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Abstract
Lagrangian multiforms provide a variational framework to describe integrable hierar-
chies. The case of Lagrangian 1-forms covers finite-dimensional integrable systems.
We use the theory of Lie dialgebras introduced by Semenov-Tian-Shansky to con-
struct a Lagrangian 1-form. Given a Lie dialgebra associated with a Lie algebra g and
a collection Hk , k = 1, . . . , N , of invariant functions on g∗, we give a formula for
a Lagrangian multiform describing the commuting flows for Hk on a coadjoint orbit
in g∗. We show that the Euler–Lagrange equations for our multiform produce the set
of compatible equations in Lax form associated with the underlying r -matrix of the
Lie dialgebra. We establish a structural result which relates the closure relation for
our multiform to the Poisson involutivity of the Hamiltonians Hk and the so-called
double zero on the Euler–Lagrange equations. The construction is extended to a gen-
eral coadjoint orbit by using reduction from the free motion of the cotangent bundle
of a Lie group. We illustrate the dialgebra construction of a Lagrangian multiform
with the open Toda chain and the rational Gaudin model. The open Toda chain is
built using two different Lie dialgebra structures on sl(N +1). The first one possesses
a non-skew-symmetric r -matrix and falls within the Adler–Kostant–Symes scheme.
The second one possesses a skew-symmetric r -matrix. In both cases, the connection
with the well-known descriptions of the chain in Flaschka and canonical coordinates
is provided.
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1 Introduction

The concept of Lagrangian multiforms was introduced in [1] with the objective of pro-
viding a variational criterion of integrability. The pioneering insight was inspired by
the well-established criterion for integrability known as multidimensional consistency
[2, 3] which is the discrete analogue of the property of commuting (Hamiltonian) flows
for a dynamical system sitting in an integrable hierarchy. It was proposed to introduce
a generalised action and a variational principle, involving a new object (a Lagrangian
multiform), to capture purely variationally multidimensional consistency. This idea
grew quickly, first in the discrete realm, see [4] and references therein. Over the last
decade or so, the universality of this idea and its connections with more traditional
features of integrability (Lax pair, Hamiltonian structures) has been illustrated inmany
other incarnations of integrable systems: finite-dimensional systems [5] followed by
[6, 7], continuous infinite-dimensional systems—field theories in 1 + 1 dimensions
[8–14] and in 2+1 dimensions [15, 16]—and semi-discrete systems [17]. The relations
between discrete and continuous multiforms were explored in [18]. The concept was
even extended recently to non-commuting flows in [19]. In general, a Lagrangian mul-
tiform is a d-formwhich is integrated over a hypersurface of dimension d in a so-called
multi-time space of dimension greater than d to yield an action functional depending
not only on the field configurations but also on the hypersurface. This last point is the
main departure from a traditional action and principle of least action. One postulates
a principle of least action which must be valid for any hypersurface embedded in the
multi-time space. This is the postulate which captures the idea of the commutativity
of the flows and which was adopted as a definition of pluri-Lagrangians, see [7, 13]
and references therein. In Lagrangian multiform theory, there is an additional postu-
late, the closure relation which is the direct counterpart of the Poisson involutivity of
Hamiltonians, the Liouville criterion for integrability.
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The generalised variational principle produces equations that come in two flavours:
1) Euler–Lagrange equations associatedwith each of the coefficients of the Lagrangian
multiform which form a collection of Lagrangian densities; 2) Corner or structure
equations on the Lagrangian coefficients themselves which select possible models and
ensure the compatibility of the various equations of motion imposed on a common
set of fields. Classifying all possible Lagrangian multiforms along these lines would
amount to classifying all integrable hierarchies. In practice, it is a nontrivial task to
obtain all the Lagrangian coefficients of a multiform which produce compatible equa-
tions of motion. Beyond brute-force calculations to solve the corner equations [9],
several works have used the idea of variational symmetries to achieve this goal [7,
10, 13]. This produces an algorithm to construct the Lagrangian coefficients one
after the other from a given initial Lagrangian. Although perfectly fine in theory,
this can become quickly unmanageable in practice and usually formulas for only a
few Lagrangian coefficients are obtained. It also has the disadvantage of singling out
some independent variables in the hierarchy which then appear as the so-called alien
derivatives in the higher Lagrangian coefficients.

More recently, another approach was introduced which takes a more global view on
a hierarchy and provides an efficient way of describing all the Lagrangian coefficients
in one formula [12, 14], see also [16]. A key insight in [12, 14] was the incorporation
in the Lagrangian multiform of key ingredients known in the Hamiltonian framework
for integrable hierarchies, in particular the classical r -matrix, as well as the “com-
pounding” of hierarchies following [20]. This paper draws and expands upon this
insight and is concerned with Lagrangian 1-forms which allow one to treat integrable
hierarchies of finite-dimensional systems. Specifically, we show how the theory of
Lie dialgebras [21] can be used to construct systematically a Lagrangian multiform
for any finite-dimensional system which falls within the Lie dialgebra framework.
The latter incorporates and generalises the perhaps more well-known Adler–Kostant–
Symes scheme [22–24]. In terms of versatility, this goes beyond the results of [12,
14] which were confined to skew-symmetric classical r -matrices. The Lie dialgebra
framework can easily accommodate the non-skew-symmetric case. For conciseness,
we only illustrate this versatility and our construction on two famous models: the open
Toda chain and the (rational) Gaudinmodel. However, the construction can in principle
cover a much larger range of models which falls into the r -matrix scheme, see [25] for
a description of many such systems including classical tops. To our knowledge, only
one instance of a Lagrangian description of the AKS scheme has been proposed before
in [26]. Compared to the present paper, [26] is limited to the AKS scheme and provides
only one Lagrangian corresponding to the quadratic Hamiltonian Tr L2/2 (the idea
of Lagrangian multiforms was not yet available at that time). By using ideas from
Hamiltonian reduction, we produce a Lagrangian multiform on a general coadjoint
orbit which encompasses the results of [26] as a special case.

Our main results are:

1. The definition (3.1)-(3.3) of a Lagrangian multiform from the data of a Lie dialge-
bra and the proof that its multi-time Euler–Lagrange equations produce a hierarchy
of compatible equations in Lax form, Theorem 3.2.
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2. For this Lagrangian multiform, the derivation of an identity relating its closure
relation, its Euler–Lagrange equations and the Poisson involutivity of associated
Hamiltonians, Theorem 3.3.

3. The construction of a Lagrangian multiform from the reduction of a “free”
Lagrangian on the cotangent bundle T ∗A of a Lie group A and the connection
with the above Lie dialgebra case.

4. Explicit Lagrangian multiforms for the open Toda chain and the rational Gaudin
model.

The paper is organised as follows. In Sect. 2, we briefly review the notions of
Lagrangian multiforms and Lie dialgebras that we need. Section3 introduces the
Lagrangian multiform and contains two main results, Theorems 3.2 and 3.3. Sect. 4
deals with another main result. We recast our results in the context of reduction from
free motion on the cotangent bundle of a Lie group and produce a Lagrangian multi-
form on a general coadjoint orbit. We show how to recover the case of a Lagrangian
multiform associated with a Lie dialgebra described in Sect. 3. In Sect. 5, we illus-
trate the construction for the open Toda chain associated with a Lie dialgebra via
a non-skew-symmetric r -matrix. We present explicit expressions for the Lagrangian
coefficients and relate our results to the well-known formulations of the Toda chain
in Flaschka and canonical coordinates. In Sect. 6, the same open Toda chain is used
to illustrate our construction in the case of a skew-symmetric r -matrix. We also relate
our results to the description in Flaschka and canonical coordinates. Section7 is con-
cerned with the rational Gaudin model and is the opportunity for us to show how
our Lagrangian multiform operates in the case of an infinite-dimensional Lie algebra
which accounts for the presence of a spectral parameter in the Lax matrices. Although
it deals with a finite-dimensional Gaudin model, this section bears a lot of similari-
ties with the framework introduced in [14] for integrable field theories. We end with
concluding remarks in Sect. 8.

2 Backgroundmaterial

2.1 Lagrangian 1-forms

We review inmore detail the notion of Lagrangianmultiforms that we need, restricting
our attention to Lagrangian 1-forms since our aim is to describe integrable hierarchies
of finite-dimensional systems. The basic object is a Lagrangian 1-form

L [q] =
N∑

k=1

Lk[q] dtk (2.1)

and the related generalised action

S[q, �] =
∫

�

L [q] (2.2)
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where � is a curve in the multi-time R
N with (time) coordinates t1, . . . , tN and q

denotes generic configuration coordinates. For instance, q could be a position vector
in R

d for some d, or as will be the case for us, an element of a (matrix) Lie group.
The notations L [q] and Lk[q] mean that these quantities depends on q and a finite
number of derivatives of q with respect to the times t1, . . . , tN . In this paper, we
restrict ourselves only to the case of first derivatives and simply write Lk for the
Lagrangian coefficients. The application of the generalised variational principle leads
to the following multi-time Euler–Lagrange equations [6]

∂Lk

∂q
− ∂tk

∂Lk

∂qtk
= 0 , (2.3)

∂Lk

∂qt�
= 0 , � �= k , (2.4)

∂Lk

∂qtk
= ∂L�

∂qt�
, k, � = 1, . . . , N . (2.5)

Note that (2.3) is simply the standard Euler–Lagrange equation for eachLk . Condition
(2.4) states that the Lagrangian coefficientLk cannot depend on the velocities qt� for
� �= k. The last condition (2.5) requires that the conjugate momentum to q be the same
with respect to all times tk . The closure relation then stipulates that

dL [q] = 0 ⇔ ∂tkL j − ∂t jLk = 0, (2.6)

on solutions of (2.3)-(2.5).

2.2 Lie dialgebras and Lax equations

Here we collect facts from the theory of Lie dialgebras as defined in [21, Lecture 2],
see also [27, Chapter 4]. Proofs are omitted for brevity and the reader is referred to
[21, 27] for details. We emphasise that Lie dialgebras are different from the perhaps
more familiar Lie bialgebras appearing in Drinfeld’s theory of Poisson-Lie groups.
Connections and differences between these two structures are discussed in [21] and
[28].

Let g be a matrix Lie algebra, with matrix Lie group G, and g∗ its dual space. We
have the usual (co)adjoint actions1 for all ξ ∈ g∗, X ,Y ∈ g, g ∈ G,

adX · Y = [X ,Y ] , (ad∗
X · ξ)(Y ) = −ξ(adX · Y ) = −ξ([X ,Y ]) , (2.7)

Adg · X = g X g−1 , Ad∗
g · ξ(X) = ξ(Adg−1 · X) . (2.8)

The space g∗ can be endowed with the Lie–Poisson bracket defined by

{ f , g}(ξ) = (ξ, [∇ f (ξ), ∇g(ξ)]), f , g ∈ C∞(g∗), (2.9)

1 For simplicity, we only work with matrix Lie algebras and corresponding Lie groups.
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where we introduced the convenient notation ( , ) for the natural pairing between
g∗ and g: ξ(X) = (ξ, X). The gradient ∇ f (ξ) is the element of g defined from the
differential δ f (ξ) by using the pairing

δ f (ξ)(η) = lim
ε→0

f (ξ + εη) − f (ξ)

ε
= (η,∇ f (ξ)). (2.10)

The Lie–Poisson bracket is degenerate in general and the Ad∗-invariant functions on
g∗ are the Casimir functions. Its symplectic leaves are the coadjoint orbits of G in
g∗. The restriction to a coadjoint orbit gives rise to the Lie–Kostant–Kirillov–Souriau
symplectic form ωKK .

Let R : g → g be a linear map. It is a solution of themodified classical Yang–Baxter
equation (mCYBE) if it satisfies

[R(X), R(Y )] − R ([R(X),Y ] + [X , R(Y )]) = −[X ,Y ], ∀ X ,Y ∈ g. (2.11)

By abuse of language, we will call a solution R of (2.11) a (classical) r -matrix, in
relation to the fact thatwith R one can associate r ∈ g⊗g (which iswhat is traditionally
called the r -matrix) when g is equipped with a nondegenerate ad-invariant symmetric
bilinear form 〈 , 〉 (e.g. the Killing form when g is a finite-dimensional semi-simple
Lie algebra). A famous example of an r -matrix arises in the case where g admits a
direct sum decomposition (as a vector space) into two Lie subalgebras

g = g+ ⊕ g−. (2.12)

Then, R = P+ − P− is a solution of (2.11), where P± is the projector on g± along
g∓.

Given a solution R of the mCYBE, one can define on the vector space g a second
Lie bracket

[X ,Y ]R = 1

2
([R(X),Y ] + [X , R(Y )]) . (2.13)

The corresponding Lie algebra is denoted by gR . We therefore have an adjoint action
of gR on itself and a coadjoint action of gR on g∗ (g and gR , being the same vector
space, have the same dual space)

adRX · Y = [X ,Y ]R , ∀ X ,Y ∈ g , (2.14)

(ad∗R
X · ξ)(Y ) = −(ξ , adRX · Y ) = −(ξ , [X ,Y ]R) . (2.15)

The algebraic significance of the mCYBE and of the second Lie bracket [ , ]R is
given by the following results which lead to essential factorisation properties under-
lying integrable systems. The key objects are the maps

R± = 1

2
(R ± id) . (2.16)
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Proposition 2.1 Let g± = Im R±. Then,

1. R± : gR → g are Lie algebra homomorphisms:

R± ([X ,Y ]R) = [
R±(X), R±(Y )

]
. (2.17)

In particular, g± ⊂ g are Lie subalgebras of g.
2. The mapping iR : gR → g+ ⊕ g−, iR(X) = (R+(X), R−(X)) is a Lie algebra

embedding. Thus g̃R = Im iR is a Lie subalgebra of g+ ⊕ g− .
3. The composition of the maps

iR : gR → g+ ⊕ g−, X �→ (R+(X), R−(X)), (2.18)

followed by

a : g+ ⊕ g− → g, (X+, X−) �→ X+ − X−, (2.19)

provides a unique decomposition of any element X ∈ g as X = R+(X)− R−(X).

Note that R+ − R− = id and

[X ,Y ]R = R+ ([X ,Y ]R) − R− ([X ,Y ]R)

= [
R+(X), R+(Y )

]− [
R−(X), R−(Y )

]
. (2.20)

We can express the actions of gR in terms of those of g. For convenience, we write
X± = R±(X) for X ∈ g. Then,

adRX · Y = 1

2
adR(X) · Y + 1

2
adX · R(Y ) = adX+ · Y+ − adX− · Y− , (2.21)

ad∗R
X · ξ = 1

2
ad∗

R(X) · ξ + 1

2
R∗(ad∗

X · ξ) = R∗+(ad∗
X+ · ξ) − R∗−(ad∗

X− · ξ),

(2.22)

where the adjoint A∗ : g∗ → g∗ of a linear map A : g → g is defined by (A∗(ξ), X) =
(ξ, A(X)).

The application of this framework to integrable systems hinges on the interplay
between the two Lie–Poisson brackets one can define on g∗. Indeed, having a second
Lie bracket, we can repeat the definition (2.9) to obtain

{ f , g}R(ξ) = (ξ, [∇ f (ξ), ∇g(ξ)]R). (2.23)

A similar conclusion holds: the symplectic leaves are coadjoint orbits of GR , the Lie
group of gR , in g∗. The restriction to a coadjoint orbit gives rise to the symplectic form
which we denote by ωR . It is the interplay between these two structures that provides
integrable systems whose equations of motion take the form of a Lax equation. For
this last part, one needs one more ingredient: an Ad-invariant nondegenerate bilinear
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symmetric form 〈 , 〉 on g. It allows to identify g∗ with g and the coadjoint actions
with the adjoint actions. Specifically, one has

Theorem 2.2 TheAd∗-invariant functions on g∗ are in involutionwith respect to { , }R.
The equation of motion

d

dt
L = {L, H}R (2.24)

induced by an Ad∗-invariant function H on g∗ takes the following equivalent forms,
for an arbitrary L ∈ g∗,

d

dt
L = adR∗

∇H(L) · L = 1

2
ad∗

R∇H(L) · L = ad∗
R±∇H(L) · L. (2.25)

When there is an Ad-invariant nondegenerate bilinear form 〈 , 〉 on g so that we can
identify g∗ with g and ad∗with ad, the last equation takes the desired form of a Lax
equation for L ∈ g,

d

dt
L = [M±, L], M± = R±∇H(L). (2.26)

The proof can be found for instance in [27] and we only elaborate on certain points
which will be useful for our purposes below. The crucial point is to exploit the Ad∗-
invariance of the function H defining the time flow. The latter means that the following
property holds

ad∗
∇H(ξ) · ξ = 0 ⇔ (ξ, [∇H(ξ), X ]) = 0 ∀ξ ∈ g∗, ∀X ∈ g. (2.27)

Thus, for any two Ad∗-invariant functions H1 and H2,

{H1, H2}R(ξ) = (ξ, [∇H1(ξ) , ∇H2(ξ)]R)

= 1

2
(ξ, [R∇H1(ξ) , ∇H2(ξ)] + [∇H1(ξ) , R∇H2(ξ)]) = 0. (2.28)

For any function f on g∗, the time evolution associated with the Ad∗-invariant H with
respect to the Poisson bracket { , }R is defined by

d

dt
f (L) = { f , H}R(L) ,

i.e.

(
d

dt
L , ∇ f (L)

)
= (L, [∇ f (L) , ∇H(L)]R) = −1

2
(L, [R∇H(L) , ∇ f (L)])

= (adR∗
∇H(L) · L , ∇ f (L)) = 1

2
(ad∗

R∇H(L) · L , ∇ f (L)) .
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Finally, in view of (2.13) and (2.27), we have

ad∗
R∇H(L) · L = 2 ad∗

R±∇H(L) · L, (2.29)

thus establishing the various equivalent forms of the equations in (2.25) (by restricting
f to be any of the coordinate functions on g∗).
The involutivity property (2.28) ensures that we can define compatible time flows

associated with a family of Ad∗-invariant Hamiltonian functions Hk , k = 1, . . . , N .
If one can supply enough such independent functions, or work on a coadjoint orbit of
low-enough dimension, one obtains an integrable system described by an integrable
hierarchy of equations in Lax form (again using the identification provided by 〈 , 〉)

∂tk L = [R±∇Hk(L), L], k = 1, . . . , N . (2.30)

The typical example of an invariant function Hk is given by Hk = 1
k+1 Tr(L

k).
For our purposes, the Lie groups associated with g and gR will be important. We

introduce G and GR as the (connected, simply connected) Lie groups defined for g
and gR respectively. For simplicity, we only think of matrix groups in this paper. Only
in special circumstances are G and GR diffeomorphic. In general, this is only true in a
neighbourhood of the identity where the crucial difference between the two groups lies
in their multiplications induced by [ , ] and [ , ]R respectively. The homomorphisms
R± give rise to Lie group homomorphisms (which we denote by the same symbols)
and we obtain a factorisation at the group level. With g = eX , X ∈ g, we have

R± g = eR±X . (2.31)

Specifically, let G± = R±(GR) be the subgroups of G corresponding to g±. The
composition of the maps

iR : GR → G+ × G−, g �→ (R+(g), R−(g)), (2.32)

followed by

m : G+ × G− → G, (g+, g−) �→ g+ g−1− , (2.33)

allows us to factorise uniquely an arbitrary element g ∈ G (sufficiently close to the
identity) as

g = g+ g−1− , (g+, g−) ∈ G̃ R = Im iR . (2.34)

An element g ∈ GR can be identified with its image (g+, g−) ∈ G̃ R ⊆ G+ × G−
and the multiplication ·R in GR is most easily visualised using the homomorphism
property

iR(g ·R h) = iR(g) ∗ iR(h) = (g+ h+, g− h−) (2.35)

where ∗ is the direct product group structure of G+ × G−. This is usually shortened
to
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g ·R h = (g+ h+, g− h−). (2.36)

The group GR acts on gR by the adjoint action and on g∗ via the coadjoint action

AdRg · X = g ·R X ·R g−1 , ∀ X ∈ gR , g ∈ GR , (2.37)

AdR∗
g · ξ(X) = (ξ , AdRg−1 · X) , ∀ g ∈ GR , ξ ∈ g∗ , X ∈ gR . (2.38)

Remark 2.3 When writing using the suggestive notation g ·R X ·R g−1 for the adjoint
action, we tacitly view ·R as an associative product on the matrix Lie algebra and its
Lie group. Strictly speaking, this is not possible if R is a solution of (2.11). It becomes
possible for instance if g is an associative algebra and we require R to be a solution of
the associative Yang–Baxter equation R(X) R(Y )−R(R(X) Y +X R(Y ))+X Y = 0,
see [29]. This implies that X ·RY = 1

2 (R(X) Y + X R(Y ))defines a second associative
product on g and allows us to view [X ,Y ]R as the commutator X ·R Y − Y ·R X , in
complete analogy with [X ,Y ] = X Y − Y X . We will assume that ·R is such an
associative product in the rest of this paper and use the consequences, e.g. [X ,Y ]R =
X ·R Y − Y ·R X .

The following relations are most useful in the practical calculations of the examples
discussed below. With g± = R± g, X± = R± X , g ∈ GR , X ∈ gR ,

AdRg · X = g+ X+ g−1+ − g− X− g−1− , (2.39)

AdR∗
g · ξ = R∗+(Ad∗

g+ξ) − R∗−(Ad∗
g−ξ) , ∀ξ ∈ g∗ . (2.40)

Thus, the dual space g∗ hosts two coadjoint actions of G and GR , as it does with
the two coadjoint actions of the Lie algebras g and gR . The last main result of this
framework is known as the factorisation theorem, see e.g. [21, 27, 30].

Theorem 2.4 Consider the system of compatible equations with the given initial con-
dition

∂tk L = ad∗
R±∇Hk(L) · L, k = 1, . . . , N , L(0, . . . , 0) = L0 ∈ g∗. (2.41)

Denote (t1, . . . , tN ) = t for conciseness. Let g±(t) be the smooth curves in G± which
solves the factorisation problem

e−∑N
k=1 tk∇Hk(L0) = g+(t)−1 g−(t), g±(0) = e. (2.42)

Then, the solution to the initial-value problem (2.41) is given by

L(t) = Ad∗
g+(t) · L0 = Ad∗

g−(t) · L0, (2.43)

and g±(t) satisfy

∂tk g±(t) = R±∇Hk(L(t)) g±(t). (2.44)
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This result shows that the solution lies at the intersection of coadjoint orbits of G and
GR . Combined with the fact that the coadjoint orbits provide the natural symplectic
manifolds associated with the corresponding Lie–Poisson bracket, this means that the
natural arena to define our phase space, i.e. where L lives, is a coadjoint orbit of GR

in g∗

O
 = {AdR∗
ϕ · 
;ϕ ∈ GR}, for some 
 ∈ g∗. (2.45)

In the Lagrangian multiform theory, the prevalent idea is that one should think of
an integrable system as an integrable hierarchy, in a way completely similar to the
Hamiltonian integrable hierarchy we have just recalled. This leads us to work with the
space where (t1, . . . , tN ) = t lives: the multi-time space. Since the flows commute,
the multi-time is simply (a subspace of) RN1 × (S1)N2 , N1 + N2 = N (in general
we should allow for the possibility of having periodicity in some of the independent
variables t1, . . . , tN ). The generalisation to the case where the vector fields giving the
flows no longer commute but still form a Lie algebra was considered in [19] and leads
to the consideration of the multi-time space being a (non-abelian) Lie group.

2.3 Extension to loop algebras and some special cases

The essential results of the Lie dialgebra construction discussed above extend to the
infinite-dimensional setting, e.g. the case of loop algebras.2 The latter is relevant
when one needs Lax matrices with spectral parameters. This is typically the case for
integrable field theories but it can also be required for some finite-dimensional systems
such as the closed Toda chain or Gaudin models. We will present the extension of the
Lie dialgebra construction to this infinite-dimensional setting via the Gaudin example
in Sect. 7 and we refer the reader to [21, Lecture 3] for more details.

There are special cases of the Lie dialgebra framework that may be more familiar to
the reader and will play a role in our examples below. They both arise when g admits
a direct sum decomposition (as a vector space) into two Lie subalgebras

g = g+ ⊕ g−, (2.46)

and we take R = P+ − P−, where P± is the projector on g± along g∓. The decom-
position of g induces the decomposition

g∗ = g∗+ ⊕ g∗−. (2.47)

Using a nondegenerate ad-invariant bilinear form on g, we can identify g∗± with g⊥∓.
The first special case, which historically is at the origin of the so-called Adler–

Kostant–Symes scheme [22–24] is obtained as follows. We fix 
 to be in g∗− and
consider the coadjoint orbit of elements L = AdR∗

ϕ ·
. As a result, only the subgroup
G− in GR � G+ × G− plays a role since L = AdR∗

ϕ · 
 = −R∗−(Ad∗
ϕ− · 
) and the

2 There are several subtleties related to duals in infinite dimensions and completions which we do not touch,
keeping a less rigorous but more approachable exposition.
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coadjoint orbitO
 lies in g∗−. This is the historic setup which can be used to formulate
the open Toda chain in Flaschka coordinates. R is not skew-symmetric in this case.
We will present this example in Sect. 5 where details on our Lagrangian multiform for
this model will be given.

The second special case is a further specialisation where g± are isotropic with
respect to 〈 , 〉, meaning

〈g±, g±〉 = 0

and implying that g∗± can be identified with g∓ = g⊥∓. This case can arise with loop
algebras and will be discussed in Sect. 7 in relation to the Gaudin model. In this case,
R is skew-symmetric, i.e.

〈RX ,Y 〉 = −〈X , RY 〉, ∀ X ,Y ∈ g.

Note that we will also illustrate the case where R is not defined from a decompo-
sition into two subalgebras but rather from a decomposition into nilpotent and Cartan
subalgebras. This different setup is accommodated without problems into Lie dialge-
bras. Interestingly, it can also be used to describe the same open Toda chain as in the
AKS scheme and this will be illustrated in Sect. 6. The underlying algebraic structures
are very different, though. In particular, R is skew-symmetric in this case while it is
not in the AKS formulation, showing that the same Toda chain can arise from two
distinct constructions.

3 Lagrangianmultiform on a coadjoint orbit

3.1 The Lagrangianmultiform and its properties

Recalling our comment about the coadjoint orbits of GR in g∗ being the natural arena
for an integrable hierarchy, let us introduce the following Lagrangian 1-form

L [ϕ] =
N∑

k=1

Lk dtk = K[ϕ] − H[ϕ] (3.1)

with kinetic part

K[ϕ] =
N∑

k=1

(
L, ∂tkϕ ·R ϕ−1

)
dtk, L = AdR∗

ϕ · 
, ϕ ∈ GR, (3.2)

and potential part

H[ϕ] =
N∑

k=1

Hk(L) dtk . (3.3)
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The field ϕ ∈ GR contains the dynamical degrees of freedom and, as we will see,
the Euler–Lagrange equation will take a natural form when expressed in terms of
L = AdR∗

ϕ ·
.
 is a fixed non-dynamical element of g∗ which definesO
, the phase
space of the model. Each LagrangianLk in the Lagrangian multiform has a structure
comparable to the familiar Lagrangian pq̇ − H in classical mechanics. The potential
part is expressed in terms of Ad∗-invariant functions Hk ∈ C∞(g∗) and we suppose
we have N of them.3

Remark 3.1 We emphasised that one important ingredient in producing equations of
motion in Lax form from the coadjoint orbit construction is to use an Ad-invariant
nondegenerate bilinear symmetric form 〈 , 〉 ong to identifyg∗ withg and the coadjoint
action with the adjoint action. The reader could therefore wonder why we have written
our Lagrangian multiform using the pairing ( , ), an element
 ∈ g∗ and functions Hk

ong∗. The point is thatwe found that itwas less confusing to do sowhenderiving results
in general and in examples, in order to identify correctly the subalgebras involved in
the decomposition of g and g∗. However, we cannot stress enough that ultimately
we always use the bilinear form 〈 , 〉 to make all the identifications and indeed
obtain equations in Lax form, whether this is clearly mentioned or not. Hopefully, this
understanding will make the exposition easier to follow.

We can now formulate our first main result.

Theorem 3.2 The Lagrangian 1-form (3.1) satisfies the corner equations (2.4)-(2.5)
of the multi-time Euler–Lagrange equations. The standard Euler–Lagrange equations
(2.3) associated with the Lagrangian coefficientsLk take the form of compatible Lax
equations

∂tk L = [R±∇Hk(L), L], k = 1, . . . , N . (3.4)

The closure relation holds: on solutions of (3.4) we have

∂tkL j − ∂t jLk = 0, j, k = 1, . . . , N .

Proof It is clear that eachLk does not depend on ∂t�ϕ for � �= k so the corner equation
(2.4) is satisfied. To see that (2.5) holds, it is convenient to introduce local coordinates
φα , α = 1, . . . , M , on the group GR . The only source of dependence on velocities is
in the kinetic term of Lk . Now

(
AdR∗

ϕ · 
, ∂tkϕ ·R ϕ−1
)

=
(


, AdR
ϕ−1 ·

(
∂tkϕ ·R ϕ−1

))

=
(


, ϕ−1 ·R ∂tkϕ
)

=
M∑

α=1

(

, ϕ−1 ·R ∂ϕ

∂φα

)
∂tkφα ≡

M∑

α=1

πα ∂tkφα

(3.5)

3 At this stage, we do not necessarily have that N is exactly half of the dimension of O
. As in the AKS
scheme, this needs to be addressed in specific cases by choosing a coadjoint orbit of appropriate dimension
to ensure Liouville integrability. We will not worry about this for now as our construction follows through
anyway.
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where we have introduced the momentum

πα =
(


, ϕ−1 ·R ∂ϕ

∂φα

)
(3.6)

conjugate to the field φα . Thus,

∂Lk

∂
(
∂tkφα

) = πα

is independent of k. The remainder of themulti-timeEuler Lagrange equations consists
of the standard Euler–Lagrange equations for each Lk . We compute

δLk =
(

δL, ∂tkϕ ·R ϕ−1
)

+
(
L, δ (∂tkϕ ·R ϕ−1)

)
− δHk(L), (3.7)

with4

δL = adR∗
δϕ·Rϕ−1 · L (3.8)

and

δHk(L) = (δL,∇Hk(L)) = −
(
L ,

[
δϕ ·R ϕ−1,∇Hk(L)

]

R

)

= 1

2

(
L ,

[
R∇Hk(L) , δϕ ·R ϕ−1

])
= −1

2

(
ad∗

R∇Hk(L) · L , δϕ ·R ϕ−1
)

.

So,

δLk =
(
adR∗

δϕ·Rϕ−1 · L , ∂tkϕ ·R ϕ−1
)

+
(
L , δ (∂tkϕ) ·R ϕ−1

)

−
(
L , ∂tkϕ ·R ϕ−1 ·R δϕ ·R ϕ−1

)
+ 1

2

(
ad∗

RdHk(L) · L , δϕ ·R ϕ−1
)

=
(
adR∗

δϕ·Rϕ−1 · L , ∂tkϕ ·R ϕ−1
)

−
(

∂tk L , δ ϕ ·R ϕ−1
)

+
(
L , δϕ ·R ϕ−1 ·R ∂tkϕ ·R ϕ−1

)

+ ∂tk

(
L , δ ϕ ·R ϕ−1

)
−
(
L , ∂tkϕ ·R ϕ−1 ·R δϕ ·R ϕ−1

)

+ 1

2

(
ad∗

R∇Hk(L) · L , δϕ ·R ϕ−1
)

4 More rigorously, the notation δL means the tangent vector to O
 at the point L induced by the element
X ∈ gR which we write more suggestively as δϕ ·R ϕ−1. The latter notation is closer to the more familiar
one in variational calculus using matrix-valued fields.
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=
(
adR∗

δϕ·Rϕ−1 · L , ∂tkϕ ·R ϕ−1
)

−
(
adR∗

∂tk ϕ·Rϕ−1 · L , δ ϕ ·R ϕ−1
)

+
(
L ,

[
δϕ ·R ϕ−1 , ∂tkϕ ·R ϕ−1

]

R

)
+ 1

2

(
ad∗

R∇Hk(L) · L , δϕ ·R ϕ−1
)

+ ∂tk

(
L , δ ϕ ·R ϕ−1

)
.

The first and third term cancel each other. In the second term we recognise
adR∗

∂tk ϕ·Rϕ−1 · L = ∂tk L . Hence,

δLk =
(

−∂tk L + 1

2
ad∗

R∇Hk(L) · L , δ ϕ ·R ϕ−1
)

+ ∂tk

(
L , δ ϕ ·R ϕ−1

)

and we obtain the Euler–Lagrange equation for each Lk as

∂tk L = 1

2
ad∗

R∇Hk(L) · L. (3.9)

Now recall that 1
2 ad

∗
R∇Hk(L) · L = ad∗

R±∇Hk(L) · L and that, with g being equipped
with an Ad-invariant nondegenerate bilinear form, ad∗

R±∇Hk (L) · L is identified with
[R±∇Hk(L), L]. Thus, we have obtained (3.4) variationally as desired. That this set
of equations is compatible follows from the commutativity of the flows which is a
consequence of the mCYBE and the Ad-invariance of Hk as we now show. Going
back to having L ∈ g∗ and evaluating its derivatives on a fixed but arbitrary X ∈ g,
we have

(∂tk∂t j L)(X) = −1

2
∂tk
(
L , [R∇Hj (L), X ])

= 1

4

(
L , [R∇Hk(L) , [R∇Hj (L) , X ]])

− 1

4

(
L , [R[R∇Hk(L) , ∇Hj (L)] , X ]) .

Hence, using the Jacobi identity

([∂tk , ∂t j ]L)(X) = 1

4

(
L , [[R∇Hk(L) , R∇Hj (L)] , X ])

− 1

4

(
L , R([R∇Hk(L) , ∇Hj (L)]

+[∇Hk(L) , R∇Hj (L)]) , X ])

= −1

4

(
L , [[∇Hk(L) , ∇Hj (L)] , X ]) = 0

where we use the mCYBE in the second equality and property (2.27) in the last step.
We now establish the closure relation, i.e. dL = 0 on shell. It turns out that the kinetic
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and potential contributions vanish separately. We have

∂t jLk − ∂tkL j = ∂t j

(
L, ∂tkϕ ·R ϕ−1

)
− ∂tk

(
L, ∂t j ϕ ·R ϕ−1

)

−∂t j Hk(L) + ∂tk Hj (L). (3.10)

Now, using (2.27), we find

∂t j Hk(L) = (
∂t j L, ∇Hk(L)

) = −1

2

(
L,
[
R∇Hj (L), ∇Hk(L)

]) = 0. (3.11)

Thus, it is a direct consequence of the Ad∗-invariance of H that the potential contri-
bution to dL is zero on shell. We are now left with just the kinetic terms which can
be rewritten as

(
∂t j L , ∂tkϕ ·R ϕ−1

)
−
(

∂tk L , ∂t j ϕ ·R ϕ−1
)

+
(
L , ∂t j (∂tkϕ ·R ϕ−1)

)

−
(
L , ∂tk (∂t j ϕ ·R ϕ−1)

)

=
(

∂t j L , ∂tkϕ ·R ϕ−1
)

−
(

∂tk L , ∂t j ϕ ·R ϕ−1
)

+
(
L , ∂t j ∂tkϕ ·R ϕ−1 − ∂tk∂t j ϕ ·R ϕ−1

)

+
(
L , ∂tkϕ ·R ∂t j ϕ

−1 − ∂t j ϕ ·R ∂tkϕ
−1
)

.

From the commutativity of flows, we have ∂t j ∂tkϕ − ∂tk∂t j ϕ = 0, which leaves us
with

(
∂t j L, ∂tkϕ ·R ϕ−1

)
−
(

∂tk L, ∂t j ϕ ·R ϕ−1
)

+
(
L, ∂tkϕ ·R ∂t j ϕ

−1 − ∂t j ϕ ·R ∂tkϕ
−1
)

.

The on-shell relation

∂t j L = 1

2
ad∗

R∇Hj (L) · L

allows us to express the first term as

(
∂t j L , ∂tkϕ ·R ϕ−1

)
= 1

2

(
ad∗

R ∇Hj (L) · L , ∂tkϕ ·R ϕ−1
)

= −1

2

(
ad∗

∂tk ϕ·Rϕ−1 · L , R ∇Hj (L)
)

.

Since

(
adR∗

∂tk ϕ·Rϕ−1 · L,∇Hj (L)
)

= 1

2

(
ad∗

∂tk ϕ·Rϕ−1 · L, R∇Hj (L)
)

+1

2

(
ad∗

R ∂tk ϕ·Rϕ−1 · L,∇Hj (L)
)
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and

(
ad∗

R ∂tk ϕ·Rϕ−1 · L,∇Hj (L)
)

= −
(
ad∗

∇Hj (L) · L, R∂tkϕ ·R ϕ−1
)

= 0,

we have a further simplification to

(
∂t j L , ∂tkϕ ·R ϕ−1

)
= −

(
adR∗

∂tk ϕ·Rϕ−1 · L ,∇Hj (L)
)

= − ( ∂tk L ,∇Hj (L)
)

= − ∂tk Hj (L) = 0

where we have used the result from (3.11) (with k ↔ j). Similarly, we have for the
second term

(
∂tk L, ∂t j ϕ ·R ϕ−1

)
= − ∂t j Hk(L) = 0. (3.12)

For the last remaining term, we have

(
L , ∂tkϕ ·R ∂t j ϕ

−1 − ∂t j ϕ ·R ∂tkϕ
−1
)

=
(
L , −∂tkϕ ·R ϕ−1 ·R ∂t j ϕ ·R ϕ−1 + ∂t j ϕ ·R ϕ−1 ·R ∂tkϕ ·R ϕ−1

)

=
(
L ,

[
∂t j ϕ ·R ϕ−1 , ∂tkϕ ·R ϕ−1

]

R

)

= −
(
adR∗

∂t j ϕ·Rϕ−1 · L , ∂tkϕ ·R ϕ−1
)

= −
(

∂t j L , ∂tkϕ ·R ϕ−1
)

= ∂tk Hj (L) = 0. ��

It is worth noting that the properties of our Lagrangian multiform heavily rely on
the mCYBE for R. It is at the heart of the commutativity of the flows and the closure
relation. The connection between the closure relation and theCYBEwas first identified
and established in [14] in the context of integrable field theories. Here it is established
in the finite-dimensional context and related to Lie dialgebras.

3.2 Closure relation, Hamiltonians in involution, Kostant–Kirillov form

In this section, we derive a structural result which brings together Lagrangian multi-
forms and essential Hamiltonian aspects of integrable systems. It will be convenient
and clearer to work with local coordinates φα , α = 1, . . . , M , on the group GR , as we
did in (3.5). Then, our Lagrangian multiform can be written in the form
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L [ϕ] =
N∑

k=1

(
M∑

α=1

πα ∂tkφα − Hk

)
dtk (3.13)

where we recall that the momentum πα is defined by

πα =
(


, ϕ−1 ·R ∂ϕ

∂φα

)
. (3.14)

Each Lagrangian Lk in the multiform has the structure pq̇ − H of a Lagrangian in
phase space,

Lk =
M∑

α=1

πα ∂tkφα − Hk, (3.15)

and yields its Euler–Lagrange equations from the variation

δLk =
M∑

β=1

(
M∑

α=1

(
∂πα

∂ϕβ

− ∂πβ

∂ϕα

)
∂tkφα − ∂Hk

∂φβ

)
δφβ + ∂tk

(
M∑

α=1

παδφα

)
.

(3.16)

This is of course consistent with the general result of the previous section, and the
comparison of the two expressions for δLk gives

(
−∂tk L + 1

2
ad∗

R∇Hk(L) · L, δ ϕ ·R ϕ−1
)

=
M∑

β=1

(
M∑

α=1

�αβ ∂tkφα − ∂Hk

∂φβ

)
δφβ

(3.17)

and

(
L, δ ϕ ·R ϕ−1

)
=
(

M∑

α=1

παδφα

)
. (3.18)

Thus, we have natural coordinate versions of key components of the theory. In partic-
ular, let us denote by θR the vertical 1-form

θR = −
M∑

α=1

παδφα = −
M∑

α=1

(

, ϕ−1 ·R ∂ϕ

∂φα

)
δφα = −

(

, ϕ−1 ·R δϕ

)
,

(3.19)
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and let us introduce the vertical 2-form

�R =
∑

α<β

�αβ δφα ∧ δφβ, �αβ = ∂πα

∂φβ

− ∂πβ

∂φα

. (3.20)

Observe the important relation

�R = δθR . (3.21)

The form �R is the pullback to the group GR by the map

χ : GR → O


ϕ �→ AdR∗
ϕ · 


(3.22)

of the Kostant–Kirillov symplectic form ωR on the coadjoint orbit through 
 ∈ g∗.
We recall here that we consider the coadjoint action of the group GR , not the group
G. Relation (3.21) is the well-known fact that this pullback is an exact form. The
expression ϕ−1 ·R δϕ appearing in θR can be interpreted as the Maurer–Cartan form
on GR . The structure of our Lagrangian coefficients, in particular their kinetic part, is
now elucidated in terms of fundamental objects associated with GR and its coadjoint
orbits in g∗.

It is known that the map χ is a submersion.5 Also, a coadjoint orbit is always even-
dimensional as it admits the nondegenerate symplectic formωR . Let us introduce local
coordinates ξm ,m = 1, . . . , 2p, onO
 (2p ≤ M). The tangent map χ∗ is represented
locally by the 2p× M matrix

(
∂ξm
∂φα

)
. From now on, summation over repeated indices

is understood. The pushforward of the vector fields ∂
∂φα

on GR is given by

χ∗
(

∂

∂φα

)
= ∂ξm

∂φα

∂

∂ξm
(3.23)

and the pullback of the differential 1-forms δξm on O
 reads

χ∗(δξm) = ∂ξm

∂φα

δφα. (3.24)

If we write for the Kostant–Kirillov form

ωR = ωmn δξm ∧ δξn, (3.25)

thenwe have the following relationwith the coefficients of its pullback�R = χ∗(ωR),

�αβ = ∂ξm

∂φα

∂ξn

∂φβ

ωmn . (3.26)

5 We suppose that we are in a situation where this holds, for instance, excluding the trivial case where the
orbit is reduced to a point and assuming that the GR action is proper.
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In view of (3.17), it remains to introduce the Euler–Lagrange vertical 1-forms on GR

ELk ≡ ELβ
k δφβ ≡

(
�αβ ∂tkφα − ∂Hk

∂φβ

)
δφβ. (3.27)

This is the pullback of the following vertical 1-form on O
,

ELk = χ∗(ϒk) = ϒn
k χ∗(δξn) =

(
∑

m

ωmn ∂tk ξm − ∂Hk

∂ξn

)
χ∗(δξn) (3.28)

with the relation

ELβ
k = ϒn

k
∂ξn

∂φβ

. (3.29)

Sinceχ is a submersion, thematrix
(

∂ξm
∂φα

)
hasmaximal rank2p, so theEuler–Lagrange

equations ELβ
k = 0 imply the equationsϒn

k = 0 (and vice versa). This is of course just
the confirmation in the present coordinate notations of the result we obtained previ-
ously that the (multi-time) Euler–Lagrange equations from our Lagrangian multiform
produce Lax equations naturally living on coadjoint orbits of GR .

As a consequence, whenever we say that an equality holds “on shell”, we mean that
it holdsmodulo ELβ

k = 0 or equivalentlyϒn
k = 0.We can take advantage of this in the

following way. �R is the pullback of the Kostant–Kirillov form ωR on the coadjoint
orbit OR . The latter is nondegenerate and therefore induces a Poisson bracket with
bivector

PR =
∑

m<n

Pmn
∂

∂ξm
∧ ∂

∂ξn
, Pmn ωnr = δmr . (3.30)

The corresponding Poisson bracket on O
 is known (see e.g. [27, Chapter 14]) to be
the restriction of the Lie–Poisson bracket (2.23) on g∗

{ f , g}R(ξ) =
(
ξ, [∇ f (ξ),∇g(ξ)]R

)
. (3.31)

In other words, when f , g are restricted to O
, we have

{ f , g}R = Pmn
∂ f

∂ξm

∂g

∂ξn
. (3.32)

With these notions introduced, we see that the Euler–Lagrange equationsϒn
k = 0 take

the form

∑

m

ωmn ∂tk ξm = ∂Hk

∂ξn
, (3.33)
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and can be written in Hamiltonian form

∂tk ξm = Pmn
∂Hk

∂ξn
= {ξm, Hk}R . (3.34)

The system of simultaneous equations (3.34) on the ξm admits a solution (at least
locally) if and only if the flows are compatible, i.e. [∂tk , ∂t� ] = 0. For an arbitrary
function f , this means

[∂tk , ∂t� ] f = {{Hk, H�}R, f }R = 0.

The stronger condition {Hk, H�}R = 0 is the familiar Hamiltonian criterion for inte-
grability (together with a sufficient number of independent such functions Hk , of
course).

After these preliminary steps, we are now ready to state our second main result and
its corollary, the significance of which will be discussed after the proofs.

Theorem 3.3 The following identity holds

∂Lk

∂t�
− ∂L�

∂tk
+ ϒm

k Pmn ϒn
� = {Hk, H�}R . (3.35)

Proof The proof is by direct computation.

∂Lk

∂t�
− ∂L�

∂tk
=
(

∂πα

∂φβ

− ∂πβ

∂φα

)
∂t�φβ ∂tkφα − ∂Hk

∂φβ

∂t�φβ + ∂H�

∂φα

∂tkφα

=
(

�αβ ∂tkφα − ∂Hk

∂φβ

)
∂t�φβ + ∂H�

∂ξm

∂ξm

∂φα

∂tkφα

=
(

ωmn ∂tk ξm − ∂Hk

∂ξn

)
∂t�ξn + ∂H�

∂ξm
∂tk ξm

=
(

ωmn ∂tk ξm − ∂Hk

∂ξn

)
Pnr

(
ωrs ∂t�ξs + ∂H�

∂ξr
− ∂H�

∂ξr

)
+ ∂H�

∂ξm
∂tk ξm

= −ϒn
k Pnr ϒr

� + ∂Hk

∂ξn
Pnr

∂H�

∂ξr
,

hence the result. ��
Corollary 3.4 The closure relation for the Lagrangian multiform L is equivalent to
the involutivity of the Hamiltonians Hk with respect to the Lie–Poisson R-bracket
{ , }R.
Proof The closure relation requires that on shell, we have

dL =
∑

k<�

(
∂L�

∂tk
− ∂Lk

∂t�

)
dtk ∧ dt� = 0. (3.36)
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From the previous theorem, on shell we have

∂Lk

∂t�
− ∂L�

∂tk
= {Hk, H�}R, (3.37)

hence the result. ��
Remark 3.5 The connection between the closure relation for Lagrangian 1-forms and
the involutivity of Hamiltonianswas first discussed in [6]. The content of our Corollary
establishes this result for all Lagrangian 1-forms in the class that we have introduced
in this paper. They include any system describable by the coadjoint orbit and r -matrix
methods of Lie dialgebras. An extension of the connection between closure and invo-
lutivity to the field theory context (Lagrangian 2-forms) was discussed in [31].

Remark 3.6 In the field theory context, the connection between the closure relation
and the classical Yang–Baxter equation was elucidated in [14]. In the present article
on Lagrangian 1-forms, this connection is also at the heart of our results since the
entire construction is based on the availability of the second Lie bracket [ , ]R on g,
a feature ensured if R satisfies the mCYBE.

Remark 3.7 The content of the theorem sheds fundamental light on the link between
the closure relation and the involutivity of the Hamiltonian as it establishes an off-shell
identity which clearly shows the interplay between the coefficients of dL , the Euler–
Lagrange equations, the Poisson tensor on the coadjoint orbit, and the Poisson bracket
of the Hamiltonians related to our Lagrangian coefficients. A particular point is that it
shows in the present general setting that dL has a so-called double zero on the equation
of motion. This idea was introduced in [10] and developed in [15, 32] as an important
ingredient of Lagrangian multiform theory. However, the relation to Hamiltonians in
involution was not noticed there. The status of the “double zero” term ϒn

k Pnr ϒr
� is

now clearly identified aswell as its relation to the Euler–Lagrange equations. This term
is the off-shell element linking the Hamiltonian integrability criterion {Hk, H�}R = 0
and the integrability criterion advocated in Lagrangian multiform theory: the closure
relation dL = 0 on shell.

4 Lagrangianmultiform on a coadjoint orbit from reduction

It is well-known that many integrable systems arise from Hamiltonian reduction on
the cotangent bundle of a Lie group A following the intuitive idea that the more
intricate dynamics of the integrable system of interest on the reduced phase space
comes from the simplest “free” dynamics on the cotangent bundle. In this section, we
show how one can construct a general Lagrangian multiform on a coadjoint orbit by
a Lagrangian analogue of the procedure of Hamiltonian reduction. The multiform of
Sect. 3 is recovered as a special case.

We follow mainly the exposition and ideas in [21, Lectures 1 & 2] to summarise
the key notions. By fixing a left trivialisation of T ∗A we can parametrise it with
(α, a) ∈ a∗ × A where a∗ is the dual of the Lie algebra a of A. The canonical
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symplectic form � is exact and derives from the canonical one-form θ

� = δθ with θ = (α, a−1δa). (4.1)

The cotangent lifts to T ∗A of the action of A on itself by left and right translations
read

λb : (α, a) �→ (α, b a), ρb : (α, a) �→ (Ad∗
b · α, a b−1), b ∈ A. (4.2)

The canonical one-form and hence the symplectic form are invariant under these
actions. The corresponding moment maps are given by

μ�(α, a) = Ad∗
a · α, μr (α, a) = −α. (4.3)

In applications to integrable systems, one usually consider the case where only Lie
subgroups A+ and A− of A act by left and right translations. In this case, the moment
maps are the restriction of the above moment maps to a±, the Lie algebras of A±.
Thus they are elements of a∗± and we denote them by

μ�(α, a) = �a∗+
(
Ad∗

a · α
)
, μr (α, a) = −�a∗−α. (4.4)

In the special case where A+ is the trivial group and A− = A, it is known that the
quotient Poisson manifold T ∗A/A is isomorphic to a∗ equipped with the Lie–Poisson
bracket, see e.g. [21, Proposition 1.24].

Since our emphasis is on the Lagrangian formalism, let us describe the translation
of the above situation into this framework. We consider the following Lagrangian on
T ∗A

L 0 =
(

α, a−1 da

dt

)
. (4.5)

The importance of L 0 is that the Cartan form arising from its variation is precisely
the canonical one-form on T ∗A. Indeed, we have

δL 0 =
(

δα, a−1 da

dt

)
−
(

α, a−1δaa−1 da

dt

)
+
(

α, a−1δ
da

dt

)

=
(

δα, a−1 da

dt

)
−
(

α, a−1δaa−1 da

dt

)
−
(
dα

dt
, a−1δa

)

+
(

α, a−1 da

dt
a−1δa

)
+ d

dt

(
α, a−1δa

)

=
(

δα, a−1 da

dt

)
−
(
d

dt

(
Ad∗

a · α
)
, δaa−1

)
+ d

dt

(
α, a−1δa

)
.
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In the last term we recognise that the Cartan form is θ (up to a conventional sign).
Also, we see that this Lagrangian yields trivial (free) equations of motion

a−1 da

dt
= 0,

d

dt

(
Ad∗

a · α
) = 0 ⇔ da

dt
= 0,

dα

dt
= 0. (4.6)

The Lagrangian L 0 is invariant under the global transformations (α, a) �→ (α, b a)

and (α, a) �→ (Ad∗
b · α, a b−1) where b ∈ A is constant. The conserved currents

produced by Noether’s theorem are the moment maps μ�,r . It is immediate from (4.6)
that they are indeed conserved currents. The symmetry group A× A of this free theory
is too large to produce systems of interest. One easyway to reduce the symmetry group
to A+ × A− = {e} × A acting by right translations only is to include a potential term
where the potential function depends on (α, a) only through μ�:

L =
(

α, a−1 da

dt

)
− H (−μ�(α, a)) =

(
α, a−1 da

dt

)
− H

(
Ad∗

a · α
)
, (4.7)

where H is a function on a∗. By Noether’s theorem, we expect that μr = −α is still
a conserved current. Indeed, a computation analogous to that in the proof of Theorem
(3.2) gives

δL =
(

δα, a−1 da

dt
− Ada−1 · ∇H

(
Ad∗

a · α
))

−
(
d

dt

(
Ad∗

a · α
)− ad∗

∇H(Ad∗
a ·α) · (Ad∗

a · α
)
, δaa−1

)
+ d

dt

(
α, a−1δa

)
. (4.8)

Thus the equations of motion read

da

dt
a−1 − ∇H

(
Ad∗

a · α
) = 0,

d

dt

(
Ad∗

a · α
)− ad∗

∇H(Ad∗
a ·α) · (Ad∗

a · α
) = 0

(4.9)

or equivalently

da

dt
a−1 − ∇H

(
Ad∗

a · α
) = 0,

d

dt
α = 0. (4.10)

The analogue of fixing the moment map μr = −α to some fixed value −
 ∈ a∗ in
the Hamiltonian reduction approach consists of “integrating out degrees of freedom”
by solving d

dt α = 0 to α = 
 ∈ a∗, and inserting back into the Lagrangian to get the
effective Lagrangian of the reduced model. This yields

Leff =
(


, a−1 da

dt

)
− H

(
Ad∗

a · 

)
. (4.11)

This Lagrangian describe a system on the coadjoint orbit of 
 ∈ a∗ under A. At this
stage, if we equip a with a nondegenerate symmetric bilinear form to identify a∗ with

123



Lagrangian multiforms on coadjoint orbits for finite… Page 25 of 52    34 

a, we obtain as before that the equations of motion take the Lax form for L = Ad∗
a ·


dL

dt
= [∇H(L), L] . (4.12)

Note that we did not assume anything special about the function H so that strictly
speaking there is no notion of integrability at this stage, only that the equations for the
system under consideration are written in Lax form.

Applying this construction to the case A = GR , a = gR we see that each of our
Lagrangian Lk in (3.1) is of the form of Leff. Of course, in that case, each function
Hk was assumed to have the additional property of being invariant under the coadjoint
action of G so that the closure relation, the Lagrangian criterion for integrability,6 was
valid. However, let us go back to the general situation above and suppose we form a
Lagrangian 1-form by assembling N effective Lagrangians of the form (4.11) with N
independent (arbitrary smooth) functions Hk defined on a∗ (or possibly only onO
):

L =
N∑

k=1

Lk dtk =
N∑

k=1

((

, a−1∂tk a

)
− Hk

(
Ad∗

a · 

))

dtk . (4.13)

The arguments of Sect. 3.2 can be repeated verbatim and lead to the same conclusion
as in Theorem 3.3.

Theorem 4.1 The following identity holds

∂Lk

∂t�
− ∂L�

∂tk
+ ϒm

k Pmn ϒn
� = {Hk, H�}a∗ , (4.14)

where { , }a∗ is the Lie–Poisson bracket on a∗ and Pmn the corresponding Poisson
tensor on O
.

Note that so far we have not assumed anything on the functions Hk . The exact ana-
logue of Corollary 3.4 follows from Theorem 4.1 in the present context. We stress its
importance in this general situation: if we can solve for Lk such that the multi-time
Euler–Lagrange equations and the closure relation hold for the 1-form (4.13) then it
qualifies as a Lagrangian multiform and (4.14) implies that the corresponding func-
tions Hk are in involution. Conversely, if we use functions Hk that are in involution
with respect to { , }a∗ then the 1-form (4.13) satisfies the closure relation and is a
Lagrangian multiform. In Sect. 3, we used the latter point of view in a special situa-
tion: We took advantage of the Lie dialgebra construction which uses Ad∗

G-invariant
functions to produce functions in involution with respect to { , }R on the dual of gR .
In the present section, the above results imply the stronger statement that one can
associate a Lagrangian multiform with any family of Hamiltonians in involution on
any coadjoint orbit of a Lie group.

The perspective of the reverse procedure consisting of solving themulti-time Euler–
Lagrange equations and the closure relations to produce (new?) integrable systems

6 Modulo, as always, the requirement of having enough such independent functions.
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and Hamiltonians in involution is tantalising. However, it is far from clear whether
such a philosophy is more (or less) promising than the established integrable system
classification tools such as symmetry analysis or classification of the solutions of the
(modified) classical Yang–Baxter equation.

It is instructive to recover our LagrangiansLk as effective Lagrangians via a slightly
different, but related, mechanism. Suppose now that we reduce the symmetry group
to A+ × A− such that, at least locally, any element a ∈ A factorise uniquely as
a = a−1+ a−, a± ∈ A±. At the Lie algebra level, we have a unique decomposition
X = X+ − X−, X± ∈ a± and by duality α = �a∗+α − �a∗−α. Identifying a with
(a+, a−), we see that the action of A+ × A− on a amounts to an action by right
translations (a+, a−) �→ (a+b−1+ , a−b−1− ). Thus,

s : T ∗A → a∗, (α, a) �→ Ad∗
a− · α (4.15)

is invariant under the action of A+ × A−. Equipped with this, as before, it is easy to
introduce a Lagrangian which has A+ × A− as symmetry group

L =
(

α, a−1 da

dt

)
− H (−s(α, a)) , (4.16)

where H is a function on a∗. By Noether’s theorem we expect that μ�,r in (4.4) are
conserved currents. The direct verification from the Euler–Lagrange equations follows
by noticing that

(
α, a−1 da

dt

)
= −

(
s,

da+
dt

a−1+ − da−
dt

a−1−
)

.

Therefore

δL = −
(

δs,
da+
dt

a−1+ − da−
dt

a−1− − ∇H(−s)

)
+
(
d

dt

(
Ad∗

a−1+
· s
)

, δa+a−1+
)

−
(
d

dt

(
Ad∗

a−1−
· s
)

, δa−a−1−
)

− d

dt

(
s, δa+a−1+ − δa−a−1−

)
(4.17)

giving

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt
�a∗+

(
Ad∗

a−1+
· s
)

= d

dt
�a∗+

(
Ad∗

a · α
) = d

dt
μ� = 0,

d

dt
�a∗−

(
Ad∗

a−1−
· s
)

= d

dt
�a∗−α = − d

dt
μr = 0,

da+
dt

a−1+ − da−
dt

a−1− − ∇H(−s) = 0.

(4.18)

Thefirst two equations are indeed the conservationof theNoether currents, as expected.
We use them to integrate out the corresponding degrees of freedom. Namely, we set

μ� = −
+ ∈ a+, μr = 
− ∈ a−, (4.19)
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and substitute back into the Lagrangian. To obtain the effective Lagrangian, note that

s = �a∗+

(
Ad∗

a+ · μ�

)
+ �a∗−

(
Ad∗

a− · μr

)
. (4.20)

This can be seen by the following computation.7 For any X ∈ a,

(s, X) = (s, X+ − X−) =
(
Ad∗

a−1+
· s,Ada−1+

· X+
)

−
(
Ad∗

a−1−
· s,Ada−1−

· X−
)

=
(
μ�,Ada−1+

· X+
)

+
(
μr ,Ada−1−

· X−
)

=
(
�a∗+

(
Ad∗

a+ · μ�

)
+ �a∗−

(
Ad∗

a− · μr

)
, X
)

.

Putting everything together, and setting

L = −s = �a∗+

(
Ad∗

a+ · 
+
)

− �a∗−

(
Ad∗

a− · 
−
)

(4.21)

the effective Lagrangian is

Leff =
(
L,

da+
dt

a−1+ − da−
dt

a−1−
)

− H (L) . (4.22)

In the special case where A = G, a = g, a± = g± with g± = R±(g), this effective
Lagrangian is exactly of the form of our Lagrangian coefficientsLk . This alternative
construction amounts to reducing a free system on T ∗G by acting with G+ × G− �
GR .We refer the interested reader to [21, Section 2.4] for a discussion of the connection
between the reduction on T ∗GR by left translations of GR and the reduction on T ∗G
by left and right translations of G+ × G−. The main reason why we discussed the
alternative construction here is because it suggests that one may be able to construct
Lagrangianmultiforms for systems of Calogero-Moser type. In the terminology of [21,
Section 2.4], one would have to drop the assumption that the subgroup H of G × G
used for reduction is transversal to the diagonal subgroup and implement instead a
reduction corresponding for instance to the action of G on itself by conjugation. We
leave this open problem for future investigation.

5 Open Toda chain in the AKS scheme

As this is our first example, we first spend some time reviewing the known Adler–
Kostant–Symes Lie algebraic construction of the Lax matrix and the Lax equation
reproducing Flaschka’s approach. Then, we will make the connection with our varia-
tional approach.

7 This computation is the generalisation to the present context of the analogous argument used in [26]
where our s corresponds to their X .
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Algebraic setup: Let us choose g = sl(N +1), the Lie algebra of (N +1)× (N +1)
traceless real matrices, g+ the Lie subalgebra of skew-symmetric matrices and g− the
Lie subalgebra of upper triangular traceless matrices, yielding

g = g+ ⊕ g−. (5.1)

Here R = P+ − P− and R± = ±P± with P± the projector on g± along g∓. The
following Ad-invariant nondegenerate bilinear form

〈 X ,Y 〉 = Tr(XY ) (5.2)

allows the identification g∗ � g, and it induces the decomposition

g∗ = g∗− ⊕ g∗+ � g⊥+ ⊕ g⊥−, (5.3)

whereg⊥± is the orthogonal complement ofg± with respect to 〈 , 〉:g⊥+ is the subspace of
traceless symmetric matrices and g⊥− the subspace of strictly upper triangular matrices.
Let us choose


 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1
. . .

. . .
...

...
. . .

. . . 1
0 0 0 . . . 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ g∗− � g⊥+ (5.4)

and consider its orbit under the (co)adjoint action of G−, the Lie subgroup associated
to g− consisting of upper triangular matrices with unit determinant.

Lax matrix and Lax equations for the first two flows: As explained in Sect. 2.3, the
AKS case corresponds to the particular case where ϕ ∈ G− so that

L = AdR∗
ϕ · 
 = −R∗−(Ad∗

ϕ− · 
),

and the coadjoint orbit O
 lies in g∗−. Using 〈 , 〉 we can identify the adjoint and
coadjoint actions. Also, we use it to identify the transpose A∗ : g∗ → g∗ of any linear
map A : g → g with the transpose of A with respect to 〈 , 〉 defined on g. Writing
(ξ, X) = 〈Y , X〉, this means that we have

(A∗(ξ), X) = (ξ, A(X)) = 〈Y , A(X)〉 = 〈A∗(Y ), X〉.

This allows us to work with

L = −R∗−(ϕ− 
ϕ−1− ) = −R∗−(ϕ 
ϕ−1), (5.5)
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where we have dropped the redundant subscript on ϕ in the second equality with
ϕ = ϕ− ∈ G−. From the definitions 〈 X , R±Y 〉 = 〈 R∗±X , Y 〉 and 〈 X , P±Y 〉 =
〈�∓X , Y 〉, where we denote by �± the projector onto g⊥± along g⊥∓, we find R∗± =
±�∓ . Note that this is an example of non-skew-symmetric r -matrix since

R∗ = �− − �+ �= −R = P− − P+. (5.6)

Now, ϕ 
ϕ−1 is of the form

ϕ 
ϕ−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 ∗ ∗ ∗ . . . ∗
b1 a2 ∗ ∗ . . . ∗
0 b2 a3 ∗ . . . ∗
0 0 b3

. . .
. . .

...
...

. . .
. . . ∗

0 0 0 . . . bN aN+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.7)

So, we find

L = �+(ϕ 
ϕ−1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1 0 0 . . . 0
b1 a2 b2 0 . . . 0
0 b2 a3 b3 . . . 0

0 0 b3
. . .

. . .
...

...
. . .

. . . bN
0 0 0 . . . bN aN+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.8)

i.e. it is symmetric tridiagonal. Using the Hamiltonian

H1(L) = −1

2
Tr L2, (5.9)

we then find

R+∇H1(L) = P+(−L) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 . . . 0
− b1 0 b2 0 . . . 0
0 −b2 0 b3 . . . 0

0 0 −b3
. . .

. . .
...

...
. . .

. . . bN
0 0 0 . . . −bN 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.10)

A direct substitution in (3.4) with k = 1, i.e.

∂t1L = [R±∇H1(L), L]
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reproduces the open finite Toda lattice equations in Flaschka’s coordinates an , bn

⎧
⎪⎨

⎪⎩

∂t1a1 = 2b21, ∂t1aN+1 = −2b2N ,

∂t1a j = 2(b2j − b2j−1), j = 2, . . . , N ,

∂t1b j = b j (a j+1 − a j ), j = 1, . . . , N .

(5.11)

The next flow generated by the Hamiltonian

H2(L) = −1

3
Tr L3, (5.12)

with gradient ∇H2(L) = −L2 yields R+∇H2(L) = P+(−L2) as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1(a1 + a2) b1 b2 0 . . . 0
−b1(a1 + a2) 0 b2(a2 + a3) b2 b3 . . . 0

−b1 b2 −b2(a2 + a3) 0 b3(a3 + a4) . . . 0

0 −b2 b3 −b3(a3 + a4)
. . .

. . .
.
.
.

.

.

.
. . .

. . . bN (aN + aN+1)

0 0 0 . . . −bN (aN + aN+1) 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The corresponding equations from (3.4) with k = 2 read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t2a1 = 2 b21(a1 + a2), ∂t2aN+1 = −2 b2N (aN + aN+1),

∂t2a j = 2b2j (a j + a j+1) − 2 b2j−1(a j−1 + a j ), j = 2, . . . , N ,

∂t2b1 = b1(a22 − a21 + b22 ), ∂t2bN = bN (a2N+1 − a2N − b2N−1),

∂t2b j = b j (a2j+1 − a2j + b2j+1 − b2j−1), j = 2, . . . , N .

(5.13)

Lagrangian description: We need to choose a convenient parametrisation of ϕ since
this is the essential ingredient in the Lagrangians Lk . We choose

ϕ = U Y , (5.14)

where Y = diag(y1, . . . , yN+1) is the diagonal matrix of diagonal elements of ϕ (i.e.
yi = ϕi i ) and U = ϕ Y−1 is the upper triangular matrix with 1 on the diagonal and
arbitrary elements ui j , 1 ≤ i < j ≤ N . Since ϕ has nonzero determinant, yi �= 0,
i = 1, . . . , N + 1, and with this parametrisation, we find L as in (5.8) with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1 = y2
y1

u12, aN+1 = − yN+1

yN
uN ,N+1,

ai = yi+1

yi
ui,i+1 − yi

yi−1
ui−1,i , i = 2, . . . , N ,

bi = yi+1

yi
, i = 1, . . . , N .

(5.15)
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Note that
∑N+1

j=1
a j = 0, so we have 2N independent variables on the coadjoint orbit

O
. We compute the kinetic part of Lk defined in (3.2) as

Kk = 〈−R∗−(ϕ 
ϕ−1), ∂tkϕ ·R ϕ−1〉 = −〈ϕ 
ϕ−1, R−(∂tkϕ ·R ϕ−1)〉
= −〈ϕ 
ϕ−1, ∂tkϕ ϕ−1〉 = −Tr

(

ϕ−1 ∂tkϕ

)
,

(5.16)

where in the third step we have used the morphism property of R−

R−(∂tkϕ ·R ϕ−1) = ∂tkϕ− ϕ−1− (5.17)

and ϕ− = ϕ ∈ G−. It remains to express it in terms of our chosen coordinates to get

Kk = −Tr
(

 Y−1U−1 ∂tk (UY )

)
= −Tr

(
Y 
 Y−1U−1 ∂tkU

)

= −
N∑

j=1

y j+1

y j
∂tk u j, j+1. (5.18)

From these results, it becomes apparent that the convenient coordinates are bi as
given in (5.15) and ui ≡ ui,i+1, i = 1, . . . , N . The first two Lagrangians involve the
Hamiltonians (5.9) and (5.12) respectively, and can now be expressed in the ui , bi
coordinates as follows

L1 = K1 − H1 = −
N∑

j=1

b j ∂t1u j + 1

2

N∑

j=2

(b j u j − b j−1 u j−1)
2

+
N∑

j=1

b2j + 1

2
b21 u

2
1 + 1

2
b2N u2N ,

L2 = K2 − H2 = −
N∑

j=1

b j ∂t2u j + 1

3

N∑

j=2

(b j u j − b j−1 u j−1)
3

+ 1

3
(b1 u1)

3 + 1

3
(bN uN )3

+
N−1∑

j=2

b2j (b j+1 u j+1 − b j−1 u j−1)

+ b21(b2 u2) − b2N (bN−1 uN−1) .

The variation of L1 reads
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δL1 = −
N∑

j=1

∂t1u j δb j +
N∑

j=1

∂t1b j δu j − ∂t1

N∑

j=1

b j δu j

+
N∑

j=2

(b ju j − b j−1u j−1)(u j δb j + b j δu j )

−
N−1∑

j=1

(b j+1u j+1 − b ju j )(u j δb j + b j δu j )

+ 2
N∑

j=1

b j δb j + b1u
2
1 δb1 + b21u1 δu1 + bNu

2
N δbN + b2NuN δuN ,

and gives the following Euler–Lagrange equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t1u1 = u21 b1 − u1 (b2 u2 − b1 u1) + 2 b1,

∂t1uN = uN (bN uN − bN−1 uN−1) + u2N bN + 2 bN ,

∂t1u j = u j (b j u j − b j−1 u j−1) − u j (b j+1 u j+1 − b j u j ) + 2 b j ,

∂t1b1 = b1(b2u2 − b1u1) − b21 u1,

∂t1bN = −bN (bNuN − bN−1uN−1) − b2N uN ,

∂t1b j = b j (b j+1u j+1 − b ju j ) − b j (b ju j − b j−1u j−1),

(5.19)

for j = 2, . . . , N − 1. It is easy to see that these equations give exactly (5.11) using
the identification (see (5.15))

{
a1 = b1u1, aN+1 = −bNuN ,

a j = b ju j − b j−1u j−1, j = 2, . . . , N .
(5.20)

This provides a very explicit check that our Lagrangians produce the corresponding
Lax equations, in coordinates naturally dictated by the coadjoint orbit construction of
the kinetic term, here u j , b j . As recalled in Sect. 3.2, the kinetic part of a Lagrangian
provides the (pullback of the) symplectic form of the model via the Cartan form θR .
Here, we have (see the total derivative term in δL1)

θR =
N∑

j=1

b j δu j ⇒ �R =
N∑

j=1

δb j ∧ δu j . (5.21)

This shows that the coordinates u j , b j are canonical. In the present case, choosing
b j , a j for j = 1, . . . , N , as the coordinates on the coadjoint orbit O
, we can also
express the Kostant–Kirillov form explicitly using the formula
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u j = 1

b j

j∑

�=1

a�

to get

ωR =
N∑

j=1

1

b j

j∑

�=1

δb j ∧ δa�. (5.22)

It is instructive to see how the usual Hamiltonian formulation of the open Toda chain
in canonical coordinates qi , pi is derived from our Lagrangian formulation. From the
symplectic form (5.21), we deduce the following (canonical) Poisson brackets8

{b j , uk} = δ jk, {b j , bk} = 0 = {u j , uk}, j, k = 1, . . . , N . (5.23)

The Legendre transformation

∂L1

∂(∂t1u j )
= b j

reproduces, as it should, the Hamiltonian

N∑

j=1

∂L1

∂(∂t1u j )
∂t1u j − L1 = − 1

2

N∑

j=2

(b j u j − b j−1 u j−1)
2 −

N∑

j=1

b2j

−1

2
b21 u

2
1 − 1

2
b2N u2N = H1(L).

The matrix L for sl(N + 1) in canonical coordinates (qi , pi ) is given by

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 eq1−q2 0 0 0 . . .

eq1−q2 p2 eq2−q3 0 0 . . .

0 eq2−q3 p3 eq3−q4 0 . . .

0 0
. . .

. . .
. . .

... eqN−1−qN pn eqN−qN+1

0 eqN−qN+1 pN+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.24)

8 Here we drop the subscript R when referring to the Poisson bracket { , }R since there will be no confusion
with another Poisson bracket.
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and by comparison with (5.8), we set the change of variables

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q j =
N∑

k= j

ln bk, j = 1, . . . , N ,

p j = b j u j − b j−1 u j−1, j = 2, . . . , N ,

p1 = b1 u1, pN+1 = −bN uN .

(5.25)

From (5.23), we deduce by direct calculation

{q j , pk} = δ jk, {q j , qk} = 0 = {p j , pk}, j, k = 1, . . . , N ,

{q j , pN+1} = −1, {p j , pN+1} = 0, j = 1, . . . , N .
(5.26)

Note that pN+1 is redundant for the description of the dynamics since we only need
the map (u j , b j ) �→ (q j , p j ) for j = 1, . . . , N . This is captured by the fact that the
previous relations imply that C = ∑N+1

j=1 p j is a Casimir on the 2N phase space with
coordinates (q1, . . . , qN , p1, . . . , pN+1) andwe canworkwithC = 0. The coordinate
pN+1 is still useful to write the Hamiltonian in the compact familiar form as

H1 = −1

2

N+1∑

j=1

p2j −
N−1∑

j=1

e2(q j−q j+1) − e2qN . (5.27)

Hamilton’s equations ∂t1q j = {q j , H1}, ∂t1 p j = {p j , H1} yield
⎧
⎪⎨

⎪⎩

∂t1 p1 = 2e2(q1−q2), ∂t1 pN+1 = −2e2qN ,

∂t1 p j = 2
(
e2(q j−q j+1) − e2(q j−1−q j )

)
, j = 2, . . . , N − 1,

∂t1q j = pN+1 − p j , j = 1, . . . , N .

(5.28)

These can be seen to be equivalent to (5.11), thus completing the Hamiltonian descrip-
tion of the first flow for the open Toda chain, from our Lagrangian formulation. The
same analysis can be performed with L2 although the calculations are longer. We
simply record here the Euler–Lagrange equations obtained from δL2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t2u1 = u1
(
(b1 u1)2 − (b2 u2 − b1 u1)2 − b22

)+ 2 b1 b2 u2,

∂t2uN = uN
(
(bN uN − bN−1 uN−1)

2 − (bN uN )2 + b2N−1

)− 2 bN bN−1 uN−1,

∂t2u j = u j
(
(b j u j − b j−1 u j−1)

2 − (b j+1 u j+1 − b j u j )
2
)+ u j (b2j−1 − b2j+1)

+2 b j (b j+1 u j+1 − b j−1 u j−1),

∂t2b1 = b1
(
(b2 u2 − b1 u1)2 − (b1 u1)2 + b22

)
,

∂t2bN = bN
(
(bN uN )2 − (bN uN − bN−1 uN−1)

2 − b2N−1

)
,

∂t2b j = b j
(
(b j+1 u j+1 − b j u j )

2 − (b j u j − b j−1 u j−1)
2
)− b j (b2j−1 − b2j+1),

(5.29)

for j = 2, . . . , N −1. We leave it to the reader to check that these correctly reproduce
(5.13) again using (5.20). To conclude this example we establish the closure relation
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for the first two flows, i.e.

∂t2L1 − ∂t1L2 = 0 on shell.

We know from our general results that this must hold, so this is simply an explicit
check. We know that the kinetic and potential contributions give zero separately, so
we split the calculations accordingly. For the potential terms, it is more expedient to
use the a j , b j coordinates9 and equations (5.11) and (5.13)

∂t2H1 − ∂t1H2 = ∂t1

⎛

⎝
N+1∑

j=1

a3j
3

+
N∑

j=1

b2j (a j + a j+1)

⎞

⎠− ∂t2

⎛

⎝
N+1∑

j=1

a2j
2

+
N∑

j=1

b2j

⎞

⎠

=
N+1∑

j=1

2a2j (b
2
j−1 − b2j ) +

N∑

j=1

2b2j (a
2
j − a2j+1 + b2j−1 − b2j+1)

−
N+1∑

j=1

2a j (b
2
j−1(a j−1 + a j ) − b2j (a j + a j+1))

−
N∑

j=1

2b2j (a
2
j − a2j+1 + b2j−1 − b2j+1)

=
N+1∑

j=1

2(a ja j+1b
2
j − a ja j−1b

2
j−1)

= 0 ,

where in the last step we recognise a telescopic sum. For the kinetic terms, we also
use the a j , b j coordinates wherever possible to expedite the calculations

∂t1K2 − ∂t2K1 =
N∑

j=1

(∂t1(b j∂t2u j ) − ∂t2(b j∂t1u j ))

=
N∑

j=1

(∂t1((a
2
j+1 − a2j + b j+1 − b2j−1)u jb j − 2b2j (a j + a j+1))

− ∂t2((a j+1 − a j )u jb j − 2b2j ))

=
N∑

j=1

((∂t1(a
2
j+1 − a2j + b j+1 − b2j−1) − ∂t2(a j+1 − a j ))u jb j

− 2b2j (b
2
j+1 − b2j−1))

= 0 ,

9 Note that for conciseness, we treated the equations for j = 1 and j = N on the same level as for
j = 2, . . . , N − 1 by formally introducing b0 = 0 and bN+1.
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where in the last step the first term gives zero for each j upon using the equations of
motion and the remaining terms form a telescopic sum adding up to zero.

A Lagrangian multiform for the Toda chain was first constructed in [7] using vari-
ational symmetries of a given starting Lagrangian, which would beL1 in our context,
to construct higher Lagrangian coefficients which constitute a multiformwhen assem-
bled together. The infinite Toda chain was studied more recently in [17] to illustrate
the newly introduced theory of Lagrangian multiforms over semi-discrete multi-time.
In [7], the analogue of our L2 and L3 were constructed. The Noether integrals J1
and J2 (equations (10.11) and (10.12) in [7]) which constitute the potential part of
their Lagrangians are nothing but H2(L) and H3(L) with L parametrised as in (5.24),
up to an irrelevant change of convention eqi−qi+1 → eqi+1−qi and setting qi = xi
and pi = ẋi . The kinetic part of the higher Lagrangians in [7] involves the so-called
alien derivatives which are symptomatic of constructing a multiform from a starting
Lagrangian and building compatible higher Lagrangian coefficients. Our construction
prevents the problem of alien derivatives altogether, putting all the Lagrangian coef-
ficients on equal footing. This was also achieved previously in the context of field
theories in [12, 14].

6 Open Toda chain with a skew-symmetric r-matrix

We now present the samemodel for the same algebra g = sl(N +1) but endowed with
a different Lie dialgebra structure. This is based on the Cartan decomposition of g and
leads to a skew-symmetric r -matrix. One attractive feature of this setup, that we only
illustrate for sl(N + 1), is that it allows for a generalisation to any finite semi-simple
Lie algebra, see [27, Chapter 4].

Algebraic setup: Consider the decomposition

g = n+ ⊕ h ⊕ n−, (6.1)

where h is the Cartan subalgebra of diagonal (traceless) matrices and n± the nilpotent
subalgebra of strictly upper/lower triangular matrices. Let P±, P0 be the projectors
onto n± and h respectively, relative to the decomposition (6.1) and set R = P+ − P−.
It can be verified that R satisfies the mCYBE. Here R± = ±(P± + P0/2) and

g± = Im(R±) = b± = h ⊕ n±. (6.2)

We have the following action of R± on the elements y ∈ h and w± ∈ n±,

R±(y) = ±1

2
y, R±(w±) = ±w±, R±(w∓) = 0. (6.3)

Taking the same bilinear form as in (5.2), i.e. 〈X ,Y 〉 = Tr(XY ), we see that

P∗± = P∓, P∗
0 = P0 so that R∗ = −R. (6.4)
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Thus, we have a skew-symmetric r -matrix here. For the related Lie groups, we have
the following factorisations close to the identity,

ϕ = ϕ+ ϕ−1− , ϕ± = W± Y±1, Y ∈ exp(h), W± ∈ exp(n±). (6.5)

Laxmatrix and Lax equations for the first two flows: For
 ∈ g∗ � g, the expression
of L as a coadjoint orbit of 
 is given by

L = AdR∗
ϕ · 
 = R

∗
+(W+ Y 
 Y−1 W−1+ ) − R

∗
−(W− Y−1 
 Y W−1− ). (6.6)

We choose 
 as in (5.4), emphasising that in this case it is an element of the full
g∗ � g, and Y ∈ exp(h), W± ∈ exp(n±) given by

Y = diag (η1 , η2 . . . , ηN+1) , det Y = 1 , (6.7)

W− =

⎛

⎜⎜⎜⎜⎝

1 0 0 . . . 0
ω−
2,1 1 0 . . . 0

ω−
3,1 ω−

3,2 1 . . . 0
.
.
.

. . .
. . .

. . . 0
ω−
N ,1 ω−

N ,2 . . . ω−
N ,N−1 1

⎞

⎟⎟⎟⎟⎠
, W+ =

⎛

⎜⎜⎜⎜⎜⎝

1 ω+
1,2 ω+

1,3 . . . ω+
1,N

0 1 ω+
2,3 . . . ω+

2,N

0 0 1
. . .

.

.

.

.

.

.
. . . ω+

N−1,N
0 0 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎠
. (6.8)

From (6.4), we deduce that R∗± = ±(P∓ + P0/2) so that

R∗±(y) = ±1

2
y, R∗±(w±) = 0, R∗±(w∓) = ±w∓, (6.9)

for y ∈ h, w± ∈ n±. Let us introduce the variables (wi , zi ), defined as

wi = ω+
i,i+1 − ω−

i+1,i

2
, zi = 2

ηi+1

ηi
, (6.10)

from which we determine the Flaschka coordinates as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai = wi zi − wi−1 zi−1

2
, i = 2, . . . , N − 1,

a1 = w1 z1
2

, aN+1 = −wN zN
2

,

bi = zi
2

, i = 1, . . . , N .

(6.11)

The evaluation of (6.6) in those coordinates reproduces the tridiagonal form as in
(5.8). One can then check that the equations for the first two flows (5.11) and (5.13)
in the previous section derive from the Lax equation

∂tk L = [
R+(∇Hk(L)), L

]
, k = 1, 2,
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where the Hamiltonians are taken as

H1(L) = Tr (L2), H2(L) = 2

3
Tr (L3), (6.12)

and we recall that R+ = P+ + P0/2 here.

Lagrangian description: The Lagrangian multiform takes the form

L =
∑

k

Lk dtk =
∑

k

(Kk(L) − Hk(L)) dtk, (6.13)

for L ∈ O
, ϕ ∈ GR , with the kinetic and the potential terms given by

Kk(L) = Tr (L ∂tkϕ ·R ϕ−1), Hk(L) = 2

k + 1
Tr (Lk+1 ), (6.14)

respectively. As in the previous section, the kinetic term will allow us to recognise
natural canonical variables of the system in this description. Recalling (6.5), (6.7),
(6.8) and (6.10), we find

Kk(L) = Tr (
ϕ−1 ·R ∂tkϕ )

= Tr (
ϕ−1+ · ∂tkϕ+ ) − Tr (
ϕ−1− · ∂tkϕ− )

=
N∑

i=1

ηi+1

ηi
∂tkω

+
i,i+1 −

N∑

i=1

ηi+1

ηi
∂tkω

−
i+1,i

=
N∑

i=1

zi ∂tkwi .

(6.15)

The k-th Lagrangian coefficient expressed in terms of the coordinates (wi , zi ) reads

Lk = Kk − Hk =
N∑

i=1

zi ∂tkwi − Hk, (6.16)

with (wi , zi ) being canonical coordinates, and for k = 1, 2,

H1(L) = Tr (L2) =
N∑

i=1

1

2

(
z2i + w2

i z
2
i

)
−

N−1∑

i=1

1

2
wi zi wi+1 zi+1,

H2(L) = 2

3
Tr (L3)

=
N∑

i=1

1

4

(
z2i wi+1 zi+1 − z2i+1 wi zi + w2

i z
2
i wi+1 zi+1 − wi zi w

2
i+1 z

2
i+1

)
.
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To obtain the latter expressions of the Hamiltonians, it suffices to use the following
expression for L in the wi , zi coordinates

L = 1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 z1 z1 0 0 . . . 0
z1 w2 z2 − w1 z1 z2 0 . . . 0
0 z2 w3 z3 − w2 z2 z3 . . . 0

0 0 z3
. . .

. . .
...

...
. . .

. . . zN
0 0 0 . . . zN −wN zN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.17)

Note that we can just as easily determine the higher Hamiltonians and hence the higher
Lagrangian coefficientsLk , although the expressions become long. The variation δL1
yields the following Euler–Lagrange equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t1w1 = z1 − w1

2
((w2 z2 − w1 z1) − w1 z1) ,

∂t1wN = zN − wN

2
(−wN zN − (wN zN − wN−1 zN−1)) ,

∂t1wi = zi − wi

2
((wi+1 zi+1 − wi zi ) − (wi zi − wi−1 zi−1)) ,

∂t1 z1 = z1
2

((w2 z2 − w1 z1) − w1 z1) ,

∂t1 zN = zN
2

(−wN zN + (wN zN − wN−1 zN−1)) ,

∂t1 zi = zi
2

((wi+1 zi+1 − wi zi ) − (wi zi − wi−1 zi−1)) ,

(6.18)

for i = 2, . . . , N − 1, while the variation ofL2 gives the Euler–Lagrange equations
for the second flow

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t2 z1 = z1
4

(
(w2 z2 − w1 z1)2 − (w1 z1)2 + z22

)
,

∂t2 zN = zN
4

(
(−wN zN )2 − (wN zN − wN−1 zN−1)

2 − z2N−1

)
,

∂t2 zi = zi
4

(
(wi+1 zi+1 − wi zi )2 − (wi zi − wi−1 zi−1)

2 + z2i+1 − z2i−1

)
,

∂t2w1 = z1
2

(
w2 z2

)− w1

4

(
(w2 z2 − w1 z1)2 − (w1 z1)2 + z22

)
,

∂t2wN = zN
2

(
wN−1 zN−1

)

−wN

4

(
(wN zN )2 − (wN zN − wN−1 zN−1)

2 − z2N−1

)
,

∂t2wi = zi
2

(
(wi+1 zi+1 − wi zi ) − (wi zi − wi−1 zi−1)

)

−wi

4

(
(wi+1 zi+1 − wi zi )2 − (wi zi − wi−1 zi−1)

2 + z2i+1 − z2i−1

)
,

(6.19)
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with i = 1, . . . , N−1. One can check that these reproduce themore familiar equations
(5.11)-(5.13) in Flaschka coordinates, using (6.11). As in the previous section, we can
relate our results with the Hamiltonian formulation of the Toda chain in traditional
canonical coordinates (qi , pi ). With

θR =
N∑

i=1

zi δwi �⇒ {zi , w j } = δi j , {wi , w j } = 0 = {zi , z j }, (6.20)

we see that it suffices to set
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qi =
N∑

�=i

ln
zi
2

, i = 1, . . . , N

pi = wi zi − wi−1 zi−1

2
, i = 2, . . . , N

p1 = w1 z1
2

, pN+1 = −wN zN
2

.

(6.21)

The explicit verification of the closure relation in the first two flows is completely
analogous to that given at the end of the previous section.

7 Rational Gaudinmodel

Gaudin models are a general class of integrable systems associated with Lie algebras
with a nondegenerate invariant bilinear form. Unlike the case of the open Toda lattice,
the Lax matrix of a Gaudin model is a Lie algebra-valued rational function of a
variable λ, the spectral parameter. We will only look at finite Gaudin models here,
which describe certain spin chains and mechanical systems. To accommodate this, we
need to extend our construction to certain infinite-dimensional Lie algebras.

Before diving into the required algebraic machinery, it is useful to recall the usual
presentation of the equations of the model that we are aiming at describing variation-
ally. We do so in the simplest case of a rational Lax matrix with simple poles. Many
generalisations are known, including elliptic and non-skew-symmetric cases [33]. The
Lax matrix of a (rational) Gaudin model associated with a finite Lie algebra g and a
set of points ζr ∈ C (r = 1, . . . , N ) and the point at infinity is given by the following
g-valued rational function

L(λ) =
N∑

r=1

Xr

λ − ζr
+ X∞, X1, . . . , XN , X∞ ∈ g. (7.1)

The coefficients Hn
k,r of (λ − ζr )

−n−1, n ≥ 0, in Tr(L(λ)k+1)/(k + 1), k ≥ 1, are
Hamiltonians in involution (with respect to the Sklyanin bracket). Of course, only a
finite subset of them are independent and generate nontrivial flows. In the rest of this
paper, we will focus on the coefficients corresponding to n = 0 and drop the extra
label by simply writing H0

k,r = Hk,r . The most famous ones are the quadratic Gaudin
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Hamiltonians which are the coefficients H1,r in

1

2
Tr(L(λ)2) = 1

2

N∑

r=1

Tr(X2
r )

(λ − ζr )2
+

N∑

r=1

H1,r

λ − ζr
+ 1

2
Tr(X2∞), (7.2)

and read

H1,r =
∑

s �=r

Tr(Xr Xs)

ζr − ζs
+ Tr(Xr X∞), r = 1, . . . , N . (7.3)

The functions Hk,r give rise to a hierarchy of compatible equations in Lax form

∂trk L(λ) = [
Mk,r (λ), L(λ)

]
. (7.4)

For k = 1, we have

M1,r = − Xr

λ − ζr
, (7.5)

and (7.4) gives the following equations of motion for the degrees of freedom in
X1, . . . , XN , X∞

∂tr1 Xs = [Xr , Xs]
ζr − ζs

, s �= r , (7.6)

∂tr1 Xr = −
∑

s �=r

[Xr , Xs]
ζr − ζs

− [Xr , X∞] , (7.7)

∂tr1 X∞ = 0 . (7.8)

We proceed to derive a Lagrangian multiform description of the set of equations (7.6)-
(7.8), as well as those corresponding to the next higher Hamiltonians with k = 2. In
principle, we could also include all higher Hamiltonians, but the first two levels are
enough to illustrate our method. To do so, we need to be able to interpret L(λ) as
living in a coadjoint orbit and use the framework of Lie dialgebras. This is described
in [21, Lecture 3] which we now review and adapt to our purposes.

Algebraic setup: Let Q = {ζ1, . . . , ζN ,∞} ⊂ CP1 be a finite set of points in CP1

including the point at infinity, and denote by FQ(g) the algebra of g-valued rational
functions in the formal variable λwith poles in Q. Further, define the local parameters

λr = λ − ζr , ζr �= ∞, λ∞ = 1

λ
, (7.9)

and let S = {1, . . . , N ,∞}. This is to be used as an index set, so ∞ is viewed here
purely as a label for an index, not as the point at infinity. For each r ∈ S, consider the
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algebra g̃r of formal Laurent series in variable λr with coefficients in g,

g̃r = g ⊗ C((λr )), (7.10)

with Lie bracket

[Xλir ,Yλ
j
r ] = [X ,Y ]λi+ j

r , X ,Y ∈ g. (7.11)

We have the vector space decomposition into Lie subalgebras

g̃r = g̃r+ ⊕ g̃r−, (7.12)

where

g̃r+ = g ⊗ C[[λr ]], r �= ∞, g̃∞+ = g ⊗ λ∞C[[λ∞]], (7.13)

and

g̃r− = g ⊗ λ−1
r C[λ−1

r ], r �= ∞, g̃∞− = g ⊗ C[λ−1∞ ]. (7.14)

In other words, g̃r+ is the algebra of formal Taylor series in λr (without constant term
when r = ∞) and g̃r− is the algebra of polynomials in λ−1

r without constant term
(except when r = ∞). Associated with this decomposition, we have projectors Pr±
onto g̃r± relative to g̃r∓. Let us now consider g̃Q defined as the following direct sum
of Lie algebras

g̃Q =
⊕

r∈S
g̃r . (7.15)

The above decompositions yield the decomposition of g̃Q as

g̃Q = g̃Q+ ⊕ g̃Q− with g̃Q+ =
⊕

r∈S
g̃r+ and g̃Q− =

⊕

r∈S
g̃r−, (7.16)

and the related projectors P±. Althoughuseful, aswewill see below, the decomposition
(7.16) is not what we need to interpret (7.4) within the Lie dialgebra setup. So, let us
consider the map

ιλ : FQ(g) → g̃Q, f �→ (
ιλ1 f , . . . , ιλN f , ιλ∞ f

)
, (7.17)

where ιλr f ∈ g̃r is the formal Laurent series of f ∈ FQ(g) at ζr ∈ CP1 and ιλ∞ f ∈ g̃r
that of f ∈ FQ(g) at ζ∞. This is an embedding of Lie algebras. In addition, we have
the vector space decomposition

g̃Q = g̃Q+ ⊕ ιλFQ(g). (7.18)

123



Lagrangian multiforms on coadjoint orbits for finite… Page 43 of 52    34 

Let us introduce the projectors�± associatedwith this decomposition. They are differ-
ent from P± related to (7.16). The following relation is useful in practical calculations
(see below when computing gradients or in (7.26))

�−(X) = ιλ ◦ πλ ◦ P−(X), X ∈ g̃Q, (7.19)

where the map πλ : g̃Q− → FQ(g) given by

πλ (Y1(λ1), . . . ,YN (λN ),Y∞(λ∞)) =
∑

r∈S
Yr (λr ) (7.20)

puts elements of g̃Q− and FQ(g) in one-to-one correspondence. This amounts to
decomposing an f ∈ FQ(g) into the sum of its partial fractions Yr (λr ).

We define the r -matrix we need as

R = �+ − �− (7.21)

and use it to define on g̃Q the structure of a Lie dialgebra to which we will apply the
results of that theory. Since we want to work with rational fractions which we have
naturally embedded as ιλFQ(g) into g̃Q , we need to identify the dual space this corre-
sponds to, so that we can identify the coadjoint action and its orbits appropriately. The
nondegenerate invariant symmetric bilinear form on g, given by (X ,Y ) �→ Tr(XY ),
can be used to define a nondegenerate invariant symmetric bilinear form on g̃Q by
setting

〈X ,Y 〉 =
∑

r∈S
resλr=0 Tr(Xr (λr )Yr (λr )). (7.22)

Both g̃Q+ and ιλFQ(g) are Lie subalgebras which are (maximally) isotropic with
respect to the bilinear form 〈 , 〉 in (7.22). This tells us that

g̃∗
Q+ � ιλFQ(g), (7.23)

so that elements of g̃∗
Q+ are those we should work with if we want to deal with Lax

matrices which are rational fractions of the spectral parameter. Accordingly, coadjoint
orbits of G̃Q+ in g̃∗

Q+ are the natural arena for the description of Gaudin Lax matrices.

G̃Q+ is the group associated with the algebra g̃Q+, with elements of the form

ϕ+ = (ϕ1+(λ1), . . . , ϕN+(λN ), ϕ∞+(λ∞)) . (7.24)

Each component ϕr+(λr ) is a Taylor series in the local parameter λr with values in G
whose Lie algebra is g,

ϕr+(λr ) =
∞∑

n=0

φ(n)
r λnr , r �= ∞, ϕ∞+(λ∞) = 1 +

∞∑

n=1

φ(n)∞ λn∞. (7.25)
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As always, in practice we use the identification (7.23) (identifying the action and
coadjoint actions accordingly) and the (co)adjoint orbit of an element f ∈ ιλFQ(g)
can be seen to be given by the elements

F = �−(Adϕ+ · f ) ≡ ιλL. (7.26)

In (7.26), the adjoint action of ϕ+ on f is defined component-wise

(Adϕ+ · f )r (λr ) = ϕr+(λr ) fr (λr ) ϕr+(λr )
−1, r ∈ S. (7.27)

Thus, we have a construction that allows us to interpret a rational Lax matrix L(λ)

as an element of a (co)adjoint orbit and recast (7.4) as the following Lax equation in
ιλFQ(g)

∂trk ιλL = [R±∇Hk,r (ιλL), ιλL], (7.28)

where Hk,r are the following invariant functions on g̃Q

Hk,r : X ∈ g̃Q �→ resλr=0
Tr(Xr (λr )

k+1)

k + 1
, k ≥ 1. (7.29)

We now apply the described framework to show how (7.4) is derived in this context
for k = 1, 2. Then we construct explicitly the corresponding Lagrangian coefficients
of our multiform and check that their Euler–Lagrange equations produce the correct
equations of motion.

Lax matrix and Lax equations for the first two flows: Let us choose


(λ) =
N∑

r=1


r

λ − ζr
+ �, (7.30)

and apply (7.26) to f = ιλ
 to get

ιλL = �−
(
Adϕ+ · ιλ


) = ιλ ◦ πλ ◦ P−
(
Adϕ+ · ιλ


)

= ιλ ◦ πλ

(
φ

(0)
1 
1 (φ

(0)
1 )−1

λ − ζ1
, . . . ,

φ
(0)
N 
N (φ

(0)
N )−1

λ − ζN
,�

)

≡ ιλ ◦ πλ

(
A1

λ − ζ1
, . . . ,

AN

λ − ζN
,�

)

= ιλ

(
N∑

r=1

Ar

λ − ζr
+ �

)
. (7.31)

This is the desired form of (7.1) where now each Xr is of the form Ar =
φ

(0)
r 
r (φ

(0)
r )−1 with 
r ∈ g fixed and φ

(0)
r containing the dynamical degrees of
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freedom. This is the (co)adjoint description required to compute our Lagrangian coef-
ficients, see below.

Next, we derive the Lax equations in ιλFQ(g) associated with the functions
Hk,r (ιλL) for k = 1, 2. The gradient of Hk,r at the point ιλL is defined as the element
of g̃Q satisfying

lim
ε→0

Hk,r (ιλL + εη) − Hk,r (ιλL)

ε
= 〈η, ∇Hk,r (ιλL)〉, (7.32)

for all η ∈ g̃Q . It is enough for our purposes to calculate R−(∇Hk,r (ιλL)), therefore,
we can restrict η to g̃Q+. Thus, writing

∇Hk,r (ιλL) = N (k) + ιλh
(k), N (k) ∈ g̃Q+, h(k)(λ) ∈ FQ(g), (7.33)

recalling that g̃Q+ and ιλFQ(g) are isotropic with respect to the bilinear form in (7.22),
(7.32) becomes

resλr=0 Tr
(
ηr ιλr L

k
)

=
∑

s∈S
resλs=0 Tr

(
ηs ιλs h

(k)
)

, (7.34)

for any ηs ∈ g̃s+, s ∈ S, implying

(ιλs h
(k))− = 0 , ∀ s �= r , (7.35)

(ιλr h
(k))− = (ιλr L

k)− . (7.36)

This means that the rational function h(k)(λ) has a nonzero principal only at ζr which
equals (ιλr L

k)−, so

h(k)(λ) = (ιλr L
k)−(λ), (7.37)

and we find

R−(∇Hk,r (ιλL)) = −�−(∇Hk,r (ιλL)) = −ιλh
(k) = −ιλ

(
(ιλr L

k)−
)

. (7.38)

For k = 1, 2, this gives us

R−(∇H1,r (ιλL)) = −ιλ
Ar

λ − ζr
, (7.39)

and

R−(∇H2,r (ιλL)) = −ιλ

⎛

⎝ A2
r

(λ − ζr )2
+
∑

s �=r

Ar As + As Ar

(λ − ζr )(ζr − ζs)
+ Ar� + �Ar

λ − ζr

⎞

⎠ ,

(7.40)
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respectively. As a consequence, we find the Lax equations for the two levels of flows
as

∂tr1 ιλL =
[
−ιλ

Ar

λ − ζr
, ιλL

]
, (7.41)

∂tr2 ιλL =
⎡

⎣−ιλ

⎛

⎝ A2
r

(λ − ζr )2
+
∑

s �=r

Ar As + As Ar

(λ − ζr )(ζr − ζs)
+ Ar� + �Ar

λ − ζr

⎞

⎠ , ιλL

⎤

⎦ .

(7.42)

Explicitly, they yield the following equations on the As ,

∂tr1 As = [Ar , As]
ζr − ζs

, s �= r ,

∂tr1 Ar = −
∑

s �=r

[Ar , As]
ζr − ζs

− [Ar , �],
(7.43)

thus reproducing (7.6)-(7.7) ((7.8) is automatic here since � is a constant element of
g), and

∂tr2 As = − [A2
r , As]

(ζr − ζs)2
+
∑

s′ �=r

[Ar As′ + As′ Ar , As]
(ζr − ζs)(ζr − ζs′)

+ [Ar� + �Ar , As]
ζr − ζs

, s �= r ,

∂tr2 Ar =
∑

s �=r

[A2
r , As]

(ζr − ζs)2
−
∑

s �=r

∑

s′ �=r

[Ar , As As′ ]
(ζr − ζs)(ζr − ζs′)

−
∑

s �=r

[Ar , As� + �As]
ζr − ζs

− [Ar , �2].

(7.44)

Lagrangian description: Applying our formula for the Lagrangian coefficients, we
obtain the followingmultiform on the orbit of
(λ), with elements ιλL given in (7.31),

L =
N∑

k=1

∑

r∈S
Lk,r dt

r
k , (7.45)

with

Lk,r =
∑

s∈S
resλs=0 Tr

(
ιλs L ∂trk

ϕs+(λs) ϕs+(λs)
−1
)

− Hk,r (ιλL), (7.46)

where Hk,r (ιλL) is the restriction of Hk,r to ιλL . For the kinetic part, we have

resλs=0 Tr(ιλs L ∂trk
ϕs+(λs) ϕs+(λs)

−1) = Tr
(

s(φ

(0)
s )−1∂trk

φ(0)
s

)
, s = 1, . . . , N ,

(7.47)
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and

resλ∞=0 Tr(ιλ∞L ∂trk
ϕ∞+(λ∞) ϕ∞+(λ∞)−1) = Tr

(
�∂trk

φ(1)∞ φ(1)∞
)

= 1

2
∂trk

Tr
(
�(φ(1)∞ )2

)
. (7.48)

The contribution at ∞ is a total derivative, so it will not enter the Euler–Lagrange
equations and hence we discard it. Thus, only the term φ

(0)
s in the Taylor series of

ϕs+(λs) appears in the kinetic term.Wewill simply denote it byφs to lighten notations.
The Lagrangian coefficients of the Gaudin multiform take the form

Lk,r =
N∑

s=1

Tr
(

sφ

−1
s ∂trk

φs

)
− Hk,r (ιλL). (7.49)

More explicitly, for k = 1, 2, we have

H1,r (ιλL) =
∑

s �=r

Tr(Ar As)

ζr − ζs
+ Tr(Ar�), (7.50)

and

H2,r (ιλL) = Tr

⎛

⎜⎝Ar

⎛

⎝
∑

s �=r

As

ζr − ζs
+ �

⎞

⎠
2
⎞

⎟⎠− Tr

⎛

⎝A2
r

⎛

⎝
∑

s �=r

As

(ζr − ζs)2

⎞

⎠

⎞

⎠ .

(7.51)

Varying L1,r and L2,r with respect to φs , s = 1, . . . , N (recalling that As =
φs 
s φ−1

s ), one can check by direct calculations that the Euler–Lagrange equations
give exactly (7.43)-(7.44).

Remark 7.1 The algebraic framework we have used to describe the Lagrangian mul-
tiform for the Gaudin model is to a very large extent similar to that used in [14] to
constructLagrangianmultiformsofZakharov-Mikhailov type.Therefore, in hindsight,
it is perhaps not so surprising that the Lagrangian

L1,r =
N∑

s=1

Tr
(

sφ

−1
s ∂tr1φs

)
−
∑

s �=r

Tr(Ar As)

ζr − ζs
− Tr(Ar�), (7.52)

appears to be the direct analogue in the finite-dimensional case of the Zakharov-
Mikhailov Lagrangians which describe integrable field theories with rational Lax
matrices [34]. It is a rather satisfying outcome that we have unravelled the unifying
structure underlying such Lagrangians, whether in finite or infinite dimensions. They
are all connected to Lie dialgebras which control the structure of their kinetic part and
tell us which potentials to include (invariant functions on g∗). Note that in [35], a very
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similar Lagrangian, their Equation (24), was constructed by a completely different
method: an adaptation of the idea of 4d Chern-Simons theory, see [36] and references
therein, and of the construction in [37] to the case of a BF theory in 3d. This suggests
the tantalising direction of deriving our Lagrangian multiforms from an appropriately
adapted BF theory. This could perhaps offer an interpretation for the appearance of
Lie dialgebras from this point of view, instead of introducing them ad hoc as we do in
the present paper.

We know from the general theory that the closure relation dL = 0 holds on shell.
This implies

∂t sj
Lk,r − ∂trk

L j,s = 0, (7.53)

for all possible combinations of j, k and r , s. As we know, the kinetic and potential
contributions give zero separately in each case. Let us illustrate the main steps here
for k = 1, j = 2 and r �= s in (7.53), the left-hand side of which will then read

N∑

s′=1

∂t s2
Tr
(

s′φ

−1
s′ ∂tr1φs′

)
−

N∑

s′=1

∂tr1 Tr
(

s′φ

−1
s′ ∂t s2

φs′
)

− ∂t s2
H1,r (ιλL) + ∂tr1 H2,s(ιλL) .

Using the equations of motion, we have

∂t s2
H1,r (ιλL)

=
∑

s′ �=r

1

ζr − ζs′
Tr

⎛

⎝

⎛

⎝− [A2
s , Ar ]

(ζs − ζr )2
+
∑

s′′ �=s

[As As′′ + As′′ As , Ar ]
(ζs − ζr )(ζs − ζs′′ )

+ [As� + �As , Ar ]
ζs − ζr

⎞

⎠ As′

⎞

⎠

+
∑

s′ �=r
s′ �=s

1

ζr − ζs′
Tr

⎛

⎝Ar

⎛

⎝− [A2
s , As′ ]

(ζs − ζs′ )2
+
∑

s′′ �=s

[As As′′ + As′′ As , As′ ]
(ζs − ζs′ )(ζs − ζs′′ )

+ [As� + �As , As′ ]
ζs − ζs′

⎞

⎠

⎞

⎠

+ 1

ζr − ζs
Tr

⎛

⎝Ar

⎛

⎝
∑

s′ �=s

[A2
s , As′ ]

(ζs − ζs′ )2
−
∑

s′ �=s

∑

s′′ �=s

[As , As′ As′′ ]
(ζs − ζs′ )(ζs − ζs′′ )

−
∑

s′ �=s

[As , As′� + �As′ ]
ζs − ζs′

− [As , �2]
⎞

⎠

⎞

⎠

+ Tr

⎛

⎝

⎛

⎝− [A2
s , Ar ]

(ζs − ζr )2
+
∑

s′ �=s

[As As′ + As′ As , Ar ]
(ζs − ζr )(ζs − ζs′ )

+ [As� + �As , Ar ]
ζs − ζr

⎞

⎠�

⎞

⎠ .

This is seen to add up to zero by assembling the terms of the same nature (quartic,
cubic or quadratic in A), manipulating the sums, using the ad-invariance property
Tr([A, B]C) = Tr(A[B,C]) and the identity

1

(ζr − ζs)(ζr − ζs′)
+ 1

(ζs − ζs′)(ζr − ζs′)
+ 1

(ζs − ζr )(ζs − ζs′)
= 0.
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Similar calculations give ∂tr1 H2,s(ιλL) = 0. For the kinetic terms we have

∂t s2

N∑

s′=1

Tr
(

s′φ

−1
s′ ∂tr1φs′

)
− ∂tr1

N∑

s′=1

Tr
(

s′φ

−1
s′ ∂t s2

φs′
)

=
N∑

s′=1

Tr
(
(∂t s2

As′)(∂tr1φs′)φ
−1
s′
)

−
N∑

s′=1

Tr
(
(∂tr1 As′)(∂t s2φs′)φ

−1
s′
)

+
N∑

s′=1

Tr
(
As′ [(∂t s2φs′)φ

−1
s′ , (∂tr1φs′)φ

−1
s′ ]
)

+
N∑

s′=1

Tr
(
As′
(
(∂t s2

∂tr1φs′)φ
−1
s′ − (∂tr1 ∂t

s
2
φs′)φ

−1
s′
))

.

The commutativity of flows ensures that the last term equals zero. Further, using the
relation

∂t s2
As′ = [(∂t s2φs′)φ

−1
s′ , As′ ], s′ = 1, . . . , N , (7.54)

it is easy to see that the first and the third terms cancel each other. Finally, for the sec-
ond term, using ad-invariance, (7.54) and the on-shell relations in (7.43) and (7.44),
we have

N∑

s′=1

Tr
(
(∂tr1 As′)(∂t s2φs′)φ

−1
s′
)

= Tr
(
(∂tr1 Ar )(∂t s2

φr )φ
−1
r

)
+
∑

s′ �=r

Tr
(
(∂tr1 As′)(∂t s2φs′)φ

−1
s′
)

= −
∑

s′ �=r

Tr

( [Ar , As′ ]
ζr − ζs′

(∂t s2
φr )φ

−1
r

)
− Tr

(
[Ar , �](∂t s2φr )φ

−1
r

)

+
∑

s′ �=r

Tr

( [Ar , As′ ]
ζr − ζs′

(∂t s2
φs′)φ

−1
s′

)

= −
∑

s′ �=r

Tr(As′∂t s2 Ar )

ζr − ζs′
− Tr(�∂t s2

Ar ) −
∑

s′ �=r

Tr(Ar∂t s2
As′)

ζr − ζs′

= −∂t s2
H1,r (ιλL)

which we previously showed to be zero.

8 Conclusion

In this work, we provided an answer to the problem of constructing all the coefficients
in Lagrangian 1-form for a large class of finite-dimensional integrable systems (any
model fitting the Lie dialgebra framework). A reinterpretation of our construction is
that we proved that any collection of compatible equations in the Lax form
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∂tk L = [R±∇Hk(L), L], k = 1, . . . , N , (8.1)

is variational, by explicitly providing a collection of Lagrangians assembled in a
multiform. The closure relation is equivalent to the involutivity of the Hamiltonians
Hk . This is a corollary of our stronger result, Theorem 3.3.

We recast our construction in a more general context which makes it clear how it
descends from a “free” (phase space) Lagrangian on the cotangent bundle of a Lie
group by reduction. This procedure is well-known in the Hamiltonian framework and
we have explained how it translates into our framework, by exploiting the correspon-
dence between moment maps and Noether currents. This offers a larger perspective on
our results. On the one hand, it may lead to the possibility of constructing Lagrangian
multiforms for systems of Calogero-Moser type by using reduction ideas appropri-
ately. From the point of view of r -matrices, a strong motivation, and at the same time
an anticipated difficulty, is the appearance of dynamical r -matrices in such systems.
Comparison with the early work on Calogero-Moser multiforms [5] would be bene-
ficial. On the other hand, it shows that our Lagrangian coefficients turn out to have a
structure similar to those appearing in so-called geometric actions. The latter can be
traced back (at least) to [38–41] and are concerned with quantisation using Feynman’s
path integral in conjunction with coadjoint orbit methods. This interesting connection
deserves further investigation.

Of the many models we could have used to illustrate the results in the present
work, we chose the open Toda chain and the Gaudin model, two emblematic finite-
dimensional integrable systems. The motivation for studying the finite Gaudin model
is Vicedo’s construction of a class of non-ultralocal field theories as affine Gaudin
models [42]. We very much hope that the present results combined with the approach
of [14] and Vicedo’s construction will allow us to overcome the current limitation of
Lagrangian multiforms to only ultralocal field theories.
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