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Abstract

Background Treatment switching in randomised controlled trials (RCTs) is a problem for health technology 

assessment when substantial proportions of patients switch onto effective treatments that would not be available in 

standard clinical practice. Often statistical methods are used to adjust for switching: these can be applied in different 

ways, and performance has been assessed in simulation studies, but not in real-world case studies. We assessed 

the performance of adjustment methods described in National Institute for Health and Care Excellence Decision 

Support Unit Technical Support Document 16, applying them to an RCT comparing panitumumab to best supportive 

care (BSC) in colorectal cancer, in which 76% of patients randomised to BSC switched onto panitumumab. The RCT 

resulted in intention-to-treat hazard ratios (HR) for overall survival (OS) of 1.00 (95% confidence interval [CI] 0.82–1.22) 

for all patients, and 0.99 (95% CI 0.75–1.29) for patients with wild-type KRAS (Kirsten rat sarcoma virus).

Methods We tested several applications of inverse probability of censoring weights (IPCW), rank preserving 

structural failure time models (RPSFTM) and simple and complex two-stage estimation (TSE) to estimate treatment 

effects that would have been observed if BSC patients had not switched onto panitumumab. To assess the 

performance of these analyses we ascertained the true effectiveness of panitumumab based on: (i) subsequent RCTs 

of panitumumab that disallowed treatment switching; (ii) studies of cetuximab that disallowed treatment switching, 

(iii) analyses demonstrating that only patients with wild-type KRAS benefit from panitumumab. These sources suggest 

the true OS HR for panitumumab is 0.76–0.77 (95% CI 0.60–0.98) for all patients, and 0.55–0.73 (95% CI 0.41–0.93) for 

patients with wild-type KRAS.

Results Some applications of IPCW and TSE provided treatment effect estimates that closely matched the point-

estimates and CIs of the expected truths. However, other applications produced estimates towards the boundaries of 

the expected truths, with some TSE applications producing estimates that lay outside the expected true confidence 

intervals. The RPSFTM performed relatively poorly, with all applications providing treatment effect estimates close to 

1, often with extremely wide confidence intervals.
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Background
Treatment changes are common in randomised con-

trolled trials (RCTs) of new cancer treatments. The ran-

domised treatment may stop working, or may not be 

tolerable, resulting in a treatment switch. For health tech-

nology assessment (HTA), the decision problem usually 

involves estimating the clinical and cost-effectiveness of 

inserting a new technology into the treatment pathway, 

and treatment switches that are representative of realistic 

treatment pathways that would be observed in standard 

clinical practice are consistent with this. Difficulties arise 

when treatment switches are not compatible with treat-

ment pathways that would be observed in standard clini-

cal practice. Most often this occurs when participants 

randomised to the control group switch onto the experi-

mental treatment. Then it becomes necessary to adjust 

for the switch – to estimate the treatment effect that 

would have been observed if switching had not occurred. 

To this end, statistical adjustment methods are often used 

to adjust for treatment switching to inform HTA decision 

making [1–6]. 

A technical support document published by the 

National Institute for Health and Care Excellence (NICE) 

Decision Support Unit describes the methods most often 

used to adjust for treatment switching - Inverse Prob-

ability of Censoring Weights (IPCW), Rank Preserv-

ing Structural Failure Time Models (RPSFTM) and Two 

Stage Estimation (TSE) [1, 6]. These methods have been 

used in several technology appraisals - for example, RPS-

FTM analyses reduced incremental cost-effectiveness 

ratios from £90,500 to £31,800 per quality adjusted life 

year gained in NICE’s appraisal of sunitinib for gastroin-

testinal stromal tumours [7], and from £75,489 to £52,327 

in the appraisal of vemurafenib for malignant melanoma 

[8]. In both cases the adjustment analysis was accepted, 

and NICE recommended both treatments [7, 8]. 

Methods such as RPSFTM, IPCW and TSE improve 

upon naïve adjustment methods, such as simply censor-

ing patients who switch treatments, but each method 

makes important assumptions and may result in bias 

if their assumptions do not hold. Several studies report 

on the performance of adjustment methods in a range 

of simulated scenarios [9–12]. These studies involve 

simulating survival data for two treatments in a fictional 

RCT, simulating treatment switching, and then apply-

ing the adjustment methods to estimate what the treat-

ment effect would have been if treatment switching had 

not occurred. Because the data are simulated, the ‘true’ 

treatment effect is known, enabling an assessment of the 

accuracy of the adjustment methods. These studies offer 

valuable insight and have shown that the RPSFTM per-

forms well across a range of scenarios provided that the 

treatment effect in switchers and patients initially ran-

domised to the experimental group is similar, and that 

IPCW and TSE methods are prone to bias when sample 

sizes are small and switching proportions are high [9–12]. 

However, simulation studies may be criticised due 

to artificiality: the data are not ‘real’, and results may be 

influenced by the data generation mechanism. Also, 

adjustment methods can be applied in a multitude of 

ways, using different model specifications, but it is dif-

ficult to test the performance of these variants in a 

simulation study in which relatively small numbers of 

prognostic covariates are simulated. It would therefore 

be valuable to show how well different applications of 

adjustment methods work in ‘real’ data. This is usually 

impossible – we cannot tell how well the methods have 

performed because we do not know what would have 

actually happened in the absence of switching. In this 

study we present an assessment of the performance of 

adjustment methods in a unique real-world case where 

we have a very good idea of what the results of an RCT 

affected by treatment switching would have been if treat-

ment switching had not occurred. First, we present a 

dual-purpose Methods section – we describe various 

clinical studies investigating panitumumab in patients 

with metastatic colorectal cancer, explaining how we 

have a good idea of the true effect of panitumumab 

despite the treatment switching observed in the pivotal 

RCT, then we describe the treatment switching methods 

and their application in this case study. Next we present 

results, and discuss their implications for future research 

and decision making.

Panitumumab in patients with metastatic 
colorectal cancer
Pivotal trial – study 20020408

Study 20020408 (NCT00113763) recruited patients 

with metastatic colorectal cancer refractory to chemo-

therapy between 2004 and 2005, and randomised to 

panitumumab plus best supportive care (BSC) (n = 231) 

and BSC alone (n = 232) [13]. The sample size was calcu-

lated based on the primary endpoint of progression-free 

survival (PFS). Overall survival (OS) and best objec-

tive response by blinded central review were co-sec-

ondary endpoints. Patients randomised to BSC were 

Conclusions Adjustment analyses may provide unreliable results. How each method is applied must be scrutinised 

to assess reliability.

Keywords Treatment switching, Treatment crossover, Survival analysis, Cancer, Inverse probability weighting, Rank 

preserving structural failure time model, Two-stage estimation, Health technology assessment, Adjustment methods



Page 3 of 13Latimer et al. BMC Medical Research Methodology           (2024) 24:17 

allowed to switch onto panitumumab after investigator-

assessed disease progression, as part of a separate study 

(Study 20030194, NCT00113776), and 176 did so (221 

BSC patients experienced disease progression). Treat-

ment switching was included in the protocol for Study 

20020408 based on prior evidence of the activity of pani-

tumumab and cetuximab, a similar anti-EGFR (epidermal 

growth factor receptor) monoclonal antibody, in colorec-

tal cancer [13]. Data on a range of potentially prognostic 

variables such as Eastern Cooperative Oncology Group 

(ECOG) performance status, health related quality of life, 

response status, lesion characteristics, adverse events, 

and laboratory tests were collected at baseline and over 

time. Data were collected at 8-week intervals in the first 

year, and then every 3 months until centrally reviewed 

disease progression. For some variables a small number 

of observations were available beyond disease progres-

sion, primarily due to differences in investigator-assessed 

and centrally reviewed progression times. Appendix A 

provides more information on data collection.

The intention-to-treat (ITT) hazard ratios (HR) were 

0.54 for PFS (95% confidence interval [CI], 0.44–0.66), 

and 1.00 for OS (95% CI, 0.82 to 1.22) [13]. Post-hoc sub-

group analyses were undertaken in an attempt to esti-

mate the effect on OS adjusted for treatment switching. 

These did not use RPSFTM, IPCW, TSE or any other for-

mal adjustment method, and instead were based on two 

key assertions. Firstly, a finding made during the study 

indicated that patients with mutant (MT) KRAS (Kirsten 

rat sarcoma virus) tumours could not benefit from pani-

tumumab [14]. Secondly, it was assumed that KRAS sta-

tus is not prognostic for survival in patients treated with 

BSC, supported by previous research [14–22] and a find-

ing that survival was similar between KRAS groups in 

BSC patients who did not switch onto panitumumab in 

Study 20020408 [15]. Two of the post-hoc subgroup anal-

yses were of particular interest for the current study:

i) ‘All-comer’ analysis (to estimate the treatment 

effect of panitumumab in the full trial population, 

including all randomised patients irrespective of 

KRAS type, had there been no switching from BSC 

to panitumumab): All KRAS assessable patients (MT 

and wild type [WT]) randomised to panitumumab 

(n = 208) were compared to patients with MT KRAS 

randomised to BSC (n = 100), resulting in an OS HR 

of 0.76 (95% CI, 0.60 to 0.98) [15]. 

ii) WT KRAS analysis (to estimate the treatment effect 

of panitumumab in patients likely to benefit from it – 

those with WT KRAS – had there been no switching 

from BSC to panitumumab): Patients with WT 

KRAS randomised to panitumumab (n = 124) were 

compared to patients with MT KRAS randomised to 

BSC (n = 100), resulting in an OS HR of 0.66 (95% CI, 

0.49 to 0.87) [15]. 

Evidence from related studies

To provide further evidence on the treatment effect of 

panitumumab on OS, we considered cetuximab trials. 

Panitumumab and cetuximab have similar mechanisms 

of action and the CO.17 study compared cetuximab 

to BSC in the same population as Study 20020408 and 

was conducted at a similar time, recruiting 572 patients 

between 2003 and 2005 [16]. Importantly, treatment 

switching from BSC onto cetuximab was not permitted. 

The OS HR for cetuximab was 0.77 (95% CI, 0.64 to 0.92) 

in the full population [16], and 0.55 (95% CI, 0.41 to 0.74) 

in the WT KRAS population (0.62, 95% CI 0.44 to 0.87 

when adjusted for potentially prognostic variables) [23]. 

Given the similarities between panitumumab and 

cetuximab, and that both had shown effectiveness for 

PFS, but only cetuximab had shown effectiveness for OS 

(likely due to the treatment switching permitted in Study 

20020408), it was of interest to compare these two treat-

ments. To that end, the ASPECCT study used a non-infe-

riority design to assess whether panitumumab preserved 

the OS benefit previously observed for cetuximab in the 

CO.17 study [24]. The study recruited patients between 

2010 and 2012, by which time it was known that both 

panitumumab and cetuximab were only effective in 

patients with WT KRAS, and therefore only patients 

with WT KRAS were included. The study recruited 

999 patients and found an OS HR of 0.97 (95% CI, 0.84 

to 1.11), leading to the conclusion that panitumumab is 

non-inferior to cetuximab [24]. Although concluding 

non-inferiority does not prove that the treatments have 

the same effect, the authors of the ASPECCT study fur-

ther concluded that panitumumab and cetuximab pro-

vided similar OS benefits and highlighted that results 

were also similar for other outcome measures assessed – 

the PFS HR was 1.00 (95% CI, 0.88 to 1.14), results were 

consistent across all subgroups, and response rates were 

almost identical for the two treatments [24]. 

While the ASPECCT study was ongoing, a further 

study investigating the treatment effect of panitu-

mumab on OS was carried out. The phase 3 RCT Study 

20100007 (NCT01412957) was designed with the pri-

mary objective of evaluating the effect of panitumumab 

plus BSC compared to BSC alone on OS in patients with 

chemo-refractory WT KRAS metastatic colorectal can-

cer [25]. Study 20100007 therefore essentially replicated 

Study 20020408, but recruited only WT KRAS patients, 

included OS as the primary outcome measure, and dis-

allowed treatment switching [25]. 377 patients were 

recruited between 2011 and 2013, and the HR associ-

ated with panitumumab for OS was 0.73 (95% CI, 0.57 
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to 0.93). The authors suggested that this treatment effect 

was slightly lower than expected, potentially reflecting an 

improvement over time in survival for patients receiving 

BSC [25]. 

Summary – the effectiveness of panitumumab

Study 20020408 was confounded by treatment switching, 

but subsequent subgroup analyses based on KRAS type 

and evidence from other RCTs provide evidence on the 

likely treatment effect of panitumumab on OS. Table  1 

summarises this evidence for two estimands – Estimand 

1: All-comers, and; Estimand 2: WT KRAS patients. For 

Estimand 1, the target is an estimate of the treatment 

effect in the full trial population, including WT and MT 

KRAS patients. For Estimand 2, the target is an estimate 

of the treatment effect in WT KRAS patients.

Analyses that break the randomisation of a trial and 

comparisons between trials should be interpreted with 

caution. However, it seems reasonable to expect that 

if treatment switching had not been allowed in Study 

20020408, the point-estimate of the OS HR for pani-

tumumab compared to BSC would have been in the 

region of 0.55 to 0.73 in WT KRAS patients (with 95% 

confidence intervals ranging between 0.41 and 0.93), and 

around 0.76 to 0.77 in all-comers (with 95% confidence 

intervals ranging between 0.60 and 0.98). In the remain-

der of this paper we apply RPSFTM, IPCW and TSE 

methods to adjust for the treatment switching observed 

in Study 20020408, to determine whether they result in 

estimates of the OS treatment effect of panitumumab 

that are close to these ‘truths’.

Treatment switching adjustment methods
Stata Version 17.0 was used to conduct analyses [26]. 

Detailed information on the application of methods is 

provided in supplementary materials. Key points are pro-

vided here.

Inverse probability of censoring weights

IPCW censors switchers, and attempts to correct for 

selection bias induced by censoring by identifying and 

upweighting patients who have not switched but who 

have prognostic characteristics similar to those in switch-

ers [27]. The method accounts for baseline and time-

dependent confounding using time-dependent weights 

and is therefore reliant upon the ‘no unmeasured con-

founding’ assumption. There must also be no prognostic 

covariates that perfectly predict switching - otherwise 

no similar patients remain for the IPCW analysis to 

upweight.

In Study 20020408 information on several potentially 

prognostic covariates were collected at baseline and over 

time (see Appendix A), but data were only routinely col-

lected up to the time of disease progression. Covariates 

to include in the IPCW analyses were determined 

through discussion with a clinical expert [AD]. Our aim 

was not to identify variables that improve the predictive 

ability of our switching models, but to identify confound-

ing variables – those that are causes of switching and 

survival [28]. The clinical expert was taken through the 

data available, and the concept of directed acyclic graphs 

was introduced using simple examples. Variable selec-

tion was then based on an assessment of which variables 

were likely to be common causes of switching and sur-

vival. Two model specifications were tested – an ‘inclu-

sive’ model, including all variables considered potentially 

important, and a ‘reduced’ model, including variables 

considered most important (see Appendix A). The inclu-

sive models included variables for age, ECOG perfor-

mance status, region, primary tumour diagnosis, EuroQol 

5 dimensions (EQ-5D) score, time of disease progres-

sion, best tumour response category, lesion size, seri-

ous adverse events, and laboratory values for bilirubin, 

aspartate transaminase (AST), creatinine, albumin, lac-

tate dehydrogenase, carcinoembryonic antigen, alanine 

amino transferase, and alkaline phosphatase. Reduced 

models included variables for ECOG performance status, 

region, primary tumour diagnosis, EQ-5D score, time of 

progression, best tumour response category, and lesion 

size. Very little data were missing at baseline, but data 

collection reduced over time, with minimal data available 

after disease progression. The most recently recorded 

values were used for time-varying covariates (using a 

last observation carried forward approach). Missing data 

was not imputed, because in order to be a confounder a 

variable must be observable to decision makers (the cli-

nician and/or patient). In addition, we created variables 

to indicate whether data for each variable was missing at 

the most recent visit, in line with previously published 

research using IPCW analyses [29]. This resulted in 33 

covariates being included in inclusive models, and 15 

being included in reduced models.

Only patients with WT KRAS benefit from panitu-

mumab, and therefore in our IPCW analyses we only 

censored switchers with WT KRAS: MT KRAS switchers 

were not censored as it was not necessary to adjust their 

survival times. Therefore, in our analyses we took advan-

tage of our knowledge that patients with MT KRAS do 

not benefit from panitumumab.

In our primary IPCW analyses, models for the probabil-

ity of treatment switching used to estimate weights were 

only applied to BSC patients with WT KRAS, as only WT 

KRAS switchers were censored. Theoretically this is the 

correct approach, because only patients who were ‘at risk’ 

of switching should be weighted: in our analyses, because 

we only adjust for switching in WT KRAS patients, we 

essentially define switching to only include patients with 

WT KRAS and thus only WT KRAS patients are ‘at risk’ 
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of switching. However, this means that weighting mod-

els are applied to a small sample, which could result in 

error. Therefore, we conducted supplementary secondary 

analyses which included BSC WT KRAS and BSC MT 

KRAS patients in these weighting models, with BSC MT 

KRAS patients assigned as non-switchers irrespective of 

whether or not they switched onto panitumumab. This 

again uses our knowledge that patients with MT KRAS 

do not benefit from panitumumab, making it reasonable 

to analyse these patients as non-switchers, and allowing 

us to increase the sample size used in the weighting mod-

els. This approach requires the additional assumption 

that KRAS status is not predictive of survival other than 

through treatment with panitumumab, which is sup-

ported by previous research [14–22]. 

We used an IPCW-weighted Cox proportional haz-

ards model to estimate the HR adjusted for treatment 

switching and conducted analyses with stabilised and 

unstabilised weights, and with inclusive and reduced 

models, for Estimands 1 and 2. This resulted in 4 primary 

analyses for each estimand, and 4 secondary analyses for 

each estimand (see Appendix A for further details).

Two-stage estimation

TSE estimates the effect of treatment switching by com-

paring switchers to non-switchers after a disease related 

secondary baseline. The effect estimate is used to derive 

counterfactual survival times for switchers [10, 12]. The 

simple version of the TSE method (TSEsimp) uses simple 

regression to estimate the effect of switching, whereas a 

more complex version uses g-estimation (TSEgest) [12]. 

Treatment switching was permitted after disease pro-

gression in Study 20020408, so this was used as the sec-

ondary baseline. The ‘inclusive’ and ‘reduced’ model 

Table 1 Evidence on the effectiveness of panitumumab

Source of evidence Treatment effect compared to BSC Comments

Estimand 1. All comers – 

OS HR (95% CI)

Estimand 2. WT KRAS – OS HR 

(95% CI)

Study 20020408

Panitumumab + BSC (n = 231)

KRAS assessable (n = 208)

WT KRAS (n = 124)

MT KRAS (n = 84)

BSC alone (n = 232) KRAS assessable (n = 219)

WT KRAS (n = 119)

MT KRAS (n = 100)

Study affected by treatment switching from BSC onto 

panitumumab. Conducted analysis of KRAS groups to 

‘adjust’ for switching [15]

Compared WT and MT KRAS 

patients randomised to 

panitumumab, to MT KRAS 

patients randomised to BSC

HR = 0.76 (0.60–0.98)

Compared WT KRAS patients ran-

domised to panitumumab, to MT 

KRAS patients randomised to BSC

HR = 0.66 (0.49–0.87)

Assumption that KRAS 

status is not prognostic 

for survival, caution re-

quired due to breaking 

of randomisation

Study 20100007 [25]

Panitumumab + BSC (n = 189)

BSC alone (n = 188)

Study only included patients with WT KRAS. Switching 

from BSC onto panitumumab not allowed

- Intention-to-treat analysis

HR = 0.73 (0.57–0.93)

Newer study, BSC 

survival may have 

improved

CO.17 study [16]

Cetuximab + BSC (n = 287)

BSC alone (n = 285)

Switching from BSC onto cetuximab not allowed

Intention-to-treat analysis

HR = 0.77 (0.64–0.92)

Compared WT KRAS patients 

randomised to cetuximab, to WT 

patients randomised to BSC

HR = 0.55 (0.41–0.74)

[0.62 (0.44–0.87) when adjusted for 

potentially prognostic covariates]

Assume similar effec-

tiveness for cetuximab 

and panitumumab, 

based on ASPECCT 

study [24]

Notes: BSC - Best Supportive Care; CI - Confidence Interval; HR - Hazard Ratio; KRAS - Kirsten Rat Sarcoma Virus; OS - Overall Survival; WT - Wild Type. For estimand 

1, the target is an estimate of the treatment effect in the complete trial population, including WT and MT KRAS patients. For estimand 2, the target is an estimate of 

the treatment effect in WT KRAS patients
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specifications described for IPCW were used, but, 

because simple regression cannot deal with time-depen-

dent confounding, our TSEsimp analyses did not use 

values of variables measured after disease progression. 

TSEsimp assumes no unmeasured confounding at the 

secondary baseline time-point and that no confounding 

occurs between the secondary baseline and the time of 

switch [10]. TSEgest can include time-dependent con-

founding variables, so does not need to assume that no 

confounding occurs between the secondary baseline 

and the time of switch, but only offers advantages over 

TSEsimp if useful data are collected during this period 

[12]. 

In our primary TSE analyses we compared BSC WT 

KRAS switchers to BSC WT KRAS non-switchers to 

estimate the effect of switching. In common with our 

IPCW analyses, we conducted secondary analyses which 

compared BSC WT KRAS switchers to BSC WT KRAS 

non-switchers and BSC MT KRAS patients (irrespec-

tive of switch status) to estimate the effect of switching 

– again taking advantage of our knowledge that patients 

with MT KRAS do not benefit from panitumumab and 

allowing models for the effect of switching to be applied 

to a larger sample of patients.

Cox proportional hazards models were applied to TSE-

adjusted datasets to estimate the switching-adjusted 

HR, for Estimands 1 and 2. We tested various different 

AFT models for TSEsimp, applied TSEgest using differ-

ent g-estimation procedures, and tested both models 

with and without re-censoring, and with inclusive and 

reduced models. This resulted in 8 primary analyses for 

each estimand for each method, and 8 secondary analy-

ses for each estimand for each method (see Appendix 

A). The Stata command stgest3 was used to implement 

TSEgest [12]. 

Rank preserving structural failure time model

The RPSFTM differs importantly from IPCW and TSE 

because it does not require the no unmeasured con-

founding assumption. Instead, it uses g-estimation and 

assumes that there is a ‘common treatment effect’ – the 

treatment effect in switchers must be the same as in 

patients originally randomised to the experimental group 

[30]. 

In the context of Study 20020408, the RPSFTM method 

is problematic, because there was substantial treatment 

effect heterogeneity: WT KRAS patients benefited from 

panitumumab whereas MT KRAS patients did not. We 

addressed this by specifying the RPSFTM such that MT 

KRAS patients received zero benefit from panitumumab.

Cox proportional hazards models were applied to 

RPSFTM-adjusted datasets to estimate the switching-

adjusted HR, for Estimands 1 and 2. We tested RPSFTM 

applied on an ‘ever treated’ and an ‘as treated’ basis [1], 

using alternative g-estimation processes (including itera-

tive parameter estimation [IPE] [31]), with and without 

re-censoring [32–34]. This resulted in 12 analyses for 

each estimand (see Appendix A). The Stata command 

strbee was used to implement RPSFTM [35]. 

Results
Table 2 presents the KRAS and switch status of patients 

recruited to Study 20020408.

Patient experience and time-to-switch plots are pre-

sented in Appendix B. These demonstrate that approxi-

mately 95% of switching occurred within 1 month of 

disease progression. Figures  1, 2 and 3 present Kaplan-

Meier survival curves for KRAS assessable patients. Sur-

vival differed substantially across KRAS groups, but there 

was minimal difference between patients randomised 

to panitumumab and BSC (Figs.  1 and 2). ITT analyses 

(unadjusted for treatment switching) for both estimands 

resulted in HRs close to 1 (0.97, 95% CI: 0.79–1.18 for 

Estimand 1; 0.99, 95% CI: 0.76–1.30 for Estimand 2). Fig-

ure 3 presents survival by switch and KRAS status in the 

BSC group. These curves should not be used to compare 

survival amongst these groups because they are condi-

tioned on a post-randomisation event (switching) – we 

present them here only to illustrate that just 8 BSC non-

switchers survived longer than 4 months, indicating that 

non-switchers had extremely poor prognosis.

Table  3 presents results for selected key adjustment 

analyses. One analysis is presented for RPSFTM, and two 

analyses are presented for IPCW, TSEsimp and TSEgest 

(because primary and secondary analyses were specified 

for these methods). For IPCW, TSEsimp and TSEgest 

we selected analyses that used ‘inclusive’ rather than 

‘reduced’ models for presentation in Table  3, because 

Table 2 KRAS and switch status of patients in Study 20020408

BSC (n = 232) Panitumumab plus BSC (n = 231)

MT KRAS 100 84

WT KRAS 119 124

Unknown KRAS 13 23

MT KRAS switchers 77 (23 non-switchers) -

WT KRAS switchers 91 (28 non-switchers) -

Switchers with unknown KRAS 8 -

Notes: BSC - Best Supportive Care; KRAS - Kirsten Rat Sarcoma Virus; MT - Mutant Type; WT - Wild Type
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inclusive models reduce the likelihood of unmeasured 

confounding. For IPCW, we present results for applica-

tions that used stabilised rather than unstabilised weights 

due to the potential for extreme weights given the small 

sample sizes included in our analyses. For TSEsimp and 

TSEgest, we present results for applications that included 

re-censoring to avoid the possibility of informative cen-

soring in the counterfactual datasets. For TSEsimp we 

present results for applications that used Weibull AFT 

models to estimate the treatment effect in switchers, 

because these resulted in lower Akaike Information Cri-

terion (AIC) values than other AFT models. For TSEgest 

we present results from applications that used interval 

bisection rather than a grid search within the g-estima-

tion procedure. For RPSFTM, we present results from an 

application that included re-censoring (to be consistent 

Fig. 2 Kaplan-Meier overall survival in KRAS identifiable patients – by KRAS status

Notes: BSC - Best Supportive Care; KRAS - Kirsten Rat Sarcoma Virus; MT - Mutant Type; WT - Wild Type

 

Fig. 1 Kaplan-Meier overall survival in KRAS identifiable patients

Notes: BSC - Best Supportive Care; KRAS - Kirsten Rat Sarcoma Virus
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with analyses presented for TSEsimp and TSEgest) and 

interval bisection (to be consistent with analyses pre-

sented for TSEgest). Results for all other applications of 

the adjustment methods are presented in Appendix C, 

and, where relevant, these are referred to below. Code 

and statistical output are provided in Appendix D.

The primary and secondary IPCW analyses provided 

treatment effect estimates that closely matched the 

expected true point-estimates and CIs for Estimand 1, 

irrespective of whether inclusive or reduced models or 

stabilised or unstabilised weights were used (IPCW 1 

[primary analysis] HR 0.75, 95% CI: 0.59–0.95; IPCW 5 

Table 3 Results, Overall Survival, KRAS identifiable population

Analysis* Estimand 1 (all KRAS assessable pa-

tients) hazard ratio (95% CI)

Estimand 2 (KRAS WT) hazard 

ratio (95% CI)

Expected ‘truth’§ 0.76–0.77 (0.60–0.98) 0.55–0.73 (0.41–0.93)

ITT 0.97 (0.79–1.18) 0.99 (0.75–1.29)

IPCW 1 (primary analysis, inclusive model, stabilised weights) 0.75 (0.59–0.95) 0.55 (0.28–1.09)

IPCW 5 (secondary analysis, inclusive model, stabilised weights) 0.75 (0.59–0.96) 0.65 (0.50–0.85)

TSEsimp 1 (primary analysis, inclusive model, with re-censoring) 0.64 (0.46–0.98) 0.44 (0.24–0.95)

TSEsimp 9 (secondary analyses, inclusive model, with re-censoring) 0.70 (0.54–0.90) 0.59 (0.43–0.78)

TSEgest 1 (primary analysis, inclusive model, with re-censoring) 0.54 (0.30–1.51) 0.31 (0.13–2.12)

TSEgest 9 (secondary analyses, inclusive model, with re-censoring) 0.79 (0.57–0.99) 0.67 (0.46–0.86)

RPSFTM 1 (with re-censoring, ever treated, interval bisection) 0.91 (0.49–1.68) 0.87 (0.02–35.88)

Notes: CI - Confidence Interval; IPCW - Inverse Probability of Censoring Weights; ITT - Intention to treat; KRAS - Kirsten Rat Sarcoma Virus; RPSFTM - Rank preserving 

structural failure time model; TSEgest - Two-stage estimation with g-estimation; TSEsimp - Two-stage estimation with simple regression; WT - Wild Type. Confidence 

intervals for TSE analyses were calculated by bootstrapping the entire adjustment analyses, with 5,000 samples. For TSEgest 1 the g-estimation process did not 

converge in 17% of samples. For TSEgest 9 the g-estimation process did not converge in 4% of samples

*For IPCW, primary analyses only included patients with WT KRAS in models used to obtain weights. Secondary analyses added BSC MT KRAS patients to the 

weighting models, under the assumption that KRAS was not prognostic for survival in patients receiving BSC. For TSE, primary analyses compared BSC WT KRAS 

switchers to BSC WT KRAS non-switchers to estimate the effect of switching. Secondary analyses compared BSC WT KRAS switchers to BSC WT KRAS non-switchers 

and BSC MT KRAS patients (irrespective of switch status) to estimate the effect of switching. ‘Inclusive’ models included all variables considered potentially 

important, and ‘reduced’ models included only those variables considered most important. The analysis number refers to the way in which the method was applied 

- see supplementary materials for further details

§The expected truths are taken from Table  1, with the point-estimate range representing the range of point-estimates observed in the relevant analyses from 

Study 20020408, 20100007 and CO.17, and the confidence interval range representing the minimum and maximum 95% confidence intervals reported for these 

point-estimates

Fig. 3 Kaplan-Meier overall survival in BSC KRAS identifiable patients – by KRAS and switch status

Notes: BSC - Best Supportive Care; KRAS - Kirsten Rat Sarcoma Virus; MT - Mutant Type; WT - Wild Type. These curves cannot be used to compare survival 

because they are subject to immortal time bias. Curves are shown to illustrate poor prognosis in non-switchers: only 8 BSC non-switchers survived longer 

than 4 months

 



Page 9 of 13Latimer et al. BMC Medical Research Methodology           (2024) 24:17 

[secondary analysis] HR 0.75, 95% CI: 0.59–0.96, Table 3 

and Appendix C). For Estimand 2, the primary IPCW 

analyses provided treatment effect estimates that fell 

within the 95% confidence interval of the expected truth, 

but point estimates were towards the lower end (that is, 

further from the null) of the range expected (HR 0.55, 

95% CI: 0.28–1.09 for IPCW 1, Table  3). Secondary 

IPCW analyses provided estimates for Estimand 2 that 

more closely matched the expected true point-estimates 

and CIs (HR 0.65, 95% CI: 0.50–0.85 for IPCW 5, Table 3 

and similar results for alternative secondary analysis 

applications reported in Appendix C). For IPCW 1, the 

primary analysis included in Table  3, weights ranged 

from 0.05 to 14.4. Weight ranges in secondary analyses 

were much lower: for IPCW 5, the secondary analysis 

included in Table  3, weights ranged between 0.47 and 

5.7. Using inclusive or reduced models or stabilised or 

unstabilised weights had little impact on treatment effect 

estimates, with the only factor that made an appreciable 

difference to the IPCW results being the use of second-

ary analyses rather than primary analyses for Estimand 2 

(Appendix D).

The primary TSEsimp analyses resulted in estimates 

of the treatment effect that were close to the lower 95% 

confidence limit of the expected truth for both estimands 

(Estimand 1 HR 0.64, 95% CI: 0.46–0.98, Estimand 2 HR 

0.44, 95% CI: 0.24–0.95 for TSEsimp 1, Table  3), with 

some analyses providing point estimates that fell below 

the lower expected true confidence interval limit, indi-

cating that the treatment effect may have been over-

estimated (see TSEsimp 5 and TSEsimp 6, Appendix C). 

In contrast, the secondary TSEsimp analyses provided 

treatment effect estimates that more closely matched the 

expected truths (Estimand 1 HR 0.70, 95% CI: 0.54–0.90; 

Estimand 2  HR 0.59, 95% CI: 0.43–0.78) (Table  3). The 

type of AFT model used to estimate the treatment effect 

in switchers had very little impact on the results, whereas 

excluding re-censoring resulted in marginally lower 

treatment effect estimates (Appendix C). Within the sec-

ondary analyses, using a reduced model specification also 

resulted in marginally lower treatment effect estimates 

(Appendix C).

The primary TSEgest analyses consistently over-esti-

mated the treatment effect for both estimands, resulting 

in point estimates that fell below the lower confidence 

limit of the expected truth – although the TSEgest con-

fidence intervals were very wide and overlapped with 

those of the expected truths (Estimand 1  HR 0.54, 95% 

CI: 0.30–1.51, Estimand 2 HR 0.31, 95% CI: 0.13–2.12 for 

TSEgest 1, Table 3). Primary TSEgest analyses that used 

reduced models and excluded re-censoring resulted in 

numerically higher HRs that fell within the range of the 

expected truths (see TSEgest 7 and TSEgest 8, Appendix 

C). The secondary TSEgest analyses provided estimates 

of the treatment effect that closely matched the expected 

true point-estimates and CIs for both estimands (Esti-

mand 1 HR 0.79, 95% CI: 0.57–0.99; Estimand 2 HR 0.67, 

95% CI: 0.46–0.86) (Table 3). Secondary TSEgest analyses 

that used a reduced model specification and excluded re-

censoring resulted in marginally lower treatment effect 

estimates (Appendix C). Results were not impacted by 

whether an interval bisection of grid search process was 

used within the g-estimation procedure.

The RPSFTM analyses provided point estimates of the 

treatment effect that were close to 1 for both estimands 

(Estimand 1 HR 0.91, 95% CI: 0.49–1.68; Estimand 2 HR 

0.87, 95% CI: 0.02–35.88 for RPSFTM 1, Table 3) across 

all analyses (Appendix C), indicating that the treatment 

effect may have been under-estimated. However, point-

estimates did fall within the 95% confidence intervals 

of the expected truths in the majority of analyses, and 

the RPSFTM confidence intervals were extremely wide, 

overlapping those of the expected truths in all analyses. 

Results were unaffected by whether or not re-censoring 

was incorporated, or whether interval bisection or a grid 

search was used within the g-estimation process. How-

ever, confidence intervals were narrower when iterative 

parameter estimation was used in place of g-estimation 

(Appendix C).

Discussion
In this study our intent was to demonstrate the perfor-

mance of treatment switching adjustment methods in a 

real case study where the treatment effect in the absence 

of switching is approximately known, building on studies 

that have demonstrated the performance of these meth-

ods in simulated datasets [9–12]. Study 20020408, com-

paring panitumumab to BSC in patients with metastatic 

colorectal cancer, represented an ideal case study; switch-

ing occurred in the study, but estimates of the treatment 

effect that would have been observed in the absence of 

switching could be ascertained from similar studies that 

did not permit switching, and from post-hoc subgroup 

analyses of Study 20020408. We found that some adjust-

ment analyses provided point estimates and CIs for the 

treatment effect that closely matched the expected truths, 

whereas others provided point estimates that fell outside 

the expected true confidence intervals, and some analy-

ses provided confidence intervals that were extremely 

wide: it was clear that some adjustment analyses per-

formed better than others. By considering methodologi-

cal assumptions and the characteristics of the trial and 

the data, it is possible to understand why some analyses 

performed well and others did not, providing valuable 

learning for future applications of adjustment methods.

RPSFTM analyses performed relatively poorly. 

Although treatment effect estimates generally fell within 

the 95% confidence intervals of the expected truths, the 
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point estimates were closer to 1 than expected and con-

fidence intervals were extremely wide, indicating a lack 

of precision. This can be explained by considering how 

the method works and the ITT trial results. In Study 

20020408 the ITT analyses provided HRs close to 1. The 

RPSFTM method compares exposure to the treatment 

and outcomes in each randomised group, and estimates a 

treatment effect that would result in the two randomised 

groups having equal average survival times in a counter-

factual world where no patients received any treatment. 

If there is very little difference in observed outcomes 

between randomised groups, the RPSFTM will attribute 

only a very small treatment effect to any additional expo-

sure to treatment that is present in either randomised 

group. Fundamentally, the RPSFTM will only successfully 

identify treatment effects if there are appreciable differ-

ences in exposure to the experimental treatment in the 

two randomised groups and if this results in an appre-

ciable difference in outcomes in an ITT analysis. This was 

not the case in Study 20020408.

For the IPCW and TSE adjustment methods a key 

concern was that very little information on potentially 

confounding variables was collected after disease pro-

gression in Study 20020408. IPCW and TSEgest require 

information on variables that are time-dependent con-

founders, and TSEsimp requires that there is no time-

dependent confounding between the time of disease 

progression and the time of switch. Therefore, IPCW and 

TSEgest are prone to bias if data collection on confound-

ing variables stops a considerable amount of time before 

switching could occur, and TSEsimp is prone to bias if 

there is a considerable gap between the time of disease 

progression and the time of switch. In Study 20020408, 

however, the vast majority of switching happened very 

soon after disease progression. This means that the scope 

for bias due to unmeasured confounding should be low 

for the IPCW and TSE methods, providing that relevant 

confounders are captured in the ‘inclusive’ and ‘reduced’ 

models that we used to apply them.

Primary and secondary IPCW analyses performed well 

for both treatment effect estimands, although point esti-

mates from the primary analyses for Estimand 2 were 

towards the lower end of the expected range – for this 

estimand the secondary analyses more closely matched 

the expected true point-estimates and CIs. The primary 

IPCW analyses used the same weights for both esti-

mands, suggesting that the potential problem with Esti-

mand 2 arose from the population to which the weights 

were applied. For Estimand 2, the treatment effect was 

estimated specifically for WT KRAS patients – MT 

KRAS patients were excluded in the primary IPCW anal-

ysis and because very few BSC WT KRAS non-switchers 

survived beyond 4 months, and BSC WT switchers were 

censored at the time of switch, this analysis included 

very little long-term information in the BSC group. As 

a result, the analysis may have over-estimated the treat-

ment effect. This problem was avoided in the secondary 

IPCW analyses, which included BSC MT KRAS patients 

as non-switchers (irrespective of their actual switch sta-

tus), under the assumption that patients with MT KRAS 

do not benefit from panitumumab. This increased the 

sample size for the analysis, and resulted in estimates of 

the treatment effect that more closely represented the 

expected truths.

Our primary TSE analyses appeared to perform poorly 

– TSEsimp resulted in estimates of the treatment effect 

that were close to the lower limit of the 95% CI of the 

expected truth for both estimands, and TSEgest resulted 

in very wide CIs indicating a lack of precision, and point-

estimates that fell below the lower limit of the CI of the 

expected truth. These primary analyses compared post-

progression survival in 91 BSC WT KRAS switchers and 

28 BSC WT KRAS non-switchers to estimate the effect 

of switching. Only 5 BSC WT KRAS non-switchers sur-

vived beyond 4 months, which appears to have prevented 

the TSE models from accurately estimating the effect of 

switching. A key difference between TSE and IPCW is 

that TSE requires the effect of switching to be estimated, 

whereas IPCW does not. This explains the apparent bet-

ter performance of the IPCW primary analyses compared 

to the TSE primary analyses in this case study.

Secondary TSE analyses performed substantially bet-

ter than the primary analyses, with both TSEsimp and 

TSEgest producing point estimates and confidence inter-

vals that were consistent with the expected truths. These 

secondary analyses estimated the effect of switching by 

comparing post-progression survival in the 91 BSC WT 

KRAS switchers to the 28 BSC WT KRAS non-switchers 

and 100 BSC MT KRAS patients (some of whom had rel-

atively good survival). This increased sample size appears 

to have allowed the effect of switching to be estimated 

more accurately.

However, results of secondary analyses for TSEsimp 

and TSEgest did differ, with TSEgest consistently pro-

ducing point estimates and confidence limits that were 

approximately 0.1 higher (closer to 1) than those provided 

by TSEsimp. Given that switching occurred soon after 

disease progression, and that very little prognostic data 

were collected after progression, there may be grounds 

to prefer TSEsimp in this case study. Model specifica-

tion and re-censoring also had a potentially important 

impact. ‘Inclusive’ models included 33 covariates, with 

15 included in ‘reduced’ models. Although the reduced 

models may increase the possibility of unmeasured con-

founding, these still included a reasonably large num-

ber of variables, and all those considered most likely to 

be important confounders by a clinical expert [AD]. 189 

deaths occurred amongst BSC patients who experienced 
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disease progression, so the 33 covariates included in the 

inclusive models may risk over-fitting, and therefore the 

reduced models may be preferred [36, 37]. Re-censoring 

is a concern when it results in a substantial loss of data 

[32], but in this case it reduced the number of observed 

events only by 5. Therefore, secondary TSEsimp analy-

ses which used reduced models and included re-cen-

soring may be preferable in this case. These provided 

results close to those provided by secondary IPCW 

analyses with reduced models (TSEsimp 13 Estimand 

1 HR 0.76, 95% CI: 0.58–0.95; Estimand 2 HR 0.63, 95% 

CI: 0.46–0.83; IPCW 7 Estimand 1  HR 0.79, 95% CI: 

0.63-1.00; Estimand 2  HR 0.69, 95% CI: 0.53–0.90, see 

Appendix C). Notably, these results closely match the 

expected true point-estimates and CIs, and fall closely 

on either side of the HRs estimated by Poulin-Costello et 

al. when attempting to adjust for the treatment switching 

observed in Study 20020408 purely by making compari-

sons between various MT and WT KRAS groups (Esti-

mand 1 HR 0.76, 95% CI: 0.60–0.98; Estimand 2 HR 0.66, 

95% CI: 0.49–0.87, see Table 1) [15]. 

It is valuable to compare our findings to those found in 

simulation studies. In the most recently published simula-

tion study that compared each of the methods included in 

our study, Latimer et al. found that TSEgest, IPCW and 

RPSFTM produced low bias in scenarios with a similar 

sample size, switching proportion, and treatment effect to 

those observed in Study 20020408 [12]. TSEsimp resulted 

in similarly low levels of bias when there was no time-

dependent confounding between the time of disease pro-

gression and the time of switch, but produced moderate 

bias (5–6%) when important time-dependent confounding 

was present – in Study 20020408 it appears that the scope 

for time-dependent confounding occurring between the 

time of disease progression and the time of switch was 

low, because switching happened soon after disease pro-

gression. Latimer et al. found that IPCW became prone 

to substantial bias when maximum weights exceeded 

10% of the size of the treatment group in which switch-

ing occurred. In our IPCW analyses of Study 20020408, 

the maximum weights as a proportion of the group being 

weighted were approximately: 6% for the primary analysis 

for Estimand 1; 12% for the primary analysis for Estimand 

2; 2% for the secondary analyses for both estimands.

Therefore, based on Latimer et al.’s simulation study, 

we might expect each of the adjustment methods to pro-

duce low levels of bias in our analyses of Study 20020408, 

with some concerns around the primary IPCW analy-

ses for Estimand 2. In fact, whilst the IPCW performed 

as expected based on the size of the weights estimated 

– that is, performance was good across analyses but 

appeared prone to error in primary analyses for Estimand 

2 – we found that the RPSFTM appeared to perform rela-

tively poorly, as did the primary TSEsimp and TSEgest 

analyses. This is likely to be because the characteristics 

of Study 20020408 deviated from scenarios included in 

Latimer et al.’s simulation study in two important ways. 

Firstly, simulation studies have not considered scenarios 

where the ITT treatment effect is equivalent to a HR of 

approximately 1. This explains why the RPSFTM appears 

to have performed relatively poorly in our analyses of 

Study 20020408, as discussed previously. Secondly, the 

nature of the switching observed in Study 20020408 dif-

fered from that assessed in simulation studies – the 

switching proportion was not excessively high, but non-

switchers appear to have had extremely poor prognosis, 

with very few surviving beyond 4 months. This appears 

to have severely restricted the ability of our primary TSE 

analyses to accurately estimate the effect of switching, 

leading to performance that is worse than might have 

been expected based purely on a consideration of switch-

ing proportion and sample size.

Consequently, whilst our results generally sup-

port those found in simulation studies [9–12], we pro-

vide further insight on the limitations associated with 

the RPSFTM, and on nuances around IPCW and TSE 

analyses. We show that it is not simply the number of 

switchers and non-switchers that is important – even if 

the switching proportion is not excessively high, adjust-

ment methods will be prone to error if non-switchers are 

prognostically very different from switchers. In Study 

20020408 this was indicated by very short survival times 

in non-switchers, resulting in inadequate numbers at risk 

over time to generate reliable treatment effect estimates 

both in switchers (for TSE) and in the adjusted popula-

tion (for IPCW).

Our analysis provides evidence on how adjustment 

methods work in one real-world case study where the 

expected ‘truth’ is known, demonstrating for the first 

time how well these methods can work in a real-world 

setting. While it is reassuring that several of our analy-

ses provided results that are close to the expected truths 

in this case study, it is important to acknowledge that 

several applications of methods produced results that 

appeared to somewhat over- or under-estimate the treat-

ment effect.

We have shown that it is possible to explain why adjust-

ment analyses perform poorly, but it may not be obvious 

a priori that poor performance will arise. This illustrates 

the importance of considering how adjustment methods 

are applied and their assumptions in combination with 

the characteristics of the data. This also emphasises the 

importance of following recently published reporting 

guidelines, to ensure that adjustment analyses can be 

reviewed adequately [38]. Our study provides valuable 

evidence on the practicalities and performance of adjust-

ment methods, to supplement evidence from simulated 

scenarios.
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Conclusions
It is often necessary to adjust for treatment switching in 

RCTs to provide analyses that directly address decision 

problems faced in HTA. However, adjustment analyses 

may not provide accurate or reliable results. Our study 

provides a cautionary tale demonstrating that data, anal-

yses, and assumptions should be scrutinised to assess the 

reliability of adjustment analyses, otherwise treatment 

effects could be importantly over- or under-estimated, 

resulting in poor reimbursement decisions.
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