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Abstract  36 

Typhoid fever is an invasive bacterial disease associated with bloodstream infection that 37 

causes a high burden of disease in Africa and Asia.Typhoid primarily affects individuals 38 

ranging from infancy through to young adulthood. The causative organism, Salmonella 39 

enterica serovar Typhi is transmitted via the faecal-oral route, crossing the intestinal 40 

epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated 41 

febrile illness. Blood culture remains the practical reference standard for diagnosis of 42 

typhoid fever, where culture testing is available, but novel diagnostic modalities are an 43 

important priority under investigation. Since 2017, remarkable progress has been made in 44 

defining the global burden of both typhoid fever and antimicrobial resistance; in 45 

understanding disease pathogenesis and immunological protection through the use of 46 

controlled human infection; and in advancing effective vaccination programmes through 47 

strategic multi-partner collaboration and targeted clinical trials in multiple high-incidence 48 

priority settings. This primer article thus offers a timely update of progress and perspective 49 

on future priorities for the global scientific community.  50 



[H1] Introduction  51 

Typhoid fever, also known as typhoid, is a serious invasive infection involving the blood-52 

stream and deep reticulo-endothelial tissues. The organism responsible for the clinical 53 

syndrome of typhoid fever, Salmonella enterica subsp. enterica serovar Typhi (S. Typhi), is 54 

found within the Enterobacterales family. S. Typhi is a rod-shaped, Gram-negative, 55 

facultative anaerobic bacteria within the Salmonella genus, and is host-restricted to 56 

humans1.  57 

The WHO defines a confirmed case of typhoid fever as an individual with laboratory 58 

confirmation of S. Typhi by culture, or molecular methods such as detection of S. Typhi DNA, 59 

from a normally sterile site2. A suspected case of typhoid fever is defined as an individual 60 

with fever for at least three out of seven consecutive days in an endemic area, or following 61 

travel from an endemic area, or after a household contact with a confirmed case2. In 62 

endemic areas where appropriate diagnostics are lacking, clinical symptoms are relied upon 63 

for establishing a diagnosis. However, with numerous other infectious conditions presenting 64 

with a similar undifferentiated fever, clinical symptoms lack both sensitivity and specificity3. 65 

Typhoid fever was the first human disease in which asymptomatic carriage was 66 

demonstrated, in 1904, to be a source of disease transmission,4 including in the famous case 67 

of Mary Mallon5. Generally, ~2–5% of acute typhoid illnesses are thought to develop 68 

asymptomatic chronic carriage6. Chronic carriage is defined as apparently healthy 69 

individuals with evidence of S. Typhi shedding in stool at least 12 months after finishing an 70 

appropriate course of antimicrobial treatment and the resolution of symptoms, following a 71 

laboratory confirmed episode of acute disease, or alternatively, two positive stool samples 72 

for S. Typhi 12 months apart.2 73 

S. Typhi is transmitted via the faecal-oral route crossing the intestinal epithelium and 74 

disseminating to systemic sites. Blood culture, where available, remains the practical 75 

reference standard for diagnosis of typhoid fever7. Timely administration of appropriate 76 

antimicrobials is the mainstay of treatment for typhoid fever; however, with escalating 77 

antimicrobial resistance, treatment has become challenging in some parts of the world8. 78 

With improvements in sanitation infrastructure, drinking water quality, and enhanced food 79 

safety procedures the incidence of typhoid fever can be reduced.9,10 However, in some low-80 

resource settings, the comprehensive changes required in setting up such infrastructure 81 



may take decades or even generations, and hence, the burden of disease from infancy 82 

through to young adulthood, remains unacceptably high.  83 

The term ‘enteric fever’ encompasses both typhoid fever and the clinically similar syndrome 84 

caused by Salmonella enterica serovars Paratyphi A, B, or C (S. Paratyphi A, B, C). A full 85 

description of paratyphoid fever is beyond the scope of this primer, but it is mentioned in 86 

brief where there are relevancies, similarities, or contrasts — in particular for S. Paratyphi A, 87 

which accounts for ~25% of enteric fever cases in South Asia11. Salmonella serovars other 88 

than S. Typhi and S. Paratyphi A, B, or C are known as non-typhoidal Salmonella (NTS). 89 

Although NTS can cause a severe invasive syndrome (iNTS disease), which is particularly 90 

prevalent among African children, a description of NTS disease is also beyond the scope of 91 

this Primer. 92 

In this Primer, we discuss the epidemiology of typhoid fever, detailing the burden and 93 

pattern of disease, modes of transmission, and risk factors for infection. Furthermore, we 94 

explore the literature on S. Typhi bacterial genomics as well as pathogenesis and the host 95 

response to infection. Finally, we outline the current patterns of antimicrobial resistance 96 

globally and the antimicrobial treatment options available. As typhoid has a variable and 97 

often non-specific clinical presentation, we emphasize the need for improved diagnostics for 98 

clinical use and epidemiological use. 99 

[H1] Epidemiology 100 

[H2] Reservoir, source, and mode of transmission 101 

S. Typhi is a human-restricted pathogen with no non-human animal reservoir12. S. Typhi is 102 

shed in human faeces from sites of infection in the gallbladder and small bowel. In high-103 

incidence areas with poor sanitation infrastructure, the major source of new infections is 104 

indirect transmission via water and via food contaminated with the faeces13 of an infected 105 

person, who might shed the bacteria during acute infection, convalescence, or chronic 106 

carriage. As typhoid fever incidence declines within a specific population, the treatment of 107 

chronic carriers with antimicrobials and in some cases, cholecystectomy, might become 108 

necessary to prevent new infections. Studies have reported direct transmission of S. Typhi 109 

associated with oral-anal sex14. In addition, S. Typhi may also survive outside the human 110 

host for extended periods without evidence of multiplication15 in a viable, non-culturable 111 

state, contributing to persistence and transmission over large distances and extended time 112 



scales16. Changes in expression of S. Typhi genes involved in metabolism and the respiratory 113 

chain may provide insights into the mechanisms for survival of S. Typhi in aqueous and other 114 

environments17. Improvements in the sensitivity of detection of S. Typhi in environmental 115 

samples by nucleic acid amplification have enhanced our understanding of the role of 116 

environmental contamination in community-level risk of typhoid fever18. 117 

[H2] Measuring disease burden 118 

Studies have established S. Typhi as the leading cause of community-onset bloodstream 119 

infection in south and southeast Asia19 and an important albeit less prominent cause in 120 

Africa20,21. Since 2020s, the number and geographic representativeness of studies of enteric 121 

fever and typhoid fever incidence and outcome has improved greatly22-26, as have 122 

approaches to extrapolating incidence,27-30 and modelling burden of disease31. 123 

In 2017, typhoid fever was estimated to cause 10.9 (95% uncertainty interval, UI 9.3–12.6) 124 

million illnesses globally and 116,800 (95% UI 65,400–187,700) deaths globally31. The global 125 

case fatality ratio is estimated at 0.95%. 126 

Based on population-based cohorts and national surveillance data in medium-incidence and 127 

high-incidence regions combined with registration sources in low incidence regions, global 128 

incidence of enteric fever was estimated to be 197.8 (95% UI 172.0–226.2) per 100 000 129 

person-years11. Typhoid-specific global incidence is estimated to be 130.96 (95% UI 83.94-130 

199.55) per 100 000 person years (Figure 1).32 131 

Considering variation by super-regions, defined as areas of the world grouped by 132 

epidemiological similarlity and geographical proximity, south Asia had the highest age-133 

standardised incidence rate of enteric fever (549, 95% UI 481–625, cases per 100 000 134 

person-years) and the largest number of illnesses (10.3 million, 95% UI 9.0–11.7), 135 

accounting for 71·8% of global illnesses in 201711. Southeast Asia, east Asia, and Oceania 136 

combined accounted for 14·1% of enteric fever illnesses (2.02 million, 95% UI 1.82–2.23) 137 

with an incidence ranging from 51.0 (east Asia) to 219.8 (southeast Asia) per 100,000 138 

person-years. Sub-Saharan Africa accounted for 12·1% of enteric fever illnesses (1.73 139 

million, 95% UI 1.45–2.06), and had an incidence ranging from 151–161 per 100,000 person-140 

years in West and East Africa respectively, to 2.3 per 100,000 person-years in southern 141 

Africa11. 142 

To estimate burden of disease, a natural history approach is undertaken, which includes 143 

collation of studies of typhoid incidence using active population-based surveillance, or 144 



hybrid surveillance methods, and extrapolating  to areas without data33,34,35. In addition, the 145 

prevalence of major complications such as intestinal perforation, and the case fatality 146 

ratio36,37 are applied to estimate disability and death owing to typhoid fever31. Overall, in 147 

2017, enteric fever was responsible for 8.4 (95% UI 4.7 – 13.6) million disability-adjusted life 148 

years, comprising 8.3 (95% UI 4.6 - 13.4) million years of life lost and 105,000 years lived 149 

with disability)11. 150 

[H2] Risk factors  151 

[H3] Age 152 

In high-incidence and medium-incidence endemic settings, typhoid fever is observed from 153 

infancy onwards. Globally the disease peaks at 5–9 years of age, however, this average 154 

conceals considerable heterogeneity in incidence by age between regions and countries11. 155 

The peaks and decline in the incidence of typhoid fever with age in endemic settings are 156 

believed to be related to the rate at which susceptible individuals acquire infection and, 157 

therefore, the acquisition of immunity cumulatively from natural infection and repeated 158 

subclinical or asymptomatic exposure to the pathogen38. This means that across these age-159 

bands there is considerable variation in age-distribution by location. For example, incidence 160 

may be high or even reach peak levels among infants in very high incidence areas, but peak 161 

incidence might be observed in older children or even young adults, in areas of medium 162 

incidence. Incidence subsequently declines gradually with age through adulthood and 163 

incidence is typically low in all elderly populations31. Re-infection, as opposed to relapse, has 164 

been documented, suggesting only moderate levels of protection conferred by an episode 165 

of clinical infection39. 166 

[H3] Environmental exposures. 167 

A systematic review and meta-analysis of case-control studies evaluated associations 168 

between typhoid fever and water, sanitation and hygiene (WASH) and food exposures.40 169 

The authors identified 19 manuscripts describing 22 case-control studies, with 20 studies 170 

(90.9%) having medium or high risk of bias. In the meta-analysis, good hygiene and water 171 

treatment were most strongly associated with protection from typhoid fever (OR = 0.52 and 172 

0.59, respectively), whereas poor hygiene and untreated water were most strongly 173 

associated with the risk of typhoid fever (OR = 2.2 and 2.4, respectively). Of the sanitation 174 

factors household latrine availability and use, safe waste management, unsafe waste 175 

management, and open defecation, unsafe waste management was significantly associated 176 



with typhoid fever (OR = 1.6, 95% CI = 1.3–2.0). Hygenic food practices were significantly 177 

associated with decreased odds of typhoid fever (OR = 0.74), and risky food practices and 178 

consuming food or drink outside the home were associated with significantly higher odds of 179 

typhoid fever (OR = 1.6–1.7) than consuming home-based meals. Dairy, ice cream and fruits, 180 

and juices were significantly associated with typhoid fever (OR = 1.4–1.5)40. In a cluster 181 

randomized controlled trial of typhoid conjugate vaccine (TCV), living in a household with 182 

better WASH practices at baseline was associated with a significant reduction in the 183 

incidence of typhoid fever independent of vaccine intervention41. By contrast, in typhoid 184 

non-endemic countries, cases of typhoid fever were almost exclusively related to recent 185 

travel, contact with a traveller from an endemic country, or exposure to food prepared by a 186 

chronic carrier42. 187 

[H3] Human genetic factors.  188 

A genome-wide association study performed among individuals with and without blood 189 

culture-confirmed enteric fever in Vietnam showed a strong association of rs7765379, a 190 

marker mapping to the HLA class II region, in proximity to HLA-DQB1 and HLA-DRB1, with an 191 

increased risk of infection43. This finding was replicated in a large cohort in Nepal and in a 192 

second independent study from Vietnam.43 HLA-DRB1 was implicated as a major contributor 193 

to resistance against enteric fever, likely mediated by antigen presentation. 194 

[H3] Seasonal and environmental factors.  195 

Improvements in WASH and food exposures and increased use of TCV in typhoid-endemic 196 

countries, are likely to strengthen typhoid fever prevention and control. An analysis of 197 

seasonal patterns of typhoid and paratyphoid fevers observed a distinct seasonal pattern by 198 

latitude, with seasonal variability in incidence, more pronounced further from the 199 

equator44. The investigators found evidence of a positive association between preceding 200 

rainfall and enteric fever among regions 35°–11°N and a positive association between 201 

higher temperature and enteric fever incidence across most regions of the world. The 202 

underlying mechanisms that drive the seasonality of typhoid fever are poorly understood. 203 

The impact of climate change that contribute to faecal contamination of water and food, 204 

such as flooding or water shortages that increase dependence on unsafe water and 205 

deterioration in food safety might likely be associated with an increased risk of typhoid 206 

fever45-47. 207 



[H2] Pathogenic variants 208 

Since the 1900s, phage typing has identified distinct variants of S. Typhi and S. Paratyphi 209 

48,49. Global diversity studies have shown that  both pathogens harbour multiple distinct 210 

phylogenetic lineages, which are linked to specific geographic regions50,51. However, no 211 

evidence exists showing association of different S. Typhi or S. Paratyphi A variants with 212 

demographic factors such as age or sex52,53. Futhermore, the variants also do not exhibit 213 

differences in disease presentation or severity. Currently, pathogen genome sequencing 214 

have replaced phage typing and S. Typhi variants have been defined and identified using the 215 

GenoTyphi genotyping scheme, which was first developed in 2016 using ~2,000 pathogen 216 

genome sequences from 65 countries54. This scheme is regularly updated to reflect newly-217 

identified variants or genotypes; for instance, the latest updates to the scheme (December 218 

2022) were based on analyses of 13,000 genomes from 111 countries by the Global Typhoid 219 

Genomics Consortium55,56. These data provide a comprehensive view of the distribution of 220 

S. Typhi variants across different parts of the world, although some regions, especially 221 

Central and Northern Africa, Western Asia and Latin America, still lack sequence data. The 222 

distribution of variants is quite distinct by region (Figure 2)57. For example, genotype 4.3.1 223 

(previously known as H58) dominates the pathogen population in South Asia (where it is 224 

thought to have emerged in the early 1990s)58 and Eastern Africa (where it is thought to 225 

have been introduced multiple times in the last 10–20 years)52, but is rare elsewhere. In 226 

Western Africa, the dominant genotypes are 3.1.1 and 2.3.1(ref59), whereas the dominant 227 

variants are 2,2.5 and 3.5 in Central America and South America60,61. In addition, island 228 

nations have their distinct genotypes — 3.5 in Samoa, 3.5 and 4.2 in Fiji, 4.2 and 2.1.7 in 229 

Papua New Guinea)55,62,63. The reason for geographic separation of variants is not fully 230 

understood, although human migration patterns might be the driving factor as S. Typhi is a 231 

human-restricted pathogen64. For example, the transfer of 4.3.1 to Eastern Africa could be 232 

linked to frequent migration of South Asians to Kenya and neighbouring countries in East 233 

Africa, whereas the distinct S. Typhi populations in Western Africa could reflect greater 234 

stability of communities within that setting. 235 

[H1] Mechanisms/Pathophysiology  236 

Non-typhoidal Salmonella enterica (S. enterica) serovars cause foodborne gut luminal 237 

inflammation and enterocolitis in healthy humans. However, S. Typhi once ingested can 238 



rapidly cross the intestinal epithelium and disseminate to systemic sites, including the liver, 239 

spleen, bone marrow, and gallbladder1 (Figure 3). S. Typhi is unusual among S. enterica 240 

serovars in that it harbours an exopolysaccharide capsule known as Vi — the target of 241 

modern conjugate vaccines65. The Vi capsule is hypothesized to be crucial in S. Typhi 242 

pathogenesis; however, S. Paratyphi A causes a clinically indistinguishable infection despite 243 

lacking a Vi capsule, and these two human-restrictive invasive serovars do not share any 244 

additional or unique virulence factors66. Unlike non-typhoidal serovars that have a broad 245 

host-range among vertebrates, the genomes of serovars Typhi and Paratyphi A show 246 

evidence of functional gene loss, characteristic of host-restricted adaptation. Approximately 247 

4% of S. Typhi and S. Paratyphi A genes carry these inactivating mutations, known as 248 

pseudogenes, compared with ≤1% in other non-typhoidal S. enterica serovars67-70. 249 

[H2] Insights from disease models 250 

[H3] Infection of intestinal epithelium and dissemination to tissues.  251 

Owing to the human-restricted nature of S. Typhi and S. Paratyphi A, much of the 252 

foundational understanding of typhoid pathogenesis has come from the study of mice 253 

infected with the ‘generalist’ serovar S. enterica serovar Typhimurium (S. Typhimurium) 254 

causing an invasive illness. This has elucidated a range of pathogenic mechanisms, and been 255 

considered a helpful model of typhoid. Furthermore, a range of related in vivo and ex vivo 256 

models have yielded important mechanistic insights into the complex interplay between the 257 

pathogen, the microbiota and the host response70 . Following oral ingestion by mice, 258 

generalist non-typhoidal serovars survive gastric acidity and evade colonisation resistance 259 

by inducing inflammatory competition with the resident microflora, thereby altering the 260 

metabolic landscape in the lumen to optimise access to luminal host-derived resources such 261 

as oxygen, nitrate, tetrathionate and lactate71. S. Typhi , by contrast, is a stealth pathogen 262 

that employs several adaptation techniques to rapidly cross the gut epithelium, inducing 263 

minimal inflammation66,72. S. Typhi possesses the regulatory locus, TviA, encoding a protein 264 

with a complex counter-balanced regulatory function, which downregulates flagellin-265 

associated inflammation and upregulates expression of the Vi capsule polysaccharide that 266 

mediates immune evasion73. The genes encoding the Vi capsule comprise the viaB locus 267 

within the salmonella pathogenicity island 7 (SPI-7), which also encodes the type III 268 

secretion system (T3SS) effector, SopE and a type IVB pilus74.  269 



Invasive salmonella serovars, in a susceptible host, can potentially cross the intestinal 270 

barrier by a multiplicity of routes, which include direct invasion of enterocytes, invasion by a 271 

transcellular route, direct uptake by dendritic cells across the epithelium or invasion of 272 

specialised antigen-sampling epithelial microfold cells (M cells). The M-cells overlie the 273 

organised lymphoid tissue of Peyer's patches, found particularly in the terminal ileum75. 274 

Salmonellae are transported via M cells to be presented to B cells and dendritic cells that 275 

reside within the microfolds in Peyer’s patches76. Chronic infection of the lymphoid tissue in 276 

human intestinal Peyer’s patches is a key element of pathogenesis, which acts as a source of 277 

ongoing enteric shedding in the stool and transmission. Chronic infection may also lead to 278 

necrosis of the Peyer’s patch tissue and consequently, intestinal perforation — a serious 279 

complication of typhoid fever.  280 

Once salmonellae have gained access to the host circulation causing a transient 281 

asymptomatic primary blood stream infection, they can disseminate to different organs by 282 

several mechanisms77. During extracellular vascular dissemination in the circulation, the Vi 283 

capsule inhibits phagocytosis and confers serum resistance, likely by shielding the surface 284 

lipopolysaccharide O-antigen from antibodies78. In addition, the ability to survive and 285 

disseminate intracellularly is a key pathogenic strategy and bacteria are also translocated 286 

from the gut within CD18+ cells. This cellular population encompasses the reticulo-287 

endothelial system including monocyte or macrophages, dendritic cells and 288 

polymorphonuclear leukocytes, and phagocytes in the liver, spleen and bone marrow67. 289 

Within minutes of contact with phagocytic cells, invasive salmonella are internalized into 290 

the salmonella-containing vacuole67, a highly specialised modified phagosome that prevents 291 

endosomal fusion with the phagocyte oxidase complex, thus establishing a chronic, deep-292 

seated intracellular reticuloendothelial infection66. This established infection results in a 293 

persistent secondary blood stream infection associated with high fever. Salmonellae to 294 

thence enter and colonise the gall bladder, particularly if there are gallstones or other 295 

structural abnormalities, providing an important niche from where they may be shed back 296 

into the gastrointestinal tract in bile. This is the hallmark mechanism of chronic carriage of 297 

typhoid in human disease, enabling ongoing community transmission of the pathogen to 298 

new hosts. This re-infection of the upper gastrointestinal tract may also result in re-infection 299 

of Peyers patches, leading to necrosis of tissue and consequently, intestinal perforation — a 300 



serious complication of typhoid fever requiring surgery, which may be accompanied by a 301 

tertiary blood stream infection with a range of enteric micro-organisms.   302 

[H2] Controlled human infection model 303 

A controlled human infection model (CHIM) for study of typhoid infection, was established 304 

at Oxford University in 2011 to further our understanding of disease pathogenesis and 305 

accelerate the development of candidate vaccines79. The CHIM model involved deliberate 306 

infection of healthy adult volunteers with an antibiotic-sensitive strain of S. Typhi, 307 

manufactured under Good Manufacturing Practice , originally derived from the gallbladder 308 

of a woman with chronic typhoid infection in Maryland in the 1950s79,80. After screening and 309 

informed consent procedures, participants ingested 10,000 colony-forming units (CFU) of S. 310 

Typhi in a bicarbonate solution. Approximately two thirds of individuals developed a fever 311 

for >12 hours and/or bacteraemia over the next 2 weeks (median time to onset was 8 days), 312 

thus meeting the study definition of typhoid fever and triggering cessation of infection with 313 

oral antibiotics79. A similar model was established to study paratyphoid infection, although 314 

1,000 CFU of S. Paratyphi A were sufficient to cause consistent infection (60%)81. In the 315 

paratyphoid infection model, the proportion of individuals with bacteraemia and the 316 

cytokine responses of participants were similar to those in the typhoid infection model. 317 

However, bacteraemia was more prolonged (median 53 hours) and blood-culture positive 318 

asymptomatic infection was more common (55%) in individuals with paratyphoid fever than 319 

in individuals with typhoid81.  320 

[H3] Inflammatory response.  321 

After ingestion of the bacteria, the typhoid model showed evidence of transient but 322 

asymptomatic bacteraemia in the first 24 hours documented by detection of DNA in 323 

peripheral blood82, This bacteraemia might represent the initial transit of bacteria from the 324 

gut mucosa to the lymphoid tissues prior to the incubation period. The initial DNAaemia is 325 

associated with a systemic cytokine response, notably consisting of sCD40L, fractalkine 326 

(CX3CL1), GROα, IL1RA, EGF and VEGF, regardless of whether the individual later goes on to 327 

develop overt typhoid disease. This cytokine response may represent inflammatory 328 

perturbation at the gut mucosa, perhaps implying that the infection is limited to the 329 

mucosa, but could also be consistent with invasive infection even among those who do not 330 

go on to show evidence of overt infection83. Onset of clinical invasive disease was heralded 331 

by a gradual fall in eosinophil count over the 5 days preceding onset of symptoms, followed 332 



by a fall in total white cell count, lymphocytes, neutrophils and platelets after the onset of 333 

clinical disease79. Whether these changes represent successful deployment of an 334 

appropriate immune and inflammatory response to the infection or a failure of an 335 

appropriate protective response are not clear. Almost all individuals had positive blood 336 

cultures associated with diagnosis of infection in the model, with a median of 1 CFU per ml 337 

of blood detected.79 338 

After the onset of febrile symptoms, the profile of transcriptomic responses reflected the 339 

presence of strong type I and II interferon signals that were associated with bacteraemia in 340 

the study83. Evidence shows that this interferon signalling interfered with tryptophan 341 

metabolism, which might indicate that part of the host response exists to limit bacterial 342 

growth. As a component of the acute innate immune response to infection, studies have 343 

shown an increase in hepcidin levels increased and decrease in blood iron levels.Limiting the 344 

iron availability for extracellular bacteria in the blood and concomitantly increasing iron 345 

availability in macrophages supporting survival of internalised bacteria is a characteristic 346 

feature of S.Typhi infection84 . 347 

[H3] Antibody response. 348 

Among those challenged with S. Typhi who progressed to develop clinical disease, IgG, IgM 349 

and IgA responses against H (flagellar) antigen and lipopolysaccharide were detected in the 350 

peripheral blood, but no measurable anti-Vi antibody response were detected in these 351 

previously unexposed individuals79. Responses in the CHIM were further probed using a 352 

250-antigen array, and serodiagnostic signatures containing flagellin, OmpA, HlyE, sipC, and 353 

IgG, IgM and IgA antibody responses against lipopolysaccharide could distinguish typhoid 354 

from other febrile illnesses in an endemic setting85 . IgA against lipopolysaccharide antigen 355 

performed particularly well as a diagnostic marker in the model. In addition, a set of five 356 

gene expression profiles that could distinguish individuals with typhoid infection from other 357 

febrile illnesses were identified using the CHIM86.  358 

[H3] Role of typhoid toxin.  359 

Studies have shows that typhoid toxin induced some of the hall mark clinical features of the 360 

disease in murine models, suggesting that the toxin may be an important virulence factor 361 

for S. Typhi87,88. However, the toxin also found in other typhoidal and non-typhoidal 362 

salmonellae including serovars that do not cause the clinical syndrome of enteric 363 

fever68,89,90. To assess the virulency of the toxin, volunteers were challenged either with a 364 



toxin-negative or wild-type strain and no difference was found in the proportion of 365 

individuals developing typhoid between the two groups. Unexpectedly, bacteraemia was 366 

more prolonged in the toxin-negative group than in the wild-type group. These observations 367 

indicate no role for typhoid toxin in imparting susceptibility to typhoid infection91. 368 

[H3] Infection-derived immunity. 369 

Immunity acquired from S. Typhi infection is likely an important factor to be considered 370 

when understanding the impact of vaccination on transmission of the pathogen. Whilst 371 

modelling studies include acquisition of natural immunity as an important variable, few data 372 

are available on the level and duration of protection afforded by clinical disease 373 

episodes92,93. After prior CHIM infection (median 19 months previously, range 12–67 374 

months), volunteers who underwent rechallenge with the same serovar as their initial 375 

challenge (homologous challenge with S. Typhi or S. Paratyphi A) had a moderately reduced 376 

risk of developing typhoid (36%) or paratyphoid (57%), but no protection was conferred by 377 

challenge of the alternative organism(heterologous cross-challenge)38. In those who did 378 

develop enteric fever, no difference in symptoms was found between naïve individuals 379 

(those not previously challenged) and those who had previously been challenged. 380 

Interestingly, baseline anti-lipopolysaccharide, anti-H and anti-Vi antibody levels were 381 

similar between the naïve and rechallenged groups, and no obvious boost in antibody was 382 

observed in those with prior exposure38. 383 

[H3] Stool shedding. 384 

Six typhoid and paratyphoid CHIM studies with 4,934 stool samples were analyzed to 385 

identify factors that might reduce stool shedding and potentially reduce transmission in 386 

field settings94. Prior infection in those who were rechallenged in the CHIM was associated 387 

with reduced shedding (OR 0.30; 95% CI: 0.1–0.8) as was prior vaccination with a Vi-388 

containing vaccine (OR 0.34, 95% CI: 0.15–0.77 for Vi polysaccharide vaccine; and OR 0.41, 389 

95% CI: 0.19–0.91 for TCV)94. A non-significant reduction in stool shedding was associated 390 

with the live oral Ty21a vaccine94. The Oxford CHIM has been used in assessing vaccine 391 

efficacy of a number of typhoid vaccines (Box 1). 392 

[H2] Antimicrobial resistance 393 

Antimicrobial resistance is common in both S. Typhi and S. Paratyphi A, and is typically 394 

driven by local overprescription of antibiotics95,96. Multidrug resistant (MDR) S. Typhi is 395 

defined as resistance to the combination of three first-line treatments — chloramphenicol, 396 



ampicillin and trimethoprim-sulfamethoxazole. MDR S. Typhi, a clinical problem since the 397 

1980s, emerges through the simultaneous acquisition of multiple resistance genes encoded 398 

on a single transmissible plasmid, which can be transferred between bacterial species and 399 

strains97. By the 1990s, in parts of south and southeast Asia the majority of S. Typhi 400 

infections were MDR98, prompting a switch to fluoroquinolones and azithromycin as the 401 

mainstays of treatment. However, fluoroquinolone resistance is now highly prevalent in 402 

these regions, mostly owing to gyrA and parC mutations in 58,99. Extensively-drug resistant 403 

(XDR) S. Typhi, defined as the combination of MDR plus resistance to fluoroquinolones and 404 

third-generation cephalosporins, has now emerged. A large outbreak of XDR S. Typhi was 405 

reported in Pakistan in 2016 and the corresponding variant (4.3.1.1.P1), which has spread 406 

throughout the country, caused the majority of typhoid cases reported there in 2018–2019 407 

(Ref100,101). Although this XDR variant has been detected in other countries, its incidence is 408 

usually linked to travel to Pakistan102,103. The prevalence of MDR S. Typhi has declined <10% 409 

in India and Nepal. However, as MDR plasmids still circulate amongst other salmonellae in 410 

these regions, return to previous drugs is not favoured as it might prompt a re-emergence 411 

of MDR and subsequently, XDR S. Typhi. Azithromycin resistance has been reported, mainly 412 

in south Asia, but remains rare (<1%)57. By contrast, in sub-Saharan Africa, MDR S. Typhi is 413 

common in most countries and fluoroquinolone resistance is increasing in countries where 414 

this drug class is overprescribed104; azithromycin and XDR strains are, however, extremely 415 

rare52,59,95,96. S. Paratyphi A infections are rarely MDR, but are almost always 416 

fluoroquinolone resistant49,51,95. Azithromycin resistance is reported in S. Paratyphi A in 417 

south Asia but, similar to S. Typhi, remains rare . 418 

[H1] Diagnosis, screening, and prevention  419 

[H2] Diagnosis  420 

One major obstacle to controlling typhoid fever is the absence of reliable and easily 421 

deployable diagnostics. In most resource-constrained settings, diagnosis is based on clinical 422 

symptoms and in most cases, the Widal test, which is non-specific, is used105. Most patients 423 

with typhoid fever present with nonspecific clinical features, with fever predominating, 424 

alongside symptoms such as malaise and headache106. Hence, differentiating typhoid fever 425 

from other febrile illnesses, such as malaria, dengue or scrub typhus, can be challenging.12 426 

Multiple studies in typhoid-endemic areas in Asia have demonstrated that relying on clinical 427 



features to diagnose typhoid fever is unreliable with low specificity (< 15%) and positive 428 

predictive values (≤ 10%)107,108. 429 

Efforts are in progress to create a benchmark specification for an improved diagnostic test 430 

for typhoid fever. Ideally, this test would fulfill several key criteria — it would be 431 

inexpensive (for instance, costing <1 dollar), highly accurate (with a high sensitivity and 432 

specificity), quick (results available in <15 minutes) and user-friendly, requiring no data-433 

interpretation, minimal training or sample processing, and not dependent on a stable water 434 

or power supply. A test that meets these standards would markedly improve the clinical 435 

diagnosis and management of typhoid fever, thereby reducing its morbidity and mortality. 436 

Improved diagnostics will also contribute to combat antimicrobial resistance. The available 437 

tests for typhoid do not currently meet these specificationsand promising assays are in 438 

development. 439 

[H3] Culture testing.  440 

A positive culture test from a normally sterile site (blood or bone marrow) is considered the 441 

reference standard for typhoid fever. However, the results might take several days and 442 

culture testing requires substantial laboratory capacity, which is not widely available in 443 

resource-constrained areas. The sensitivity of culture depends on the specimen type, prior 444 

antimicrobial use, timing of collection and sample volume owing to differences in bacterial 445 

burden at systemic sites7. For example, the organism burden in bone marrow is orders of 446 

magnitude higher than in the peripheral blood (median of 10 vs. 0.5 colony forming 447 

units/mL, respectively)109 and bacterial load in the blood peaks during the first week of 448 

infection7. Bone marrow culture has the highest sensitivity (>90%)110 and bacterial load 449 

remains high in bone marrow for several weeks, but this method has limited clinical utility 450 

due to its invasiveness. Blood culture has a sensitivity of only 50–70%7,111, and stool culture 451 

has a sensitivity of 30–40%112. In addition to having low sensitivity, a positive stool culture 452 

may indicate either acute disease, convalescent disease or chronic carriage and is, 453 

therefore, not considered diagnostic of current invasive disease.  454 

[H3] Molecular testing.  455 

Molecular diagnostics offer great promise to improve sensitivity and decrease time-to-456 

result. Multiple nucleic acid detection methods have been developed including 457 

conventional, nested, multiplex, and real-time PCR and loop-mediated isothermal 458 

amplication; however, these methods share the same limitations as blood culture113. 459 



Moreover, current PCR-based methods require laboratory capacity, and the stochasticity of 460 

genomes in small blood samples can lead to false negatives82,114. Owing to the low 461 

magnitude of bacteremia in typhoid fever, a pre-culture may be required to improve 462 

sensitivity. 463 

[H3] Novel serodiagnostics.  464 

Commercially available serum-based diagnostics, including the Widal agglutination test and 465 

latest generation rapid diagnostic tests  are widely available and detect antibodies against S. 466 

Typhi in serum or plasma. Although simple and fast, these tests have moderate sensitivity 467 

and specificity due to pre-existing antibodies from prior exposure and cross-reactivity105. In 468 

a Cochrane review of 37 typhoid rapid diagnostic tests, the best-performing assay, Tubex, 469 

had a sensitivity of 78% and specificity of 87%105 and a prospective and hybrid retrospective 470 

study of 9 commercially available rapid diagnostic tests showed the best-performing test 471 

was Enterocheck with 73.8% sensitivity and 94.5% specificity115. These results underscore 472 

the need for improved tests that accurately detect the S. Typhi.  473 

Advances in antigen discovery have revealed several novel antigen targets to improve 474 

serodiagnostic assays85,116,117. Many of these antigens were further validated in populations 475 

from Bangladesh and Nepal118 and a promising rapid diagnostic test, namely, the DPP® 
476 

Typhoid Assay has been developed. This assay is based on detecting S. Typhi 477 

lipopolysaccharide and HlyE-specific IgA and early studies demonstrate sensitivity and 478 

specificity of >90%118. Other novel typhoid diagnostic approaches currently being explored 479 

include host gene signatures or metabolite signatures, which can discriminate typhoid from 480 

other febrile illnesses86,119. 481 

[H2] Surveillance 482 

Wastewater and sero-surveillance are powerful and low-cost tools that have been used to 483 

monitor community pathogen burden for several infections and are currently being 484 

evaluated for measuring S. Typhi exposure and transmission within populations. In addition, 485 

these approaches provide estimates of disease burden, which are not biased by care-486 

seeking behaviours and measure both symptomatic and asymptomatic infections. Studies 487 

have demonstrated antibody levels to HlyE as an accurate serologic marker of acute typhoid 488 

infection118,120. A multisite study used population-based serologic data to HlyE antigen 489 

coupled with a new statistical modelling approach to estimate enteric fever incidence120. 490 

These estimates correlated well with blood culture-based etimates of incidence but were 491 



generally >100-fold higher than the unadjusted blood-culture confirmed incidence, implying 492 

the rates of pathogen exposure and infection are far higher than recorded through clinical 493 

surveillance. An existing challenge in serosurveillance studies of typhoid fever is that the 494 

antigens presently used cannot differentiate S. Typhi from S. Paratyphi A. Anti-Vi IgG  can 495 

discriminate these Salmonella serovars, however its effectiveness is limited by low 496 

seroconversion rates following S. Typhi infection and the prevalence of Vi antibody within 497 

endemic communities. The introduction of Vi-based TCV will further complicate its use in 498 

seroepidemiology, as Vi antibodies cannot distinguish active infection, immunity from 499 

natural infection or vaccine-induced immunity.120,121 Environmental surveillance, which uses 500 

culture or PCR-based methods to detect S. Typhi shed by infected individuals in sewage or in 501 

water sources, does not have this limitation. However, the outcomes from environmental 502 

surveillance for S. Typhi has been mixed18. The organism burden of S. Typhi is much lower 503 

than for viral infections (for example, SARS CoV-2), which is reflected by the infrequent 504 

detection of S. Typhi in wastewater samples18. Ongoing studies are being conducted to 505 

ascertain if there is a correlation between environmental detection of S. Typhi and clinical 506 

incidence. If this correlation is positive, two cost-effective and scalable methods that could 507 

complement blood culture-based clinical surveillance will become available and expand 508 

typhoid surveillance to areas without access to blood culture. A potential limitation to 509 

consider, however, is that representative samples might be difficult to obtain from at-risk 510 

communities that lack sewage systems. 511 

[H2] Clinical manifestations 512 

Typhoid fever is an outpatient disease in most areas of endemicity and generally presents as 513 

undifferentiated febrile illness3. Symptoms of typhoid fever manifest 10–14 days following 514 

exposure and include generalized fever and malaise, abdominal pain with or without other 515 

signs such as headache, myalgias, nausea, anorexia, constipation and less commonly, 516 

diarrhoea (Figure 4)106,122. The fever is classically described as step-wise (that is, gradually 517 

increasing), manifesting in the first week of illness123. On clinical examination, 518 

hepatosplenomegaly is  observed in 29–50% of cases;  diffuse abdominal tenderness and a 519 

coated tongue (that is, a superficial white coating on the surface) is more common than 520 

other symptoms and is observed in 56–85% of cases122. Additionally, rose-spots (a blanching 521 

erythematous rash containing culturable S. Typhi) are reported in the historical literature110. 522 

The antibiotic era has changed some of the clinical features historically seen in typhoid 523 



fever; as patients receive appropriate antimicrobial therapy, the prevalence of 524 

hepatosplenomegaly and rose spots has reduced3,124.  525 

[H3] Gastrointestinal complications  526 

Severe complications, such as shock, jaundice, intestinal perforation, intestinal 527 

haemorrhage and encephalopathy, can occur if antimicrobial treatment is delayed or 528 

inadequate36. Intestinal perforation is commonly reported as a sequalae of severe typhoid 529 

infection, with the primary site of perforation occurring in the terminal ileum, resulting from 530 

necrosis of infected Peyer’s patches125,126. Studies have documented increasing prevalence 531 

of intestinal perforation in outbreak scenarios and in regions with increasing antimicrobial 532 

resistance127. In this regard, the WHO have included guidance on the surveillance of 533 

intestinal perforation, recommending all instances to be recorded in typhoid endemic 534 

regions2. A systematic review of intestinal perforation in Africa found the case fatality rate  535 

to be between 4.6% to 75% in included studies; however, the majority of studies (79%) 536 

reported a fatality rate between 10% and 30%126 . Intestinal perforation is treated by 537 

surgery, and another review estimated the mean duration of hospitalisation secondary to 538 

intestinal perforation to be 18.4 days128. 539 

[H3] Neurological manifestations.  540 

Although rare, studies have reported numerous neurological manifestations of enteric 541 

fever, including typhoid meningitis and encephalopathy129. In 2009, a large outbreak of 542 

blood-culture confirmed typhoid fever with an unusually high burden of neurological 543 

complications (13%) and high mortality rate (4%) was reported from the Malawi-544 

Mozambique border130. Dysarthria, ataxia, upper motor neuron signs and altered mental 545 

status were identified in >40 individuals.130 Although, culturing S. Typhi directly from the 546 

cerebrospinal fluid is rarely performed, cortical irritation leading to clinical symptoms is 547 

hypothesized to be mediated by the typhoid toxin131,132 . 548 

[H3] Other complications.  549 

Systematic reviews have highlighted other complications that occur in different age-groups 550 

of patients with typhoid fever. Hepatitis (36%), anaemia (71%) and leukocytosis (41%) are 551 

common in children <5 years of age, whereas altered mental status (30%), signs of upper 552 

respiratory tract infection (22%) and abdominal pain or tenderness (70%) are frequent in 553 

school-aged children106,132. Young children, <5 years of age, are more likely to present with 554 

diarrhoea than older children and adults, whereas constipation and intestinal perforations 555 



are often observed in older age groups (>15 years) than children106,132. In addition, 556 

respiratory symptoms (cough or bronchopneumonia) or neurologic complications (such as, 557 

encephalopathy and febrile seizures) are more commonly seen in children than adults. 558 

These reviews also reported geographical heterogeneity for common complications 559 

associated with typhoid fever, with anaemia being more prevalent in South Asia than other 560 

regions and abdominal distension, ileus and intestinal perforation more prevalent in sub-561 

Saharan Africa than the rest of the world36,106. 562 

The estimated pooled prevalence of all complications (defined as any unfavourable 563 

evolution of the disease) in hospitalised patients was 27% (95% CI, 21– 32%)133 with a mean 564 

overall case fatality of 4.45% (95% CI 2.85–6.88%)134. The manifestation and severity of 565 

typhoid fever can differ depending on the patient's age and geographical region. Children 566 

bear the highest disease burden, with higher case fatality rate and complications in Africa 567 

(mortality 5.4%) than in Asia (mortality 0.9%)25,36. In Africa, mortality from intestinal 568 

perforation was estimated to be 19.7% compared with only 4.6% in Asia36. This reason for 569 

differential mortality rates between Africa and Asia is likely to be multi-factorial. For 570 

example, delays in accessing healthcare, receiving an accurate diagnosis and administering 571 

appropriate treatment owing to poor healthcare infrastructure all probably contribute to 572 

such differences36.  573 

[H2] Chronic carriage 574 

Approximately ~2–5% of acutely infected individuals are thought to develop typhoid chronic 575 

carriage. However, with the usage of antimicrobials,  the evolution to chronic carriage might 576 

be less135,136. 577 

To establish long-term carriage, organisms must enter the biliary tract either directly by 578 

ascending through a malfunctioning sphincter of Oddi, or indirectly via the liver during 579 

systemic infection137. Epidemiological investigations through case-control studies, and 580 

ultrasound imaging in mice and humans, have shown the association between chronic 581 

carriage and the development of bacterial biofilm S. Typhi on gallstones within the 582 

gallbladder138-140. This association is further supported by data from different parts of the 583 

world showing that prevalence of chronic carriers increase with age and are predominantly 584 

female. These two characteristics are also primary risk factors for the development of 585 

gallbladder pathology42,135,139. 586 



Studies have shown the importance of carriage in low incidence, non-endemic settings 587 

through multiple outbreaks, which have been traced to a chronic carrier often responsible 588 

for food preparation141. However, the contribution of carriers to ongoing transmission 589 

within endemic sites and the diagnosis of these individuals remains unclear. Stool shedding 590 

of the pathogen is intermittent and at a low level, which makes detection through serial 591 

stool culture both programmatically difficult and unreliable142. 592 

Isolating the bacteria directly from the gallbladder is the gold standard for diagnosing 593 

carriage. This procedure might be possible in individuals undergoing cholecystectomy but is 594 

highly impractical at a public health level owing to the invasive nature of the procedure. The 595 

duodenal string test, which involves passing a capsule into the stomach and a nylon string to 596 

pass through the pylorus and duodenum, enabling the collection and subsequent culture of 597 

duodenal and bile fluid, has been used historically for both the diagnosis of acute and 598 

chronic typhoid143,144. However, yet again, this test is impractical at a public health level 599 

owing to its invasiveness and inconvenience42. 600 

Serological screening for chronic carriage using anti-Vi antibody has been successful in non-601 

endemic sites141,145, but in medium to high incidence area, where regular infection or 602 

exposure to the pathogen increases the Vi capsule titre, the screening results have been 603 

mixed146-148. Studies to identify novel serological markers of acute typhoid and carriage, 604 

along with transcriptomic and a metabolomic profile, which could improve the prospective 605 

diagnosisare underway149-151. 606 

[H2] Prevention  607 

[H3] Improved water, sanitation and hygiene 608 

Improvements in water and sanitation infrastructure, where human waste is removed safely 609 

from a population and uncontaminated drinking water is provided, has been shown to 610 

reduce typhoid incidence in many developed countries.9,10 This approach often requires 611 

large centralised, government-led initiatives with high levels of financial investment. 612 

Typhoid incidence remains high in areas of the world that lack reliable clean water and 613 

sanitation but where such infrastructure projects are challenging to deliver and maintain. 614 

Evidence from Chile and Kenya has shown that in high typhoid incidence settings, improving 615 

drinking water quality alone may not be sufficient to reduce disease incidence.152,153 In 616 

Chile, the irrigation of crops with untreated raw sewage was identified as a major factor of 617 

maintaining typhoid transmission and, once this practice was prohibited, in combination 618 



with other interventions, such as typhoid vaccine campaigns, disease incidence was 619 

reduced.152,154 As demonstrated in Chile, behaviouoral change can be a feasible and 620 

affordable option in reducing disease burden with improved water sources, improved basic 621 

hygiene and treated water highlighted as areas that reduce disease burden after systematic 622 

review.155 New approaches using point of collection disinfection technology may provide a 623 

low-cost and easy to use alternative in parts of the world where water supply is intermittent 624 

and faecal contamination remains a risk.156 625 

[H3] Vaccine development  626 

Vaccines may be a useful adjunctive strategy to WASH improvement to prevent morbidity 627 

and mortality from typhoid fever. Although typhoid vaccines have been in use since the late 628 

19th century, early vaccines were not fit-for-purpose for widespread deployment. For 629 

example, the systemic and local side effects from the earliest heat-killed whole cell vaccines 630 

rendered them unusable in young children.157,158. Subsequently, two more formulations 631 

were developed; a live attenuated Ty21a vaccine and a Vi-Polysachharide (Vi-PS) vaccine. A 632 

meta-analysis demonstrated a pooled efficacy of 50% for the oral live-attenuated Ty21a 633 

vaccine at the 3-year follow-up159. Typically, multiple doses of attenuated vaccine are 634 

required, and the capsule formation makes it difficult to administer the vaccine to children 635 

younger than 6 years of age. The Vi-PS is a parenteral vaccine containing the purified 636 

capsular Vi-polysaccharide antigen and studies demonstrated an efficacy of 59% for Vi-PS at 637 

2 years160. Currently,Vi-PS is not licensed in children <2 years of age due to poor 638 

immunogenicity. Although these vaccines have been widely used for travellers, the 639 

limitations prevent their usage outside of outbreak control in low-income settings despite a 640 

WHO recommendation in 2008 for their use to improve typhoid control158. 641 

[H3] Typhoid conjugate vaccines 642 

A new generation of typhoid conjugate vaccines (TCV) have become available, in which the 643 

Vi capsule is chemically conjugated to a protein carrier, thereby producing a T-cell-644 

dependent response with a greater and longer-lasting immunogenicity than with non-645 

conjugate vaccines, including younger children and infants from 6 months of age 161. In 646 

2018, the WHO published a recommendation for the use of TCV in countries with endemic 647 

typhoid, with priority given to countries with a high burden of disease, or high prevalence of 648 

antimicrobial resistance, or both162. Notably, TCV was the first vaccine to be recommended 649 

by the WHO based on its potential to prevent the spread of antimicrobial resistance. A 650 



single dose of TCV is recommended for children from 6 months of age, introduced into 651 

routine immunization schedules alongside mass catch-up campaigns from the first or 652 

second year of life through to 15 years of age162.  653 

Licensure of the first TCV was based on an immunogenicity and safety trial from India,163 654 

with the first vaccine efficacy data coming from adults in a non-endemic setting, as part of 655 

the Oxford CHIM for typhoid.164,165 Since then, data from several phase 2 and 3 clinical trials 656 

in diverse high-burden endemic settings confirm excellent safety, immunogenicity (including 657 

safe co-administration with other routine immunisations) and efficacy for single-dose TCV in 658 

children (Table 2).166,167 Trials conducted in >100,000 children in Nepal, Malawi and 659 

Bangladesh yielded efficacy estimates of 79-85% in the first 1-2 years following receipt of 660 

TCV.168, 169, 170,171 Longer-term efficacy data after >4 years of follow-up have shown an 661 

overall intention-to-treat efficacy of 78% from the Malawi cohort, suggesting durable 662 

protection.172   663 

Notably, significant protection occurred in children <2 years of age, important for a vaccine 664 

that will be introduced into routine immunisation schedules in the first 2 years of life 170 171 665 

173 174. 666 

The trial in Bangladesh was cluster-randomized and did not demonstrate any significant 667 

additional indirect protection among non-vaccinated individuals. Vaccination campaigns 668 

across a wider age-range, to include adults, might be required in some epidemiological 669 

settings to achieve indirect effects.175 Nevertheless, the individual protection afforded by 670 

TCVs between these three large vaccine efficacy trials, in comparable age-groups, and 671 

across three very epidemiologically diverse sites is strikingly consistent. 672 

In addition, data have been published from post-vaccine introduction evaluations, from 673 

countries such as India,176 Pakistan177 and Zimbabwe.178 Data from Pakistan provide 674 

confidence that TCV is highly effective against the XDR strain of S. Typhi, providing evidence 675 

that as well as reducing the burden of typhoid fever, it will have a positive impact on 676 

decreasing antimicrobial resistance.179  677 

Although the safety, immunogenicity and efficacy of TCVs has been demonstrated in diverse 678 

populations, TCVs alone are unlikely to eliminate typhoid fever, as evidenced by the 679 

incidence rates in the vaccine groups of the trial populations. Thus, their use should be 680 

viewed as an important adjunct to improvements in WASH, as the latter has successfully 681 

eliminated typhoid fever in many countries around the world.9,180,181 682 



[H1] Management 683 

Antimicrobials have transformed typhoid from an illness that can have a mortality between 684 

10 and 30% to an illness where symptoms resolve within a week with a case fatality ratio 685 

<1%124. The emergence of resistance to the commonly used antimicrobials for treating 686 

enteric fever have challenged this picture182. Antimicrobial resistance is associated with 687 

treatment failure, an increased risk of complications and an increased potential for 688 

transmission due to prolonged faecal shedding124,183,184 . Treatment choices should take 689 

account of local antimicrobial resistance patterns, if known, and national guidelines where 690 

available185. 691 

[H2] Antimicrobial therapy  692 

Most patients with enteric fever are treated with an oral antimicrobial as part of outpatient 693 

management in the first week of illness and typically recover within a week. The WHO 694 

Essential Medicines Expert Committee concluded on the core list of Essential Medicines List 695 

that a seven-to-ten-day course of either ciprofloxacin, ceftriaxone or azithromycin should be 696 

considered first-choice treatments for adults  and children186. Ciprofloxacin is not a suitable 697 

choice in most parts of south Asia, and some areas of sub-Saharan Africa, because of 698 

widespread resistance 124,182. Azithromycin is an effective alternative drug although sporadic 699 

reports of antimicrobial resistance have been reported187,188. In those admitted in hospital, 700 

parenteral ceftriaxone is a safe option, particularly when resistance to other drugs is 701 

uncertain. Oral chloramphenicol, amoxicillin and trimethoprim-sulphamethoxazole were 702 

commonly used prior to the 1990s, but multidrug resistance to these three antimicrobials 703 

emerged in the late 1980s and became widespread, preventing their usage96.  704 

Systematic reviews of the comparative efficacy of chloramphenicol, the fluoroquinolones 705 

(such as ciprofloxacin, ofloxacin and gatifloxacin), azithromycin and cephalosporins (such as 706 

ceftriaxone and cefixime) in typhoid fever treatment have been unable to draw firm 707 

conclusions on the presence or absence of important differences between the various 708 

antimicrobials189-191. Evidence from most of the randomised controlled trial is of low 709 

certainty owing to small trial size and methodological problems such as not double-blinded 710 

and conducted >20 years ago. The lack of diagnostic sensitivity of blood culture, the paucity 711 

of trials in the outpatient setting, the changing pattern of resistance over time and the lack 712 

of agreed core outcome indicators are further limitations. 713 



[H2] Antimicrobial resistant strains  714 

The outbreak of XDR S. Typhi in Pakistan in 2016 has impacted the usefulness of ceftriaxone 715 

in managing patients with typhoid192. These strains are resistant to chloramphenicol, 716 

ampicillin/amoxicillin, trimethoprim-sulphamethoxazole, ciprofloxacin and 717 

ceftriaxone/cefixime but susceptible to oral azithromycin and parenteral meropenem100. 718 

These infections are documented in other countries in travellers from Pakistan102.Studies 719 

have also reported sporadic cases of ceftriaxone resistance distinct from those identified in 720 

Pakistan193,194. Clinicians treating patients with XDR S. Typhi have found no important 721 

differences in the clinical response between oral azithromycin alone, intravenous 722 

meropenem alone and a combination of azithromycin and meropenem195. Notably, the daily 723 

cost of meropenem in Pakistan was 15 times more than azithromycin. 724 

[H2] Combination therapy  725 

Studies have confirmed that S. Typhi can reside intracellularly and extracellularly, with high 726 

bacterial load in sites of the reticuloendothelial system, such as the bone marrow109,196. 727 

Antimicrobials used to treat typhoid fever should target all these locations. Combining 728 

azithromycin, which reaches very high intracellular concentrations but low extracellular 729 

concentrations197, with a beta-lactam antimicrobial that is predominantly active in the 730 

extracellular compartment has been suggested as a better option for the treatment of 731 

typhoid fever. In an RCT of 105 adults with confirmed typhoid fever in Nepal, a combination 732 

of azithromycin and cefixime for outpatients and azithromycin and ceftriaxone for 733 

inpatients was superior to azithromycin alone, with shorter fever clearance times198 A 734 

clinical trial examining the efficacy of a combination of azithromycin and cefixime in 735 

suspected cases of enteric fever in south Asia is ongoing199. 736 

[H2] Severe infections  737 

In severe typhoid fever, supportive care such as, full intensive care provision, blood 738 

transfusion in the event of gastrointestinal haemorrhage and surgery in case of intestinal 739 

perforation and peritonitis, is critical to the outcome200. Following intestinal perforation, 740 

secondary blood stream infection may occur due to a range of pathogens from the gut 741 

lumen, requiring a repetition of blood culture and broadening of antimicrobial treatment. 742 

One RCT in Indonesia demonstrated that high-dose methyl-prednisolone reduced mortality 743 

in severe typhoid, characterised by altered consciousness and haemodynamic shock201. 744 



Methodological issues make it difficult to draw definitive conclusions from this study and 745 

further trialsare needed to address the effectiveness of prednisolone202. 746 

[H2] Chronic carriers  747 

A systematic review of studies of the antimicrobial treatment of chronic carriage 748 

identifiedthat fluoroquinolones were effective in eradicating chronic carriage of susceptible 749 

isolates after a 28-day course203 . The only double-blinded RCT performed showed an 750 

eradication rate of 92% in those given a 28-day course of norfloxacin compared with 11% in 751 

those given placebo. Six studies evaluated ampicillin or amoxicillin in a four-to-six-week 752 

course with eradication rates ~70%. Cholecystectomy may be an option where eradication 753 

has failed, particularly in the presence of structural biliary abnormalities including 754 

gallstones, which may provide a protected niche for bacteria; however, this decision should 755 

be weighed against the risk of surgical complications124. All these studies pre-date the 756 

emergence of widespread MDR and fluroquinolone resistance, and further clinical trials, for 757 

example, using azithromycin, are warranted to help guide modern management.  758 

[H1] Quality of life  759 

[H2] Cost of illness 760 

Despite the potential acute effects and sequelae from typhoid fever, its impact on quality of 761 

life is not well documented. However, a number of studies have assessed the economic 762 

burden of typhoid in terms of costs to healthcare providers and to affected households in 763 

low-income and middle-income countries204-208. A review of economic evidence highlights 764 

the cost of hospitalisation as the most common expense reported in the literature. Costs 765 

per hospitalised case range from $159 to $636 in India, $233 in Nepal and $171 in Tanzania 766 

(2016 US$)209-212. Costs for treating outpatients ranged from $0 to $14.1 (2010 US$) 213. 767 

Costs for treating outpatients ranged from $16 to $74 in India, and equalled $39 in Nepal 768 

(2016 US$).204 769 

Studies have specifically studied the cost of intestinal perforations, a complication that may 770 

result from untreated typhoid or delayed access to care. For example,the additional surgical 771 

costs to repair an intestinal perforation, on average, were as high as $452 in Nigeria and 772 

$1,210 in India (2019 US$) 214,215. These high costs are accompanied by longer hospital stays, 773 

23 days on average in Nigeria and 19 days in India, which also increase a family’s 774 

expenses214,215. 775 



The potential for higher cost of illness associated with MDR and XDR S. Typhi infection, 776 

requiring more expensive and less available treatments than for classical S. Typhi infection , 777 

is not well documented. Data from the XDR outbreak in Pakistan between 2016 and 2018 778 

suggest that the cost of an episode of typhoid from XDR S. Typhi is 2 to 4 times higher than 779 

the cost of non-XDR S. Typhi infection216. 780 

Owing to the difficulty in diagnosing typhoid, seeking health care can be a long and costly 781 

endeavour for patients and their caregivers. Households often face indirect expenditures 782 

such as transportation, loss of household income, and food and subsistence costs related to 783 

seeking and receiving care, alongside direct out-of-pocket costs including diagnosis and 784 

treatments, such as medication. Typhoid predominantly impacts children <15 years of age, 785 

implying that a case of typhoid often results in parental absenteeism from work and a loss 786 

of income for caregivers, which can cause financial consequences for families. These 787 

expenses may reduce expenditures on other household spendings, which can affect 788 

investments in nutrition, education and other household needs, and trigger dissaving 789 

measures, resulting in long-term adverse socioeconomic impact.  790 

Typhoid can represent a catastrophic cost to affected families, defined as expenses and loss 791 

of revenue due to seeking care or caring for sick children and family members that 792 

represents more than 40% of non-food monthly household expenditure. One study in 793 

Malawi reported that, despite free access to all government medical care and minimal out-794 

of-pocket direct healthcare costs, 44% of households faced catastrophic illness costs mainly 795 

related to indirect costs and 16% of households experienced illness costs that were more 796 

than their total monthly income217. The median cost per case for inpatient care in patients 797 

with enteric fever was also determined as catastrophic for families in studies in Bangladesh, 798 

Nepal, and Pakistan209-212. Despite revealing the unfortunate societal costs involved in 799 

typhoid management, cost of illness estimates are essential for evaluation of vaccine cost 800 

effectiveness, to inform policy decisions (Box 2).  801 

[H1] Outlook 802 

Since 2010, considerable progress has been made in the development and licensure of TCVs 803 

supported by robust evidence on safety and immunogenicity, innovative data on efficacy 804 

from the CHIM and field efficacy data from large clinical trials conducted in diverse 805 

populations at risk218. This compelling body of data has reaffirmed the WHO 806 



recommendations on use of single dose TCVs in endemic settings219,220. TCV is well-tolerated 807 

and may be co-administered with other childhood vaccines, facilitating its integration into 808 

the WHOs Expanded Programme on Immunisation (EPI) at 9–18 months of age. In low 809 

resource countries, Gavi (the Vaccine Alliance) will co-finance the introduction of TCV into 810 

EPI, and fully finance single dose catch-up campaigns for all children up to 15 years of 811 

age221. Country introductions have begun in Africa and Asia, however, most at-risk children 812 

globally remain without protection. To this end, a coordinated multidisciplinary approach 813 

that includes advocacy and communications; country support for decision-making, 814 

preparation of Gavi applications and planning of vaccine delivery is essential to ensure that 815 

more children are protected from this disease sooner. Additionally, an adequate stable 816 

manufactured supply of prequalified vaccine is required to meet country demand. 817 

In endemic areas, incorporating TCV into the routine immunisation schedule at 9 months of 818 

age with an initial catch-up campaign to 15 years of age has generally been found to be 819 

cost-effective213,222,223. When factoring in the indirect costs to patients, TCVs may even be 820 

cost-saving.224,225  821 

Two TCVs are prequalified by the WHO and are considered equally effective. Furthermore, 822 

several TCVs are approved nationally or are under development226 . However, as with other 823 

conjugate vaccines, robust data on relative effectiveness of different products is important 824 

to provide confidence to policymakers on use of different vaccines, highlighting the 825 

importance of ongoing impact studies in settings where TCV has been introduced. These 826 

studies will inform the long-term TCV strategy. 827 

Perhaps the most important outstanding scientific question regarding the global TCV 828 

programme is the duration of protection. Although the TCV efficacy trials have shown 829 

robust and durable protection against disease (~80 %)for >4 years after vaccination in pre-830 

school and school-age children,172 long term protection studies are needed for children 831 

immunised with a single dose of vaccine at 9–18 months of age in the EPI schedule. Ongoing 832 

long-term post-introduction effectiveness and impact studies may strengthen evidence in 833 

this domain. Given the high rates of disease reported among school-age children, the need 834 

for a booster prior to school entry in those vaccinated in early-life routine immunisation 835 



programmes, must be assessed in Africa and Asia in areas where the vaccine is being rolled 836 

out. 837 

The population primarily responsible for transmission of typhoid remains unknown. A 838 

cluster-randomised trial in Bangladesh in which children  <16 years of age were vaccinated 839 

found no evidence of indirect protection. This finding implies that the vaccine either 840 

prevents clinical illness but does not prevent transmission, or that adults also contribute 841 

substantially to transmission149,150. Alternatively, the complexities and biases in a cluster-842 

randomised design in an urban setting might make it impossible to detect herd effects that 843 

are present. Such information could help inform whether extending vaccination to older age 844 

groups might provide additional population-level benefits. Targeted vaccination of those 845 

adults responsible for transmission could possibly improve typhoid control in high-burden 846 

settings. Ongoing observational studies in countries implementing TCVs may provide further 847 

evidence to address this question in the next 5 years. 848 

Improved diagnostics are needed for clinical management of disease and to define burden 849 

and inform decision-making on TCV introduction. Innovation and flexibility is needed to 850 

ensure that the most disadvantaged children have access to TCV. Furthermore, without 851 

accurate diagnostics, the impact of TCV might be less apparent, for example, in South Asia 852 

where incidence of paratyphoid infection is substantial and symptoms are indistinguishable 853 

from typhoid. Developments in paratyphoid vaccines, combined with TCV, could broaden 854 

protection if shown to be effective and reduce the overall enteric fever burden further. With 855 

ongoing early safety and immunogenicity studies of bivalent typhoid and paratyphoid 856 

vaccines underway, a combined vaccine could be available within the next 5 years. 857 

Furthermore, early phase studies combining TCV with emerging multivalent vaccines against 858 

invasive non-typhoidal salmonellae, which could broaden the impact of vaccine 859 

programmes are in progress.227  860 

Despite the huge progress in protecting children against typhoid, ongoing transmission of 861 

salmonella and other bacterial pathogens in affected populations can only be fully 862 

controlled with improvements in WASH and food safety. Improving and maintaining WASH 863 

requires considerable financing, structural change and political commitment, and some low-864 

income areas have experienced poor sanitation for decades. The impacts of climate change 865 

may not only alter the environmental and household patterns of transmission of typhoid, 866 



but also likely heighten the challenge of delivering sustained improvements in WASH. The 867 

global rise of antimicrobial resistance further adds relevance and urgency to the importance 868 

of vaccines. The sparsity of new antimicrobials in development also underscores the need 869 

for mobilising all available means of control. The remarkable efforts in typhoid 870 

immunisation programmes will help protect at-risk children in the face of these global 871 

challenges.  872 



Tables 873 

Table 1: Case Definitions for typhoid fever disease states  874 

Condition Definition 

Acute typhoid 

fever 

Laboratory confirmation by culture or molecular methods of S. Typhi or 

detection of S. Typhi DNA from a normally sterile site. 

Relapse of 

typhoid fever 

Laboratory confirmation of S. Typhi from a normally sterile site within one 

month of completing an appropriate course of antimicrobial treatment and 

resolution of symptoms. 

Chronic 

typhoid carrier 

Evidence of shedding of S. Typhi (positive stool culture or PCR) at least 12 

months after finishing an appropriate course of antimicrobial treatment and the 

resolution of symptoms following a laboratory-confirmed episode of acute 

disease or  

Two stool samples 12 months apart positive for S. Typhi. 

Convalescent 

Carrier 

Evidence of shedding S. Typhi (positive stool culture or PCR) 1–12 months after 

finishing an appropriate course of antimicrobial treatment and the resolution of 

symptoms following a laboratory-confirmed episode of acute disease 

Suspected case 

of typhoid  

Fever for at least three out of seven consecutive days in an endemic area or 

following travel from an endemic area  or Fever for at least three out of 

seven consecutive days within 28 days of being in household contact with 

a confirmed case of typhoid fever 

 875 

Adapted with permission from ref 2, World Health Organisation. 876 
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Table 2: Summary of efficacy and effectiveness estimates for TCV. 878 

Country Design 
Control 

vaccine 
Age Study period 

Duration of 

follow-up 

Number 

enrolled  
Efficacy (95% CI) 

Refs 

Malawi 

efficacy 

Individually- 

randomized 
MCV-A 

9 months– 

12 years 

Feb 2018– 

Apr 2020  
18-24 months 

28,130 

80.7% (64.2–89.6) 

168 

Feb 2018–  

Sept 2022  
4.3 years 78.0% (66.3–86.1) 

172
 

Nepal efficacy 
Individually- 

randomized 
MCV-A 

9 months– 

15 years 

Nov 2017– 

Apr 2018 
12 months 

20,019 

81.6% (58.8–91.8) 

171 

Nov 2017– 

Feb 2020 
24 months 79.0% (61.9–88.5) 

228 

Bangladesh 

efficacy 

Cluster-

randomized 

JE (SA 14-

14-2) 

9 months– 

16 years 

Apr 2018– 

May 2020 
17.1 months ~ 67,500 

Total protection 81% (39–
94.0%) 

Overall protection 56% (43–
68.0) 

Indirect protection 19% (-

12–41) 

174 

India 

Effectiveness 

Cluster-

randomized 

Test Negative 

NA 
9 months- 

14 years 

Sept 2018– 

Mar 2021 
31 months NA 

Programmatic overall 

effectiveness 56% (25–74) 

176 

Pakistan 

Effectiveness 
Cohort  NA 

6 months– 

10 years 

Feb 2018– 

Dec 2019 
23 months NA 

Culture confirmed S. Typhi 

95.0% (93.0% to 96.0%) 

XDR S. Typhi 97.0% (95.0% to 

98.0) 

229 

Zimbabwe 

Effectiveness 
Case–control NA 

6months– 

15 years 

July 2019– 

March 2020 
9 months NA 84% (57–94) 

178 
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Boxes 880 

Box 1: Accelerating vaccine testing with CHIM.  881 

Besides improving our understanding of disease pathogenesis, the CHIM also provides a 882 

controlled method for testing novel vaccines at a lower cost and greater speed than large-883 

scale traditional field trials. The Oxford CHIM has performed two such trials.  884 

[b1] M01ZH09 vaccine 885 

The CHIM model was used to study the efficacy of an oral live attenuated vaccine, M01ZH09 886 

— designed by deleting ssaV and aroC230 . The vaccine did not meet significance for 887 

protective efficacybut induced strong antibody responses against lipopolysaccharide, which 888 

were bactericidal. The antibodies were not associated with protection against infection; 889 

however, the vaccinees demonstrated lower severity of symptoms, delayed onset of 890 

infection and a lower level of bacteraemia than non-vaccinees230. Similarly, vaccination of 891 

individuals with Vi-polysaccharide-containing vaccines induced bactericidal antibodies, but 892 

these functional antibodies were not associated with protection from infection when these 893 

individuals were challenged with S. Typhi231. Duration of bacteraemia with the antibiotic-894 

susceptible strain was longer when treated with azithromycin than ciprofloxacin232. 895 

[b2] Typhoid conjugate vaccine 896 

A multi-arm phase 2b study comparing a novel TCV and a WHO pre-qualified and licensed 897 

Vi-polysaccharide (Vi-PS) vaccine against a control vaccine (one that has no protective 898 

efficacy against S. Typhi) showed that the TCV had comparable efficacy to the existing Vi-PS 899 

vaccine in the model164. Extensive analysis of class, subclass, avidity and functional 900 

serological responses showed that Vi IgA levels and avidity associated with protection from 901 

S. Typhi challenge, and increased anti-Vi IgG responses were associated with reduced 902 

symptoms. In addition, antibody-dependent neutrophil phagocytosis was also associated 903 

with protection233,234. Vaccination with TCV induced α4β7 and CCR10a+IgA+ plasma cells 904 

indicating likely mucosal migration, which may be important as this is the site of invasion if 905 

there is a future exposure to the organism. Moreover, in those who received TCV, 906 

protection against infection was associated with the total plasma cell response235.  907 

  908 



Box 2: Patient experience  909 

 910 

[Au: To be able to publish these testimonials, we need to know whether you have 911 

received written informed consent from the patients for the statement to be used in 912 

this way. We don't need to see the consent forms to not breach confidentiality – we 913 

just need you to confirm that you have the consent. We cannot publish these 914 

statements if we are not sure that you have written informed consent as stated in our 915 

policies:  916 

https://www.nature.com/nrdp/editorial-policies#patient  917 

Please confirm.] 918 

 919 

Bashir’s experience with typhoid 920 

I am a 10-year-old boy from Badin, Sindh province, Pakistan. My ten siblings and I have 921 

never been to school. My father is a vegetable seller and earns about three to four dollars a 922 

day – which is only enough for two meals – so we stay at home, helping him with his work or 923 

playing with friends. 924 

One day, while playing cricket, I found I had little energy to run. I returned home and told my 925 

mother that I was feeling unwell. I rested in bed for days, but my temperature kept 926 

increasing. My father took me to a nearby doctor who gave me medication and charged us 927 

six dollars. Even with the medication my body was still burning like an oven. I went to 928 

another doctor, who gave me a blood test and diagnosed me with typhoid. He charged us 27 929 

dollars and prescribed more medication. After taking it, my condition continued to worsen. I 930 

began vomiting, feeling pain in my stomach, and was unable to even take a sip of water. 931 

I was taken to a hospital in Badin, despite my family not having money for transportation or 932 

hospital care. There, I was told my intestine had burst and only a major surgery could save 933 

my life. We did not have the money for this procedure. I cried while thinking my life was 934 

about to end. An ambulance driver, who I think may be a guardian angel, suggested we 935 

travel to the National Institute of Child Health in Karachi, where patients are treated at 936 

almost no cost. 937 

Accompanied by my family, we reached Karachi via ambulance and paid $45 for the four-938 

hour journey. I underwent surgery the same night and began my recovery. I feel like I have 939 

been given another chance at life.  940 

  941 

http://www.nich.edu.pk/


Figure legends  942 

 943 

Figure 1. Global incidence of typhoid fever. 944 

Incidence rates per 100,000 person-years of observation for typhoid fever, by country, in 945 

2019. Highest incidence areas are shown in red, and low incidence areas in blue.  946 

Reprinted with permission from Ref 32, The Institute for Health Metrics and Evaluation. 947 

 948 

 949 

Figure 2: Salmonella Typhi genotype prevalence by world region. 950 

This figure demonstrates the prevalence of genotypes of S. Typhi across the world. 951 

Countries contributing data are shaded in beige, and are grouped by regions as defined by 952 

the UN statistics division. These data are based on assumed acute cases isolated from 953 

untargeted sampling frames from 2010 until 2020, with known country of origin (total 954 

N=9,478 genomes).  955 

Adapted from ref 57, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 956 

 957 

 958 

Figure 3: Pathogenesis of typhoid fever following pathogen ingestion. 959 

A schematic figure relating the clinical presentation of typhoid fever to stages of disease 960 

pathogenesis. Ingestion of S. Typhi and invasion across gut wall are typically asymptomatic 961 

with an incubation period of 5-7 days. Following primary dissemination in lymph and blood, 962 

a deep-seated systemic reticuloendothelial infection is established and presents with 963 

secondary bacteraemia and high fever. Complications include metastatic focal tissue 964 

infections. Colonisation of the gallbladder by S. Typhi, and excretion of bacteria back into 965 

the gastrointestinal tract in infected bile is a hallmark of typhoid, and is the basis for long-966 

term chronic carrier state and transmission. Re-infection of Peyer’s patches from the lumen 967 

may result in gastrointestinal bleeding or intestinal perforation caused by necrotic Peyer’s 968 

patches. Intestinal perforation may also result in a tertiary blood stream infection with a 969 

range of gut luminal enteric organisms. . 970 

 971 

 972 

Figure 4: Clinical signs and symptoms of typhoid fever. 973 

Typhoid fever presents predominantly with fever, headache and abdominal pain, but 974 

symptoms and signs can be heterogenous and can include all organ systems.  975 
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