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An Adaptive Multi-sensor Fusion for Intelligent
Vehicle Localization

Hao Zhu, Yujian Qiu, Yongfu Li, Lyudmila Mihaylova, and Henry Leung, Fellow, IEEE,

Adaptive Multi-

sensor Fusion
Localization

Abstract— Localization is a basic technology for intelligent vehicle
(IV), which is usually carried out by fusing multiple sensors. In
order to achieve robust and accurate localization results, a novel
adaptive multi-sensor fusion method is proposed. For each sensor,
every measurement is identified by an indicator, which is used to
recognize whether the measurement has the useful information to
improve the localization performance. A robust localization model
of IV is then developed by using variational Bayesian approach.
Simulations and experiments using a real IV are used to demon-
strate the potential and effectiveness of the proposed method.

Index Terms— Localization, intelligent vehicle, sensor fusion, varia-
tional Bayesian.

I. INTRODUCTION

INTELLIGENT vehicle (IV) is a hot topic for both industry

and academia [1], while localization is a key component of

an IV to provide robust and accurate estimates of its state [2]–

[4].

An IV is equipped with many sensors, such as GPS, inertial

measurement unit (IMU), light detection and ranging (Lidar),

and cameras. The IMU gives a continuity solution of IV’s

state, its gyro suffers from time-varying biases and uncertain

noises, and the accuracy of position and orientation estimates

from IMU deteriorates over time. In [5], a Kalman filter (KF)

incorporating a deep neural network is proposed to estimate

the noise parameters for dead-reckoning. In [6], a prior on

displacement distributions is obtained using a neural network

with only IMU data. Then, the prior information is integrated

with an extended KF (EKF) to estimate the state. Furthermore,

sensor fusion is used to provide more accurate results in

the literature [7], [8]. Many GPS/IMU systems have been

developed for IV localization. The global position and velocity

are provided by GPS, meanwhile, local position, orientation,

and velocity are estimated from IMU. The GPS/IMU system

can provide a robust localization solution in many scenarios.

However, the GPS may have weak or even no signal in

The work was supported in part by National Natural Science Foun-
dation of China under Grant No. 62073052, No. U1964202, by the
Natural Science Foundation of Chongqing under Grant No. cstc2021jcyj-
msxmX0373, No. CSTB2023TIAD-STX0016, and by the Scientific and
Technological Research Program of Chongqing Municipal Education
Commission under Grant No. KJZD-K202200603.

Hao Zhu, Yujian Qiu, and Yongfu Li are with the Department of
Automation, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China (e-mail: zhuhao@cqupt.edu.cn)

Lyudmila Mihaylova is with the Department of Automatic Control and
Systems Engineering, The University of Sheffield, Sheffield S13JD, U.K.

Henry Leung is with the Department of Electrical and Computer
Engineering, University of Calgary, Calgary AB T2N 1N4, Canada

tunnels or parking lots. In the GPS-challenged environments

or GPS-denied environments, the performance of GPS/IMU

systems will be degraded. In [9], the state with unknown

measurement loss is estimated by a Bayesian KF (BKF).

However, the loss probability varies with the traffic, and

the performance is degraded in such environments. Various

localization approaches for IV in these environments have

been developed. It can be roughly categorized into: map-based

methods and simultaneous localization and mapping (SLAM)

methods [10]–[14]. The map-based methods extract prior

information about static environment to build high definition

(HD) map in advance. The state of IV can then be obtained by

matching with the existing HD map [15]. The SLAM methods

provide the IV localization using online estimation and do not

require prior information in advance [16]. In the literature,

several SLAM methods have been proposed based on different

sensors such as cameras, sonars, and Lidar [17]. The Lidar-

based SLAM methods are found to have robust performance

in most environments [16].

For Lidar-based SLAM, many methods have been develope-

d. In [18], a real-time Lidar odometry and mapping (LOAM)

method is proposed to estimate the state using edge and plane

feature points. In [19], a lightweight and ground-optimized

Lidar odometry and mapping (LEGO-LOAM) method is pro-

posed to estimate the state of unmanned ground vehicles.

Compared with LOAM, LEGO-LOAM is more efficient and

reduces the drift in large-scale scenarios [19]. Furthermore, in

order to achieve reliable and accurate state estimates, Lidar

is considered in conjunction with IMU and GPS. In [20], a

loosely-coupled method is proposed using Lidar and IMU date.

IMU is used to give a motion prior for Lidar registration. In

[21], a kinematic model of vehicle is developed to predict

the ego-motion of vehicle and a robust localization method

of vehicle is developed by unscented KF (UKF) method to
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fuse Lidar and IMU. In [22], the attitude of land vehicle is

estimated using a velocity constraint for GPS/IMU. In [23],

a variational Bayesian (VB) algorithm and switching KF are

integrated to localize an IV using GPS and Lidar data. In [24],

a robust Lidar-Inertial odometry, which is called Fast-LIO2, is

proposed to localize an IV using an iterated KF. In [25], the

ego-motion of IV is estimated by fusing Lidar and IMU using

an iterated error-state KF.

All aforementioned methods directly fuse the measurements

of all sensors to localize an IV. Since IV in extreme and

unknown environments, such as tunnels. The environments

have long and homogeneous structures, geometric features are

scarce. As a result, the IV’s motion is usually underestimated

[26]. Therefore, the sensor measurement is not the true IV

state information. In this article, a robust VB adaptive sensor

fusion (VBASF) approach is developed to localize IV. In

the proposed VBASF method, an indicator is introduced to

each measurement for each sensor. The indicator follows a

Bernoulli distribution and identifies whether the measurement

is a state observation or an outlier. The problem of localization

of IV is solved by the VB technique. The contributions are as

follows:

1) Different from traditional fusion strategy [24], [25],

which directly fuses all sensor measurements to estimate the

IV’s state, we propose in this paper to fuse only useful sensor

measurements.

2) Lidar, IMU, and GPS measurements are transformed as

linear functions of the IV states. A robust localization model

is then constructed.

3) Experiments on real IV are carried out. The experimental

results show the potential and effectiveness of the proposed

VBASF method.

In Section II, the problem formulation is presented. In

Section III, the proposed VBASF method is developed. The

potential and effectiveness of the proposed VBASF method is

verified in Section IV. Conclusion is provided in Section V.

II. PROBLEM FORMULATION

In this section, the localization of IV using

IMU, GPS, and Lidar is formulated. Let xt =
[

(pt)
T (ϕt)

T (vt)
T (wt)

T
]T

∈ R
12 denote the

state of IV at time t, where pt =
[

pxt p
y
t pzt

]T
and

ϕt =
[

θt ψt φt
]T

are the position and orientation,

respectively, pxt , p
y
t , and pzt are the positions of IV in

the direction x, y, and z, respectively, θt, ψt, and φt are

the pitch angle, yaw angle, and roll angle, respectively,

vt =
[

vxt v
y
t vzt

]T
and wt =

[

wx
t w

y
t wz

t

]T
are

the linear and angular velocity, respectively, vxt , v
y
t , and vzt

are the linear velocity of IV in the direction x, y, and z,

respectively, wx
t , w

y
t , and wz

t are angular velocity of IV in

the pitch, yaw, and roll, respectively. The state of IV can be

given as

x̂t|t−1 = f(xt−1,∆t) =









pt−1+H(ϕt−1)vt−1∆t
ϕt−1 + J(ϕt−1)wt−1∆t

vt−1

wt−1









+ qt

(1)

where f(xt−1) denotes the state transition function, H(ϕt−1)
is the rotation matrix, J(ϕt−1) is the Jacobian matrix mapping

the angular velocities to the Euler angles derivative, and ∆t is

the sample time step of the prediction stage, and qt denotes

the process noise with covariance matrix Q.

The GPS provides the position measurement of IV,

gt = C1xt + e1t (2)

where gt denotes the GPS receivers position of IV, C1 ∈
R

3×12 is given as

C1 =





1 0 0 01×9

0 1 0 01×9

0 0 1 01×9



 (3)

and e1t follows Gaussian distribution with mean zero and

covariance R1.

The IMU gives the measurement of the angular velocity of

IV, that is,

mt = C2xt + e2t (4)

where mt denotes the IMU measurement of IV’s angular

velocity, C2 ∈ R
3×12 is given as

C2 =





01×9 1 0 0
01×9 0 1 0
01×9 0 0 1



 (5)

and e2t is white Gaussian noise with covariance R2.

The position variation ∆pt and orientation variation ∆ϕt

are provided by the Lidar odometry. It can be computed from

the current and last measurements from Lidar by the traditional

iterative closest point (ICP) point set registration method [27].

The measurements of linear and angular velocities are defined

as

Lt =

[

vl
t

wl
t

]

=

[

H(ϕt−1)
T

0

0 J(ϕt−1)
−1

] [

∆pt

∆ϕt

]

1

∆t
(6)

where Lt =

[

vl
t

wl
t

]

denotes the measurements of linear and

angular velocities from Lidar at time t and ∆t denotes the time

interval. Therefore, the measurement function from Lidar can

be given as

Lt = C3xt + e3t (7)

where C3 ∈ R
6×12 is given as

C3 =

















01×6 1 0 0 0 0 0
01×6 0 1 0 0 0 0
01×6 0 0 1 0 0 0
01×6 0 0 0 1 0 0
01×6 0 0 0 0 1 0
01×6 0 0 0 0 0 1

















(8)

and e3t is white Gaussian noise with covariance R3.

From (2), (4), and (7), we have

p(gt |xt ) = N (gt;C1xt,R1) (9)

p(mt |xt ) = N (mt;C2xt,R2) (10)

p(Lt |xt ) = N (Lt;C3xt,R3) (11)
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where N (.) denotes the Gaussian distribution.

In a complex traffic environment, not all sensor measure-

ments contain useful information, for example, GPS signal

is not available in a tunnel, meanwhile, the motion of IV

by Lidar-based point set registration methods is usually un-

derestimated with only a few geometric features. To obtain a

robust IV’s motion, a novel multi-sensor fusion is developed.

In the proposed method, a Bernoulli variable is proposed

to identify whether the measurement is a state observation

or an outlier. The measurement likelihood conditional on its

Bernoulli random variable and IV’s state can be expressed as

p(gt |xt ) = N (gt;C1xt,R1)
λtN (gt; 0,R1)

1−λt (12)

p(mt |xt ) = N (mt;C2xt,R2)
εtN (mt; 0,R2)

1−εt (13)

p(Lt |xt ) = N (Lt;C3xt,R3)
δtN (Lt; 0,R3)

1−δt (14)

λt, εt, and δt are Bernoulli random variables, i.e., λt ∈
{0, 1}, εt ∈ {0, 1}, and δt ∈ {0, 1}. λt = 1, εt = 1, and δt = 1
indicate that the gt, mt, and Lt are true state measurements,

otherwise, λt = 0, εt = 0, and δt = 0 refer to outliers. Then,

the priors on the λt, εt, and δt can be formulated as

p(λt |πt ) = (πt)
λt(1− πt)

(1−λt) (15)

p(πt) = Be(πt; a0, b0) (16)

p(εt |αt ) = (αt)
εt(1− αt)

(1−εt) (17)

p(αt) = Be(αt;h0, d0) (18)

p(δt |βt ) = (βt)
δt(1− βt)

(1−δt) (19)

p(βt) = Be(βt; e0, f0) (20)

where Be(.) denotes a Beta distribution, πt, αt, and βt denote

the probability of true state measurements of GPS, IMU, and

Lidar, respectively, a0, b0, h0, d0, e0, and f0 denote the prior

parameters.

The one-step predicted state is formulated as

p(xt |g1:t−1,m1:t−1,L1:t−1 ) = N (xt; x̂t|t−1 ,Pt|t−1 ) (21)

where x̂t|t−1 and Pt|t−1 denote the one-step predicted mean

vector and covariance matrix estimates at time t, respectively,

we have

x̂t|t−1 = f(xt−1) (22)

Pt|t−1 = Ft−1Pt−1|t−1 (Ft−1)
T +Q (23)

where Ft−1 = ∂f(x)/∂x|x=xt−1 , xt−1 and Pt−1|t−1 denote

the state mean vector and covariance matrix estimates of IV

at time t-1, respectively.

III. VBASF METHOD

VB algorithm is proposed to estimate the Ψt in this section,

where Ψt denotes the IV’s state and parameters, i.e., Ψt =
{xt, λt, πt, εt, αt, δt, βt}. From VB method [28], [29],

log q(θ) = EΨt
(−θ) [log p(g1:t,m1:t,L1:t,Ψt)] + cθ (24)

where E[ · ] is expectation, Ψt
(−θ) ∪ θ = Ψt, θ means an

item of Ψt, cθ is a constant with respect to θ. The probability

density function (PDF) q(θ) is computed as q(j+1)(θ) using

q(j)(Ψt
(−θ)) at the j + 1th iteration [28]. Then, the PDF

p(g1:t,m1:t,L1:t,Ψt) is

p(g1:t,m1:t,L1:t |Ψt )
= N (gt;C1xt,R1)

λtN (gt; 0,R1)
1−λt

× N (mt;C2xt,R2)
εtN (mt; 0,R2)

1−εt

× N (Lt;C3xt,R3)
δtN (Lt; 0,R3)

1−δt

× N (xt; x̂t|t−1 , P̂t|t−1 )
× (πt)

λt(1− πt)
(1−λt)(αt)

εt(1− αt)
(1−εt)

× (βt)
δt(1− βt)

(1−δt)Be(πt; a0, b0)
× Be(αt;h0, d0)Be(βt; e0, f0)
× p(g1:t−1)p(m1:t−1)p(L1:t−1)

(25)

Let θ = xt and from (24), we obtain

log q(j+1)(xt)
∝ −0.5E(j)[λt](gt −C1xt)

T(R1)
−1(gt −C1xt)

−0.5E(j)[εt](mt −C2xt)
T(R2)

−1(mt −C2xt)
−0.5E(j)[δt](Lt −C3xt)

T(R3)
−1(Lt −C3xt)

−0.5(xt − x̂t|t−1 )
T(Pt|t−1 )

−1(xt − x̂t|t−1 ) + cxt

∝ −0.5(yt − C̄xt)
T(R̄

(j)
t )−1(yt − C̄xt)

−0.5(xt − x̂t|t−1 )
T(P̂t|t−1 )

−1(xt − x̂t|t−1 ) + cxt

(26)

where yt, C̄, and R̄
(j)
t are given as

yt =





gt

mt

Lt



 (27)

C̄ =





C1 0 0

0 C2 0

0 0 C3



 (28)

R̄
(j)
t =









R1
/

E(j)[λt] 0 0

0 R2
/

E(j)[εt] 0

0 0 R3
/

E(j)[δt]









(29)

Therefore, the IV’s can be computed using EKF method.

x̂
(j+1)
t|t = x̂

(j+1)
t|t−1 +K

(l+1)
t (yt − C̄x̂

(j+1)
t|t−1 ) (30)

P
(j+1)
t|t = P

(j+1)
t|t−1 −K

(l+1)
t C̄P

(j+1)
t|t−1 (31)

K
(j+1)
t = P

(j+1)
t|t−1 C̄

T(C̄P
(j+1)
t|t−1 C̄

T + R̄
(j)
t )−1 (32)

where ˆ̄x
(j+1)
t|t and P

(j+1)
t|t denote the posterior of IV’s state

mean and covariance estimates, respectively, K
(j+1)
t denotes

the Kalman gain.
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Let θ = λt and from (24), we have

log q(j+1)(λt)

∝ −0.5λtTr(∆
(j+1)
t (R1)

−1)− 0.5(1− λt)Tr(gtgt
T(R1)

−1)
+λtE

(j)[log(πt)] + (1− λt)E
(j)[log(1− πt)] + cλt

(33)

where Tr(.) stands for the trace of matrix and ∆
(j+1)
t is

∆
(j+1)
t

= E(j+1)
[

(gt −C1xt)(gt −C1xt)
T
]

= (gt −C1x̂
(j+1)
t|t )(gt −C1x̂

(j+1)
t|t )T +C1P

(j+1)
t|t C1

T

(34)

q(j+1)(λt) is approximated by a Bernoulli distribution, we

obtain

Pr(j+1)(λt = 1) = A(j+1) exp
{

E(j)[log(πt)]

−0.5Tr(∆
(j+1)
t (R1)

−1
)
} (35)

Pr(j+1)(λt = 0) = A(j+1) exp
{

E(j)[log(1− πt)]

−0.5Tr(gtgt
T(R1)

−1
)
} (36)

where A(j+1) denotes a constant parameter. Then,

E
(j+1)[λt] =

Pr(j+1)(λt = 1)

Pr(j+1)(λt = 1) + Pr(j+1)(λt = 0)
(37)

Let θ = πt and from (24), we obtain

log q(j+1)(πt)
∝ E(j+1)[λt] log πt + (1− E(j+1)[λt]) log(1− πt)

+(a0 − 1) log πt + (b0 − 1) log(1− πt) + cπt

(38)

q(j+1)(πt) is approximated by a Beta distribution,

q(j+1)(πt) = Be(πt; a
(j+1)
t , b

(j+1)
t ) (39)

where a
(j+1)
t and b

(j+1)
t are given as

a
(j+1)
t = a0 + E

(j+1)[λt] (40)

b
(j+1)
t = b0 + 1− E

(j+1)[λt] (41)

Therefore, we obtain

E
(j+1)[log πt] = φ(a

(j+1)
t )− φ(a

(j+1)
t + b

(j+1)
t ) (42)

E
(j+1)[log(1− πt)] = φ(b

(j+1)
t )− φ(a

(j+1)
t + b

(j+1)
t ) (43)

where φ(.) is the digamma function [30].

Let θ = εt and from (24), we obtain

log q(j+1)(εt)

∝ −0.5εtTr(Π
(j+1)
t (R2)

−1)− 0.5(1− εt)Tr(mtmt
T(R2)

−1)
+εtE

(j)[log(αt)] + (1− εt)E
(j)[log(1− αt)] + cεt

(44)

where Π
(j+1)
t is

Π
(j+1)
t

= E(j+1)
[

(mt −C2xt)(mt −C2xt)
T
]

= (mt −C2x̂
(j+1)
t|t )(mt −C2x̂

(j+1)
t|t )T +C2P

(j+1)
t|t C2

T

(45)

q(j+1)(εt) is approximated by a Bernoulli distribution, we

obtain

Pr(j+1)(εt = 1) = B(j+1) exp
{

E(j)[log(εt)]

−0.5Tr(Π
(j+1)
t (R2)

−1
)
} (46)

Pr(j+1)(εt = 0) = B(j+1) exp
{

E(j)[log(1− εt)]

−0.5Tr(mtmt
T(R2)

−1
)
} (47)

where B(j+1) denotes a constant parameter. Then,

E
(j+1)[εt] =

Pr(j+1)(εt = 1)

Pr(j+1)(εt = 1) + Pr(j+1)(εt = 0)
(48)

Let θ = αt and from (24), we obtain

log q(j+1)(αt)
∝ E(j+1)[εt] logαt + (1− E(j+1)[εt]) log(1− αt)

+(h0 − 1) logαt + (d0 − 1) log(1− αt) + cαt

(49)

q(j+1)(αt) is approximated by a Beta distribution,

q(j+1)(αt) = Be(αt;h
(j+1)
t , d

(j+1)
t ) (50)

where h
(j+1)
t and d

(j+1)
t are

h
(j+1)
t = h0 + E

(j+1)[εt] (51)

d
(j+1)
t = d0 + 1− E

(j+1)[εt] (52)

Therefore, we obtain

E
(j+1)[logαt] = φ(h

(j+1)
t )− φ(h

(j+1)
t + d

(j+1)
t ) (53)

E
(j+1)[log(1− αt)] = φ(d

(j+1)
t )− φ(h

(j+1)
t + d

(j+1)
t ) (54)

Let θ = δt and from (24), we obtain

log q(j+1)(δt)

∝ −0.5δtTr(Υ
(j+1)
t (R3)

−1)− 0.5(1− δt)Tr(LtLt
T(R3)

−1)
+δtE

(j)[log(βt)] + (1− δt)E
(j)[log(1− βt)] + cδt

(55)

where Υ
(j+1)
t is

Υ
(j+1)
t

= E(j+1)
[

(Lt −C3xt)(Lt −C3xt)
T
]

= (Lt −C3x̂
(j+1)
t|t )(Lt −C3x̂

(j+1)
t|t )T +C3P

(j+1)
t|t C3

T

(56)

q(j+1)(δt) is approximated by a Bernoulli distribution,

Pr(j+1)(δt = 1) = D(j+1) exp
{

E(j)[log(βt)]

−0.5Tr(Υ
(j+1)
t (R3)

−1
)
} (57)

Pr(j+1)(δt = 0) = D(j+1) exp
{

E(j)[log(1− βt)]

−0.5Tr(LtLt
T(R3)

−1
)
} (58)

where D(j+1) is a constant parameter. Then,

E
(j+1)[δt] =

Pr(j+1)(δt = 1)

Pr(j+1)(δt = 1) + Pr(j+1)(δt = 0)
(59)

Let θ = βt and from (24), we obtain

log q(j+1)(βt)
∝ E(j+1)[δt] log βt + (1− E(j+1)[δt]) log(1− βt)

+(e0 − 1) log βt + (f0 − 1) log(1− βt) + cβt

(60)
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q(j+1)(βt) is approximated by a Beta distribution,

q(j+1)(βt) = Be(βt; e
(j+1)
t , f

(j+1)
t ) (61)

where e
(j+1)
t and f

(j+1)
t are

e
(j+1)
t = e0 + E

(j+1)[δt] (62)

f
(j+1)
t = f0 + 1− E

(j+1)[δt] (63)

Therefore, we obtain,

E
(j+1)[log βt] = φ(e

(j+1)
t )− φ(e

(j+1)
t + f

(j+1)
t ) (64)

E
(j+1)[log(1− βt)] = φ(f

(j+1)
t )− φ(e

(j+1)
t + f

(j+1)
t ) (65)

The proposed VBASF is shown in Algorithm 1, where J

stands for the iteration number and η denotes the threshold.

Algorithm 1 The proposed VBASF method

Require:

GPS measurement gt, IMU measurement mt, Lidar mea-

surement Lt, IV’s state mean x̂t−1|t−1 and covariance

Pt−1|t−1 , C1, C2, C3, covariances Q, R1, R2, and R3,

a0, b0, h0, d0, e0, f0, η, J

1: Letting E(0)[λt] = E(0)[εt] = E(0)[δt] = 1, E(0)[log πt] =
φ(a0)−φ(a0+b0), E

(0)[log(1−πt)] = φ(b0)−φ(a0+b0),

E(0)[logαt] = φ(h0) − φ(h0 + d0), E
(0)[log(1 − αt)] =

φ(d0) − φ(h0 + d0), E
(0)[log βt] = φ(e0) − φ(e0 + f0),

E(0)[log(1− βt)] = φ(f0)− φ(e0 + f0).
2: for j = 0 : J − 1 do

3: Calculate x̂
(j+1)
t|t and P

(j+1)
t|t using (30) and (31), re-

spectively

4: If

∥

∥

∥

∥

x̂t|t

(j+1)
−x̂t|t

(j)
∥

∥

∥

∥

∥

∥

∥
x̂t|t

(j+1)
∥

∥

∥

≤ η, terminate iteration

5: Compute E(l+1)[λt] as in (37)

6: Compute E(l+1)[πt] and E(j+1)[log(1−πt)] using (42)

and (43), respectively

7: Compute E(j+1)[εt] using (48)

8: Compute E(j+1)[αt] and E(j+1)[log(1−αt)] using (53)

and (54), respectively

9: Compute E(j+1)[δt] using (59)

10: Compute E(j+1)[βt] and E(j+1)[log(1−βt)] using (64)

and (65), respectively

11: end for

12: x̂t|t = x̂
(J)
t|t , Pt|t = P

(J)
t|t

Ensure:

x̂t|t , Pt|t

In this article, the parameters λt, εt, and δt recognize

whether the GPS, IMU, and Lidar measurements have the

useful information to improve the localization performance.

When λt=1, εt=1, and δt=1, it means that every measurements

are fused.

Proposition 1: If the prior parameters a0, b0, h0, d0, e0,

and f0 are chosen as a0 = h0 = e0 = 1 and b0 = d0 =
f0 = 0, the proposed VBASF becomes EKF with augmented

measurements.

Proof: Proposition 1 is proved by mathematical induc-

tion. For j=0, let

E
(0)[λt] = 1,E

(0)[εt] = 1,E
(0)[δt] = 1 (66)

E(0)[log(πt)] = φ(a0)− φ(a0 + b0)
= φ(1)− φ(1) = 0

(67)

E(0)[log(1− πt)] = φ(b0)− φ(a0 + b0)
= φ(0)− φ(1) = −∞

(68)

E(0)[logαt] = φ(h0)− φ(h0 + d0)
= φ(1)− φ(1) = 0

(69)

E(0)[log(1− αt)] = φ(d0)− φ(h0 + d0)
= φ(0)− φ(1) = −∞

(70)

E(0)[log βt] = φ(e0)− φ(e0 + f0)
= φ(1)− φ(1) = 0

(71)

E(0)[log(1− βt)] = φ(f0)− φ(e0 + f0)
= φ(0)− φ(1) = −∞

(72)

Substituting (66) into (29), we have

R̄
(0)
t =





R1 0 0

0 R2 0

0 0 R3



 (73)

If (66)-(73) hold at the jth iteration, we obtain

E
(j)[λt] = 1,E

(j)[εt] = 1,E
(j)[δt] = 1 (74)

E
(j)[log πt] = 0 (75)

E
(j)[log(1− πt)] = −∞ (76)

E
(j)[logαt] = 0 (77)

E
(j)[log(1− αt)] = −∞ (78)

E
(j)[log βt] = 0 (79)

E
(j)[log(1− βt)] = −∞ (80)

Substituting (75), (76) into (35)-(36), (77), (78) into (46)-

(47), (79), (80) into (57)-(58), we have

Pr(j+1)(λt = 1) = A(j+1) exp{−0.5Tr(∆
(j+1)
t (R1)

−1)}
(81)

Pr(j+1)(λt = 0) = 0 (82)

Pr(j+1)(εt = 1) = B(j+1) exp{−0.5Tr(Π
(j+1)
t (R2)

−1)}
(83)

Pr(j+1)(εt = 0) = 0 (84)

Pr(j+1)(δt = 1) = D(j+1) exp{−0.5Tr(Υ
(j+1)
t (R3)

−1)}
(85)

Pr(j+1)(δt = 0) = 0 (86)

Substituting (81), (82) into (37), (83), (84) into (48), (85),

(86) into (59), we have

E
(j+1)[λt] = 1,E

(j+1)[εt] = 1,E
(j+1)[δt] = 1 (87)

Using (87) into (29), we have

R̄
(j+1)
t =





R1 0 0

0 R2 0

0 0 R3



 (88)
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From the above induction, the noise covariance R̄
(j+1)
t of

the proposed method at every time t for each iteration is equal

to that of EKF with augmented measurements. Therefore, the

proposed VBASF becomes EKF with augmented measure-

ments when a0 = h0 = e0 = 1 and b0 = d0 = f0 = 0.

In this paper, the optimal solution of state estimation for

IV with multiple sensors is proposed by a novel fusion

method, which introduces an indicator to identify whether

the measurement has the useful information for improving the

localization accuracy of IV.

IV. EXPERIMENTS

The performance of the proposed VBASF method for es-

timating the IV’s state is verified by simulations and real IV

experiments.

A. Simulations

The motions of IV and sensor measurements

are given by (1), (2), (4), and (7), respectively.

The time interval and total time are set as 0.01s

and 200s, respectively. The covariance Q is set as

diag(10−2I3m
2, 10−6I3rad

2, 10−2I3
m2/

s2, 10
−6I3

rad2/
s2),

R1 = diag(a1I3), R2 = diag(a2I3), and R3 =

diag(a3I3, a4I3), where a1 = 10m2, a2 = 0.1rad
2/

s2,

a3 = 1m
2/

s2, and a4 = 1rad
2/

s2. In order to describe the

GPS measurement loss, Lidar and IMU measurements outlier,

we set 10 percents of GPS, IMU, and Lidar measurements as

useless information.

In this paper, BKF-MAP method [9], BKF-CML method

[9] method, and the KF with true measurement (KFT) method

are compared. The KFT uses the true measurement to provide

optimal state estimates. The BKF-MAP method is computed

under the criterion of maximum a posteriori probability. The

conditional measurement loss probability is estimated in the

BKF-CML method [9]. In the proposed VBASF method, we

set a0=h0=e0=0.85, b0=d0=f0=0.15, η=0.01, J=20. In this

paper, the performance indices are given as:

RMSEp =

√

√

√

√

√

MC
∑

i=1

(

(px,it − p̂
x,i
t )

2
+ (py,it − p̂

y,i
t )

2
+ (pz,it − p̂

z,i
t )

2)

MC
(89)

RMSEo =

√

√

√

√

√

MC
∑

i=1

(

(φit − φ̂it)
2
+ (θit − θ̂it)

2
+ (ψi

t − ψ̂i
t)

2
)

MC
(90)

where RMSEp and RMSEo denote the root mean square

error of position and orientation, respectively, MC is the

total number, (px,it , p
y,i
t , p

z,i
t ) and (φit, θ

i
t, ψ

i
t) denote the true

positions and orientation at time t in the ith run, respectively,

(p̂x,it , p̂
y,i
t , p̂

z,i
t ) and (φ̂it, θ̂

i
t, ψ̂

i
t) denote the estimated positions

and orientation at the ith run at time t, respectively. The initial

state estimate is chosen as N (x0, P0), where x0 = 0 and

P0 = I12.

Using 100 runs, Fig. 1 and Fig. 2 depict the RMSEp and

RMSEo of the BKF-MAP, BKF-CML, KFT, and proposed
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Fig. 1. RMSEp of the BKF-MAP, BKF-CML, KFT, and proposed
VBASF method
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Fig. 2. RMSEo of the BKF-MAP, BKF-CML, KFT, and proposed
VBASF method

VBASF methods, respectively. From Fig. 1 and Fig. 2, the

proposed VBASF method has smaller RMSEp and RMSEo

than the BKF-MAP and BKF-CML methods, the RMSEp and

RMSEo of proposed VBASF method are close to those of

KFT method.

B. Field experiment

Real IV experiments are conducted in this subsection. An

IMU, a Velodyne Lidar-32, and a low-precision GPS are

equipped on the IV. Meanwhile, a integrated navigation system

(INS), which provides the reference trajectory of the IV, is

also equipped on the IV. Fig. 3 and Fig. 4 give the real IV

and experimental route, respectively.

The measurements in (2) and (4) are obtained from the

information of the low-precision GPS and the IMU. The ICP

algorithm [27] is proposed to give the measurement in (6),

which is computed from Lidar point set. The measurements

of GPS and reference trajectory are given in Fig. 5. It is

observed that the GPS measurements are distributed around

the reference trajectory. The GPS measurements are highly
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Fig. 3. The used IV

Fig. 4. The experimental route
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Fig. 5. Truth trajectory and GPS measurement

Fig. 6. Map built by the proposed VBASF method
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contaminated with outliers over time periods 350-400 s, 440-

480 s, and 515-555 s. Meanwhile, to exhibit the robustness

of the proposed method, some difficult scenarios are manu-

ally added, such as, the maximum Lidar sensing distance is

restricted within 10m over time periods 200-220 s, 310-325 s,

and 535-550 s.

In the experiments, the covariance of process noise and

three sensor measurement noises are set as identity matrices,

respectively. Using the proposed VBASF method, the IV’s

state is estimated. The map is produced by the proposed

VBASF method in Fig. 6. It can be seen that the map matches

well with the ground truths.

To evaluate the proposed VBASF method, several traditional

Lidar-SLAM methods are compared, such as LOAM method

[18], FAST-LIO2 method [24], LINS method [25], LEGO-

LOAM method [19], LIO-SAM method [31]. In the LOAM

method, IV’s state is estimated by point cloud registration al-

gorithm. In the FAST-LIO2 method, Lidar-inertial odometry is

performed by an iterated KF. In the LINS method, an iterated

error-state KF is developed to obtain the IV’s state using Lidar

and IMU. LEGO-LOAM method uses Levenberg-Marquardt

optimization algorithm to obtain the IV’s state. LIO-SAM

fuses Lidar and IMU measurements to obtain Lidar inertial

odometry in a factor graph. The LIO-SAMGPS method, which

fuses GPS, Lidar, and IMU in the framework of LIO-SAM, is

compared. Furthermore, the proposed VBASF-NoGPS, which

uses the proposed VBASF without GPS measurements, is

also considered. The estimated trajectories of the compared

methods, proposed VBASF-NoGPS method, and proposed

VBASF are given in Fig. 7. It is shown that the trajectories

from VBASF is close to the ground truths.

The localization error (LE) is chosen as the performance

index,

LE =

√

(xIVt − x̂IVt )
2
+ (yIVt − ŷIVt )

2
+ (zIVt − ẑIVt )

2

(91)

where (x̂IVt , ŷIVt , ẑIVt ) and (xIVt , yIVt , zIVt ) denote the esti-

mated and true positions of IV, respectively.

The LEs of the LOAM method, FAST-LIO2 method, LIN-

S method, LEGO-LOAM method, LIO-SAM method, LIO-

SAMGPS method, proposed VBASF-NoGPS method, and

proposed VBASF method are shown in Fig. 8. The proposed

VBASF method has smaller LE than other methods. The pro-

posed VBASF-NoGPS method has better performance than the

LOAM method, FAST-LIO2 method, LINS method, LEGO-

LOAM method and LIO-SAM method. In the experiments,

the GPS measurements are highly contaminated with outliers

over time periods 350-400 s, 440-480 s, and 515-555 s. The

geometric features of Lidar are scarce over time periods 200-

220 s, 310-325 s, and 535-550 s. The LIO-SAMGPS method

directly fuses the measurements of all sensors to localize

the IV, and it is sensitive to outliers. The proposed VBASF

method fuses only useful sensor measurements and has better

performance than LIO-SAMGPS method. Meanwhile, the pro-

posed VBASF-NoGPS method also fuses only useful sensor

measurements and outperforms the LOAM method, FAST-

LIO2 method, LINS method, LEGO-LOAM method, LIO-

SAM method. The run times in one step of these methods are

TABLE I

THE RUN-TIMES OF THE LOAM, FAST-LIO2, LINS, LEGO-LOAM,

LIO-SAM, LIO-SAMGPS, PROPOSED VBASF-NOGPS AND

PROPOSED VBASF METHODS

Methods Run-time (ms)

LOAM 78.26
FAST-LIO2 30.82
LINS 168.56
LEGO-LOAM 50.75
LIO-SAM 70.55
LIO-SAMGPS 125.45
Proposed VBASF-NoGPS 33.9
Proposed VBASF 40.2

listed in Table. I, which reveals that the proposed VBASF has

lower computation load than the LOAM, LEGO-LOAM, LIO-

SAM, LINS, and LIO-SAMGPS methods, and it has slightly

higher computational load than the FAST-LIO2 method.

V. CONCLUSIONS

In this study, a novel VBASF method is proposed to localize

IV. An indicator, which follows a Bernoulli distribution, is

used to identify whether the sensor measurement has useful

information to improve the localization performance. The

VB algorithm is proposed to provide the robust localization

results. Simulations and real IV experiments are performed

to compare the proposed VBASF method and the existing

state-of-the-art methods. It can be concluded that the proposed

VBASF method has improved localization accuracy than the

LOAM, FAST-LIO2, LINS, LEGO-LOAM, LIO-SAM, and

LIO-SAMGPS methods but has slightly higher computational

load than the FAST-LIO2 method.
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