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Abstract

There are many plausible reasons for recurrent outbreaks of emerging infectious diseases. In this paper, we develop a mathemat-

ical model to illustrate how population behavioural adaption and adaptation implementation delay, in response to the perceived

infection risk, can lead to recurrent outbreak patterns. We consider the early phase of an infection outbreak when herd immunity

is not reached, pathogen mutation is not considered, and seasonality is ruled out as a major contributor. We derive a transmission

dynamics model coupled with the renewal equation for the disease transmission effective contacts (contact rate per unit time mul-

tiplied by the transmission probability per contact). The model incorporates two critical parameters: the population behavioural

adaptation flexibility index and the behavioural change implementation delay. We show that when the behavioural change imple-

mentation delay reaches a critical value, the number of infections starts to oscillate in an equilibrium that is determined by the

population behavioural adaptation flexibility. We also show that the numbers of infections at the subsequent peaks can exceed that

of the first peak. This was an oblique observation globally during the early phase of the COVID-19 pandemic before variants of

concern emerged, and it was an observed phenomena with the Omicron variant induced wave in areas where early interventions

were successful in preventing the large outbreaks. Our model and anayses can provide partially explanation for these observations.

c© 2011 Published by Elsevier Ltd.

Keywords: Multiple waves, Behavioural adaptation, Implementation delay

1. Introduction

With a few exceptions, many countries with some degree of success in containing the first wave of the COVID-19

pandemic experienced either a second or further waves with higher amplitudes. This is expected since the population

has not reached the herd immunity through either natural infection or mass immunization, while social distancing

interventions were escalated to cope with the exponential growth, and then deescalated for partially reopening the

economy and social economic activities.

∗Corresponding author.

1



/ MB 00 (2023) 1–9 2

A fundamental issue that should be addressed is the mechanism behind the seemingly universal resurgence, and

how to determine the inter-outbreak interval and peak values of the subsequent waves from some intrinsic character-

istics of the community tolerance (flexibility) to fluctuating incidence, and collective response implementation delay,

along with the disease basic reproduction number. Classical epidemic models fail to explain the resurgence. While

existing studies (see discussions in the final section) and some developed extensions of the classical models incorpo-

rating behavioural changes can explain the recurrent patterns as damped oscillations or sustained periodic oscillations,

these studies failed to explain why the second wave had a peak value higher than that of the first wave.

Here, we develop a novel approach to formulate the population behavioural changes in terms of a renewal equa-

tion for the disease transmission effective contact that is adaptive to the infection risk or disease severity, reported

or perceived, with a delay. We introduce a parameter that measures the community flexibility to this (real and/or

perceived) infection risk and show that this determines the equilibrium level of the disease transmission when the

effective transmission contact reaches the equilibrium determined by the pathogen characteristics (basic reproduction

number) and infection removal speed. We then show that the likelihood of recurrent outbreaks and the inter-outbreak

interval is determined by the speed that effective transmission contact, determined by the speed at which infection risk

is detected (testing and confirmation) and the speed at which non-pharmaceutical interventions can be implemented

massively in the population.

2. The framework: community flexibility and renewal equation for effective contacts

We consider a simple SIR model for the outbreak of an infectious disease. We consider the situation where public

health interventions, reflected by the behavioural changes of the population in terms of social distancing and personal

protection, will be used to prevent a large portion of infections before herd immunity is achieved and variants of

concern emerge. Therefore, the susceptible population remains relatively unchanged and the SIR model reduces to

I′(t) = βI(t) − γI(t),

where γ is the remove rate of the infectious individuals (being isolated, or recovered, or dead), and β is the disease

transmission effective contact number, i.e.,

β = number of contacts per unit time (c)

× transmission probability per contact (p).

We notice that this disease transmission effective contact changes as individuals adjust their behaviors according

to the incidence: the higher the incidence, the smaller the effective contact. Behaviorual changes induced by disease

severity will also be incorporated into our behavioural change adaptation renewal equation in many different ways.

First of all, at the beginning of an outbreak and in the absence of knowledge of disease severity, the number of

infections (more precisely, the reported cases) is the only information available to the public to induce behavioural

changes. Secondly, the daily cases of infections with disease severity (reflected by the hospital admission, Intensive

Care Unit admission, or mortality) are fractions of the daily incidence with delay. We can incorporate this delay in the

renewal equation for behavioural adaptation. Namely, the behaviour change adjusts to the incidence with a delay, due

to either the delay in case confirmation, or the operational limit for rapid interventions. Therefore, we assume that the

effective contact β = cp is a decreasing function of the incidence βI with time lag τ ≥ 0, i.e.,

β(t) = f (β(t − τ)I(t − τ)) (1)

with f being a decreasing function of the variable. This gives the renewal equation for the effective contact.

Specific forms of the behavioural adaptation (to incidence) function f are determined from a number of factors

including the population tolerance to the incidence and the perceived risk associated with the incidence. The form can

be informed from detailed studies of the population behaviours during different phases of the disease outbreaks. Our

focus here is to show that insights can be gained by using the most general format in a simple mechanistic model.

In particular, it is natural to assume that f (0) = β0 > 0 is the maximum effective contact number per day, f (x) ≥ 0

for all x ≥ 0, f is continuously differentiable on [0,∞), and f ′(x) < 0 for all x ≥ 0 so the larger the incidence the

smaller the effective contact. With this notation, we note that R0 = β0/γ is the basic reproduction number.
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We also note that the decreasing property of f implies that for any x ≥ 0 there exists a unique b = b(x) such that

b = f (bx). Clearly, b(0) = β0. Substituting b = b(I) to (1), we will be able to find an algebraic equation for the

non-trivial equilibrium b(I∗) = γ, and the corresponding non-trivial equilibrium is (b(I∗), I∗) for the epidemic model

coupled with the renewal equation for behavioural changes:

{

I′(t) = β(t)I(t) − γI(t),

β(t) = f (β(t − τ)I(t − τ)).
(2)

It is convenient to introduce the flexibility index k > 0, called f-index hereafter, to measure the degree of the

population adaptation to the incidence and write

f (x) = F(kx), x ≥ 0.

Then the behavioural change function can be parametrized by this f-index k > 0. Let gk(x) be the solution of b =

f (bx) := F(kbx). We have

b(x) = gk(x) = g1(kx), x ≥ 0.

Since b(I∗) = γ gives the non-trivial equilibrium value of I∗, we can now see how increasing the f-index reduces the

equilibrium state the community can tolerate, and what the corresponding equilibrium disease transmission contact is.

In what follows, we will use the prototypical function F(x) =
β0

1+x
, with β0 = c0 p0 being the maximal disease

transmission contacts per day. The corresponding renewal equation for the behavioural change is

β(t) =
β0

1 + kβ(t − τ)I(t − τ)
.

Remark 1. We emphasize that we have used the simplest epidemic model to describe the disease transmission, and

have implicitly ignored the presence of asymptomatic infections. Furthermore, population behaviours may change in

response to incidence. In this case, the delay τ is the sum of the mean duration from exposure until being reported

plus the average behavioural change implementation delay. In this case, the f -index is the measure of the community

tolerance to infections so that when the incidence reaches 1/k, the effective contact is half of the effective contact in

the absence of infections:

1 + k × (daily incidence) = 2.

Similarly, if the population behaviours change in response to daily number of patients in the ICUs, then the delay τ is

the sum of the mean duration from exposure to ICU admission, plus the average behavioural change implementation

delay. In this case, since only a portion δ of the confirmed cases can end up in the ICUs, the f -index is the measure

of the community tolerance to ICU admission so that when the reciprocal of the number of admission reaches 1/k the

effective contact is half of the effective contact in the absence of infections:

1 + k × (ICU cases) = 2.

3. Recurrent patterns

Recall that R0 = β0/γ is the basic reproduction number when no behavioural changes have occurred. We will

assume R0 > 1 so there will be an outbreak with an introduction of new cases. Clearly, the coupled system has a

disease free and effective contact change free equilibrium (0, β0), and it can be shown that this equilibrium is unstable.

To look for the disease-”endemic” equilibrium, we first solve the first equation I for the equilibrium to get β∗ = γ

and substitute this to the second renewal equation for β to get

β∗ =
β0

1 + kβ∗I∗
,

from which we get γ(1 + kγI∗) = β0, so

I∗ =
R0 − 1

kγ
> 0. (3)

This leads to
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Theorem 1. When R0 > 1, the coupled system has a non-trivial equilibrium (I∗, β∗) = ( R0−1

kγ
, γ), where the infection

reaches an equilibrium determined by the basic reproduction number and the community flexibility, and the effective

contact reaches the equilibrium value γ so the effective reproductive number β∗/γ reaches the threshold of unity.

It is evident that it is the community flexibility that determines on the equilibrium value of the infection, the larger

the k the smaller the value of infected cases at the equilibrium. Obviously, the transmissibility of the disease R0 also

impacts on the equilibrium value.

We now linearize the coupled system at the positive equilibrium (I∗, β∗) and this gives























I′(t) = β∗I(t) + I∗β(t) − γI(t) = I∗β(t),

β(t) = −
kβ0

(1+kβ∗I∗)2 [I∗β(t − τ) + β∗I(t − τ)].

Noting that

1 + kβ∗I∗ =
β0

β∗
=
β0

γ
= R0,

we conclude that
kβ0I∗

(1 + kβ∗I∗)2
=

kβ0

R2
0

R0 − 1

kγ
=

R0 − 1

R0

,

kβ0β
∗

(1 + kβ∗I∗)2
=

kβ0γ

R2
0

.

Therefore, the linearized system becomes























I′(t) = R0−1

kγ
β(t),

β(t) = −R0−1

R0
β(t − τ) −

kβ0γ

R2
0

I(t − τ).

To investigate the stability, we consider solution I(t) = eλti0, β(t) = eλtb0 with non-zero (i0, b0). This leads to the

algebraic system






















λi0 =
R0−1

kγ
b0,

b0 = −
R0−1

R0
e−λτb0 −

kβ0γ

R2
0

e−λτi0.

From the second equation of the above algebraic system, we get

b0 = −

kβ0γ

R2
0

e−λτ

1 + R0−1

R0
e−λτ

i0.

This implies that i0 , 0 and the characteristic equation is

λ
(

1 +
R0 − 1

R0

e−λτ
)

= −
R0 − 1

R2
0

β0e−λτ. (4)

As the above equation has only one negative real zero when τ = 0, the characteristic equation has zeros with

non-negative real parts while increasing τ only when there is a critical value τ when the characteristic equation has a

pair of eigenvalues ±iω.

We now look for such a critical value. Let λ = iω, then we get

(iω)
(

1 +
R0 − 1

R0

e−iωτ) = −
R0 − 1

R2
0

β0e−iωτ.

4
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That is

(iω)
(

1 +
R0 − 1

R0

(cos(ωτ) − i sin(ωτ))
)

= −
R0 − 1

R2
0

β0

(

cos(ωτ) − i sin(ωτ)
)

.

Separating the real and imaginary parts yields















ω
R0

R0−1
= −ω cos(ωτ) +

β0

R0
sin(ωτ),

0 = ω sin(ωτ) +
β0

R0
cos(ωτ).

This yields
(

ω
R0

R0 − 1

)2
= ω2 +

( β0

R0

)2
,

and hence the critical value of ω is given by

ω∗ =
β0/R0

√

( R0

R0−1

)2
− 1

.

In addition, we have from 0 = ω sin(ωτ) +
β0

R0
cos(ωτ) that

tan(ω∗τ) =
−β0/R0

ω∗
= −

√

( R0

R0 − 1

)2
− 1.

Therefore, the minimal critical value for τ is given by

τ∗ =
arctan(−

√

( R0

R0−1

)2
− 1)

ω∗
,

with

arctan(−

√

( R0

R0 − 1

)2
− 1) ∈ (π/2, π).

The transversality condition for Hopf bifurcation of periodic solutions [1, 2] can be easily verified, so we conclude

that

Theorem 2. In the neighbourhood of the nontrivial equilibrium (β∗, I∗), when the delay passes through the critical

value τ∗, the coupled system of disease transmission dynamics with the effective contact renewal equation has a Hopf

bifurcation of periodic solutions with periods close to 2π
ω∗

.

We also note that 2π
ω∗τ∗
→ 4 as R0 → 1+; and 2π

ω∗τ∗
→ 2 as R0 → ∞. So we can see the inter-wave distance with

large or small basic reproduction number. We avoid the use of normal formal calculation to check the stability of the

bifurcated periodic solutions, but rather rely on some numerical simulations to demonstrate the stability and patterns

of bifurcated temporal oscillations.

In the simulations summarized in Figure 1, we use R0 = 2.8, in the estimated range of basic reproduction number

for the COVID-19 when it first emerged and then imported to many regions in the world [3, 4, 5]. In Figure 1, we

assume the infected individuals are removed form the transmission chain at the speed of 1/14 (days−1), that is the

average time between exposure and recovered/isolation (after test confirmation) is assumed 14 days. The assumption

that k = 0.1 and τ = 20 (45, respectively) could be interpreted as follows: with δ = 0.01 (1% of the confirmed cases

was admitted to the ICUs), the population reduces its effective contact to half of its pre-pandemic level when the

incidence reached 1,000 (leading to 10 daily ICU admissions later), and the behavioural changes reacted to the ICU

increase with a delay by 20 (45, respectively)-days minus the time from exposure to ICU admission. Importantly, we

notice that

1). the values of k and γ determine the equilibrium value to be 252;

5
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Figure 1. Solutions of model (2) with k = 0.1, γ = 1/14, β0 = 0.2. Left panel: τ = 20; Right panel: τ = 45.

Figure 2. Stability boundaries of the positive equilibrium with k = 0.1, β0 = 0.2, γ = 1/14(the blue curve) and γ = 1/3.5(the red curve).

2). when the delay τ is 20, the transmission dynamics reaches the stable equilibrium with a damped oscillation (left

panel);

3). when the delay increases to 45, the transmission reaches a limit cycle after some transition; and importantly

4). the peak values of the subsequent waves increase until the transition to a stable limit cycle.

The stability boundary of the positive equilibrium is given in Figure 2.

In Figure 3, the removal rate is increased to 1/3.92 (day−1) while the basic reproduction number remains 2.8.

With k = 0.01 that corresponds to reducing the transmission effective contact to half when the incidence reaches 100,

the behavioural change delay with τ = 14 (days) can also lead to a transition of multiple waves with increasing peak

values until the system reaches the stable recurrent oscillations with peak-to-peak interval approximating 40 days.

In contrast, we simulated the ”dynamic zero” policy when the population reacts to confirmed cases with much

stringent public health measures (k = 1) and rapid response (removal of infectious individuals within 4 days), we note

from Figure 4 (left panel) that the outbreak had a small first outbreak, followed by damped oscillations in transition

to a small equilibrium value (with incidence value approximating 14). Increasing the behavioural delay from 7-days

to 11 days may destabilize the equilibrium for a stable limit cycle, but with small amplitudes (right panel).

4. Discussions

During the 2003-04 SARS-1 outbreak, most cities with SARS-importation experienced 2 waves within a single

season [6]. This first global public health emergency of the century shows that classical epidemic models do not apply

6
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Figure 3. Solution of model (2) with k = 0.01, γ = 1/3.92, β0 = 0.7143, τ = 14.

Figure 4. Solutions of model (2) with k = 1, γ = 0.2551, β0 = 0.7143. Left panel: τ = 7. Right panel: τ = 11.

to disease outbreaks in the modern era of global connection and massive digital media to inflict behavioural changes.

The classical epidemic model predicts a typical outbreak curve with a single wave: the number of infections increasing

exponentially until the susceptible population is depleted and then the disease disappears also exponentially. It was

suggested that behavioural changes played a role in the occurrence of the ”twin”-peaks. Some mechanistic models

were proposed to explain how multiple waves occur when the population behaviours change in response to different

perceived infection and disease risks [7].

It was subsequently observed during the 2009-10 H1N1 influenza pandemic that the behavioural changes could be

driven by the media: the media, behaviour and disease co-evolves. However, both media coverage and the population

behaviour develop rapid fatigue so social distancing measures and population adherence ”switching space” may locate

in the region undesirable for avoidance of subsequent, and potentially larger, waves [8]. This lesson was not taken

seriously in many countries during the first year of the global COVID-19 pandemic, so the early phase of the global

pandemic was characterized by multiple waves [9] even before the emergency of variants of concerns. It has been

recognized that behavioural changes must be integrated into epidemic models in order to better predict the epidemic

trends and to inform better public health risk communication strategies [10, 11, 12].

Here we propose a coupled system of differential-algebraic system to couple the disease transmission dynamics

compartmental model with the behavioural change dynamics in response to infection risk perception. Our model

incorporates two key indices to measure the population flexibility (κ) for behavioural changes and resilience, and to

measure the rapid response efficiency (τ) of behavioural changes to the infection risk in the population. Using this

model, we were able to show that the new equilibrium state (after one outbreak) is determined by the population

flexibility for behavioural change, while the rapid response efficiency determines whether a recurrent pattern will

emerge, and the peak-to-peak intervals. In contrast with a classical epidemic model with the constant delay, our

7
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model can exhibit escalating multiple waves. The model can be extended in many different ways to include more

complicated epidemic models (more disease compartments, and more heterogeneous transmission settings) and more

dynamic interactions of information propagation dynamics.

Behaviours may change more abruptly than the linear function 1/(kβI) due to, for example, lockdowns. We can

consider the f (x) = F(kx) with F defined by the sigmoidal function

F(x) =
β0(1 + e−α)

1 + ex−α
.

Then F(0) = β0 is the maximum effective transmission coefficient per day, and F(x) → 0 as x → ∞. The basic

reproduction number is still R0 = β0/γ, when no behavioural changes have occurred. To look for the positive equilib-

rium, we first solve the first equation I for the equilibrium to get β∗ = γ and then substitute this to the second renewal

equation for β to get

β∗ =
β0(1 + e−α)

1 + ekβ∗I∗−α
,

from which we get ekγI∗−α = R0(1 + e−α) − 1 and hence

I∗ =
1

kγ

[

α + log(R0(1 + e−α) − 1)
]

=
1

kγ
log K > 0,

for

K := eα(R0 − 1) + R0 = R0(eα + 1) − eα > 1.

Therefore, when R0 > 1 the coupled system has a non-trivial equilibrium (I∗, β∗) = (
log K

kγ
, γ), where the infection

reaches an equilibrium determined by the basic reproduction number and the community flexibility, and the effective

contact reaches the equilibrium value γ so the effective reproductive number β∗/γ reaches the threshold of unity.

Again, the larger the k the smaller the infection at the equilibrium. To compute the linearization, note that

1

R0

=
1 + e−α

1 + ekβ∗I∗−α

and

f ′(x) =
kβ0(1 + e−α)ekx−α

(1 + ekx−α)2
=

kβ0(1 + e−α)

1 + ekx−α
−

kβ0(1 + e−α)

(1 + ekx−α)2
.

Therefore,

f ′(β∗I∗) = −
kβ0

R0

(

1 −
1

R0(1 + e−α)

)

= −
kβ0K

R2
0
(1 + eα)

,

f ′(β∗I∗)β∗ = −
kβ0Kγ

R2
0
(1 + eα)

, f ′(β∗I∗)I∗ = −
K log K

R0(1 + eα)
.

The linearization at the positive equilibrium (I∗, β∗) becomes

{

I′(t) = β∗I(t) + I∗β(t) − γI(t) = I∗β(t),

β(t) = f ′(β∗I∗)[I∗β(t − τ) + β∗I(t − τ)].

The characteristic equation becomes

λ
(

R0(1 + eα) + K log Ke−λτ
)

= −K log Kγe−λτ.

The critical value τ∗ when the linearization loses its stability due to the existence of a pair of purely imaginary zeros

of the characteristic equation is given by

ω∗ =
γK log K

√

R2
0
(1 + eα)2 − (K log K)2

=
γ

√

(

R0(1+eα)

K log K

)2
− 1

8
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and

τ∗ =
arctan(−γ/ω∗)

ω∗
.

The effective contact reduces to half of β0 when the incidence x = βI is given by

1

2
=

1 + e−α

1 + ekx−α
.

So, when the incidence reaches k−1 ln(2 + eα), the effective contact reduces to β0.
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