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There is no conflict between maximizing the number of transplants and giving priority to, 
e.g., highly HLA-sensitized recipients in kidney exchange programs that only permit pairwise 
exchanges. In some programs that feature cyclic exchanges or chains, however, giving priority 
to some recipients may reduce the number of transplants that can be carried out. This paper 
identifies the conditions under which there is a trade-off between prioritization and transplant 
maximization objectives. The results show that kidney exchange programs can permit some cyclic 
exchanges and chains without introducing such trade-offs. Whether or not a kidney exchange 
program has conflicting objectives and regardless of how recipients are prioritized, it can ensure 
a Pareto efficient outcome by selecting from a new class of matchings. These generalize several 
classes of matchings used in practice and studied in the literature.

1. Introduction

While most humans are born with two kidneys, it is possible to lead a normal life with only one. As a result, a person in need 
of a kidney transplant, called a recipient, might be able to receive a new kidney from a living friend or relative. Unfortunately, the 
recipient may have antibodies against the donor’s blood group or tissue type, making transplantation infeasible. Recipients in this 
predicament may still be able to receive immunologically compatible kidneys by exchanging donors with one another. The purpose 
of a Kidney exchange program (KEP) is to facilitate exchanges of this kind by evaluating the compatibility of different recipients and 
donors and selecting a matching: a set of exchanges to be carried out.1

KEPs have different objectives and constraints and consequently follow different approaches when selecting matchings. For 
example, the primary objective of most European KEPs is to maximize the number of transplants. Many KEPs also have objectives 
designed to improve the number of transplants for disadvantaged groups of recipients. For instance, the Belgian, Italian, Dutch, 
Polish, Portuguese, Scandinavian, Spanish, and UK KEPs all assign higher priority to highly HLA-sensitized recipients. Highly HLA-
sensitized recipients are recipients that are tissue type incompatible with a significant share of the population and therefore difficult 
to find a compatible donor for. However, giving priority to highly HLA-sensitized recipients may reduce the number of transplants 
that can be carried out.

This paper investigates the conditions under which the objective of maximizing the number of transplants is in conflict with the 
objective of prioritizing particular groups of recipients. For example, the French KEP only permits pairwise exchanges involving two 
recipients, while the Dutch KEP also permits cyclic exchanges involving three or four recipients (called 3-way and 4-way exchanges), 
and the UK program permits chains involving two recipient-donor pairs and one altruistic kidney donor (Biró et al., 2021). KEPs that 
only permit pairwise exchanges are known to be immune to trade-offs between maximizing the number of transplants and prioritizing 

E-mail address: jorgen.kratz@york.ac.uk.
1 The first KEP to make use of optimization techniques, the New England Program for Kidney Exchange, was based on the work by Roth et al. (2004, 2005a).
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particular groups of recipients (Roth et al., 2005a). By contrast, Sönmez and Ünver (2014) observed that cyclic exchanges can give 
rise to trade-offs of this kind. However, the precise conditions under which these two objectives are in conflict have so far not been 
studied. KEPs that are immune to such conflicts are said to be conflict-proof.

This paper establishes that KEPs are conflict-proof if and only if they have a pure simplicial complex (PSC) structure. KEPs that 
only permit pairwise exchanges are shown to have a PSC structure, while KEPs that permit cyclic exchanges do not, even when 
exchanges are constrained to involve at most 𝑘 ≥ 3 recipients. These results confirm the observations by Roth et al. (2005a) and 
Sönmez and Ünver (2014). They also imply that none of the current KEPs that permit cyclic exchanges or chains are conflict-proof.

Sönmez and Ünver (2014) argued that, from a medical ethics perspective, the trade-offs introduced when cyclic exchanges are 
permitted give an edge to the priority mechanisms of Roth et al. (2005a), which are limited to 2-way exchanges. However, there are 
large welfare gains associated with 3-way exchanges (Saidman et al., 2006).2 This paper shows that part of these welfare gains can be 
enjoyed without introducing conflicts between objectives, by only permitting some cyclic exchanges and chains. For example, 3-way 
exchanges with three embedded 2-way exchanges can safely be included in a conflict-proof KEP. 3-way exchanges with embedded 
2-way exchanges are desirable from a risk mitigation perspective (Manlove and O’Malley, 2015; Smeulders et al., 2022) and are 
currently given priority in the UK KEP (NHS, 2017). Furthermore, it is possible to introduce short chains initiated by altruistic kidney 
donors without losing conflict-proofness.

In addition to evaluating the conditions under which there is a conflict between prioritization and transplant maximization, this 
paper also studies various ways in which this conflict can be managed for different approaches to prioritization. While most KEPs 
prioritize recipients based on a variety of criteria when selecting a matching, prioritization is often strictly subordinate to the primary 
goal of maximizing the number of transplants (Biró et al., 2021). In such KEPs, priorities are only used to break ties when there are 
multiple matchings that result in the same number of transplants. There are exceptions, however. For example, CIAT is a set of KEPs 
that were recently piloted in the Netherlands, with the primary objective of maximizing the number of transplants for certain highly 
HLA-sensitized recipients and the secondary objective of maximizing the total number of transplants (de Klerk et al., 2023). Another 
related example is the Spanish KEP, which assigns highly HLA-sensitized recipients a higher score in a points-based mechanism (Biró 
et al., 2021).

In CIAT, highly HLA-sensitized recipients are sorted into a higher priority group. The primary objective is to match as many 
recipients as possible in the higher priority group and the secondary objective is to match as many recipients as possible in the lower 
priority group. This paper generalizes the approaches above by allowing recipients to be sorted into an arbitrary number of priority 
groups and introduces a new class of matchings that match recipients and donors in line with priority groups. These priority group 
matchings are guaranteed to be Pareto efficient in a setting general enough to encompass most KEPs. Furthermore, they are shown to 
generalize several classes of matchings, both from the literature and current practice.

Priority group matchings primarily maximize the number of transplants for recipients in the first priority group, secondarily 
maximize the number of transplants for recipients in the second priority group, and so on. Finally, priority group matchings minimize 
the use of desensitization, a treatment through which some recipients may receive kidneys from blood group incompatible and 
sometimes even tissue type incompatible donors.3 A similar sequential approach with tiered priority groups has been proposed in 
the context of blood allocation mechanisms (Han et al., 2022).

To understand why some KEPs would be willing to match fewer recipients in order to prioritize some highly HLA-sensitized 
recipients, it is important to note that “unmatched” recipients may still receive kidney transplants the next time a matching is 
selected. A typical KEP will select several matchings per year. For example, matching algorithms are used to find new matchings on 
a quarterly basis in the Czech Republic, France, the Netherlands, Portugal, the United Kingdom and Switzerland (Biró et al., 2019). 
Highly HLA-sensitized recipients are more difficult to match and consequently less likely to receive kidney transplants in the future if 
they remain unmatched. To combat the tendency of such recipients to accumulate in the pool of unmatched pairs, the KEP may wish 
to give them priority when medically feasible exchanges present themselves. Because of these dynamics, even though prioritizing 
difficult-to-match recipients can reduce the number of transplants in the short run, it may still improve the number of transplants or 
some other measure of welfare in the long run. In addition to HLA-sensitization, recipients can receive priority based on a number of 
different criteria. For example, children are given priority over adults in the Spanish and Italian programs and recipients on waitlists 
for kidney transplants from deceased donors are often prioritized based on how urgent their conditions are (Costa et al., 2006; Celebi 
et al., 2006).

The matching outcome will depend on a KEP’s approach to prioritizing recipients. For example, a simple approach is to set a 
threshold4 in terms of HLA-sensitization. Recipients above the threshold are then prioritized in accordance with some predetermined 
rule. For example, a KEP selecting simple threshold matchings will first maximize the number of transplants for recipients above the 
threshold and then maximize the number of transplants for recipients below it. This is in line with the CIAT KEPs discussed above, 
where the HLA-sensitization threshold is a vPRA score5 of at least 85% (de Klerk et al., 2023). In settings without desensitization, 
simple threshold matchings are closely related to the class of matchings studied by Dickerson and Sandholm (2014) and Dickerson 
et al. (2014).

2 While Roth et al. (2007) demonstrated that the benefits of increasing the permitted size of cyclic exchanges from three to four pairs are typically small, there may 
be large gains from long cyclic exchanges if many recipients are highly HLA-sensitized (Ashlagi et al., 2012).
3 The primary motivation for minimizing its use is to improve recipient welfare, not to save money. As long as the recipient is expected to survive a few years, 

blood group incompatible transplantation using desensitization is still cheaper than letting the recipient remain on dialysis (Thydén et al., 2012; Wennberg, 2010).
4 Not to be confused with the threshold mechanism studied by Ünver (2010).
5 (Virtual) Panel Reactive Antibody (PRA) scores give a measure of a recipient’s degree of HLA-sensitization.
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In an alternate approach, recipients above the threshold are prioritized in accordance with the priority mechanism introduced 
in Roth et al. (2005a). In this case, priority group matchings reduce to a new class of matchings called threshold matchings. A 
higher threshold is shown to always result in a weakly higher number of transplants. Intuitively, threshold matchings then reduce to 
maximum matchings (maximizing the number of transplants) at sufficiently high thresholds. At sufficiently low thresholds, threshold 
matchings instead reduce to the priority matchings studied by Andersson and Kratz (2020) and Roth et al. (2005a) in settings with 
and without desensitization, respectively.

This suggests that the shift in focus from priority matchings (Roth et al., 2005a; Okumura, 2014) to maximum matchings in 
models that incorporate cyclic exchanges and chains (Roth et al., 2005b, 2007; Saidman et al., 2006) was not a transition between 
two unrelated classes of matchings. Threshold matchings were selected in both cases and when the KEPs studied were no longer 
conflict-proof due to the introduction of more advanced exchanges, this issue was sidestepped by raising the threshold high enough 
for no recipients to qualify for preferential treatment. Two exceptions to this are Dickerson et al. (2014) and McElfresh and Dickerson 
(2018) who studied the reduction in the number of transplants caused by prioritizing highly HLA-sensitized recipients using the price 
of fairness (Bertismas et al., 2011).

The model in this paper is sufficiently general to encompass many different KEPs with varying characteristics. With the excep-
tion of Aziz et al. (2021), it is the only model general enough to incorporate both cyclic exchanges with length constraints and 
desensitization. Andersson and Kratz (2020) showed that desensitization can improve the number of transplants significantly if im-
plemented correctly. Heo et al. (2021) also allow for cyclic exchanges in a setting with desensitization, but their model does not 
permit restrictions on cycle lengths and assumes that all incompatibilities can be overcome using desensitization.6

While the recipient preferences considered in this paper generalize the preferences in Andersson and Kratz (2020), they still 
remain closer to the dichotomous preferences in Roth et al. (2005a) than other models with non-dichotomous preferences, such as 
Roth et al. (2004), Nicolò and Rodríguez-Álvarez (2012, 2017), and Biró et al. (2023). Non-dichotomous preferences make it possible 
to incentivize compatible recipient-donor pairs to participate in a KEP by offering them a “better” kidney (Andersson and Kratz, 2020; 
Chipman et al., 2022). It is well established that the number of transplants can be increased by including compatible pairs in this 
manner (Roth et al., 2005b; Gentry et al., 2007). Participation incentives can compensate for the fact that recipients in compatible 
pairs are able to receive kidneys from their own donors outside the KEP. Sönmez et al. (2020) proposed incentivizing participation 
by offering priority in the waitlist for kidneys from deceased donors as insurance against future kidney failure. Unlike other papers 
permitting the inclusion of compatible recipient-donor pairs, such as Sönmez and Ünver (2014), the model in this paper does not 
assume that all compatible pairs are available for exchanges. Instead, some recipients are willing to participate in exchanges as long 
as they are not made worse off, while others would only participate in exchanges that make them strictly better off. The number 
of transplants can be improved further using chains, in which a single altruistic donation may result in a large number transplants 
(Roth et al., 2006; Ashlagi et al., 2012; Anderson et al., 2015).

The remainder of the paper is structured as follows. Section 2 introduces the model. Section 3 explores the conditions under which 
KEPs are conflict-proof. Section 4 focuses on priority group matchings and the subclasses they generalize. Section 5 provides some 
concluding remarks. Appendix A describes how the structure of Pareto efficient matchings changes in settings with desensitization. 
Finally, Appendix B contains all proofs.

2. Model

This section is divided into two parts focusing on compatibility between recipients and donors and on matchings, respectively.

2.1. Compatibility

Let 𝑁 = {1, … , 𝑛} be a set of 𝑛 ≥ 2 recipients, where each recipient 𝑖 ∈𝑁 has a living donor 𝑑𝑖. Let 𝐷 be a (possibly empty) 
set of altruistic donors with no associated recipient in 𝑁 , where 𝐷 = {𝑛+ 1, … , 𝑛 + |𝐷|} whenever |𝐷| ≥ 1. For ease of notation, let 
𝑑𝑗 ∶= 𝑗 for all 𝑗 ∈𝐷. Unlike the donors belonging to recipient-donor pairs, the donors in 𝐷 are willing to donate a kidney without 
a guarantee that some particular recipient receives a kidney. This paper follows the compatibility structure in Andersson and Kratz 
(2020), in which each donor is either compatible, half-compatible or incompatible with a given recipient. A recipient can always receive 
a kidney from a compatible donor and never from an incompatible donor. A donor is half-compatible if transplantation is only 
possible using desensitization. Let 𝐶 be an 𝑛 × (𝑛 + |𝐷|) compatibility matrix. The 𝑖𝑗th entry of 𝐶 is given by the following.

𝑐𝑖,𝑗 =

⎧
⎪⎨⎪⎩

2 if recipient 𝑖 is compatible with donor 𝑑𝑗 ,

1 if recipient 𝑖 is half-compatible with donor 𝑑𝑗 ,

0 if recipient 𝑖 is incompatible with donor 𝑑𝑗 .

In settings without desensitization, recipients and donors are never half-compatible and the compatibility structure reduces to 
the standard structure in, e.g., Roth et al. (2005a). There are two types of recipients: regular and altruistic. Regular recipients are 

6 Transplantation across the HLA (tissue type) barrier is associated with significantly lower graft and recipient survival rates (Haririan et al., 2009) and transplan-
tation across the blood group barrier is only deemed safe if the recipient’s titer values can be kept below some threshold for a period of time before transplantation 
(Sönmez et al., 2018).
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only willing7 to participate in kidney exchanges that make them strictly better off in terms of compatibility. If a regular recipient is 
incompatible with her own donor, she would accept any exchange that assigns her a half-compatible or compatible donor. If she is 
half-compatible with her own donor, she would only accept exchanges that assign her a compatible donor (thereby helping her avoid 
desensitization). Altruistic recipients would, on the other hand, accept participating in any exchanges as long as they are not assigned 
a strictly less compatible donor. Unlike regular recipients, altruistic recipients with compatible donors would be willing to participate 
in KEPs, despite having no incentive beyond altruism to do so. Improved participation rates are known to increase the number of 
transplants (Roth et al., 2005b; Sönmez and Ünver, 2014). Regular recipients are gathered in the set 𝐼𝑅 and altruistic recipients are 
gathered in the set 𝐼𝐴, where 𝐼𝑅 ∪ 𝐼𝐴 =𝑁 and 𝐼𝑅 ∩ 𝐼𝐴 = ∅. Since no recipients can receive kidney transplants from incompatible 
donors, all recipients with incompatible donors must be regular recipients. 𝐼𝑅 contains no recipients with compatible donors, since 
such recipients would be unwilling to participate in the KEP. By allowing recipients to be either regular or altruistic, this model 
contains models where all recipients are regular (Roth et al., 2005a) and models where all recipients are altruistic (Sönmez and 
Ünver, 2014) as special cases.

Let 𝐺 = (𝑁 ∪ 𝐷, 𝐸) be a directed compatibility graph, with vertex set 𝑁 ∪ 𝐷 and arc set 𝐸. There is an arc 𝑖𝑗 ∈ 𝐸 from some 
recipient 𝑖 to some recipient or altruistic donor 𝑗 if 𝑖 would accept receiving a kidney from recipient 𝑗 ’s donor 𝑑𝑗 or from the 
altruistic donor 𝑗. The set of arcs from some recipient 𝑖 to other recipients and altruistic donors is therefore determined by the 
compatibility matrix and whether 𝑖 is a regular or altruistic recipient.

For 𝑖 ∈ 𝐼𝑅, 𝑖𝑗 ∈𝐸 ⟺

{
𝑖 = 𝑗 and 𝑐𝑖,𝑖 = 1,or

𝑗 ∈ (𝑁 ∪𝐷) ⧵ {𝑖} and 𝑐𝑖,𝑗 > 𝑐𝑖,𝑖.

For 𝑖 ∈ 𝐼𝐴, 𝑖𝑗 ∈𝐸 ⟺ 𝑐𝑖,𝑗 ≥ 𝑐𝑖,𝑖.

For 𝑖 ∈𝐷, 𝑖𝑗 ∉𝐸 for all 𝑗 ∈𝑁 ∪𝐷.

This means that there is a loop 𝑖𝑖 at each vertex 𝑖 corresponding to a recipient who is half-compatible with her own donor 𝑑𝑖, or 
an altruistic recipient who is compatible with her own donor. There is an arc 𝑖𝑗 from a recipient 𝑖 to another recipient 𝑗 if 𝑖 is strictly 
“more compatible” with donor 𝑑𝑗 than with her own donor 𝑑𝑖. There is also an arc 𝑖𝑗 from an altruistic recipient 𝑖 to another recipient 
𝑗 if 𝑖 is equally compatible with 𝑑𝑗 and her own donor 𝑑𝑖. Note that 𝑐𝑖,𝑗 ≥ 𝑐𝑖,𝑖 implies that 𝑖 and 𝑑𝑗 are at least half-compatible as no 
recipient in 𝐼𝐴 is incompatible with her own donor. Finally, there are no arcs from altruistic donors since they are not in need of 
kidney transplants.

2.2. Matchings

Assignments of kidneys to recipients are represented by cycles and chains. A cycle of length 𝑞 ≥ 2, or a 𝑞-cycle, is an ordered list 
of unique recipients (𝑖1, 𝑖2, … , 𝑖𝑞) such that 𝑖𝑗 𝑖𝑗+1 ∈ 𝐸 for all 𝑗 ∈ {1, 2, … , 𝑞} taken modulo 𝑞, and 𝑖1 ≤ 𝑖𝑗 for all 𝑗 ∈ {1, 2, … , 𝑞}.8 In 
other words, an ordered list of recipients is a cycle if there is an arc from each recipient to the next recipient in the list and an arc 
from the last recipient to the first recipient in the list. A 1-cycle is an ordered list (𝑖) containing a single recipient 𝑖 for which 𝑖𝑖 ∈𝐸. 
Note that a cycle can never involve an altruistic donor in 𝐷. A 𝑞-cycle represents a 𝑞-way exchange involving 𝑞 recipient-donor pairs. 
For example, the 3-cycle (1, 2, 3) would assign donor 𝑑2 to recipient 1, donor 𝑑3 to recipient 2, and donor 𝑑1 to recipient 3.

An ordered list of unique recipients and an altruistic donor (𝑎1, 𝑎2, … , 𝑎𝑞) is called a chain if 𝑎𝑞 ∈ 𝐷 and 𝑎𝑗𝑎𝑗+1 ∈ 𝐸 for all 
𝑗 ∈ {1, … , 𝑞 − 1}. Recipients that appear in a cycle or chain are said to participate or be involved in the cycle or chain. A chain of 
length 𝑞 ≥ 1, or a 𝑞-chain, is a chain that involves 𝑞 recipients. The 2-chain (1, 2, 𝑑) assigns altruistic donor 𝑑 to recipient 2 and donor 
𝑑2 to recipient 1. Since (1, 2, 𝑑) is not a cycle, donor 𝑑1’s kidney can be donated to some recipient 𝑖 ∉𝑁 on the waitlist for recipients 
who do not have a living donor 𝑑𝑖 that they can participate in the KEP with. Interpreted in this way, a 𝑞-chain results in 𝑞 +1 kidney 
transplants.

Let  contain all cycles and chains in 𝐺 and let 𝐾 = {𝑘1, … , 𝑘|𝐾|} be a subset of . 𝐾 can be interpreted as the set of all 
permitted cycles and chains and is determined by the constraints imposed on the KEP. For instance, there may be a constraint that 
forbids exchanges involving more than three recipients, in which case any cycles in  involving four or more recipients would be 
excluded from 𝐾 . 𝐾 is always assumed to be non-empty to avoid trivial cases where no transplants are possible. A KEP may also face 
other types of constraints. For example, altruistic participation of compatible pairs can be voluntary, but it can also be forbidden or 
enforced. Such constraints are modeled by letting all recipients be regular or altruistic, respectively. Additionally, KEPs that do not 
make use of desensitization are modeled by letting 𝑐𝑖,𝑗 ≠ 1 for all 𝑖, 𝑗 ∈𝑁 ∪𝐷.

A matching is defined as a subset 𝜇 ⊆ 𝐾 such that each recipient and altruistic donor participates in at most one cycle or chain 
in 𝜇. Let  denote the set of all matchings. Matchings specify which donor (if any) each recipient will receive a kidney transplant 
from. At a matching 𝜇, a recipient 𝑖 is assigned a donor 𝑑𝑗 , where 𝑖 ≠ 𝑗, if 𝑖 is the direct predecessor of 𝑗 in some cycle or chain 𝑘 ∈ 𝜇. 
That is, 𝑖 is assigned 𝑑𝑗 whenever 𝜇 contains a cycle or chain of the form (… , 𝑖, 𝑗, … ) or a cycle or the form (𝑗, … , 𝑖). If a 2-cycle 
is selected, this is referred to as a pairwise exchange. If a 𝑘-cycle involving 𝑘 ≥ 3 recipients is selected, this is referred to as a cyclic 
exchange or a 𝑘-way exchange. Furthermore, a recipient 𝑖 is assigned her own donor 𝑑𝑖 if 𝜇 contains the 1-cycle (𝑖). The requirement 

7 Recipient preferences are discussed further in Section 4 and defined formally in Appendix A.
8 The requirement that 𝑖1 ≤ 𝑖𝑗 for all 𝑗 ∈ {1, 2, … , 𝑞} prevents copies of cycles by inducing a unique indexing of the recipients in a cycle.



Journal of Economic Theory 217 (2024) 105803

5

J. Kratz

that no recipient or altruistic donor participates in more than one cycle or chain ensures that no recipient receives more than one 
kidney and no donor donates more than one kidney.

Recipient 𝑖 is said to be matched at 𝜇 if she participates in some cycle or chain in 𝜇. Let 𝑁∗(𝜇) ⊆𝑁 denote the set of recipients 
that are matched at 𝜇, i.e., the set of recipients receiving transplants. If 𝑖 ∉𝑁∗(𝜇), then 𝑖 is said to be unmatched at 𝜇. Furthermore, 
let 𝐵(𝜇) ⊆𝑁∗(𝜇) be the set of recipients that are assigned compatible donors at 𝜇 and thereby avoid desensitization.

3. Conflicting objectives

The following example illustrates a conflict between the objectives of maximizing the number of transplants and prioritizing 
certain recipients (e.g., highly HLA-sensitized recipients).

Example 1. Let 𝑁 = {1, 2, 3, 4} and  =𝐾 = {(1, 2), (2, 3), (2, 3, 4)}.

In this example, there are three matchings, 𝜇 = {(1, 2)}, 𝜇′ = {(2, 3)}, and 𝜇′′ = {(2, 3, 4)}. That is, there is a choice between a 
matching 𝜇, at which recipients 1 and 2 receive transplants, a matching 𝜇′, at which recipients 2 and 3 receive transplants, and a 
matching 𝜇′′, at which recipients 2, 3 and 4 receive transplants. If the primary objective is to maximize the number of transplants, 
matching 𝜇′′ would be selected. Now suppose that recipient 1 is highly HLA-sensitized. Rather than selecting 𝜇′′, a KEP may then 
wish to give priority to recipient 1 and select matching 𝜇.

While selecting 𝜇 would reduce the number of transplants from three to two, giving priority to highly HLA-sensitized recipients 
could improve the number of transplants in the long run and mitigate the tendency of highly HLA-sensitized recipients to accumulate. 
As KEPs typically select matchings several times per year (Biró et al., 2019), the unmatched recipients may still have a chance to 
receive transplants at some point in the future. Highly HLA-sensitized recipients are particularly difficult to find compatible donors 
for and consequently unlikely to receive transplants in the future. It can then make sense to give priority to such recipients in the 
rare event that a medically feasible exchange is available, even if the selected matching involves a smaller number of transplants.

The conflict between the objective of maximizing the number of transplants and the objective of prioritizing highly HLA-sensitized 
recipients in Example 1 arose because all exchanges in  were permitted. Suppose instead that 𝐾 = {(1, 2), (2, 3)} ⊂, i.e., that the 
cyclic exchange (2, 3, 4) is not permitted. In this case there is no conflict between the two objectives since the matching {(1, 2)} both 
maximizes the number of transplants given the set of permitted exchanges and ensures that the highly HLA-sensitized recipient 1 
receives a transplant. This is in line with the more general observation by Roth et al. (2005a) that there is never a trade-off between 
maximizing the number of transplants and prioritizing recipients in KEPs that only permit pairwise exchanges. To understand and 
expand upon this observation, note that for any set of recipients 𝑁 , a matching problem can be represented by a set-family 
containing each subset of recipients in 𝑁 that can be matched simultaneously9:

 ∶= {𝐼 ⊆𝑁 ∣ 𝐼 ⊆𝑁∗(𝜇) for some 𝜇 ∈}

If 𝐼 ∈  , then there exists a matching at which every agent in 𝐼 is matched and 𝐼 is said to be a face of  . If 𝐼 is not a face of  , 
then there exists no such matching.

Whether or not there is a conflict between transplant maximization and prioritization objectives depends on the structure of  , 
which is in turn determined by the constraints imposed on the KEP. For any KEP, and indeed any matching problem,  has the 
property that if 𝐼 ∈  and 𝐽 ⊂ 𝐼 , then 𝐽 ∈  .10 A set-family with this property is called an abstract simplicial complex. The absence 
of a conflict between the two objectives observed by Roth et al. (2005a) has been explained with reference to the fact that  is 
guaranteed to constitute a matroid when only pairwise exchanges are permitted. An abstract simplicial complex  is a matroid if it 
has the additional property (called the exchange property) that for any 𝐼, 𝐽 ∈  with |𝐽 | < |𝐼|, there exists some 𝑖 ∈ 𝐼 ⧵ 𝐽 such that 
𝐽 ∪ {𝑖} ∈  . Matroids were first studied by Whitney (1935).

To understand the exchange property, suppose there are two sets of recipients, 𝐼 and 𝐽 , such that all recipients in 𝐼 can be 
matched simultaneously and all recipients in 𝐽 can be matched simultaneously. Furthermore, suppose that 𝐼 contains a strictly 
larger number of recipients than 𝐽 . The exchange property then ensures that there exists some recipient 𝑖 who is a member of 𝐼
but not of 𝐽 , and can be matched simultaneously with all recipients in 𝐽 . An immediate implication of this property is that for any 
matching 𝜇 that does not maximize the number of transplants, there must exist some other matching 𝜇′ that results in a strictly 
higher number of transplants than 𝜇 while ensuring that all recipients matched at 𝜇 still receive kidney transplants.

As Example 1 demonstrated, whether some set of recipients can be matched simultaneously depends on the constraints imposed 
on the KEP. In practice, the constraints on the permitted set of exchanges are typically determined prior to observing the recipients 
and donors participating in the program (Biró et al., 2018). Let a problem be defined as a triple 𝑃 = ⟨𝑁, 𝐷, 𝐶⟩ consisting of a set of 
recipients, a set of altruistic donors and a compatibility matrix. Furthermore, let 𝒫 denote the set of all potential problems. A KEP 
is said to have a matroid structure if  is a matroid for any potential problem 𝑃 ∈𝒫. The results in Roth et al. (2005a) imply that 
KEPs that only permit pairwise exchanges have a matroid structure. The authors used this finding to show that every Pareto efficient 
matching results in the same number of transplants in their setting.

9 Note that the setting is still static, despite the connotations of the word “simultaneous”.
10 Any matching that matches all recipients in some set 𝐼 will also match all recipients in any subset of 𝐼 .
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As will be shown later, a matroid structure is sufficient to ensure the absence of conflicts in a KEP between the two objectives, but 
it is not a necessary condition. A necessary condition can be found by generalizing the notion of a matroid slightly by relaxing the 
exchange property. An abstract simplicial complex is said to satisfy the relaxed exchange property if for any 𝐼, 𝐽 ∈  with |𝐽 | < |𝐼|, 
there exists some 𝑖 ∈𝑁 ⧵ 𝐽 such that 𝐽 ∪ {𝑖} ∈  . Since 𝐼 ⊆ 𝑁 for all 𝐼 ∈  , every matroid satisfies the relaxed exchange property. 
Lemma 1 below shows that an abstract simplicial complex satisfies the relaxed exchange property if and only if all of its facets have 
the same cardinality. A facet of an abstract simplicial complex  is a face of  that is not a subset of any other face of  .

Lemma 1. An abstract simplicial complex satisfies the relaxed exchange property if and only if all of its facets have the same cardinality.

An abstract simplicial complex with the property that all of its facets have the same cardinality is known as a pure simplicial 
complex. In the context of kidney exchange, a facet of  corresponds to the set of recipients that receive transplants under some 
maximal matching in . A matching 𝜇 ∈ is a maximal matching if there exists no other matching 𝜈 ∈ such that 𝑁∗(𝜇) ⊂𝑁∗(𝜈). 
That is, 𝜇 is maximal if it is impossible to match an additional recipient without preventing any recipient who is matched at 𝜇 from 
receiving a transplant. On the other hand, a matching is a maximum matching if it maximizes the total number of transplants over 
all matchings. A face of  corresponds to the set of recipients that receive transplants under some maximum matching in  if its 
cardinality is at least as high as the cardinality of any other face of  . These observations imply the following lemma.

Lemma 2. For any problem ⟨𝑁, 𝐷, 𝐶⟩, the set of maximal matchings equals the set of maximum matchings if and only if  is a pure 
simplicial complex.

Lemma 1 and Lemma 2 jointly imply that the relaxed exchange property is the weakest condition that guarantees this equivalence 
between maximal and maximum matchings.

In settings without desensitization, recipients are typically assumed to be indifferent between any compatible donors (preferences 
are dichotomous) and a matching is therefore Pareto efficient if and only if it is a maximal matching. The equivalence between 
maximal and maximum matchings then implies that all Pareto efficient matchings maximize the number of transplants in their 
setting and consequently result in the same number of transplants, as observed by Roth et al. (2005a) for the special case of 
matroids.

It is also this equivalence that ensures the absence of a trade-off between prioritizing recipients and maximizing the number 
of transplants. It implies that if there exists some matching at which some recipient 𝑖 receives a kidney transplant, there must 
also exist some maximum matching at which 𝑖 receives a kidney transplant.11 As a result, there is no trade-off between match-
ing 𝑖 and maximizing the number of transplants, for any recipient 𝑖 ∈ 𝑁 . The results in Roth et al. (2005a) therefore imply that 
there is no conflict between recipient prioritization and transplant maximization objectives in KEPs that only permit pairwise ex-
changes.

While  being a pure simplicial complex is both a necessary and a sufficient condition for the equivalence between maximal and 
maximum matchings,  being a matroid is only a sufficient condition. This distinction is illustrated in the following example.

Example 2. Let 𝑁 = {1, 2, 3, 4, 5} and  = {(1, 2, 3), (2, 3), (3, 4, 5)}. Furthermore, suppose that 2 is highly HLA-sensitized. Consider 
the following three cases.

(a) The set of permitted exchanges is given by 𝐾 = {(2, 3), (3, 4, 5)}. In this case, the matching {(2, 3)} matches 2 and 3 simulta-
neously, while {(3, 4, 5)} matches 3, 4 and 5 simultaneously. Thus, both {2, 3} and {3, 4, 5} belong to  . Since |{2, 3}| = 2 <
|{3, 4, 5}| = 3, the relaxed exchange property requires that there exist some recipient 𝑖 ∈𝑁 ⧵ {2, 3} such that 2, 3 and 𝑖 can be 
matched simultaneously. However, since (2, 3) is the only exchange in 𝐾 that involves 2, this is impossible. Since the relaxed 
exchange property is violated,  is neither a pure simplicial complex nor a matroid. Note that {(2, 3)} is a maximal matching 
but not a maximum matching and that there is a conflict between selecting {(2, 3)} to prioritize 2 and selecting {(3, 4, 5)} to 
maximize the number of transplants.

(b) The set of permitted exchanges is given by 𝐾 = {(1, 2, 3), (3, 4, 5)}. In this case, the exchange property is trivially satisfied and 
 is both a pure simplicial complex and a matroid. Note that both maximal matchings {(1, 2, 3)} and {(3, 4, 5)} are maximum 
matchings, and there is no conflict between the two objectives since {(1, 2, 3)} both matches the highly HLA-sensitized 2 and 
maximizes the number of transplants.

(c) All exchanges in  are permitted: 𝐾 = {(1, 2, 3), (2, 3), (3, 4, 5)}. As in case (a), the matching {(2, 3)} matches 2 and 3 simultane-
ously, while {3, 4, 5} matches 3, 4 and 5 simultaneously. Thus, {2, 3}, {3, 4, 5} ∈  . As |{2, 3}| = 2 < |{3, 4, 5}| = 3, the exchange 
property is violated since it requires that there exist some recipient 𝑖 ∈ {3, 4, 5} ⧵ {2, 3} such that 2, 3 and 𝑖 can be matched 
simultaneously. This means that  is not a matroid. However, the relaxed exchange property is satisfied since it only requires 
that there exist some recipient 𝑖 ∈𝑁 ⧵ {2, 3} such that 2, 3 and 𝑖 can be matched simultaneously. This condition is satisfied 
for 𝑖 = 1 and  is consequently a pure simplicial complex, but not a matroid. Note that it is still the case that both maximal 
matchings {(1, 2, 3)} and {(3, 4, 5)} are maximum matchings and that there is no conflict between prioritizing 2 and maximizing 
the number of transplants.

11 This observation explains why the greedy algorithm in Roth et al. (2005a) maximizes the number of transplants.
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In Example 2,  is a matroid when only the 3-cycles (1, 2, 3) and (3, 4, 5) are permitted. When (1, 2, 3) also contains the “embedded” 
2-cycle (2, 3),  is still a pure simplicial complex but no longer a matroid. Such embedded cycles have desirable properties that will 
be discussed later in this section. The example shows that, if the goal is to avoid introducing conflicts between these objectives, 
it is not necessary to restrict attention to KEPs in which  is guaranteed to be a matroid, such as KEPs that only permit pairwise 
exchanges. This hints at one of the conclusions that can be drawn from the results in this section. Namely that within the bounds of 
conflict-proof KEPs, there are potential welfare gains to be found by considering KEPs that lack a matroid structure.

A KEP is said to have a pure simplicial complex (PSC) structure if  is a pure simplicial complex for any potential problem 𝑃 ∈𝒫. 
By Lemma 2, a maximal matching is always guaranteed to maximize the number of transplants whenever the KEP has a PSC structure 
and vice versa.

This has implications for the existence of trade-offs between prioritizing recipients and maximizing the number of transplants. 
Let 𝒩 denote the set of all potential recipients (i.e., the set of all recipients that exist in at least one problem in 𝒫). A priority structure
𝜋̂ ∶𝒩 → ℝ is a function that assigns some priority 𝜋̂(𝑖) to each potential recipient 𝑖 ∈𝒩, where a lower number indicates higher 
priority. The priority structure can reflect any criterion or combination of criteria used to prioritize recipients, such as urgency, age, 
or PRA scores.

Definition 1. A kidney exchange program is conflict-proof if there is no conflict between matching high priority recipients and 
maximizing the number of transplants in each problem 𝑃 ∈𝒫 and for each priority structure 𝜋̂.

Conflict-proof KEPs are guaranteed to never face trade-offs between transplant maximization and prioritizing, e.g., highly HLA-
sensitized recipients. This means that there is no conflict between these objectives and no need to evaluate their relative importance. 
By contrast, there will always exist scenarios in which both objectives cannot be met in KEPs that are not conflict-proof. Without 
prior knowledge of the medical details of future participants (recipients and donors), establishing precisely how the two objectives 
are weighed against each other is therefore an unavoidable necessity in programs that are not conflict-proof. The following result 
shows that a PSC structure is a necessary and sufficient condition for conflict-proofness.

Proposition 1. A kidney exchange program is conflict-proof if and only if it has a PSC structure.

As a characterization of conflict-proof KEPs, Proposition 1 is useful for evaluating in which types of programs the objectives 
of maximizing the number of transplants and prioritizing recipients are in conflict. While it has already been established in the 
literature that these objectives are not in conflict in KEPs that only permit pairwise exchanges and that KEPs that only permit 
pairwise exchanges have a matroid structure, the connection between these results has not been explored in the past. Proposition 1
makes the relationship between KEPs that only permit pairwise exchanges and conflict-proofness explicit. It also highlights the 
limitations of focusing on matroids when studying conflict-proof mechanisms.

For example, Sönmez and Ünver (2014) observed that trade-offs between prioritization and transplant maximization can arise in 
KEPs that permit cyclic exchanges. This observation can not be explained by the observation that such KEPs lack a matroid structure, 
as a matroid structure is a sufficient condition for conflict-proofness, but not a necessary condition. However their observation can be 
confirmed using the concept of a pure simplicial complex, since Proposition 1 implies that a conflict between transplant maximization 
and prioritization can arise in a KEP if and only if it lacks a PSC structure. With the help of Proposition 1, it is possible to provide 
some new insights into what types of KEPs are and are not conflict-proof.

Proposition 2. For any 𝑞 ≥ 3, a kidney exchange program is not conflict-proof if it permits all 𝑞-cycles.

Proposition 2 is proven by demonstrating that such KEPs do not have a PSC structure. The majority of KEPs permit any available 
3-way exchanges. By Proposition 2, these programs are not conflict-proof and must consequently address the trade-off between 
prioritization and transplant maximization. Note that Proposition 2 does not assume that exchanges involving fewer recipients than 
𝑞 are permitted. Example 1 showcased a conflict between transplant maximization and prioritization that arose because there was a 
choice between a 2-cycle involving a highly HLA-sensitized recipient and a 3-cycle. Proposition 2 implies that these trade-offs do not 
arise because the KEP involves exchanges of different sizes: A KEP that permits all 3-cycles and forbids all 2-cycles would still not be 
conflict-proof. Similarly, introducing chains can cause a KEP to lose its PSC structure.

Proposition 3. For any 𝑞 ≥ 2, a kidney exchange program is not conflict-proof if it permits all chains involving at most 𝑞 recipients.

A natural question is then whether KEPs that only permit pairwise exchanges and chains involving one altruistic donor 𝑑 ∈𝐷 and 
one recipient 𝑖 ∈𝑁 are conflict-proof. Such chains are called short chains. In addition to helping 𝑖 receive a kidney transplant from 𝑑, 
the kidney of donor 𝑑𝑖 can also be assigned to a recipient 𝑗 ∉𝑁 not participating in the KEP, such as a recipient on the waitlist. The 
UK KEP initially only permitted short chains and introduced longer chains involving two recipient-donor pairs in 2015 (NHS, 2017). 
Proposition 4 shows that short chains can be introduced into a KEP that only permits pairwise exchanges without losing its matroid 
structure.

Proposition 4. Kidney exchange programs that only permit pairwise exchanges and short chains have a matroid structure.



Journal of Economic Theory 217 (2024) 105803

8

J. Kratz

Proposition 4 generalizes Proposition 1 in Roth et al. (2005a) and Proposition 11 in Andersson and Kratz (2020) by including 
short chains. It implies that some KEPs that are known to be conflict-proof can safely incorporate short chains and remain conflict-
proof. The remainder of this section explores other types of exchanges with potential for welfare gains that can be incorporated in a 
KEP without introducing any trade-offs between maximizing the number of transplants and prioritizing recipients.

It is important to note that Proposition 2 does not imply that conflict-proof KEPs are limited to pairwise exchanges (and short 
chains). It would, for example, be possible to make the permissibility of a cyclic exchange conditional on  remaining a pure 
simplicial complex after its inclusion in 𝐾 . This would allow a KEP to enjoy the welfare gains associated with more advanced cyclic 
exchanges to a limited extent without introducing trade-offs between conflicting objectives, as demonstrated in Example 2.

A more practical example of a conflict-proof KEP that permits cyclic exchanges is a program that permits 3-cycles with sufficiently 
many embedded 2-cycles. A 3-cycle (1, 2, 3) ∈ 𝐾 is said to have an embedded 2-cycle if there exists a 2-cycle (𝑖, 𝑖′) ∈ 𝐾 such that 
𝑖, 𝑖′ ∈ {1, 2, 3} and 𝑖 ≠ 𝑖′. A 3-cycle can have between zero and three embedded 2-cycles. Since 2010, the UK program has given 
priority to 3-cycles with embedded 2-cycles (NHS, 2017). Embedded 2-cycles are desirable as they mitigate some of the risk associated 
with the 3-cycles they are embedded in (Manlove and O’Malley, 2015; Smeulders et al., 2022). For example, suppose a 3-cycle (1, 2, 3)
containing the embedded 2-cycle (1, 2) is selected. Before the corresponding transplantations are carried out, (1, 2, 3) may be deemed 
unfeasible due to previously undiscovered medical incompatibilities involving recipient 3. Alternatively, 3 may simply change her 
mind before the transplantations take place. In both cases, even though the cyclic exchange (1, 2, 3) can no longer be carried out, 1
and 2 can still receive kidney transplants by carrying out the embedded pairwise exchange (1, 2).

The following result shows that requiring 3-cycles to contain embedded 2-cycles is insufficient for avoiding the trade-off between 
the conflicting objectives discussed above. However, if each 3-cycle is required to contain three embedded 2-cycles, then the KEP is 
conflict-proof.

Proposition 5. A kidney exchange program that only permits pairwise exchanges and 3-cycles with at least 𝑞 embedded 2-cycles is conflict-
proof if and only if 𝑞 = 3.

Proposition 5 is proven by demonstrating that such KEPs have a matroid structure when 𝑞 = 3, but lack a PSC structure when 
𝑞 ≠ 3.

Sönmez and Ünver (2014) wrote that “[A] program never matches a high-priority patient at the expense of multiple patients under the 
Pareto-efficient pairwise priority mechanisms offered by [Roth et al. (2005a)]. This result does not hold [...] for mechanisms that allow larger 
exchanges than pairwise. Hence, from a medical ethics perspective, it gives pairwise priority mechanisms an edge. However, this advantage 
comes at a high cost to aggregate patient welfare.”

The results in this section have shown that while this desirable property of pairwise kidney exchange is lost when 3-way exchanges 
are introduced generally, it is still possible to introduce some larger exchanges without compromising this feature. Proposition 5 gives 
an example of this, showing that is possible to improve the number of transplants by including certain 3-cycles with embedded 
2-cycles, without introducing conflicts between transplant maximization and prioritizing, e.g., highly HLA-sensitized recipients. 
However, making full use of cyclic exchanges of a limited size or chains involving two or more recipient-donor pairs requires 
weighing competing objectives against each other.

4. Priority group matchings

Having established the conditions under which transplant maximization and prioritizing, e.g., highly HLA-sensitized recipients 
are conflicting objectives, this section focuses on how the resulting trade-off can be managed. As discussed in the introduction, the 
portion of the kidney exchange literature that emphasizes priorities has traditionally avoided this conflict by restricting attention 
to conflict-proof KEPs, such as programs that only permit pairwise exchanges. Similarly, the portion of the literature focusing on 
KEPs that are not conflict-proof, such as programs that permit any cyclic exchanges below some maximum length, has also avoided 
this conflict by using priorities to at most break ties between matchings that maximize the number of transplants. However, there 
are exceptions in the literature and in practice. For example, the CIAT KEPs use a mechanism that prioritizes highly HLA-sensitized 
recipients even if this would reduce the number of transplants.

This section generalizes all of these approaches and demonstrates that KEPs that make use of desensitization can guarantee 
Pareto efficient outcomes regardless of how this conflict is managed or how recipients are prioritized. A new class of Pareto efficient 
matchings is introduced, which enables priorities to be taken into account even in KEPs that are not conflict-proof. They are shown 
to generalize several classes of matchings from the literature and real world practice, corresponding to different approaches to 
prioritizing recipients and managing the conflict discussed in the previous section.

In KEPs with desensitization, it is reasonable to assume that recipients have a preference for avoiding the delays and additional 
treatments associated with desensitization. Such preferences constitute a departure from the dichotomous preferences in Roth et 
al. (2005a), which makes it possible to provide incentives for recipients with half-compatible donors to participate in KEPs by 
ensuring that any kidney exchanges they are involved in help them avoid desensitization (Andersson and Kratz, 2020). However, 
such non-dichotomous preferences complicate matters for KEPs as they must take desensitization into account in order to find Pareto 
efficient matchings.12 See Appendix A for a characterization of Pareto efficient matchings and a discussion on the structure of Pareto 

12 By contrast, when preferences are dichotomous, any maximal matching is Pareto efficient.
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efficient matchings in KEPs with desensitization. The appendix also contains the formal definitions of recipient preferences and 
Pareto efficiency.

Each recipient’s preferences over matchings are determined by the donor she is assigned at each matching. All recipients prefer 
compatible donors to half-compatible donors and half-compatible donors to being unmatched. Regular recipients prefer their own 
donors to other equally compatible donors, while altruistic recipients are indifferent between their own donors and other equally 
compatible donors. A matching 𝜇 ∈ is Pareto efficient if there is no other matching that is weakly preferred to 𝜇 by all recipients 
and strictly preferred by at least one recipient.

All recipients are sorted into priority groups in accordance with the KEP’s approach to prioritizing recipients. Formally, 𝑁 is 
partitioned into 𝑚 ∈ {1, … , 𝑛} priority groups 𝑁1, … , 𝑁𝑚, where each recipient belongs to exactly one priority group. 𝑁1 is called the 
first priority group, 𝑁2 is called the second priority group and so on. For example, the recipients in the first and 𝑚th priority groups 
could be the recipients with the highest and lowest PRA scores, respectively. A higher PRA score indicates a more HLA-sensitized 
recipient. Let 𝑁∗

𝑡 (𝜇) ∶=𝑁
∗(𝜇) ∩𝑁𝑡 be the set of recipients in 𝑁𝑡 that are matched at 𝜇 and let 𝑁0 ∶= ∅ for notational convenience.

Let the objectives of a KEP be represented by a binary preference relation 𝑅. For any 𝜇, 𝜇′ ∈, 𝜇𝑅𝜇′ indicates that 𝜇 is at least 
as good as 𝜇′. Priority group preferences are a class of preferences that align with the KEP’s approach to prioritization. A program 
with priority group preferences is primarily concerned with matching as many recipients in the first priority group as possible. The 
secondary concern is to match as many recipients in the second priority group as possible, and so on. If the same number of recipients 
receive transplants in each priority group at two different matchings, then the matching that requires fewer recipients to undergo 
desensitization treatments is preferred. Priority group preferences are denoted by ≿ and defined formally below, where 𝑡 ∈ {1, … , 𝑚}
and 𝜏 ∈ {0, … , 𝑚 − 1}.13

𝜇 ≻ 𝜇′ ⟺

( |𝑁∗
𝑡 (𝜇)| > |𝑁∗

𝑡 (𝜇
′)| for some 𝑡 ≤𝑚 and |𝑁∗

𝜏 (𝜇)| = |𝑁∗
𝜏 (𝜇

′)| for all 𝜏 < 𝑡, or
|𝑁∗

𝑡 (𝜇)| = |𝑁∗
𝑡 (𝜇

′)| for all 𝑡 ≤𝑚 and |𝐵(𝜇)| > |𝐵(𝜇′)|,
)

𝜇 ∼ 𝜇′ ⟺ |𝑁∗
𝑡 (𝜇)| = |𝑁∗

𝑡 (𝜇
′)| for all 𝑡 ≤𝑚 and |𝐵(𝜇)| = |𝐵(𝜇′)|.

A matching 𝜇 ∈ is a priority group matching whenever 𝜇 ≿ 𝜇′ for all 𝜇′ ∈. That is, priority group matchings satisfy the objectives 
of a KEP with priority group preferences at least as well as any other matching. Priority group matchings are gathered in the set 
∗. Computationally, priority group matchings can be found using sequential optimization techniques (Delorme et al., 2023). 
Proposition 6 shows that priority group matchings are Pareto efficient for any approach to prioritization and any constraints imposed 
on the KEP.

Proposition 6. Priority group matchings are Pareto efficient.

Later in this section, many classes of matchings studied in the literature and selected in practice are shown to be special cases 
of priority group matchings. Proposition 6 thus implies that all of these matchings are Pareto efficient even when extending their 
corresponding models to the typically more general setting considered in this paper. Roth et al. (2005a) demonstrated that all Pareto 
efficient matchings result in the same number of transplants. While this observation does not carry over to KEPs without a PSC 
structure, the corresponding statement for priority group matchings does. Specifically, for a given approach to prioritization, every 
priority group matching will match the same number of recipients belonging to each priority group.

Lemma 3. |𝑁∗
𝑡 (𝜇)| = |𝑁∗

𝑡 (𝜇
′)| for all 𝜇, 𝜇′ ∈∗ and all 𝑡 ≤𝑚.

Of course, the manner in which recipients are prioritized may affect the number of transplants, as seen in Example 1.
In a small KEP with only 25 recipients, there are over four quintillion ways to sort the recipients into priority groups. Rather than 

evaluating each sorting individually before selecting a matching, KEPs would normally follow some simple approach to prioritization 
that can be applied in any scenario. One option is to order all recipients by, e.g., PRA scores and to set some threshold in terms of 
that measure. The HLA-sensitization of recipients above the threshold, called the prioritized recipients, is deemed severe enough to 
warrant preferential treatment. These recipients are prioritized in accordance with some predetermined rule, while recipients below 
the threshold have less severe conditions and are not prioritized in any way.

Let 𝜋 be a priority structure in which no two recipients receive the same priority. Such a priority structure is called a priority 
order and can be modeled as a bijective function 𝜋 ∶𝑁 → {1, … , 𝑛}, where a lower value indicates higher priority. For example, 
if 𝜋(𝑖) = 1, then 𝑖 is the recipient with highest priority. It should be noted that a higher priority need not represent a more HLA-
sensitized recipient as recipients could, in principle, be prioritized in accordance with any criteria. Depending on how the threshold is 
set and how recipients above the threshold are prioritized, matchings will be selected from a variety of different classes of matchings.

4.1. Threshold matchings

First, suppose recipients above the threshold are prioritized in accordance with an adaptation of the priority mechanism introduced 
by Roth et al. (2005a). Let 𝑚 be the number of recipients above the threshold plus one. In other words, there are 𝑚 − 1 recipients 
above the threshold. Let 𝑚

0
∶= and let the set of threshold matchings, 𝑚

𝑇
, be recursively defined by the following.

13 Strict preference and indifference are denoted by ≻ and ∼, respectively.
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For 𝑡 ∈ (0,𝑚), 𝑚𝑡 =

{
{𝜇 ∈ 𝑚

𝑡−1
∣ 𝜋−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑚

𝑡−1
,

𝑚
𝑡−1

otherwise.

𝑚𝑚 = argmax
𝜇∈𝑚

𝑚−1

|𝑁∗(𝜇)|

𝑚
𝑇
= argmax

𝜇∈𝑚𝑚

|𝐵(𝜇)|

The first condition corresponds to the priority mechanism in Roth et al. (2005a). The second condition ensures that the number 
of recipients below the threshold receiving kidney transplants is maximized subject to the constraint that the recipients above the 
threshold are prioritized in accordance with the first condition. That is, first the recipients above the threshold are prioritized as 
prescribed by the priority mechanism, then as many recipients below the threshold as possible are matched. The third condition 
simply states that if there are multiple matchings satisfying the first and second conditions, the number of recipients assigned 
compatible donors should be maximized in order to minimize the use of desensitization.

It should be noted that the priority mechanism in Roth et al. (2005a) was introduced in a setting with only pairwise exchanges. 
When only pairwise exchanges are allowed, the KEP is conflict-proof. As a result, the only role of the priority mechanism in their 
model is to break ties between matchings that maximize the number of transplants. In the present setting with cyclic exchanges 
and chains, on the other hand, the KEP is not conflict-proof and the priority mechanism may reduce the number of transplants by 
prioritizing highly HLA-sensitized recipients.

Suppose that there are 𝑚 ∈ {1, … , 𝑛} priority groups, that |𝑁𝑚| = 𝑛 − (𝑚 − 1) and that whenever 𝑚 ≥ 2, 𝑁𝑡 = {𝜋−1(𝑡)} for all 
𝑡 ∈ {1, … , 𝑚 − 1}. That is, each recipient 𝑖 above the threshold belongs to her own priority group 𝑁𝜋(𝑖), while each recipient below 
the threshold is not prioritized and sorted into the last priority group 𝑁𝑚 . Proposition 7 states that the set of priority group matchings 
reduces to the set of threshold matchings whenever recipients are sorted into priority groups in this way.

Proposition 7. Consider some priority order 𝜋 and some 𝑚 ≤ 𝑛. Let |𝑁𝑚| = 𝑛 − (𝑚 − 1) and if 𝑚 ≥ 2, let 𝑁𝑡 = {𝜋−1(𝑡)} for all 𝑡 <𝑚. Then 
∗ =𝑚

𝑇
.

Threshold matchings can therefore be thought of as a subclass of priority group matchings corresponding to a particular approach 
to prioritization. There is a clear relationship between the choice of threshold and the number of recipients receiving transplants. 
Proposition 8 shows that the higher the threshold is, the (weakly) higher the total number of transplants will be.

Proposition 8. Consider some priority order 𝜋. For any 𝑚 ≤ 𝑛, any 𝑚′ ≤𝑚, any 𝜇 ∈𝑚
𝑇
and any 𝜇′ ∈𝑚′

𝑇
, |𝑁∗(𝜇′)| ≥ |𝑁∗(𝜇)|.

This result is intuitive since a lower threshold implies that a higher number of recipients qualify for preferential treatment. A 
donor is a scarce resource that may be used more or less efficiently. A prioritized recipient may be assigned a donor that could 
otherwise have participated in a large cyclic exchange or chain. The lower the threshold is, the more likely it is that some prioritized 
recipients prevent certain cyclic exchanges and chains from being selected and thereby reduce the number of transplants.

These considerations have clear similarities with the use of triage in the event of mass casualty incidents. Treatments may be 
more costly and time consuming for certain recipients. If a doctor’s goal is to treat as many patients as possible, they would focus 
on patients that can be treated quickly and easily. On the other hand, they may wish to treat patients with very severe conditions 
first, even if their treatment would consume a lot of time and resources and thereby reduce the total number of treated patients in 
any given time period. The doctor’s problem of determining how severe conditions should be to justify giving patients preferential 
treatment corresponds to the problem facing a KEP when setting the threshold. The lower the requirements, the larger the number 
of patients that can potentially reduce the number of treated patients by consuming the doctor’s time and resources.

Dickerson et al. (2012) discussed donors as resources that can be used more or less efficiently from a different perspective. 
They pointed out that some altruistic donors have higher potential usefulness than others (such as donors with blood group O) and 
suggested that, in dynamic settings, it may sometimes be beneficial to save more valuable altruistic donors until they can be used to 
form a long chain rather than using them right away in some exchange involving a smaller number of recipients.

4.2. Maximum matchings and priority matchings

For the two most prevalent approaches in the literature to managing the conflict between prioritization and transplant maximiza-
tion, threshold matchings coincide with two classes of matchings that are commonly selected in KEPs that are and are not conflict-
proof, respectively. Let max ∶= argmax𝜇∈ |𝑁∗(𝜇)| be the set of maximum matchings and let 𝜀

max ∶= argmax𝜇∈max
|𝐵(𝜇)|

be the set of desensitization-minimizing maximum matchings. Maximum matchings maximize the number of transplants, while 
desensitization-minimizing maximum matchings are the subset of maximum matchings that also minimize the use of desensitiza-
tion. Currently, most European KEPs are not conflict-proof and select maximum matchings (Biró et al., 2021). This means that they 
avoid the trade-off between prioritization and transplant maximization by making the former objective strictly subordinate to the 
latter objective.

The priority matchings introduced by Roth et al. (2005a) provide an alternative to maximum matchings by putting emphasis on 
prioritizing, e.g., highly HLA-sensitized recipients. Priority matchings are normally only proposed for conflict-proof KEPs and can be 
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found using the priority mechanism discussed in Section 4.1. This mechanism first selects the set of matchings at which the highest 
priority recipient is matched (if non-empty), then it selects the subset of that set at which the second highest priority recipient is 
matched (if non-empty), and so on. The set of matchings that remains when the process terminates is the set of priority matchings. 
Formally, let 0 ∶= and for each 𝑡 ∈ {1, … , 𝑛}, let 𝑡 be recursively defined by

𝑡 =

{
{𝜇 ∈ 𝑡−1 ∣ 𝜋

−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑡−1,

𝑡−1 otherwise.

𝑛 is the set of priority matchings.
14 Roth et al. (2005a) introduced priority matchings in a setting without desensitization. This 

means that the distinction between half-compatible and compatible donors is not taken into account in the definition of priority 
matchings. As a consequence, priority matchings are no longer Pareto efficient when desensitization is introduced (Andersson and 
Kratz, 2020). The relationship between desensitization, preferences, and Pareto efficiency is explored further in Appendix A.

Andersson and Kratz (2020) showed that Pareto efficiency can be preserved by restricting attention to the subset of priority 
matchings that also minimize the use of desensitization, called half-compatibility priority matchings. Formally, let 0 ∶= and let the 
set of half-compatibility priority matchings 𝐵 be defined recursively as follows.

For 𝑡 ∈ {1,… , 𝑛}, 𝑡 =

{
{𝜇 ∈ 𝑡−1 ∣ 𝜋

−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑡−1,

𝑡−1 otherwise.

𝐵 = argmax
𝜇∈𝑛

|𝐵(𝜇)|

So far, priority matchings have only been studied in conflict-proof KEPs that only permit pairwise exchanges. This implies that 
even though priority matchings put heavy emphasis on priorities, this never comes at the expense of the total number of transplants. 
Sönmez and Ünver (2014) point out that priority matchings may fail to maximize the number of transplants in settings with cyclic 
exchanges and therefore restrict attention to pairwise exchanges. However, there are KEPs (such as the CIAT and Spanish programs) 
that are not conflict-proof and actively balance prioritization and transplant maximization objectives. It is therefore meaningful to 
evaluate the properties of priority matchings in a more general setting with larger exchanges and chains.

The following result shows that both half-compatibility priority matchings and desensitization-minimizing maximum matchings 
are special cases of threshold matchings. Specifically, Proposition 9 states that threshold matchings reduce to desensitization-
minimizing maximum matchings when the threshold is sufficiently high and to half-compatibility priority matchings when the 
threshold is sufficiently low.

Proposition 9. For any priority order 𝜋:

𝑚
𝑇
=

{
𝜀

max at 𝑚 = 1,

𝐵 at 𝑚 ∈ {𝑛, 𝑛+ 1}.

At 𝑚 = 1, the threshold is set so high that no recipient qualifies for preferential treatment. In this case, all recipients are sorted into 
the same priority group and the primary objective of the planner is simply to maximize the number of transplants without prioritizing 
highly HLA-sensitized recipients. A sufficiently low threshold therefore corresponds to the common approach to managing the trade-
off between prioritization and transplant-maximization in KEPs that are not conflict-proof discussed above: the primary goal is to 
maximize the number of transplants and then, at most, use priorities to break ties. Conversely, at 𝑚 = 𝑛 + 1 and 𝑚 = 𝑛, either all 
recipients or all recipients except one are prioritized. In both cases, each recipient is sorted into her own priority group. Recipients 
are then prioritized lexicographically in accordance with, e.g., their PRA scores, following the priority mechanism in Roth et al. 
(2005a). Since threshold matchings are priority group matchings, Proposition 9 implies half-compatibility priority matchings and 
desensitization-minimizing maximum matchings are Pareto efficient. This shows that Proposition 3 in Andersson and Kratz (2020), 
which states that half-compatibility priority matchings are Pareto efficient,15 remains valid for KEPs that permit cyclic exchanges and 
chains and are consequently not conflict-proof. It is not obvious that the Pareto efficiency of half-compatibility priority matchings 
would carry over to more general settings, as they no longer maximize the number of transplants when cyclic exchanges and chains 
are introduced. Half-compatibility priority matchings are still maximal matchings, but there is no longer an equivalence between 
maximality and Pareto efficiency in settings with desensitization.

In settings without desensitization, desensitization-minimizing maximum matchings coincide with maximum matchings and 
half-compatibility priority matchings coincide with priority matchings. Consequently, the following result is a corollary of Proposi-
tion 9.

14 Priority matchings can also be defined in terms of a class of preference relations as in Okumura (2014). Andersson and Kratz (2020) show that these definitions 
are equivalent.
15 The proposition also states that half-compatibility priority matchings are maximum matchings in their setting, which follows immediately from the fact that 
all maximal matchings are maximum matchings in settings where only pairwise exchanges are allowed. Formally, their Proposition 3 follows immediately from 
Propositions 1, 5, 7, 8, and 10.
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Corollary 1. Suppose that desensitization is not possible. Then, for any priority order 𝜋:

𝑚
𝑇
=

{
max at 𝑚 = 1,

𝑛 at 𝑚 ∈ {𝑛, 𝑛+ 1}.

This implies that, in settings without desensitization, threshold matchings correspond to maximum matchings at sufficiently high 
thresholds and priority matchings at sufficiently low thresholds. Priority matchings and maximum matchings are consequently Pareto 
efficient when desensitization is not permitted and preferences are dichotomous, confirming that the corresponding result in Roth 
et al. (2005a) carries over into more general settings. This result is not surprising since maximal matchings and Pareto efficient 
matchings coincide when preferences are dichotomous. While priority matchings are no longer maximum matchings in KEPs that are 
not conflict-proof, they are still maximal matchings and therefore Pareto efficient. However, Proposition 12 in Appendix A confirms 
that priority matchings are no longer Pareto efficient when desensitization is permitted.

Corollary 1 and Proposition 9 tell a similar story about maximum matchings. Proposition 6, Proposition 7 and Corollary 1 jointly 
imply that maximum matchings are Pareto efficient when recipient preferences are dichotomous. However, in settings with non-
dichotomous preferences motivated by the use of desensitization, Proposition 12 implies that maximum matchings are no longer 
Pareto efficient. That is, priority matchings and maximum matchings both lose Pareto efficiency in settings with desensitization, and 
Pareto efficiency can be preserved in both cases by simply considering the subsets of the two classes of matchings that minimize the 
use of desensitization.

There is one more interesting special case to consider. Some authors, such as Roth et al. (2005b) and Sönmez and Ünver (2014), 
have advocated the inclusion of compatible recipient-donor pairs in KEPs where only pairwise exchanges are permitted. There is 
no desensitization in their settings, which means that a recipient is either incompatible or compatible with her own donor. Then a 
recipient with a compatible donor has no incentive beyond altruism to participate in a KEP, since she could receive a kidney from her 
own donor without participating or using desensitization.16 Nevertheless, Roth et al. (2005b) and Sönmez and Ünver (2014) show 
that the number of transplants can be increased by including compatible recipient-donor pairs in a KEP selecting priority matchings.

KEPs that include all compatible recipient-donor pairs can be studied in the present model by letting all recipients with compatible 
or half-compatible donors be altruistic recipients. The matchings considered in Sönmez and Ünver (2014) are called altruistically 
unbalanced priority matchings and are gathered in the set 𝑈 . In their setting, a kidney exchange is only feasible if it involves at least 
one incompatible recipient-donor pair.17 The model in this paper is general enough to contain the problem studied in Sönmez and 
Ünver (2014) as a special case. By designing the KEP as in their paper and by sorting each recipient into a unique priority group, it 
is straightforward to see that the set of threshold matchings reduces to the set of altruistically unbalanced priority matchings.

Corollary 2. Suppose that desensitization is not possible and that for each 𝑖 ∈𝑁 , 𝑐𝑖,𝑖 = 2 if and only if 𝑖 ∈ 𝐼𝐴. Let 𝑚 ∈ {𝑛, 𝑛 + 1}, let 𝐷 = ∅

and let 𝐾 be the set of all 2-cycles involving at least one incompatible recipient-donor pair. Then 𝑚
𝑇
=𝑈 .

Specifically, suppose that desensitization is not possible, all recipients with incompatible donors are regular, all recipients with 
compatible donors are altruistic, there are no altruistic donors and only pairwise exchanges involving at least one incompatible pair 
are permitted. Then the set of threshold matchings and the set of altruistically unbalanced priority matchings coincide whenever 
the threshold is sufficiently low. In other words, altruistically unbalanced priority matchings are, just like maximum matchings and 
priority matchings, a special case of priority group matchings corresponding to a particular set of constraints imposed on the KEP 
and a particular approach to prioritizing recipients.

4.3. Simple threshold matchings

The recipients above the threshold do not necessarily need to be prioritized in accordance with the priority mechanism in Roth et 
al. (2005a). A simple alternative is to prioritize the recipients above the threshold equally, without regard for their relative positions 
in the priority order. This is the approach taken in the CIAT KEPs discussed in the introduction. First, the number of recipients above 
the threshold that receive transplants is maximized. Second, the number of recipients below the threshold that receive transplants is 
maximized. Finally, the use of desensitization is minimized. Formally, let 𝑁Γ ⊆𝑁 be the set of recipients above the threshold. The 
set of simple threshold matchings 𝑆 is then defined by the following.

Γ = argmax
𝜇∈

|𝑁∗
Γ
(𝜇)|

Γ = argmax
𝜇∈Γ

|𝑁∗(𝜇)|

𝑆 = argmax
𝜇∈Γ

|𝐵(𝜇)|

16 Unless given some external incentive, as in Sönmez et al. (2020).
17 Exchanges involving two compatible recipient-donor pairs are wasteful in settings with dichotomous preferences, since they are likely to introduce both delays 
and logistic complications.
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That is, simple threshold matchings are found by first maximizing the number of matched recipients above the threshold, then 
maximizing the number of matched recipients below the threshold and finally minimizing the use of desensitization. An interesting 
question is whether the reduction in the number of transplants caused by prioritizing some recipients would be lower if all recipients 
above the threshold were assigned equal weight in this way, rather than being weighted in accordance with the priority mechanism. 
While this could improve the number of transplants, the answer is, in general, no. Note that whenever 𝑁Γ = {𝑖 ∈ 𝑁 ∣ 𝜋(𝑖) < 𝑚}
for some 𝑚 ∈ {1, … , 𝑛}, the set of prioritized recipients is the same whether threshold matchings or simple threshold matchings 
are selected. The only difference is that the prioritized recipients are given equal priority rather than being ranked internally. The 
following example demonstrates that this approach could even reduce the total number of transplants.

Example 3. Let 𝑁 = {1, 2, 3, 4, 5}, 𝑁Γ = {1, 2, 3}, 𝐾 = {(1, 4, 5), (2, 3)} and 𝜋(𝑖) = 𝑖 for all 𝑖 ∈𝑁 . Note that matchings in 𝑆 and 
5

𝑇
prioritize the same set of recipients: 𝑁Γ. In this case {(2, 3)} is the unique matching in 𝑆 , resulting in a lower number of 

transplants than the unique matching in 3
𝑇
, {(1, 4, 5)}.

All else equal, simple threshold matchings will always match a weakly higher number of recipients above the threshold than 
threshold matchings. However, as the example above demonstrated, the total number of transplants may be lower. Whenever the 
objective is to help as many prioritized recipients as possible to receive transplants, simple threshold matchings are preferable to 
threshold matchings. Furthermore, while it has been shown in Proposition 8 that a higher threshold is associated with a higher 
number of transplants when considering threshold matching, the same conclusion does not hold for simple threshold matchings. A 
higher threshold could either result in a higher or a lower number of transplants in a KEP that selects simple threshold matchings. 
To see this, consider the following examples.

Example 4. Let 𝑁 = {1, 2, 3, 4}, 𝑁Γ = {𝑖 ∈𝑁 ∣ 𝜋(𝑖) < 𝑚}, 𝐾 = {(1, 3), (2, 3, 4)}, and 𝜋(𝑖) = 𝑖 for all 𝑖 ∈𝑁 . At a low threshold with 
𝑚 = 3, {(2, 3, 4)} is the unique matching in 𝑆 . At a higher threshold with 𝑚 = 2, {(1, 3)} is the unique matching in 𝑆 . Thus, a 
higher threshold results in a lower number of transplants.

Example 5. Let 𝑁 = {1, 2, 3, 4}, 𝑁Γ = {𝑖 ∈𝑁 ∣ 𝜋(𝑖) < 𝑚}, 𝐾 = {(1, 2), (1, 3, 4)}, and 𝜋(𝑖) = 𝑖 for all 𝑖 ∈𝑁 . At a low threshold with 
𝑚 = 3, {(1, 2)} is the unique matching in 𝑆 . At a higher threshold with 𝑚 = 2, {(1, 3, 4)} is the unique matching in 𝑆 . Thus, a 
higher threshold results in a higher number of transplants.

Proposition 10 shows that simple threshold matchings are a special case of priority group matchings corresponding to a particular 
approach to prioritization. In particular, if recipients are sorted into two priority groups, then the set of priority group matchings 
reduces to the set of simple threshold matchings.

Proposition 10. Consider some priority order 𝜋, let 𝑚 = 2 and set 𝑁Γ =𝑁1. Then 
∗ =𝑆 .

This implies that simple threshold matchings are Pareto efficient. It should be noted that this result relies on the assumption that 
the KEP can make full use of available desensitization opportunities. For example, the simple threshold matchings selected by CIAT 
may not be Pareto efficient since desensitization opportunities are awarded as a privilege for a subset of recipients. Proposition 6
and Proposition 10 jointly suggest that this could be rectified by giving equal access to desensitization treatments, which would 
guarantee Pareto efficiency while implementing the same mechanism as before.

Finally, a related class of matchings has been studied by Dickerson and Sandholm (2014) and Dickerson et al. (2014). They set 
up a kidney exchange problem as an integer programming problem, starting out with an objective function assigning equal weight to 
all recipients. This objective function is maximized whenever the number of transplants is maximized. The objective function is then 
amended by scaling up the weight assigned to certain “marginalized” recipients (e.g., children or highly HLA-sensitized recipients) 
by a factor of (1 + 𝛽). Solutions to the resulting integer programming problem are called MAXCARD-FAIR solutions. Proposition 11
shows that for sufficiently large values of 𝛽, the set of MAXCARD-FAIR solutions coincides with Γ.

Proposition 11. Sort all “marginalized” recipients into 𝑁Γ and let 𝛽 > 𝑛 − |𝑁Γ| − 1. Then Γ is the set of MAXCARD-FAIR solutions.

This means that, in settings without desensitization, the set of simple threshold matchings and the MAXCARD-FAIR solutions 
coincide whenever 𝛽 is large enough.

5. Concluding remarks

This paper identifies the conditions under which prioritizing certain recipients and maximizing the number of transplants are 
conflicting objectives, expanding upon several observations in the literature. For example, KEPs that only permit pairwise exchanges 
are conflict-proof, while KEPs that permit 3-way exchanges are not. These observations could be used to justify restricting attention 
to pairwise exchanges. However, the results in this paper indicate that it is possible for a KEP to remain conflict-proof while still 
permitting some cyclic exchanges and chains, as long as its PSC structure is preserved. For example, it is possible for a KEP to permit 
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short chains and 3-way exchanges with sufficiently many embedded 2-way exchanges and still remain immune to trade-offs between 
prioritization and transplant maximization. There are potential welfare gains associated with such exchanges that could be quantified 
experimentally in future research.

While KEPs that only permit pairwise exchanges are conflict-proof, many KEPs permit chains and longer cyclic exchanges. How-
ever, most programs that are not conflict-proof have prioritization objectives that are strictly subordinate to transplant maximization 
objectives, thereby avoiding situations where a matching involving fewer recipients has to be selected in order to prioritize, e.g., 
highly HLA-sensitized recipients. There are, however, recent examples of KEPs that permit trade-offs of this kind, such as the CIAT 
and the Spanish KEPs. If these innovations are deemed successful, other KEPs may follow suit and begin experimenting with matching 
algorithms that prioritize various groups of recipients in similar ways. It is therefore important to have tools capable of keeping up 
with such developments. The priority group matchings introduced in this paper are guaranteed to be Pareto efficient regardless of 
whether the KEP is conflict-proof and regardless of how different recipients are prioritized. This was demonstrated in a model general 
enough to encompass a wide variety of KEPs facing different constraints. In the case of the CIAT KEP, the results in this paper imply 
that their current implementation is not Pareto efficient. However, this could be rectified by expanding the use of desensitization 
while still implementing the same mechanism.

This paper not only sheds some light on the shift in the literature from priority matchings to maximum matchings when cyclic 
exchanges and chains were introduced, similar developments have also been observed in practice. The Swedish KEP (2016–2019) only 
focused on pairwise exchanges18 and used a mechanism (introduced in Andersson and Kratz (2020)) that selected half-compatibility 
priority matchings (Biró et al., 2018). The Swedish program has since been replaced by the international Scandiatransplant program 
(STEP). In line with the developments in the literature described above, STEP abandoned the mechanism selecting half-compatibility 
priority matchings when introducing cyclic exchanges involving three or more recipient-donor pairs (Scandiatransplant, 2019). 
Similarly, the primary objective of most European KEPs that permit cyclic exchanges or chains is to maximize the number of 
transplants (Biró et al., 2021).

While not yet a widespread practice, kidneys from deceased donors can be used to initiate chains. In fact, Italy has had a 
deceased-kidney paired donation program that allows the use of deceased donor kidneys for this purpose since 2019 (Furian et 
al., 2019, 2020). Furthermore, Combe et al. (2019) identified welfare gains associated with the possibility of introducing deceased 
donor-initiated chains in the French KEP. However, kidneys from deceased donors exhibit lower graft survival and function (Bos et 
al., 2007), which raises the question to what extent recipients would be willing to exchange a living donor for a deceased donor. 
The model introduced in this paper is particularly well suited for taking such considerations into account by letting the selection of 
chains initiated with a deceased donor be conditional on the priority group membership of the first recipient in the chain. Receiving 
a kidney from a brain dead donor would presumably be more acceptable to highly HLA-sensitized recipients or recipients with 
particularly severe or urgent conditions.

The preference domain is an expansion of the dichotomous preferences in Roth et al. (2005a). It follows the approach in Andersson 
and Kratz (2020), assuming that recipients have a preference for avoiding desensitization. However, it is important to stress that there 
are other reasonable ways to model non-dichotomous recipient preferences. While most of the results in this paper are independent 
of recipient preferences, how the results relating to Pareto efficiency would translate into other preference domains, such as the 
preference domains of Nicolò and Rodríguez-Álvarez (2012) and Biró et al. (2023), is still an open question. Transplant quality 
is affected by many factors, such as the age of the donor (Nicolò and Rodríguez-Álvarez, 2017), and it is not clear how recipient 
preferences should weigh, e.g., a younger half-compatible donor against an older fully compatible donor.

Finally, it should be noted that while prioritization in KEPs that are not conflict-proof can be motivated using dynamic arguments, 
this paper still models the kidney exchange problem as a static problem. A static model is sufficient for the purposes of this paper, 
since any knowledge that may be available on the likely distribution of future arrivals can be taken into account through the KEP’s 
approach to prioritization. Precisely how knowledge of future recipient-donor pair distributions ought to be taken into account is left 
to be answered in future research.

Evaluating the welfare impact of different prioritization approaches in KEPs that are not conflict-proof would not only require 
answers to a number of ethical and normative questions, but also a dynamic model. The optimal prioritization approach could 
either be studied as an optimal control problem as in Ünver (2010) and Akbarpour et al. (2020) or by means of simulations in a 
dynamic setting as in Dickerson et al. (2012). An adaptation of the integer linear program introduced in Aziz et al. (2021), which 
both distinguishes compatible and half-compatible recipients and allows for cycle length constraints could serve as the basis for such 
simulations.
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Appendix A. Desensitization and Pareto efficiency

In settings with desensitization, it is reasonable to assume that recipients not only care about whether they receive a kidney 
transplant, but also from whom they receive a transplant as this will determine the need for desensitization. This expansion of the 
preference domain affects the structure of Pareto efficient matchings. Denote the recipient or altruistic donor that recipient 𝑖 is 
matched to at matching 𝜇 ∈ by 𝜇(𝑖). For notational convenience, let 𝜇(𝑖) = ∅ whenever 𝑖 is unmatched at 𝜇 and define 𝑐𝑖,∅ = 0 for 
all 𝑖 ∈𝑁 . Consider two arbitrary matchings 𝜇, 𝜈 ∈ and let each recipient 𝑖 ∈𝑁 have preferences ≿𝑖 over matchings, defined by 
the following.

For 𝑖 ∈ 𝐼𝑅, 𝜇 ≻𝑖 𝜈 ⟺

{
𝜇(𝑖) ≠ 𝑖 and 𝑐𝑖,𝜇(𝑖) > 𝑐𝑖,𝜈(𝑖),

𝜇(𝑖) = 𝑖 ≠ 𝜈(𝑖) and 𝑐𝑖,𝜇(𝑖) ≥ 𝑐𝑖,𝜈(𝑖),

𝜇 ∼𝑖 𝜈 ⟺

{
𝜇(𝑖) = 𝜈(𝑖),

𝜇(𝑖) ≠ 𝑖, 𝜈(𝑖) ≠ 𝑖 and 𝑐𝑖,𝜇(𝑖) = 𝑐𝑖,𝜈(𝑖).

For 𝑖 ∈ 𝐼𝐴, 𝜇 ≻𝑖 𝜈 ⟺ 𝑐𝑖,𝜇(𝑖) > 𝑐𝑖,𝜈(𝑖),

𝜇 ∼𝑖 𝜈 ⟺ 𝑐𝑖,𝜇(𝑖) = 𝑐𝑖,𝜈(𝑖).

Their preferences over matchings can be thought to reflect their underlying preferences over donors. That is, all recipients prefer 
compatible donors to half-compatible donors and half-compatible donors to incompatible donors. Recipients in 𝐼𝑅 differ from re-
cipients in 𝐼𝐴 by, all else equal, having a preference for their own donors. A matching 𝜇 ∈ is Pareto efficient if there exists no 
matching 𝜈 ∈ such that 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 and 𝜈 ≻𝑖 𝜇 for some 𝑖 ∈𝑁 .

If desensitization is not possible, recipients will never receive transplants from half-compatible donors and all transplants will 
involve recipients and donors that are both blood group and tissue type compatible. In that case, the non-dichotomous preference 
domain in this paper reduces to the standard dichotomous preference domain introduced in Roth et al. (2005a), in which the only 
concern of recipients is whether or not they receive transplants. They can only receive compatible kidneys through kidney exchange 
and they are indifferent between all compatible donors.19 In other words, whenever desensitization is not a possibility, all recipients 
will have dichotomous preferences over all donors they could feasibly be assigned within the KEP.

In settings with dichotomous preferences, a matching is Pareto efficient if and only if it is a maximal matching. However, with the 
introduction of desensitization, preferences are no longer dichotomous, maximal matchings are no longer guaranteed to be Pareto 
efficient and Pareto efficient matchings are no longer guaranteed to be maximal. The following characterization of Pareto efficient 
matchings in settings with desensitization highlights this change.

Proposition 12. A matching 𝜇 ∈ is Pareto efficient if and only if the following two conditions hold for all 𝜈 ∈:

(a) 𝑁∗(𝜇) ⊂𝑁∗(𝜈) ⟹ 𝐵(𝜇) ⊈ 𝐵(𝜈)
(b) 𝐵(𝜇) ⊂ 𝐵(𝜈) ⟹ 𝑁∗(𝜇) ⊈𝑁∗(𝜈)

A Pareto efficient matching will always exist as long as there is at least one matching. Proposition 12 implies that a Pareto 
efficient matching 𝜇 need not be maximal in terms of 𝑁∗(𝜇) or 𝐵(𝜇). Furthermore, a matching 𝜇 that is maximal in terms of 𝑁∗(𝜇)

or 𝐵(𝜇) need not be Pareto efficient. A matching 𝜇 that is maximal in terms of both 𝑁∗(𝜇) and 𝐵(𝜇) is Pareto efficient, but such 
a matching may not exist. The proposition shows that, at a Pareto efficient matching 𝜇, it is impossible to match an additional 
recipient or reduce the use of desensitization without either preventing some other recipient (who is matched at 𝜇) from receiving a 
transplant or forcing some recipient (with a fully compatible donor at 𝜇) to undergo desensitization treatments. Note that in settings 
without desensitization, 𝑁∗(𝜇) = 𝐵(𝜇) for all 𝜇 ∈. This means that a matching 𝜇 is maximal in terms of 𝑁∗(𝜇) if and only if it 
is maximal in terms of 𝐵(𝜇). When desensitization is not possible, Proposition 12 thereby reduces to the statement that a matching 
is Pareto efficient if and only if it is a maximal matching. In other words, Proposition 12 generalizes the observation in Roth et al. 
(2005a) that maximal matchings and Pareto efficient matchings coincide in settings with dichotomous preferences. It explains why 
various subclasses of maximal matchings such as the priority matchings studied by Roth et al. (2005a) fail to satisfy Pareto efficiency 
in settings with desensitization, and why Pareto efficiency can be attained by first maximizing the number of transplants and then 
minimizing the use of desensitization, as in Andersson and Kratz (2020).

19 This statement does not apply to regular recipients with compatible donors, but such recipients would never be included in the recipient-donor pool since they 
would receive kidney transplants from their own donors outside the KEP.
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Appendix B. Proofs

This appendix contains all proofs. The propositions are restated for convenience.

Lemma 1. An abstract simplicial complex satisfies the relaxed exchange property if and only if all of its facets have the same 
cardinality.

Proof. Consider an abstract simplicial complex  containing subsets of some set 𝑁 . Let 𝐹 ∶= {𝐼 ∈  ∣ ∀𝐽 ∈  , 𝐼 ⊄ 𝐽} denote its 
facets and let 𝑀𝐶 ∶= {𝐼 ∈  ∣ ∀𝐽 ∈  , |𝐼| ≥ |𝐽 |} denote the subset of its faces that have maximum cardinality.

(⇒) First, assume that  satisfies the relaxed exchange property and that there exist 𝐼, 𝐽 ∈ 𝐹 such that |𝐽 | < |𝐼| to reach a 
contradiction. By the relaxed exchange property, there exists some 𝑖 ∈𝑁 ⧵ 𝐽 such that 𝐽 ∪ {𝑖} ∈  . This contradicts the assumption 
that 𝐽 ∈ 𝐹 .

(⇐) Next, assume that all facets have the same cardinality and that  does not satisfy the relaxed exchange property to reach a 
contradiction. Note that if all facets have the same cardinality, then 𝐹 = 𝑀𝐶 . Since the relaxed exchange priority is violated, there 
exists some 𝐼, 𝐽 ∈  such that |𝐽 | < |𝐼| while there is no 𝑖 ∈𝑁 ⧵ 𝐽 such that 𝐽 ∪ {𝑖} ∈  . This implies that 𝐽 ∈ 𝐹 . By definition, 
there must exist some 𝐼 ′ ∈  such that 𝐼 ⊆ 𝐼 ′ and 𝐼 ′ ∈ 𝐹 . Since, |𝐽 | < |𝐼 ′|, this contradicts the assumption that all facets of  have 
the same cardinality. □

Lemma 2. For any problem ⟨𝑁, 𝐷, 𝐶⟩, the set of maximal matchings equals the set of maximum matchings if and only if  is a pure 
simplicial complex.

Proof. Consider some problem ⟨𝑁, 𝐷, 𝐶⟩, let mal ∶= {𝜇 ∈ ∣𝑁∗(𝜇) ⊄𝑁∗(𝜈) for all 𝜈 ∈} denote the set of maximal matchings 
and let max ∶= argmax𝜇∈ |𝑁∗(𝜇)| denote the set of maximum matchings.

(⇒) First, assume that max =mal and that  is not a pure simplicial complex to reach a contradiction. Then there exist two 
facets of  , 𝐼 and 𝐽 , such that |𝐽 | < |𝐼|. By the definition of  , 𝐼 ⊆𝑁∗(𝜇) for some 𝜇 ∈ and 𝐽 ⊆𝑁∗(𝜈) for some 𝜈 ∈. Suppose 
that 𝐽 ⊂𝑁∗(𝜈). Then there exists some 𝑖 ∈𝑁∗(𝜈) ⧵ 𝐽 , implying that 𝐽 ∪ {𝑖} is also a face of  . Since |𝐽 | < |𝐽 ∪ {𝑖}|, this contradicts 
the assumption that 𝐽 is a facet of  . Thus, 𝐽 = 𝑁∗(𝜈). Since 𝐽 is a facet of  , there exists no face 𝐽 ′ of  such that 𝐽 ⊂ 𝐽 ′. 
This implies that 𝜈 is a maximal matching. However, since |𝐽 | < |𝐼|, |𝑁∗(𝜈)| < |𝑁∗(𝜇)| and 𝜈 ∈ mal ⧵max. This contradicts 
max =mal.

(⇐) Next, assume that  is a pure simplicial complex and that max ≠mal to reach a contradiction. Since every maximum 
matching is a maximal matching, it must be the case that there exists some 𝜇 ∈mal ⧵max. Let 𝜈 ∈max and note that there is 
some facet 𝐽 ∈  such that 𝐽 =𝑁∗(𝜈) and some facet 𝐼 ∈  such that 𝐼 =𝑁∗(𝜇). Since 𝜇 ∈max and 𝜈 ∉max, |𝐽 | < |𝐼|. Thus, 
not all facets of  have the same cardinality, contradicting the assumption that  is a pure simplicial complex. □

Lemma 3. |𝑁∗
𝑡 (𝜇)| = |𝑁∗

𝑡 (𝜇
′)| for all 𝜇, 𝜇′ ∈∗ and all 𝑡 ≤𝑚.

Proof. Consider some 𝜇, 𝜇′ ∈∗ assume that |𝑁∗
𝑡 (𝜇)| ≠ |𝑁∗

𝑡 (𝜇
′)| for some 𝑡 ≤ 𝑚 to reach a contradiction. Let 𝑡′ ≤ 𝑚 be the lowest 

integer at which |𝑁∗
𝑡′
(𝜇)| ≠ |𝑁∗

𝑡′
(𝜇′)|. Without loss of generality, assume that |𝑁∗

𝑡′
(𝜇)| > |𝑁∗

𝑡′
(𝜇′)|. Then |𝑁∗

𝑡′
(𝜇)| > |𝑁∗

𝑡′
(𝜇′)| for some 

𝑡 ∈ {1, … , 𝑚} and |𝑁∗
𝜏 (𝜇)| = |𝑁∗

𝜏 (𝜇
′)| for all 𝜏 ∈ {0, … , 𝑡 − 1}. Thus, 𝜇 ≻ 𝜇′ by definition. This contradicts 𝜇′ ∈∗. □

Proposition 1. A kidney exchange program is conflict-proof if and only if it has a PSC structure.

Proof. (⇒) Suppose a KEP does not have a PSC structure. Then there exists some problem ⟨𝑁, 𝐷, 𝐶⟩ ∈ 𝒫 such that  is not 
a pure simplicial complex. Let mal ∶= {𝜇 ∈  ∣ 𝑁∗(𝜇) ⊄ 𝑁∗(𝜈) for all 𝜈 ∈ } denote the set of maximal matchings and let 
max ∶= argmax𝜇∈ |𝑁∗(𝜇)| denote the set of maximum matchings. Since  is not a pure simplicial complex, Lemma 2 implies 
that mal ≠max. Furthermore, since every maximum matching is a maximal matching, mal ≠max implies that there exists 
some 𝜇 ∈mal ⧵max. Consider a priority structure 𝜋̂ such that 𝜋̂(𝑖) < 𝜋̂(𝑗) for all 𝑖 ∈𝑁

∗(𝜇) and all 𝑗 ∈𝒩 ⧵𝑁∗(𝜇). Since 𝜇 ∈mal, 
there is no 𝜈 ∈max such that 𝑁

∗(𝜇) ⊆𝑁∗(𝜈). Thus, the KEP is not conflict-proof.
(⇐) Next, suppose a KEP is not conflict-proof. Then there exists some problem ⟨𝑁, 𝐷, 𝐶⟩ ∈ 𝒫 at which there is a trade-off 

between matching some set of high priority recipients 𝐼 ⊂ 𝑁 and maximizing the number of transplants. Furthermore, assume that 
the KEP has a PSC structure to reach a contradiction. First note that it must be possible to match all recipients in 𝐼 , i.e., 𝐼 ∈  . Then 
there must exist some matching 𝜇 ∈ such that 𝐼 ⊆ 𝑁∗(𝜇). By definition, there also exists some maximal matching 𝜈 such that 
𝐼 ⊆ 𝑁∗(𝜈). Since  is a pure simplicial complex, Lemma 2 implies that 𝜈 is a maximum matching. Hence, it is possible to match all 
recipients in 𝐼 and maximize the number of transplants. This contradicts the observation that there is a trade-off between matching 
the recipients in 𝐼 and maximizing the number of transplants.

Thus, every conflict-proof KEP has a PSC structure (⇒) and every KEP that has a PSC structure is conflict-proof (⇐). □

Proposition 2. For any 𝑞 ≥ 3, a kidney exchange program is not conflict-proof if it permits all 𝑞-cycles.
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Proof. Consider a problem ⟨𝑁, 𝐷, 𝐶⟩ in which 𝑁 = {1, 2, … , 3𝑞 − 2} and 𝐾 = {𝑘1, 𝑘2, 𝑘3}. Let 𝑘1 = (1, 2, … , 𝑞), 𝑘2 = (𝑞 + 1, … , 2𝑞 −
1, 1), and 𝑘3 = (2𝑞, … , 3𝑞 − 2, 2). The notation (𝑥, … , 𝑦, 𝑧) is used to indicate that the cycle involves recipient 𝑖 for every integer 
between 𝑥 and 𝑦. Each 𝑘 ∈ 𝐾 represents a 𝑞-cycle. Note that there are four matchings, 𝜇1 = {𝑘1}, 𝜇2 = {𝑘2}, 𝜇3 = {𝑘3}, and 
𝜇4 = {𝑘2, 𝑘3}. Assume that the KEP is conflict-proof to reach a contradiction. By Proposition 1, the KEP has a PSC structure and  is 
a pure simplicial complex. By definition, 𝑁∗(𝜇1), 𝑁

∗(𝜇4) ∈  . Furthermore, |𝑁∗(𝜇1)| = 𝑞 < |𝑁∗(𝜇4)| = 2𝑞. By Lemma 1,  satisfies 
the relaxed exchange property and there must exist some 𝑖′ ∈ 𝑁 ⧵ 𝑁∗(𝜇1) such that 𝑁

∗(𝜇1) ∪ {𝑖′} ∈  . Some matching 𝜈 ∈ 

such that 𝑁∗(𝜇1) ∪ {𝑖′} ⊆𝑁∗(𝜈) must therefore exist. First note that 𝜈 ≠ 𝜇1. Since  = {𝜇1, 𝜇2, 𝜇3, 𝜇4}, 𝜇 ∈ {𝜇2, 𝜇3, 𝜇4}. However, 
since 𝑞 ∈𝑁∗(𝜇1) ⧵𝑁

∗(𝜇) for all 𝜇 ∈ {𝜇2, 𝜇3, 𝜇4} there exists no 𝜇 ∈ {𝜇2, 𝜇3, 𝜇4} such that 𝑁
∗(𝜇1) ∪ {𝑖′} ⊆ 𝑁∗(𝜈). This contradicts 

𝜈 ∈. □

Proposition 3. For any 𝑞 ≥ 2, a kidney exchange program is not conflict-proof if it permits all chains involving at most 𝑞 recipients.

Proof. Consider a problem ⟨𝑁, 𝐷, 𝐶⟩ in which 𝑁 = {1, 2, 3} and 𝐷 = {𝑑}, and 𝐾 = {(3, 𝑑), (1, 2, 𝑑)}. Note that there are two match-
ings, 𝜇1 = {(3, 𝑞)} and 𝜇2 = {(1, 2, 𝑑)}. Furthermore, note that 𝜇1, 𝜇2 ∈ for any KEP that permits all chains involving at most 𝑞
recipients, where 𝑞 ≥ 2. Assume that the KEP is conflict-proof to reach a contradiction. By Proposition 1, the KEP has a PSC structure 
and  is a pure simplicial complex. By definition, 𝑁∗(𝜇1), 𝑁

∗(𝜇2) ∈  . Furthermore, |𝑁∗(𝜇1)| = 1 < |𝑁∗(𝜇4)| = 2. By Lemma 1, 
satisfies the relaxed exchange property. Thus, there exists some 𝑖′ ∈𝑁 ⧵𝑁∗(𝜇1) such that 𝑁

∗(𝜇1) ∪ {𝑖′} ∈  . Some matching 𝜈 ∈

such that 𝑁∗(𝜇1) ∪ {𝑖′} ⊆𝑁∗(𝜈) must therefore exist. This is a contradiction since 3 ∈𝑁∗(𝜇1) ⧵𝑁
∗(𝜇2) and {𝜇1} ∪ {𝜇2} =. □

Proposition 4. Kidney exchange programs that only permit pairwise exchanges and short chains have a matroid structure.

Proof. Consider a KEP that does not have a matroid structure to reach a contradiction. Then there must exist some problem ⟨𝑁, 𝐷, 𝐶⟩
in which  is not a matroid. Let 𝜇 and 𝜇′ be two matchings such that |𝑁∗(𝜇)| < |𝑁∗(𝜇′)|. The exchange property must be violated 
since  is not a matroid. Thus, there exists no recipient 𝑖 ∈ 𝑁∗(𝜇′) ⧵ 𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  . Since  is an abstract 
simplicial complex, it follows that 𝑁∗(𝜇) ⊈ 𝑁∗(𝜇′). Furthermore, since |𝑁∗(𝜇)| < |𝑁∗(𝜇′)|, this implies that |𝑁∗(𝜇) ⧵𝑁∗(𝜇′)| <
|𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|. Hence, 𝑁∗(𝜇′) ⧵𝑁∗(𝜇) ≠ ∅.

Consider some recipient 𝑖1 ∈𝑁
∗(𝜇′) ⧵𝑁∗(𝜇). Then the exchange 𝑘′ ∈ 𝜇′ that 𝑖1 is involved in must also involve some 𝑖2 ∈𝑁

∗(𝜇). 
Otherwise, 𝜇 ∪ {𝑘′} ∈, which would contradict the non-existence of a recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  . 
Furthermore, since 𝑖2 is matched at 𝜇, there must exist some exchange 𝑘 = (𝑖2, 𝑖3) ∈ 𝜇 for some recipient 𝑖3 ∈ 𝑁

∗(𝜇) ⧵ {𝑖2}. To 
see why, note that if not, then 𝑘 = (𝑖2) or 𝑘 = (𝑖2, 𝑑) for some 𝑑 ∈ 𝐷. In both cases, (𝜇 ⧵ {𝑘}) ∪ {𝑘′} ∈ , which contradicts the 
non-existence of a recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  .

Any exchange 𝑘′
2
∈ 𝜇′ that involves 𝑖3 must involve another recipient 𝑖4 ∈ 𝑁

∗(𝜇). If 𝑘′
2
= (𝑖3) or 𝑘

′
2
= (𝑖3, 𝑑) for some 𝑑 ∈ 𝐷, 

then (𝜇 ⧵ {(𝑖2, 𝑖3)}) ∪ {(𝑖1, 𝑖2), 𝑘
′
2
} ∈ . Furthermore, if 𝑘′

2
= (𝑖3, 𝑖4) for some recipient 𝑖4 ∈𝑁

∗(𝜇′) ⧵𝑁∗(𝜇), then (𝜇 ⧵ {(𝑖2, 𝑖3)}) ∪
{(𝑖1, 𝑖2), (𝑖3, 𝑖4)} ∈. All these cases lead to the same contradiction as above.

Thus, either (a) 𝑖3 ∈𝑁
∗(𝜇) ⧵𝑁∗(𝜇′) or (b) there is an exchange 𝑘′

2
= (𝑖3, 𝑖4) ∈ 𝜇

′ for some 𝑖4 ∈𝑁
∗(𝜇). In case (b), the argument 

above can be repeated as follows. Since 𝑖4 ∈𝑁
∗(𝜇), there is some exchange 𝑘3 ∈ 𝜇 that involves 𝑖4. If 𝑘3 = (𝑖4) or 𝑘3 = (𝑖4, 𝑑), then 

(𝜇 ⧵ {𝑘, 𝑘3}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖4)} ∈ , leading to the same contradiction as above. Thus, there exists an exchange 𝑘3 = (𝑖4, 𝑖5) ∈ 𝜇
for some recipient 𝑖5 ∈𝑁

∗(𝜇) ⧵ {𝑖4}. Continuing the same argument, any exchange 𝑘
′
3
∈ 𝜇′ that involves 𝑖5 must involve another 

recipient 𝑖6 ∈𝑁
∗(𝜇). If 𝑘′

3
= (𝑖5) or 𝑘

′
3
= (𝑖5, 𝑑) for some 𝑑 ∈𝐷, then (𝜇 ⧵ {(𝑖2, 𝑖3), (𝑖4, 𝑖5)}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖4), 𝑘

′
3
} ∈. Furthermore, if 

𝑘′
3
= (𝑖5, 𝑖6) for some recipient 𝑖6 ∈𝑁

∗(𝜇′) ⧵𝑁∗(𝜇), then (𝜇 ⧵ {(𝑖2, 𝑖3), (𝑖4, 𝑖5)}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖4), (𝑖5, 𝑖6)} ∈. All these cases lead to 
the same contradiction as above.

Again, either (a’) 𝑖5 ∈ 𝑁
∗(𝜇) ⧵𝑁∗(𝜇′) or (b’) there is an exchange 𝑘′

3
= (𝑖5, 𝑖6) ∈ 𝜇

′ for some 𝑖6 ∈ 𝑁
∗(𝜇). Note repeating this 

argument produces a sequence of recipients in 𝑁∗(𝜇) ∪𝑁∗(𝜇′) that continues until reaching some recipient 𝑖 ∈𝑁∗(𝜇) ⧵𝑁∗(𝜇′). 
Since 𝑖1 is an arbitrary recipient in 𝑁

∗(𝜇′) ⧵𝑁∗(𝜇), this implies that each recipient in 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) has a unique corresponding 
recipient in 𝑖∗ ∈𝑁∗(𝜇) ⧵𝑁∗(𝜇′). Thus, |𝑁∗(𝜇) ⧵𝑁∗(𝜇′)| > |𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|, which contradicts the observation above that |𝑁∗(𝜇) ⧵
𝑁∗(𝜇′)| < |𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|. This implies that the exchange property holds. In conclusion, there exists no problem ⟨𝑁, 𝐷, 𝐶⟩ in which 
 is a not matroid. □

Proposition 5. A kidney exchange program that only permits pairwise exchanges and 3-cycles with at least 𝑞 embedded 2-cycles is 
conflict-proof if and only if 𝑞 = 3.

Proof. (⇐) First, let 𝑞 = 3. Consider a KEP that does not have a matroid structure to reach a contradiction. Then there must exist 
some problem ⟨𝑁, 𝐷, 𝐶⟩ in which  is not a matroid. Let 𝜇 and 𝜇′ be two matchings such that |𝑁∗(𝜇)| < |𝑁∗(𝜇′)|. Since  is not 
a matroid, the exchange property must be violated. Thus, there exists no recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  . 
Since  is an abstract simplicial complex, it follows that 𝑁∗(𝜇) ⊈𝑁∗(𝜇′). Furthermore, since |𝑁∗(𝜇)| < |𝑁∗(𝜇′)|, this implies that 
|𝑁∗(𝜇) ⧵𝑁∗(𝜇′)| < |𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|. Hence, 𝑁∗(𝜇′) ⧵𝑁∗(𝜇) ≠ ∅.

Consider some recipient 𝑖1 ∈𝑁
∗(𝜇′) ⧵𝑁∗(𝜇). Then the exchange 𝑘′ ∈ 𝜇′ that 𝑖1 is involved in must also involve some 𝑖2 ∈𝑁

∗(𝜇). 
Otherwise, 𝜇 ∪ {𝑘′} ∈, which would contradict the non-existence of a recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  . 
Furthermore, the exchange 𝑘 ∈ 𝜇 that 𝑖2 is involved in must also involve at least one recipient 𝑖3 ∈𝑁

∗(𝜇) ⧵{𝑖2}. To see why, first note 
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that if not, then 𝑘 = (𝑖2). If 𝑘
′ is a 2-cycle, then (𝜇 ⧵ {𝑘}) ∪ {𝑘′} ∈. If 𝑘′ is a 3-cycle, then it contains the embedded 2-cycle (𝑖1, 𝑖2)

and (𝜇 ⧵ {𝑘}) ∪ {(𝑖1, 𝑖2)} ∈. Both cases contradict the non-existence of a recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  .
Now suppose 𝑘 is a 3-cycle, involving recipients 𝑖2, 𝑖3, and 𝑖4. Then 𝑘 contains the embedded 2-cycle (𝑖3, 𝑖4) and (𝜇 ⧵ {𝑘}) ∪

{(𝑖1, 𝑖2), (𝑖3, 𝑖4)} ∈. This again contradicts the non-existence of a recipient 𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) such that 𝑁∗(𝜇) ∪ {𝑖} ∈  . Thus, 
𝑘 = (𝑖2, 𝑖3).

Any exchange 𝑘′
2
∈ 𝜇′ that involves 𝑖3 must involve some recipient 𝑖4 ∈𝑁

∗(𝜇) and no recipient in 𝑁∗(𝜇′) ⧵𝑁∗(𝜇). If 𝑘′
2
= (𝑖3), then 

(𝜇 ⧵ {(𝑖2, 𝑖3)}) ∪ {(𝑖1, 𝑖2), (𝑖3)} ∈, resulting in the same contradiction as above. If 𝑘′
2
involves some recipient 𝑖′

4
∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇), 

then either 𝑘′
2
equals (𝑖3, 𝑖

′
4
) or contains the embedded 2-cycle (𝑖3, 𝑖

′
4
). In both cases, (𝜇 ⧵ {(𝑖2, 𝑖3)}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖

′
4
)} ∈, leading to 

the same contradiction as above.
Thus, either (a) 𝑖3 ∈ 𝑁

∗(𝜇) ⧵ 𝑁∗(𝜇′) or (b) 𝑖3 is involved in some exchange 𝑘
′
2
∈ 𝜇′ that only involves recipients in 𝑁∗(𝜇). 

In case (b), repeat the argument above for each recipient 𝑖5 involved in 𝑘
′
2
to show the following. Let 𝑘3 be a cycle in 𝜇 that 

involves 𝑖5. Then for any 𝑖6 ≠ 𝑖5 involved in 𝑘3, either (a’) 𝑖6 ∈ 𝑁
∗(𝜇) ⧵𝑁∗(𝜇′) or (b’) 𝑖6 is involved in some exchange 𝑘

′
3
∈ 𝜇′

that only involves recipients in 𝑁∗(𝜇). To see this, first note that if 𝑘3 is a 3-cycle involving 𝑖5, 𝑖6, and some recipient 𝑖
′
5
, then 

(𝜇 ⧵ {(𝑖2, 𝑖3), 𝑘3}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖5), (𝑖
′
5
, 𝑖6)} ∈  resulting in the same contradiction as above. Thus, 𝑘3 = (𝑖5, 𝑖6). If 𝑘

′
3
= (𝑖6), then 

(𝜇 ⧵ {(𝑖2, 𝑖3), (𝑖5, 𝑖6)}) ∪ {(𝑖1, 𝑖2), (𝑖3, 𝑖5), (𝑖6)} ∈  again leading to the same contradiction as above. If 𝑘′
3
involves some recipient 

𝑖′
6
∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇), then either 𝑘′

3
equals (𝑖6, 𝑖

′
6
) or contains the embedded 2-cycle (𝑖6, 𝑖

′
6
). In both cases, (𝜇 ⧵ {(𝑖2, 𝑖3), (𝑖5, 𝑖6)}) ∪

{(𝑖1, 𝑖2), (𝑖3, 𝑖5), (𝑖6, 𝑖
′
6
} ∈, again resulting in a contradiction.

Thus, either (a) 𝑖6 ∈𝑁
∗(𝜇) ⧵𝑁∗(𝜇′) or (b) 𝑖3 is involved in some exchange 𝑘

′
2
∈ 𝜇′ that only involves recipients in 𝑁∗(𝜇). Note 

that repeating the argument above induces a process that always leads to a recipient 𝑖 ∈𝑁∗(𝜇) ⧵𝑁∗(𝜇′) and never involves any 
recipient in 𝑁∗(𝜇′) ⧵𝑁∗(𝜇) except for 𝑖1. Since 𝑖1 is an arbitrary recipient in 𝑁

∗(𝜇′) ⧵𝑁∗(𝜇), this implies that each recipient in 
𝑖 ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇) has some corresponding recipient in 𝑖∗ ∈𝑁∗(𝜇) ⧵𝑁∗(𝜇′). Furthermore, since 𝑖2 is the only recipient in the process 
above involved in an exchange with a recipient in 𝑁∗(𝜇′) ⧵𝑁∗(𝜇) at 𝜇′, 𝑖∗ is unique for each 𝑖 ∈∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇). This implies 
that |𝑁∗(𝜇) ⧵𝑁∗(𝜇′)| > |𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|, which contradicts the observation above that |𝑁∗(𝜇) ⧵𝑁∗(𝜇′)| < |𝑁∗(𝜇′) ⧵𝑁∗(𝜇)|. This 
concludes the proof by contradiction, demonstrating that the exchange property is satisfied and that  is a matroid. Thus, the KEP 
has a matroid structure. By Proposition 1, the program is conflict-proof when 𝑞 = 3.

(⇒) Next, let 𝑞 ≠ 3. Since a 3-cycle can involve at most three embedded 2-cycles, 𝑞 ≤ 2. Consider a problem ⟨𝑁, 𝐷, 𝐶⟩ in which 
𝑁 = {1, 2, 3, 4}, 𝐷 = ∅, and 𝐾 = {(1, 2), (2, 3), (2, 4), (2, 3, 4)}. Note that (2, 3, 4) has two embedded 2-cycles, (2, 3) and (2, 4). There are 
four matchings, 𝜇1 = {(1, 2)}, 𝜇2 = {(2, 3)}, 𝜇3 = {(3, 4)}, and 𝜇4 = {(2, 3, 4)}. Assume that the KEP has a PSC structure to reach a 
contradiction. Then  is a pure simplicial complex. By definition, 𝑁∗(𝜇1), 𝑁

∗(𝜇4) ∈  . Furthermore, |𝑁∗(𝜇1)| = 2 < |𝑁∗(𝜇4)| = 3. 
By Lemma 1,  satisfies the relaxed exchange property. Thus, there exists some 𝑖′ ∈𝑁 ⧵𝑁∗(𝜇1) such that 𝑁(𝜇1) ∪ {𝑖′} ∈  . Some 
matching 𝜈 ∈ such that 𝑁∗(𝜇1) ∪ {𝑖′} ⊆𝑁∗(𝜈) must therefore exist. This is a contradiction since 1 ∉𝑁∗(𝜇) for all 𝜇 ∈ except 
for 𝜇1. Consequently,  is not a pure simplicial complex and the KEP does not have a PST structure. By Proposition 1, the program 
is not conflict-proof when 𝑞 ≠ 3. □

Proposition 6. Priority group matchings are Pareto efficient.

Proof. Consider any partitioning of 𝑁 into priority groups and let 𝜋 be any priority order20 such that if 𝑖 ∈𝑁𝑡, 𝑗 ∈𝑁𝑢 and 𝑡 < 𝑢, 
then 𝜋(𝑖) < 𝜋(𝑗). Let 𝜇 be a priority group matching that is not Pareto efficient to reach a contradiction. Then there exists some 
𝜈 ∈ such that 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 and 𝜈 ≻𝑖 𝜇 for some 𝑖 ∈𝑁 . Since 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 , it follows that 𝑁

∗(𝜇) ⊆ 𝑁∗(𝜈). Then, 
either 𝑁∗(𝜇) ⊂𝑁∗(𝜈) or 𝑁∗(𝜇) =𝑁∗(𝜈).

First, suppose that 𝑁∗(𝜇) ⊂𝑁∗(𝜈). Let 𝑗 be the highest priority recipient in 𝑁∗(𝜈) ⧵𝑁∗(𝜇) and let 𝑁𝑡 be the priority group for 
which 𝑗 ∈𝑁𝑡. Since there is no 𝑗

′ ∈𝑁∗(𝜈) ⧵𝑁∗(𝜇) for whom 𝜋(𝑗′) < 𝜋(𝑗), it follows that |𝑁∗
𝜏 (𝜇)| = |𝑁∗

𝜏 (𝜈)| for all 𝜏 ∈ {0, … , 𝑡 − 1}. 
Furthermore, since 𝑁∗(𝜇) ⊂𝑁∗(𝜈) and 𝑗 ∈𝑁∗(𝜈) ⧵𝑁∗(𝜇) it must be the case that |𝑁∗

𝑡 (𝜈)| > |𝑁∗
𝑡 (𝜇)|. Then, by the definition of ≿, 

𝜈 ≻ 𝜇. However, since 𝜇 ∈∗ and 𝜈 ∈, 𝜇 ≿ 𝜈. This is a contradiction.
It follows that 𝑁∗(𝜇) = 𝑁∗(𝜈). Since 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈ 𝑁 , 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 𝑖 ∈ 𝑁 . Hence, |𝐵(𝜈)| ≥ |𝐵(𝜇)|. Consider some 

recipient 𝑗 for whom 𝜈 ≻𝑗 𝜇. Note that 𝑗 is either a regular recipient or an altruistic recipient. That is, either 𝑗 ∈ 𝐼𝐴 or 𝑗 ∈ 𝐼𝑅.
Suppose that 𝑗 ∈ 𝐼𝐴. Whereas a regular recipient would prefer her own donor to a different donor with the same degree of 

compatibility, an altruistic recipient would only prefer one donor over another if the degree of compatibility is higher. That is, 
𝜈 ≻𝑗 𝜇 implies that 𝑐𝑗,𝜈(𝑗) > 𝑐𝑗,𝜇(𝑗) by the definition of the preference relation ≿𝑗 . Since both 𝜇 and 𝜈 are matchings, 𝑐𝑗,𝜇(𝑗) ≥ 1 and 
𝑐𝑗,𝜈(𝑗) ≥ 1. It therefore follows from 𝑐𝑗,𝜈(𝑗) > 𝑐𝑗,𝜇(𝑗) that 𝑐𝑗,𝜇(𝑗) = 1 and 𝑐𝑗,𝜈(𝑗) = 2. In conjunction with the observation that 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖)
for all 𝑖 ∈𝑁 , this implies that |𝐵(𝜈)| > |𝐵(𝜇)|. However, since 𝜇 ≿ 𝜈 and 𝑁∗(𝜇) =𝑁∗(𝜈) by assumption, it must be the case that 
|𝐵(𝜇)| ≥ |𝐵(𝜈)|. This is a contradiction.

It must therefore be the case that 𝑗 ∈ 𝐼𝑅. First suppose that 𝜈(𝑗) ≠ 𝑗. This means that recipient 𝑗 ’s preference for 𝜈 over 𝜇 is not 
due to 𝑗 being a regular recipient with a preference for her own donor. That is, since 𝜈(𝑗) ≠ 𝑗 and 𝜈 ≻𝑗 𝜇 it must be the case that 
𝑐𝑗,𝜈(𝑗) > 𝑐𝑗,𝜇(𝑗) by the definition of the preference relation ≿𝑗 . Then the situation is identical to the case when 𝑗 ∈ 𝐼𝐴, resulting in the 
same contradiction.

Thus, 𝑗 ∈ 𝐼𝑅 and 𝜈(𝑗) = 𝑗. Since 𝑐𝑗,𝜇(𝑗) ≥ 𝑐𝑗,𝜈(𝑗), either 𝑐𝑗,𝜇(𝑗) = 𝑐𝑗,𝜈(𝑗) or 𝑐𝑗,𝜈(𝑗) > 𝑐𝑗,𝜇(𝑗). First consider the case when 𝑐𝑗,𝜇(𝑗) = 𝑐𝑗,𝜈(𝑗). 
Since 𝜈 ≻𝑗 𝜇 it must be the case that 𝜇(𝑗) ≠ 𝜈(𝑗). However, since 𝑗 ∈ 𝐼𝑅, 𝜇(𝑗) ∈ (𝑁 ∪𝐷) ⧵ {𝑗} and 𝑐𝑗,𝜇(𝑗) ≯ 𝑐𝑗,𝑗 = 𝑐𝑗,𝜈(𝑗) it follows from 

20 Defined on Page 9.
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the definition of the arc set 𝐸 that the arc 𝑗𝜇(𝑗) ∉ 𝐸. This violates the assumption that 𝜇 is a matching. In other words, since 𝑗 is a 
regular recipient, she may only be assigned her own donor and donors with a strictly higher degree of compatibility. This contradicts 
the assumption that she is assigned a different donor with the same degree of compatibility as her own at 𝜇.

Therefore, 𝑁∗(𝜇) = 𝑁∗(𝜈), 𝑗 ∈ 𝐼𝑅, 𝜈(𝑗) = 𝑗 and 𝑐𝑗,𝜈(𝑗) > 𝑐𝑗,𝜇(𝑗). In conjunction with the observation that 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 
𝑖 ∈𝑁 , this, again, implies that |𝐵(𝜈)| > |𝐵(𝜇)|. However, since 𝜇 ≿ 𝜈 and 𝑁∗(𝜇) =𝑁∗(𝜈) by assumption, it must be the case that 
|𝐵(𝜇)| ≥ |𝐵(𝜈)|. This is a contradiction.

It has now been shown that whenever 𝜇 ∈∗, the existence of some 𝜈 ∈ such that 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 and 𝜈 ≻𝑖 𝜇 for some 
𝑖 ∈𝑁 will always result in a contradiction. This means that every priority group matching is Pareto efficient. □

Proposition 7. Consider some priority order 𝜋 and some 𝑚 ≤ 𝑛. Let |𝑁𝑚| = 𝑛 − (𝑚 − 1) and if 𝑚 ≥ 2, let 𝑁𝑡 = {𝜋−1(𝑡)} for all 𝑡 < 𝑚. 
Then ∗ =𝑚

𝑇
.

Proof. The idea of the proof is to show that both 𝑚
𝑇
⊆∗ and ∗ ⊆𝑚

𝑇
, which is only true whenever ∗ =𝑚

𝑇
.

It will first be shown that 𝑚
𝑇
⊆∗. Consider some 𝜇 ∈  and assume that 𝜇 ∈ 𝑚

𝑇
⧵∗ to reach a contradiction. Since 

𝜇 ∉∗, there must exist some 𝜇′ ∈ such that 𝜇′ ≻ 𝜇. Recall the definition of priority group preferences on page 9. As 𝜇′ ≻ 𝜇, 
it follows that either |𝑁∗

𝑡 (𝜇)| = |𝑁∗
𝑡 (𝜇

′)| for all 𝑡 ∈ [1, 𝑚] and |𝐵(𝜇′)| > |𝐵(𝜇)|, or |𝑁∗
𝑡 (𝜇

′)| > |𝑁∗
𝑡 (𝜇)| for some 𝑡 ∈ {1, … , 𝑚} and 

|𝑁∗
𝜏 (𝜇)| = |𝑁∗

𝜏 (𝜇
′)| for all 𝜏 ∈ {0, … , 𝑡 − 1}.

First, suppose that |𝑁∗
𝑡 (𝜇)| = |𝑁∗

𝑡 (𝜇
′)| for all 𝑡 ∈ {1, … , 𝑚} and |𝐵(𝜇′)| > |𝐵(𝜇)|. Recall the definition of threshold matchings on 

page 9. If 𝑚 = 1, then 𝑚
𝑚−1

= and 𝜇′ ∈ 𝑚
𝑚−1

. If 𝑚 ∈ {2, … , 𝑛}, then since 𝑁𝑡 = {𝜋−1(𝑡)} for all 𝑡 ∈ {1, … , 𝑚 −1}, |𝑁∗
𝑡 (𝜇)| = |𝑁∗

𝑡 (𝜇
′)|

for all 𝑡 ∈ {1, … , 𝑚} implies that 𝜇′ ∈ 𝑚
𝑚−1

. That is, 𝜇′ ∈ 𝑚
𝑚−1

for all 𝑚 ∈ {1, … , 𝑛}. Furthermore, |𝑁∗
𝑚(𝜇)| = |𝑁∗

𝑚(𝜇
′)| implies that 

𝜇′ ∈ 𝑚𝑚 . Finally, 𝜇
′ ∈ 𝑚𝑚 and |𝐵(𝜇′)| > |𝐵(𝜇)| contradict the assumption that 𝜇 ∈𝑚

𝑇
, since it requires that 𝜇 ∈ argmax𝜈∈𝑚𝑚 |𝐵(𝜈)|.

Hence, |𝑁∗
𝑡 (𝜇

′)| > |𝑁∗
𝑡 (𝜇)| for some 𝑡 ∈ {1, … , 𝑚} and |𝑁∗

𝜏 (𝜇)| = |𝑁∗
𝜏 (𝜇

′)| for all 𝜏 ∈ {0, … , 𝑡 − 1}. Since 𝑡 ∈ {1, … , 𝑚} and thus 
𝑁𝜏 = {𝜋−1(𝜏)} for all 𝜏 ∈ {0, 𝑡 − 1}, |𝑁∗

𝜏 (𝜇)| = |𝑁∗
𝜏 (𝜇

′)| for all 𝜏 ∈ {0, 𝑡 − 1} implies that 𝜇′ ∈ 𝑚
𝑡−1
.

Suppose that 𝑡 ∈ {1, … , 𝑚 − 1}. Then 𝑁𝑡 = {𝜋−1(𝑡)}. In that case, |𝑁∗
𝑡 (𝜇

′)| > |𝑁∗
𝑡 (𝜇)| implies that 𝜋−1(𝑡) ∈𝑁∗(𝜇′) ⧵𝑁∗(𝜇). That 

is, if 𝑡 ∈ {1, … , 𝑚 − 1}, then priority group 𝑁𝑡 contains only the unique recipient with priority 𝑡. Since the number of recipients in 
priority group 𝑁𝑡 is higher at 𝜇

′ than at 𝜇, it must therefore be the case that the only recipient in 𝑁𝑡, 𝜋
−1(𝑡), is matched at 𝜇′ but 

not at 𝜇. Thus, since 𝜇′ ∈ 𝑚
𝑡−1
, 𝜇 ∉ 𝑚𝑡 by the definition of 𝑚𝑡 . This contradicts the assumption that 𝜇 ∈𝑚

𝑇
, because 𝑚

𝑇
⊆ 𝑚𝑡 .

It must therefore be the case that 𝑡 = 𝑚. Then 𝜇′ ∈ 𝑚
𝑚−1

. Since 𝑚 is the number of priority groups and |𝑁∗
𝜏 (𝜇)| = |𝑁∗

𝜏 (𝜇
′)|

for all 𝜏 ∈ {0, … , 𝑚 − 1}, |𝑁∗
𝑡 (𝜇

′)| > |𝑁∗
𝑡 (𝜇)| if and only if |𝑁∗(𝜇′)| > |𝑁∗(𝜇)|. This contradicts the assumption that 𝜇 ∈ 𝑚

𝑇
⊆

argmax𝜈∈𝑚
𝑚−1

|𝑁∗(𝜈)|. Hence, 𝑚
𝑇
⊆∗.

Next, it will be shown that ∗ ⊆𝑚
𝑇
. Consider some 𝜇 ∈ and assume that 𝜇 ∈∗ ⧵𝑚

𝑇
to reach a contradiction. Since 

is assumed to be non-empty, 𝑚
𝑇
is guaranteed to be non-empty. Consider some 𝜇′ ∈𝑚

𝑇
. Note that 𝜇 ∈ 𝑚

0
⧵𝑚

𝑇
, as 𝑚

0
is the set 

of all matchings. Since 𝑚𝑡 ⊆ 𝑚
𝑡−1

for all 𝑡 ∈ {1, … , 𝑚}, it must therefore either be the case that 𝜇 ∈ 𝑚𝑚 ⧵𝑚
𝑇
or 𝜇 ∈ 𝑚

𝑡′−1
⧵ 𝑚

𝑡′
for 

some 𝑡′ ∈ {1, … , 𝑚}.
First, suppose that 𝜇 ∈ 𝑚𝑚 ⧵𝑚

𝑇
. In this case, |𝑁∗

𝑡 (𝜇)| = |𝑁∗
𝑡 (𝜇

′)| for all 𝑡 ∈ {1, … , 𝑚}. Hence, 𝜇′ ∈𝑚
𝑇
implies that |𝐵(𝜇′)| >

|𝐵(𝜇)|. This, in turn, implies that 𝜇′ ≻ 𝜇, contradicting the assumption that 𝜇 ∈∗.
This means that 𝜇 ∈ 𝑚

𝑡′−1
⧵ 𝑚

𝑡′
for some 𝑡′ ∈ {1, … , 𝑚}. First suppose that 𝑡′ =𝑚 so that 𝜇 ∈ 𝑚

𝑚−1
⧵ 𝑚𝑚 . Then |𝑁∗

𝑡 (𝜇)| = |𝑁∗
𝑡 (𝜇

′)|
for all 𝑡 ∈ {0, … , 𝑚 −1}. (Recall that 𝑁0 = ∅ by definition.) Since 𝑚 is the number of priority groups, 𝜇 ∉ 𝑚𝑚 and 𝜇′ ∈ 𝑚𝑚 then imply 
that |𝑁∗

𝑚(𝜇
′)| > |𝑁∗

𝑚(𝜇)| and |𝑁∗(𝜇′)| > |𝑁∗(𝜇)|. Hence, 𝜇′ ≻ 𝜇, contradicting the assumption that 𝜇 ∈∗.
Thus, 𝑡′ ∈ {1, … , 𝑚 − 1}. Note that 𝑚 ≥ 2, since 𝑚 = 1 requires that 𝑡′ = 𝑚, which has been shown to result in a contradiction. 

Since 𝑡′ < 𝑚, 𝑁𝜏 = {𝜋−1(𝜏)} for all 𝜏 ∈ {1, … , 𝑡}. Then, by the definition of 𝑚
𝑡′
and the fact that 𝜇, 𝜇′ ∈ 𝑚

𝑡′−1
, |𝑁∗

𝜏 (𝜇)| = |𝑁∗
𝜏 (𝜇

′)|
for all 𝜏 ∈ {0, … , 𝑡′ − 1}. Since 𝜇 ∈ 𝑚

𝑡′−1
⧵ 𝑚

𝑡′
and 𝜇′ ∈ 𝑚

𝑡′−1
, 𝜋−1(𝑡′) ∈ 𝑁∗(𝜇′) ⧵ 𝑁∗(𝜇). Thus, |𝑁∗

𝑡′
(𝜇′)| > |𝑁∗

𝑡′
(𝜇)| as |𝑁𝑡′ | = 1. 

|𝑁∗
𝜏 (𝜇)| = |𝑁∗

𝜏 (𝜇
′)| for all 𝜏 ∈ {0, … , 𝑡′ − 1} and |𝑁∗

𝑡′
(𝜇′)| > |𝑁∗

𝑡′
(𝜇)| together imply that 𝜇′ ≻ 𝜇. This contradicts 𝜇 ∈∗.

Hence, there exists no 𝜇 ∈∗ ⧵𝑚
𝑇
, implying that ∗ ⊆𝑚

𝑇
since 𝑚

𝑇
is non-empty. In conclusion, as both 𝑚

𝑇
⊆∗ and 

∗ ⊆𝑚
𝑇
are true, it must be the case that ∗ =𝑚

𝑇
. □

Proposition 8. Consider some priority order 𝜋. For any 𝑚 ≤ 𝑛, any 𝑚′ ≤𝑚, any 𝜇 ∈𝑚
𝑇
and any 𝜇′ ∈𝑚′

𝑇
, |𝑁∗(𝜇′)| ≥ |𝑁∗(𝜇)|.

Proof. First, let 𝑚 ∈ {2, … , 𝑛} and 𝑚′ ∈ {1, … , 𝑚 − 1}. Consider some 𝜇 ∈𝑚
𝑇
and some 𝜇′ ∈𝑚′

𝑇
. First note that 𝑚𝑡 = 𝑚

′

𝑡 for 

all 𝑡 ∈ {1, … , 𝑚′ − 1}. Consequently, 𝑚
𝑚′−1

= 𝑚
′

𝑚′−1
. By definition, |𝑁∗(𝜇′)| ≥ |𝑁∗(𝜈)| for all 𝜈 ∈ 𝑚

′

𝑚′−1
= 𝑚

𝑚′−1
. Furthermore, since 

𝑚𝜏 ⊆ 𝑚
𝑚′−1

for all 𝜏 ∈ {𝑚′ − 1, … , 𝑚} and 𝑚
𝑇
⊆ 𝑚𝑚 , it follows that |𝑁∗(𝜇′)| ≥ |𝑁∗(𝜇)|.

Next, let 𝑚 ∈ {1, … , 𝑛} and 𝑚′ = 𝑚. Consider some 𝜇 ∈𝑚
𝑇
and some 𝜇′ ∈𝑚′

𝑇
. Since 𝑚 = 𝑚′, 𝑚

𝑇
=𝑚′

𝑇
. By Proposition 7, 

there is a partitioning of 𝑁 such that 𝑚
𝑇
=∗. By Lemma 3, all priority group matchings match the same number of recipients. 

Then |𝑁∗(𝜇)| = |𝑁∗(𝜇′)|, as 𝜇, 𝜇′ ∈∗.
Hence, for any 𝜇 ∈𝑚

𝑇
and any 𝜇′ ∈𝑚′

𝑇
, |𝑁∗(𝜇′)| ≥ |𝑁∗(𝜇)| both in the case when 𝑚 ∈ {2, … , 𝑛}, 𝑚′ ∈ {1, … , 𝑚 − 1} and in 

the case when 𝑚 ∈ {1, … , 𝑛} and 𝑚′ =𝑚. □



Journal of Economic Theory 217 (2024) 105803

20

J. Kratz

Proposition 9. For any priority order 𝜋:

𝑚
𝑇
=

{
𝜀

max at 𝑚 = 1

𝐵 at 𝑚 ∈ {𝑛, 𝑛+ 1}

Proof. First note that 1
𝑇
= argmax𝜇∈1𝑚

|𝐵(𝜇)|. Furthermore, 1
𝑚 = argmax𝜇∈1

0
|𝑁∗(𝜇)|. Since 1

0
=, 1

𝑚 = argmax𝜇∈ |𝑁∗(𝜇)| =
max. It follows from the definition of 𝜀

max that 
1
𝑇
= argmax𝜇∈max

|𝐵(𝜇)| =𝜀
max. Next, recall that 

𝑚
𝑇
= argmax𝜇∈𝑚𝑚 |𝐵(𝜇)|. 

𝑚𝑚 is defined by:

For 𝑡 ∈ (0,𝑚), 𝑚𝑡 =

{
{𝜇 ∈ 𝑚

𝑡−1
∣ 𝜋−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑚

𝑡−1

𝑚
𝑡−1

otherwise

𝑚𝑚 = argmax
𝜇∈𝑚

𝑚−1

|𝑁∗(𝜇)|

At 𝑚 = 𝑛 + 1, this reduces to:

For 𝑡 ∈ (0, 𝑛], 𝑛𝑡 =

{
{𝜇 ∈ 𝑛

𝑡−1
∣ 𝜋−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑛

𝑡−1

𝑛
𝑡−1

otherwise

At 𝑚 = 𝑛, the definition is instead equivalent to:

For 𝑡 ∈ (0, 𝑛), 𝑛𝑡 =

{
{𝜇 ∈ 𝑛

𝑡−1
∣ 𝜋−1(𝑡) ∈𝑁∗(𝜇)} if 𝜋−1(𝑡) ∈𝑁∗(𝜇) for some 𝜇 ∈ 𝑛

𝑡−1

𝑛
𝑡−1

otherwise

𝑛𝑛 = argmax
𝜇∈𝑛

𝑛−1

|𝑁∗(𝜇)|

In both cases, it is straightforward to confirm that 𝑛𝑛 = 𝑛+1𝑛 = 𝑛. Thus, 
𝑛
𝑇
=𝑛+1

𝑇
= argmax𝜇∈𝑛 |𝐵(𝜇)| =𝐵 by definition. □

Proposition 10. Consider some priority order 𝜋, let 𝑚 = 2 and set 𝑁Γ =𝑁1. Then 
∗ =𝑆 .

Proof. It follows immediately from the definition of priority group preferences on page 9 that matchings in 𝜀
Γ
are preferred to all 

other matchings in this setting. □

Proposition 11. Sort all “marginalized” recipients into 𝑁Γ and let 𝛽 > 𝑛 − |𝑁Γ| − 1. Then Γ is the set of MAXCARD-FAIR solutions.

Proof. Dickerson and Sandholm (2014) assign each arc 𝑒 ∈ 𝐸 some weight 𝑤𝑒 ∈ ℝ++. A cycle or chain 𝑐 is defined in terms of 
the relevant arcs rather than (as in this paper) in terms of the participating recipients. A set 𝜇 ⊆ 𝐾 is a matching if the cycles and 
chains it contains are disjoint. Consider an objective function 𝑢 where for any 𝜇 ∈ , 𝑢(𝜇) =

∑
𝑐∈𝜇

∑
𝑒∈𝑐 𝑤𝑒. If each arc has the 

same weight, 𝑤 ∈ ℝ++, the solutions to the corresponding maximization problem will simply maximize the number of matched 
recipients. Dickerson and Sandholm (2014) call this objective function MAXCARD. Since 𝑁Γ is the set of marginalized recipients, the
MAXCARD-FAIR objective function can be obtained from the MAXCARD objective function by assigning each arc 𝑖𝑗 the same weight 
as before (𝑤) whenever 𝑖 ∈𝑁 ⧵𝑁Γ and increasing the weight to (1 + 𝛽)𝑤 whenever 𝑖 ∈𝑁Γ, where 𝛽 > 0. Let 𝛽 > 𝑛 − |𝑁Γ| − 1. Then 
(1 + 𝛽)𝑤 > (𝑛 − |𝑁Γ|)𝑤. Since (𝑛 − |𝑁Γ|)𝑤 is an upper bound on the sum of weights assigned to arcs ending in recipients belonging 
to 𝑁 ⧵𝑁Γ, MAXCARD-FAIR’s primary goal is to match as many recipients in 𝑁Γ as possible and its secondary goal is to match as 
many recipients in 𝑁 ⧵𝑁Γ as possible. In other words, the set of MAXCARD-FAIR solutions is given by Γ.

If the planner disallows desensitization, then 𝑐𝑖,𝑗 ≠ 1 for all 𝑖, 𝑗 ∈ 𝑁 and |𝐵(𝜇)| = |𝑁∗(𝜇)| for all 𝜇 ∈ . Since |𝑁∗(𝜇)| =
|𝑁∗(𝜇′)| for all 𝜇, 𝜇′ ∈Γ, 𝑆 =Γ in this case. Consequently, the set of simple threshold matchings is the set of MAXCARD-FAIR
solutions. □

Proposition 12. A matching 𝜇 ∈ is Pareto efficient if and only if the following two conditions hold for all 𝜈 ∈:

(a) 𝑁∗(𝜇) ⊂𝑁∗(𝜈) ⟹ 𝐵(𝜇) ⊈ 𝐵(𝜈)
(b) 𝐵(𝜇) ⊂ 𝐵(𝜈) ⟹ 𝑁∗(𝜇) ⊈𝑁∗(𝜈)

Proof. It will first be shown that all matchings satisfying (a) and (b) are Pareto efficient. To reach a contradiction, suppose there 
exists some matching 𝜇 ∈ that satisfies (a) and (b), but is not Pareto efficient. Since 𝜇 is not Pareto efficient, there exists some 
𝜈 ∈ such that 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 and 𝜈 ≻𝑖 𝜇 for some 𝑖 ∈𝑁 . The statement that 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 implies that 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖)
for all 𝑖 ∈𝑁 . Consequently, 𝑁∗(𝜇) ⊆ 𝑁∗(𝜈) and 𝐵(𝜇) ⊆ 𝐵(𝜈). Consider some 𝑖 ∈𝑁 such that 𝜈 ≻𝑖 𝜇. If 𝑖 ∈ 𝐼𝐴, then 𝑐𝑖,𝜈(𝑖) > 𝑐𝑖,𝜇(𝑖). 
If 𝑖 ∈ 𝐼𝑅, then either 𝑐𝑖,𝜈(𝑖) > 𝑐𝑖,𝜇(𝑖) or 𝜈(𝑖) = 𝑖 ≠ 𝜇(𝑖) and 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖). Suppose that 𝜈(𝑖) = 𝑖 ≠ 𝜇(𝑖) and 𝑐𝑖,𝜈(𝑖) = 𝑐𝑖,𝜇(𝑖). By construction 
of 𝐸, this implies that 𝑖𝜇(𝑖) is not an arc in the compatibility graph. Consequently, 𝜇 is not a matching, which contradicts 𝜇 ∈. 
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It follows that 𝑐𝑖,𝜈(𝑖) > 𝑐𝑖,𝜇(𝑖) in all possible cases. 𝑁
∗(𝜇) ⊆ 𝑁∗(𝜈), 𝐵(𝜇) ⊆ 𝐵(𝜈) and 𝑐𝑖,𝜈(𝑖) > 𝑐𝑖,𝜇(𝑖) imply that either 𝑁

∗(𝜇) ⊂ 𝑁∗(𝜈), 
𝐵(𝜇) ⊂ 𝐵(𝜈) or both. Thus, either (a), (b) or both (a) and (b) are violated, contradicting the assumption that 𝜇 satisfies both (a) and 
(b). Hence, every matching 𝜇 ∈ satisfying (a) and (b) is Pareto efficient.

Next, it will be shown that every Pareto efficient matching satisfies (a) and (b). To reach a contradiction, suppose there exists 
some Pareto efficient matching 𝜇 ∈ that fails to satisfy (a) or (b). Then there exists some 𝜈 ∈ such that one of the following 
two cases holds.

(a) 𝑁∗(𝜇) ⊂ 𝑁∗(𝜈) and 𝐵(𝜇) ⊆ 𝐵(𝜈). 𝑁∗(𝜇) ⊂ 𝑁∗(𝜈) implies that 𝑐𝑖,𝜈(𝑖) ≥ 1 for all 𝑖 ∈ 𝑁∗(𝜇). This means that, 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for 
all 𝑖 ∈𝑁∗(𝜇) ⧵ 𝐵(𝜇). Furthermore, 𝐵(𝜇) ⊆ 𝐵(𝜈) implies that 𝑐𝑖,𝜈(𝑖) = 2 for all 𝑖 ∈ 𝐵(𝜇). Hence, 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 𝑖 ∈𝑁

∗(𝜇). 
Consider some 𝑖 ∈ 𝑁∗(𝜇). Then 𝜈 ≿𝑖 𝜇 unless 𝑖 ∈ 𝐼𝑅, 𝜇(𝑖) = 𝑖 ≠ 𝜈(𝑖) and 𝑐𝑖,𝜈(𝑖) = 𝑐𝑖,𝜇(𝑖). However, in such a case, the arc 𝑖𝜈(𝑖)
would not be in the arc set 𝐸 and 𝜈 would not be a matching. This would contradict 𝜈 ∈. Thus, 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁

∗(𝜇). For 
each recipient 𝑖 ∈𝑁 ⧵ (𝑁∗(𝜇) ∪𝑁∗(𝜈)), 𝑐𝑖,𝜈(𝑖) = 𝑐𝑖,𝜇(𝑖) = 0. Thus, 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 ⧵𝑁∗(𝜈). Finally, 𝑐𝑖,𝜈(𝑖) ≥ 1 > 𝑐𝑖,𝜇(𝑖) = 0 for all 
𝑖 ∈𝑁∗(𝜈) ⧵𝑁∗(𝜇). Hence, 𝜈 ≻𝑖 𝜇 for all 𝑖 ∈𝑁

∗(𝜈) ⧵𝑁∗(𝜇) and 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 . This contradicts the assumption that 𝜇 is 
Pareto efficient.

(b) 𝑁∗(𝜇) ⊆ 𝑁∗(𝜈) and 𝐵(𝜇) ⊂ 𝐵(𝜈). 𝑁∗(𝜇) ⊆ 𝑁∗(𝜈) implies that 𝑐𝑖,𝜈(𝑖) ≥ 1 for all 𝑖 ∈𝑁∗(𝜇). This means that, 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 
𝑖 ∈𝑁∗(𝜇) ⧵𝐵(𝜇). Furthermore, 𝐵(𝜇) ⊂ 𝐵(𝜈) implies that 𝑐𝑖,𝜈(𝑖) = 2 for all 𝑖 ∈ 𝐵(𝜇). Hence, 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 𝑖 ∈𝑁

∗(𝜇). Since 
𝑐𝑖,𝜇(𝑖) = 0 for all 𝑁 ⧵𝑁∗(𝜇), 𝑐𝑖,𝜈(𝑖) ≥ 𝑐𝑖,𝜇(𝑖) for all 𝑖 ∈𝑁 . Consider any 𝑖 ∈𝑁 and note that 𝜈 ≿𝑖 𝜇 unless 𝑖 ∈ 𝐼𝑅, 𝜇(𝑖) = 𝑖 ≠ 𝜈(𝑖) and 
𝑐𝑖,𝜈(𝑖) = 𝑐𝑖,𝜇(𝑖). However, in such a case, the arc 𝑖𝜈(𝑖) would not be in the arc set 𝐸 and 𝜈 would not be a matching. This would 
contradict 𝜈 ∈. Thus, 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 . Finally, 𝑐𝑖,𝜈(𝑖) > 𝑐𝑖,𝜇(𝑖) for all 𝑖 ∈ 𝐵(𝜈) ⧵ 𝐵(𝜇). Hence, 𝜈 ≻𝑖 𝜇 for all 𝑖 ∈ 𝐵(𝜈) ⧵ 𝐵(𝜇)
and 𝜈 ≿𝑖 𝜇 for all 𝑖 ∈𝑁 . This contradicts the assumption that 𝜇 is Pareto efficient.

Both cases result in contradictions, implying that all Pareto efficient matchings satisfy both (a) and (b). □
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