paths prior to yielding are approximately straight lines in the
p� q plane but vary with the radial positions of material points. In
the purely elastic stage, the mean stress reduces upon loading, and
the reduction becomes greater as the particle radius increases. This
is also greatly different to what happens in a self-similar cavity
expansion process (Chen and Abousleiman, 2013; Mo and Yu,
2018).
8.3. Cavity expansion response

Using the proposed solution for the MCC model with the pa-
rameters in Table 3, cavity expansion curves (i.e. sa=sh versus a=a0)
and stress paths of material points at the inner cavity wall with
various b0=a0 ratios and R0 values are calculated and plotted in
Figs. 14e16. In these figures, the triangles on some cavity expansion
curves indicate the moment that the elastic-plastic boundary just
reaches the outer boundary of the hollow cylinder (i.e. r0 ¼ b0),
and the solid circle marks the end moment of loading (i.e.
aend=a0 ¼ 5). From the cavity expansion curves in Figs. 14e16, it can
be seen: (i) With a large value of b0=a0, the required cavity pressure
increases with a=a0 and gradually approaches a limit pressure,
which is almost the same as that happens for a cavity in an infinite
soil mass; and (ii) When b0=a0 is small (e.g. less than 20 with the
present parameters), a maximum cavity pressure may be reached,
whereas this value could bemuch smaller than the aforementioned
limit pressure, and the cavity pressure drops in the following
expansion process.

The outer boundary effect becomes more significant with the
increase of the overconsolidation ratio of soil (i.e. R0). For example,
for aend=a0 ¼ 5, the inner cavity pressure for b0=a0 ¼ 30 is 84.3 % of
that for b0=a0 / N in the case of R0 ¼ 1, and this ratio becomes
76.8 % and 70.7 % in the cases of R0 ¼ 3 and 10, respectively. The
outer boundary effect can also be clearly shown in the stress path
plot (e.g. Fig. 14b, 15b and 16b). Initially, the stresses (p, q) with
various b0=a0 values take almost the same paths to the CSL. With
further expansion, the stresses keep increasing and finally
approach a limit point on or near the CSL (q/p/M and Dq/Dp/M)
for the cases with b0=a0 / N, while the stress path may reverse
and reduce alone/near the CSL for the cases with a small b0=a0 ratio.
R0 ¼ 1: (a) p-q plane, and (b) v-lnp plane.



Fig. 12. Stress paths of various soil particles for R0 ¼ 3: (a) p-q plane, and (b) v-lnp plane.
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The turning point in the p-q plane gets earlier (i.e. smaller values of
p and q) with the decrease of b0=a0.

Finally, to further highlight the significance of the new approach
for non-self-similar cavity expansion problems, a comparison is
made between the present exact solution and the approximate
solution derived by the self-similar-based auxiliary variable
approach. To adopt the auxiliary variable approach to the analysis
of cavity expansion in the finite soil mass, three simplifying as-
sumptions are required, including: (i) The loading history of soil
material points and their spatial variations could be linked by an
auxiliary variable, which was in fact based on the self-similar
assumption; (ii) The radius ratio of the elastic-plastic boundary to
the outer cylinder boundary (i.e. r=b) could be given as a constant
during the loading process, which implies the cavity expansion
behaviour is independent of b0=a0; and (iii) The soil cylinder would
not enter the fully plastic expansion stage (i.e. r0=b0 < 1).

Figs. 17 and 18 show the comparison results calculated by the
two approaches, taking parameters in Table 3 for theMCCmodel. In
the approximate solution, r0=b0 is assumed to be 0.8 for cavity
expansion in a finite soil mass and to be 0 for the infinite. As
Fig. 13. Stress paths of various soil particles for
expected, Figs. 17 and 18 show that the approximate solution and
the exact solution predict identical results while taking the cylinder
thickness as infinite (i.e. b0=a0/N and r0=b0 ¼ 0). On the other
hand, significant differences in cavity expansion curves and stress
paths are observed once a finite soil mass (b0=a0 ¼ 20) is
considered. The exact solution predicts that the cavity pressure
increases first and then drops after reaching a peak pressure.
However, the approximate solution with a constant value of
r0=b0 ¼ 0:8 predicts that the inner pressure increases continually
and finally approaches a limit pressure which is smaller than that
for the case neglecting the finite boundary effect. This is primarily
because r0=b0 should in reality increase from a0=b0 to 1, and con-
stant r0=b0 in the approximate solution cannot account for the
increasingly significant outer boundary effect during the contin-
uous expansion process. Regarding the stress paths, the mean
effective stress calculated by the approximate solution drops much
faster than that by the exact solution in the elastic expansion stage
and then approaches a steady state without softening. Overall, the
auxiliary variable approach with the above simplifying assump-
tions may lead to considerable errors for the drained expansion
R0 ¼ 10: (a) p-q plane, and (b) v-lnp plane.



Fig. 14. Cavity expansion curves and stress paths at cavity wall for R0 ¼ 1: (a) Cavity expansion curves, and (b) Stress paths.

Fig. 15. Cavity expansion curves and stress paths at cavity wall for R0 ¼ 3: (a) Cavity expansion curves, and (b) Stress paths.

Fig. 16. Cavity expansion curves and stress paths at cavity wall for R0 ¼ 10: (a) Cavity expansion curves, and (b) Stress paths.
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Fig. 17. Cavity expansion curves and stress paths at cavity wall for R0 ¼ 3: (a) Cavity expansion curves, and (b) Stress paths.

Fig. 18. Cavity expansion curves and stress paths at cavity wall for R0 ¼ 10: (a) Cavity expansion curves, and (b) Stress paths.
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analysis of a thick-walled hollow cylinder of soils (i.e. non-self-
similar problems).

9. Conclusions

This paper presents a novel semi-analytical solution for rigorous
drained expansion of a pressurised cylinder of critical state soils.
Considering stress-dependent soil moduli, an analytical solution for
the elastic displacement is developed with the small strain
assumption. For the large strain elastoplastic analysis, a set of first-
order PDEs is constructed based on the combination use of Eulerian
and Lagrangian descriptions, and an efficient solution algorithm is
proposed for calculating stresses and deformation in the plastic
zone. Simplifying b0=a0/N, solutions for corresponding cavity
expansion problems in an infinite soil can be recovered by the
present solution. It is also shown the new solution method has
wider adaptability than the commonly used total strain method
and auxiliary variable method.
Parametric analyses indicate that the outer boundary effect may
significantly affect the cavity expansion response while b0/a0 is
small, and this effect may become more significant with the in-
crease of the expansion level aend=a0 and the overconsolidation
ratio R0. The non-self-similar nature due to the finite radial extent is
demonstrated and discussed by plotting the stress and deformation
paths of various material points in the p� q and v� ln p planes,
respectively. Finally, the accuracy of existing approximate solutions
for the expansion analysis of a thick-walled cylinder of critical state
soil is examined. The present solution can serve as a benchmark for
numerical simulations and a tool to capture the finite boundary
effect during pressuremeter tests in small-sized calibration cham-
bers. It also provides a general framework for many other non-self-
similar cavity expansion/contraction problems (e.g. those consid-
ering thermo-hydro-mechanical coupling and loading/unloading
history).
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List of symbols

a0, a, aend initial, current, and final radii of the inner cylinder wall
b0, b initial and current radii of the outer cylinder wall
c cohesion in the Mohr-Coulomb model
Dð$Þ material time differential of ($) for a material point
dð$Þ spatial differential of ($) for a given time
E elastic modulus
E0 constant elastic modulus
f, g yield function and plastic potential
i, j node number and load step number
M, G, l, k critical state parameters
n, r* additional material constants in the CASM
p, q mean effective stress and deviatoric stress
p0, q0 initial mean effective stress and deviatoric stress
pc0, pc initial and current isotropic yield pressures
pr, qr mean effective stress and deviatoric stress at the elastic-

plastic boundary
R0 initial overconsolidation ratio
r0, r initial and current radii of a material point

rð0ÞðiÞ initial radius of the i-th node

u radial displacement of a material point
v0, v initial and current specific volumes of soil

xðjÞðiÞ information vector for the i-th node in the j-th load step

ε
e
k , ε

p
k elastic component of εk (k ¼ r, q, z)

εr , εq, εz total radial, circumferential, and vertical strains
ε
p
v , εv plastic and total volumetric strains
h stress ratio
4, j friction angle and dilation angle in the Mohr-Coulomb

model
m Poisson’s ratio
r0, r initial and current radii of the elastic-plastic boundary
sa inner cavity pressure
sh, sv initial horizontal and vertical stresses
sr , sq, sz effective radial, circumferential, and vertical stresses
srr effective radial stress at the elastic-plastic boundary
c auxiliary variable

References

Bigoni, D., Laudiero, F., 1989. The quasi-static finite cavity expansion in a non-
standard elasto-plastic medium. Int. J. Mech. Sci. 31 (11e12), 825e837.

Cao, L.F., Teh, C.I., Chang, M.F., 2001. Undrained cavity expansion in modified Cam
clay. Geotechnique 51 (4), 323e334.

Carter, J.P., Yu, H.S., 2022. Cavity expansion in cohesive-frictional soils with limited
dilation. Geotechnique 73 (7), 629e635.
Chadwick, P., 1959. The quasi-static expansion of a spherical cavity in metals and
ideal soils. Q. J. Mech. Appl. Math. 12 (1), 52e71.

Chang, M.F., Teh, C.I., Cao, L.F., 2001. Undrained cavity expansion in modified Cam
clay II: application to the interpretation of the piezocone test. Geotechnique 51
(4), 335e350.

Chen, H., Li, L., Li, J., Sun, D., 2020. Elastoplastic solution to drained expansion of a
cylindrical cavity in anisotropic critical-state soils. J. Eng. Mech. 146 (5),
04020036.

Chen, H., Mo, P.Q., 2022. An undrained expansion solution of cylindrical cavity in
SANICLAY for K0-consolidated clays. J. Rock Mech. Geotech. Eng. 14 (3), 922e
935.

Chen, S.L., Abousleiman, Y.N., 2012. Exact undrained elasto-plastic solution for cy-
lindrical cavity expansion in modified Cam Clay soil. Geotechnique 62 (5), 447e
456.

Chen, S.L., Abousleiman, Y.N., 2013. Exact drained solution for cylindrical cavity
expansion in modified Cam Clay soil. Geotechnique 63 (6), 510e517.

Chen, S.L., Liu, K., 2019. Undrained cylindrical cavity expansion in anisotropic crit-
ical state soils. Geotechnique 69 (3), 189e202.

Cheng, Y., Yang, H.W., Sun, D.A., 2018. Cavity expansion in unsaturated soils of finite
radial extent. Comput. Geotech. 102, 216e228.

Cheng, Y., Yang, H.W., 2019. Exact solution for drained spherical cavity expansion in
saturated soils of finite radial extent. Int. J. Numer. Anal. Methods GeoMech. 43
(8), 1594e1611.

Collins, I.F., Pender, M.J., Wang, Y., 1992. Cavity expansion in sands under drained
loading conditions. Int. J. Numer. Anal. Methods GeoMech. 16 (1), 3e23.

Collins, I.F., Yu, H.S., 1996. Undrained cavity expansions in critical state soils. Int. J.
Numer. Anal. Methods GeoMech. 20 (7), 489e516.

Fahey, M., 1986. Expansion of a thick cylinder of sand: a laboratory simulation of the
pressuremeter test. Geotechnique 36 (3), 397e424.

Ghafghazi, M., Shuttle, D., 2008. Interpretation of sand state from cone penetration
resistance. Geotechnique 58 (8), 623e634.

Gibson, R.E., Anderson, W.F., 1961. In-situ measurement of soil properties with
pressuremeter. Civ. Eng. Pub. Works Rev. 56 (658), 615e618.

Hill, R., 1950. The Mathematical Theory of Plasticity. Oxford University Press, Lon-
don, UK.

Hughes, J.M.O., Wroth, C.P., Windle, D., 1977. Pressuremeter tests in sands. Geo-
technique 27 (4), 455e477.

Jewell, R.J., Fahey, M., Wroth, C.P., 1980. Laboratory studies of the pressuremeter test
in sand. Geotechnique 30 (4), 507e531.

Li, G.Y., Mo, P.Q., Li, C., Hu, J., Zhuang, P.Z., Yu, H.S., 2023. Loading-unloading of
spherical and cylindrical cavities in cohesive-frictional materials with arbitrary
radially symmetric boundary conditions. Appl. Math. Model. 124, 488e508.

Li, L., Li, J., Sun, D.A., 2016. Anisotropically elasto-plastic solution to undrained cy-
lindrical cavity expansion in K0-consolidated clay. Comput. Geotech. 73, 83e90.

Li, L., Chen, H., Li, J., 2021a. An elastoplastic solution to undrained expansion of a
cylindrical cavity in SANICLAY under plane stress condition. Comput. Geotech.
132, 103990.

Li, L., Chen, H., Li, J., 2021b. An elastoplastic solution for cylindrical cavity expansion
under constant water content conditions in anisotropic unsaturated soils.
Comput. Geotech. 139, 104323.

Mair, R.J., Taylor, R.N., 1993. Prediction of clay behaviour around tunnels using
plasticity solutions. In: Predictive Soil Mechanics: Proceedings of the Wroth
Memorial Symposium. Thomas Telford, Oxford, UK, pp. 449e463.

Mo, P.Q., Yu, H.S., 2018. Drained cavity expansion analysis with a unified state
parameter model for clay and sand. Can. Geotech. J. 55 (7), 1029e1040.

Mo, P.Q., Gao, X.W., Yang, W., Yu, H.S., 2020. A cavity expansionebased solution for
interpretation of CPTu data in soils under partially drained conditions. Int. J.
Numer. Anal. Methods GeoMech. 44 (7), 1053e1076.

Mo, P.Q., Chen, H., Yu, H.S., 2022. Undrained cavity expansion in anisotropic soils
with isotropic and frictional destructuration. Acta Geotech 17 (6), 2325e2346.

Osinov, V.A., Cudmani, R., 2001. Theoretical investigation of the cavity expansion
problem based on a hypoplasticity model. Int. J. Numer. Anal. Methods Geo-
Mech. 25 (5), 473e495.

Pournaghiazar, M., Russell, A.R., Khalili, N., 2013. Drained cavity expansions in soils
of finite radial extent subjected to two boundary conditions. Int. J. Numer. Anal.
Methods GeoMech. 37 (4), 331e352.

Randolph, M.F., Dolwin, R., Beck, R., 1994. Design of driven piles in sand. Geo-
technique 44 (3), 427e448.

Russell, A.R., Khalili, N., 2006. On the problem of cavity expansion in unsaturated
soils. Comput. Mech. 37 (4), 311e330.

Salgado, R., Mitchell, J.K., Jamiolkowski, M., 1997. Cavity expansion and penetration
resistance in sand. J. Geotech. Geoenviron. Eng. 123 (4), 344e354.

Schnaid, F., Houlsby, G.T., 1991. An assessment of chamber size effects in the cali-
bration of in situ tests in sand. Geotechnique 41 (3), 437e445.

Silvestri, V., Abou-Samra, G., 2012. Analytical solution for undrained plane strain
expansion of a cylindrical cavity in modified cam clay. Geomech. Eng. 4 (1), 19e
37.

Song, X.G., Yang, H., Yue, H.Y., Guo, X., Yu, H.S., Zhuang, P.-Z., 2022. Closed-form
solutions for large strain analysis of cavity contraction in a bounded Mohr-
Coulomb medium. Eur. J. Environ. Civ. Eng. 26 (10), 4548e4575.

Su, D., 2021. Drained solution for cylindrical cavity expansion in modified Cam Clay
soil under constant vertical stress. Can. Geotech. J. 58 (2), 176e189.

Vesic, A.S., 1972. Expansion of cavities in infinite soil mass. J. Soil Mech. Found Div.
98 (SM3), 265e290.

http://refhub.elsevier.com/S1674-7755(24)00024-6/sref1
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref1
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref1
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref1
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref2
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref2
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref2
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref3
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref3
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref3
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref4
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref4
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref4
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref5
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref5
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref5
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref5
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref6
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref6
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref6
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref7
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref7
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref7
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref8
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref8
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref8
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref9
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref9
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref9
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref10
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref10
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref10
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref11
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref11
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref11
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref12
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref12
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref12
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref12
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref13
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref13
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref13
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref14
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref14
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref14
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref15
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref15
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref15
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref16
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref16
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref16
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref17
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref17
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref17
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref18
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref18
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref19
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref19
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref19
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref20
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref20
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref20
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref21
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref21
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref21
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref21
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref22
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref22
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref22
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref23
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref23
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref23
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref24
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref24
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref24
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref25
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref25
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref25
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref25
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref26
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref26
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref26
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref27
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref27
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref27
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref27
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref27
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref28
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref28
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref28
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref29
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref29
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref29
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref29
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref30
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref30
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref30
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref30
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref31
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref31
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref31
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref32
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref32
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref32
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref33
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref33
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref33
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref34
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref34
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref34
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref35
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref35
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref35
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref36
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref36
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref36
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref36
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref37
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref37
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref37
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref38
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref38
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref38


H. Yang et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 2326e23402340
Vrakas, A., 2016. A rigorous semi-analytical solution for undrained cylindrical cavity
expansion in critical state soils. Int. J. Numer. Anal. Methods GeoMech. 40 (15),
2137e2160.

Wang, X., Chen, S., 2022. Revisiting undrained cavity expansion problem in critical
state soils: a simple graph-based approach. Int. J. Numer. Anal. Methods Geo-
Mech. 46 (12), 2356e2374.

Yang, C., Li, J., Li, L., Sun, D.A., 2021. Expansion responses of a cylindrical cavity in
overconsolidated unsaturated soils: a semi-analytical elastoplastic solution.
Comput. Geotech. 130, 103922.

Yang, H., Yu, H.S., Chen, X., Zhuang, P.-Z., 2023. Rigorous solution for drained
analysis of spherical cavity expansion in soils of finite radial extent. Comput.
Geotech. 160, 105516.

Yu, H.S., Houlsby, G.T., 1991. Finite cavity expansion in dilatant soils: loading anal-
ysis. Geotechnique 41 (2), 173e183.

Yu, H.S., 1992. Expansion of a thick cylinder of soils. Comput. Geotech. 14 (1), 21e41.
Yu, H.S., 1993. Finite elastoplastic deformation of an internally pressurized hollow

sphere. Acta Mech. Solida Sin. 6 (1), 81e97.
Yu, H.S., 1998. CASM: a unified state parameter model for clay and sand. Int. J.

Numer. Anal. Methods GeoMech. 22 (8), 621e653.
Yu, H.S., Rowe, R.K., 1999. Plasticity solutions for soil behaviour around contracting

cavities and tunnels. Int. J. Numer. Anal. Methods GeoMech. 23 (12), 1245e1279.
Yu, H.S., 2000. Cavity Expansion Methods in Geomechanics. Kluwer Academic

Publishers, Dordrecht, The Netherlands.
Yu, H.S., Carter, J.P., 2002. Rigorous similarity solutions for cavity expansion in

cohesive-frictional soils. Int. J. GeoMech. 2 (2), 233e258.
Zhou, H., Kong, G., Liu, H., Laloui, L., 2018. Similarity solution for cavity expansion in

thermoplastic soil. Int. J. Numer. Anal. Methods GeoMech. 42 (2), 274e294.
Zhou, H., Liu, H., Wang, Z., Ding, X., 2021. A unified and rigorous solution for quasi-
static cylindrical cavity expansion in plasticity constitutive models. Comput.
Geotech. 135, 104162.

Zhuang, P.Z., Yu, H.S., 2018. Uplift resistance of horizontal strip anchors in sand: a
cavity expansion approach. Géotech. Lett. 8 (4), 284e289.

Zhuang, P.Z., Yu, H.S., Mooney, S.J., Mo, P.Q., 2021a. Loading and unloading of a
thick-walled cylinder of critical-state soils: large strain analysis with applica-
tions. Acta Geotech 16, 237e261.

Zhuang, P.Z., Yue, H.Y., Song, X.G., Yang, H., Yu, H.S., 2021b. Uplift behavior of pipes
and strip plate anchors in sand. J. Geotech. Geoenviron. Eng. 147 (11), 04021126.

Zhuang, P.Z., Yang, H., Yue, H.Y., Fuentes, R., Yu, H.S., 2022. Plasticity solutions for
ground deformation prediction of shallow tunnels in undrained clay. Tunn.
Undergr. Space Technol. 120, 104277.
He Yang is a PhD Candidate of Civil Engineering, at School
of Civil Engineering, University of Leeds. He obtained his
BEng degree in Civil Engineering from Shandong Univer-
sity, China in 2018, and MEng degree in Highway and
Railway Engineering from Shandong University, China, in
2021. His research interests include (1) Cavity expansion
theory and applications; (2) Intepretation of in-situ tests;
(3) Constitutive modelling of unsaturated soils; and (4)
Soil-structure interations in piles, pipelines, plate anchors,
and tunnels. He has published over 10 papers on peer-
review journals.

http://refhub.elsevier.com/S1674-7755(24)00024-6/sref39
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref39
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref39
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref39
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref40
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref40
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref40
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref40
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref41
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref41
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref41
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref42
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref42
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref42
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref43
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref43
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref43
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref44
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref44
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref45
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref45
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref45
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref46
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref46
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref46
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref47
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref47
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref47
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref48
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref48
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref49
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref49
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref49
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref50
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref50
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref50
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref51
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref51
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref51
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref52
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref52
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref52
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref53
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref53
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref53
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref53
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref54
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref54
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref55
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref55
http://refhub.elsevier.com/S1674-7755(24)00024-6/sref55

	Semi-analytical solution for drained expansion analysis of a hollow cylinder of critical state soils
	1. Introduction
	2. Problem definition and assumptions
	3. Critical state soil models
	4. Analytical solution for the elastic analysis
	4.1. Stress analysis
	4.2. Displacement analysis

	5. Governing equations for plastic analysis
	6. Problem definition and assumptions
	7. Special cases
	7.1. Self-similar cavity expansion problem
	7.2. Solution in elastic-perfectly plastic MC materials

	8. Results and discussion
	8.1. Solution validation
	8.2. Non-self-similar cavity expansion behaviour
	8.3. Cavity expansion response

	9. Conclusions
	Declaration of competing interest
	Acknowledgments
	List of symbols
	References


