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Abstract: We cast the classical Yang–Baxter equation (CYBE) in a variational con-
text for the first time, by relating it to the theory of Lagrangian multiforms, a framework
designed to capture integrability in a variational fashion. This provides a significant con-
nection between Lagrangian multiforms and the CYBE, one of the most fundamental
concepts of integrable systems. This is achieved by introducing a generating Lagrangian
multiform which depends on a skew-symmetric classical r -matrix with spectral parame-
ters. The multiform Euler–Lagrange equations produce a generating Lax equation which
yields a generating zero curvature equation. The CYBE plays a role at three levels: (1)
it ensures the commutativity of the flows of the generating Lax equation; (2) it ensures
that the generating zero curvature equation holds; (3) it implies the closure relation for
the generating Lagrangian multiform. The specification of an integrable hierarchy is
achieved by fixing certain data: a finite set S ⊂ CP1, a Lie algebra g, a g-valued rational
function with poles in S and an r -matrix. We show how our framework is able to generate
a large class of ultralocal integrable hierarchies by providing several known and new
examples pertaining to the rational or trigonometric class. These include the Ablowitz–
Kaup–Newell–Segur hierarchy, the sine-Gordon (sG) hierarchy and various hierarchies
related to Zakharov–Mikhailov type models which contain the Faddeev–Reshetikhin
(FR) model and recently introduced deformed Gross–Neveu models as particular cases.
The versatility of our method is illustrated by showing how to couple integrable hierar-
chies together to create new examples of integrable field theories and their hierarchies.
We provide two examples: the coupling of the nonlinear Schrödinger system to the FR
model and the coupling of sG with the anisotropic FR model.
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1. Introduction

1.1. Context and background.

1.1.1. Integrability in the Hamiltonian framework A profound discovery in the modern
theory of integrable systems was that the special partial differential equations originally
treated in the seminal works [GGKM,ZS], using what is now known as the Inverse
Scattering Method, were also infinite dimensional Hamiltonian systems [G] for which
an analog of the Liouville theorem for finite dimensional Hamiltonian systems could be
established [ZF,ZMan]. This allows one, in particular, to see such systems as Hamilto-
nian field theories. The developments based on these early examples led to the beautiful
theory of the classical r -matrix which captures the special Hamiltonian features of these
models [Dr1,STS]. An important condition usually required of the r -matrix is that it
satisfies the classical Yang–Baxter equation (CYBE)

[
r12(λ, μ), r13(λ, ν)

]
+
[
r12(λ, μ), r23(μ, ν)

]− [r13(λ, ν), r32(ν, μ)
] = 0. (1.1)
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It ensures that a certain Poisson bracket defined using r satisfies the Jacobi identity.
Another important condition is to decide if r is skew-symmetric or not, i.e. whether or
not it satisfies

r12(λ, μ) = −r21(μ, λ).

This has deep mathematical and physical implications. If the r -matrix is skew-symmetric,
the associated field theories are called ultralocal while they are non-ultralocal otherwise.
In the present work, we restrict our attention to the ultralocal case.

A characteristic feature of integrable field theories is that their equations of motion
come in hierarchies. Specifically, any given integrable Hamiltonian field theory has in-
finitely many conserved charges which can, themselves, be used as Hamiltonians to
define flows with respect to the Poisson bracket. Because all the conserved charges
Poisson commute amongst themselves, it is possible to impose all these flows simulta-
neously on the fields of the theory and thus treat the latter as depending on infinitely
many times. The collection of equations of motion thus obtained is referred to as an
integrable hierarchy. Schematically, for a scalar field theory with field u, there would
be a countable number of conserved charges Hj , labelled by integers j ≥ 1 say, in
involution with respect to a given Poisson bracket, namely

{Hi , Hj } = 0

for every i, j ≥ 1. The hierarchy would then consist of all the equations

∂t j u = {Hj , u}, (1.2)

where we have introduced an infinite number of times t j for j ≥ 1. Among all the
conserved charges Hj , one of them can be taken to be the Hamiltonian of the integrable
field theory one started with. Studying the hierarchy as a whole can reveal much more
structure and properties of the initial model. This is of course not a new idea but here
we depart from the established point of view in that we want to exploit this idea in a
Lagrangian setting.

1.1.2. Integrability in the Lagrangian framework When turning to the Lagrangian set-
ting, one is immediately faced with the following question: how should integrable hi-
erarchies be captured in the Lagrangian formalism? This question found an answer
relatively recently in the theory of Lagrangian multiforms which was introduced in the
seminal paper [LN] and has rapidly developed in various direction. More recently, several
works cast the original idea into the context of continuous integrable field theories, see
[SV,V,SNC,PV,SNC2,CS1,CS2,CS3] for examples of two-dimensional field theories
(e.g. Korteweg-de Vries, sine-Gordon and nonlinear Schrödinger) and [SNC2,SNC3]
for a three-dimensional example (Kadomtsev–Petviashvili). For a two-dimensional field
theory, the central object is a differential two-form

L [u] =
∑

i, j

Li j [u]dti ∧ dt j (1.3)

on an infinite-dimensional space R
∞ parametrised by the infinite collection of times

ti of the hierarchy. The coefficients Li j [u] are Lagrangians depending on the fields
of the theory, which are collectively denoted by u here for simplicity (even though
we are no longer restricting to the case of a single scalar field). For each Lagrangian
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coefficient Li j [u] we can consider the associated action Si j [u] = ∫
R2 Li j [u]dti ∧ dt j .

Using the differential two-form (1.3) we can succinctly rewrite all these actions as
Si j [u] = ∫

σi j
L [u], where the integral here is over the two dimensional plane σi j � R

2

spanned by the coordinates ti and t j in R
∞. At this point, of course, there is no reason

for the field theories described by the actions Si j [u] to belong to the same integrable
hierarchy, let alone to produce equations of motion that are integrable! The key new
ingredient is to impose a generalised variational principle on the more general action

S[u, σ ] =
∫

σ

L [u], (1.4)

which now also depends on an arbitrary choice of two-dimensional smooth surface σ in
R

∞. Note, in particular, that Si j [u] = S[u, σi j ]. The generalised variational principle
which ties all these theories together is a least action principle for S[u, σ ] simultane-
ously for all smooth surfaces σ . This results in what are called the multiform Euler–
Lagrange (EL) equations. These were first derived in [SV] for the two-form case that
we consider in this paper. It can be shown [SV,SNC] that they can be written compactly
as

δdL = 0, (1.5)

where d is the usual exterior derivative and δ denotes the variational derivative. In the La-
grangian multiform theory, the above generalised variational principle is complemented
by another requirement: on critical points, one also requires that the action be station-
ary with respect to arbitrary local variations of σ . This gives us the important closure
relation on the equations of motion, i.e. on shell

dL = 0. (1.6)

Intuitively, requiring criticality of the action for an arbitrary surface is the new feature
that encodes variationally the commutativity of the flows known to be a signature of
integrability in the Hamiltonian world. Roughly speaking, the connection with (1.2)
is that the Lagrangian coefficients L1 j correspond by a Legendre transform to the
Hamiltonians Hj , with the understanding that the time t1 plays some preferred role
(the “space” variable) and the t j , j ≥ 2 are all the higher times of the hierarchy. The
interpretation of all the other Lagrangian coefficients Li j is best obtained by casting the
hierarchy as a collection of compatible zero curvature equations involving Lax matrices
Vj (λ), namely

∂t j Vi (λ) − ∂ti V j (λ) +
[
Vi (λ), Vj (λ)

] = 0 (1.7)

for i, j ≥ 1. It is known that all these equations are in fact Hamiltonian, see e.g. [AC],
and the case i = 1 corresponds to (1.2). One of the main points of the present work
is that they are also variational with Lagrangian Li j . It is important to realise that the
multiform EL equations are largely overdetermined equations for the coefficients Li j .
Part of these equations impose restrictions on the allowed coefficients, the idea being that
they enforce the integrability of the corresponding theories. The rest consist of standard
EL equations associated to these coefficients and give the equations of motion of the
integrable hierarchy.
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1.1.3. Motivating example: Ablowitz–Kaup–Newell–Segur hierarchy In [CS3], on the
example of the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy, the notion of La-
grangian multiform was successfully combined with the idea of “compounding hierar-
chies” introduced in the Lagrangian framework in [N1] (itself inspired from the use of
the generating formalism for integrable hierarchies, see e.g. [N2]). This naturally leads
to working with generating functions when dealing with hierarchies. The key object was
what we can call a generating Lagrangian multiform. The simple idea is to organise the
Lagrangian coefficients Li j of the 2-form (1.3) into a generating series involving formal
(spectral) parameters

L (λ, μ) =
∑

i, j

Li j

λi+1μ j+1 . (1.8)

It is clear that there is a one-to-one corresponding between L [u] and L (λ, μ) where
from the latter, one can extract the coefficients by the formula

Li j = resλ resμ

(
λiμ jL (λ, μ)

)
,

where resλ returns the coefficient of λ−1 in the series expansion, and similarly for resμ.
One advantage of working with generating series such as (1.8) stems from the usefulness
of generating functions in general: properties of their coefficients are more easily studied
and derived from those of the generating function. In our context, this means that we
can manipulate an integrable hierarchy as a whole instead of studying each Lagrangian
coefficientLi j individually. Originally, the latter approach was used in the sense that only
a given “starting” Lagrangian coefficient was known, sayL12, and one would try to build
the higher coefficients Li j so as to obtain a consistent Lagrangian multiform. Methods
to compute these coefficients were introduced for instance in [V,SNC2]. Although the
recursive algorithm could be applied in principle, in practice this is hard to implement
beyond the first few coefficients. Moreover, the Lagrangians Li j obtained in this way
usually contain derivatives with respect to t1 or t2 (the times associated with L12).
These are not natural times from the point of Li j : this is the so-called problem of “alien
derivatives” which was identified and explained in [V]. Having a generating Lagrangian
multiform circumvents these issues. This will be elaborated upon in the examples.

For the AKNS hierarchy, the generating Lagrangian multiform can be written as
[CS3]

L (λ, μ) = i Tr
(
φ(μ)−1Dλφ(μ)σ3 − φ(λ)−1Dμφ(λ)σ3

)
− Tr

Q(λ)Q(μ)

μ − λ
,

(1.9)

with Q(λ) = −iφ(λ)σ3φ(λ)−1, φ(λ) being a group-valued formal series in 1/λ with
constant term equal to the identity and whose coefficients contain the dynamical vari-
ables. The operator Dλ =

∑

j≥0

λ− j−1∂t j is a formal collection of all the AKNS flows ∂t j ,

and similarly for Dμ. The generating Lagrangian multiform (1.9) generates all the coef-
ficients Li j systematically and without the problem of alien derivatives, reproducing the
first few coefficients which had been constructed in [SNC,SNC2,PV], as it should. Its
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multiform EL equations yield the defining equations of the AKNS hierarchy as discussed
by Flaschka–Newell–Ratiu (FNR) in [FNR], namely1

∂ti Q(λ) = [Q(i)(λ), Q(λ)], i ≥ 0, (1.10)

where Q(λ) =
∞∑

j=0

Q jλ
− j and Q(i)(λ) =

i∑

j=0

Q jλ
i− j and Q0 = −iσ3. More precisely,

the multiform EL equations for (1.9) produce the equations (1.10) in generating form

DμQ(λ) = [Q(μ), Q(λ)]
μ − λ

, (1.11)

where we used the formal series identity

∞∑

k=0

Q(k)(λ)

μk+1 = Q(μ)

μ − λ
. (1.12)

1.2. Motivation, main results and plan. Motivation The present work is motivated by
the following observations made on the generating Lagrangian multiform (1.9) and the
generating FNR equations (1.11):

1. The potential term in L (λ, μ) has a characteristic form which can be identified as
the expression

Tr12 (r12(λ, μ)Q1(λ)Q2(μ))

where r12(λ, μ) = P12
μ−λ

is the rational r -matrix, known to describe the Hamiltonian
structure of the AKNS hierarchy. One could then imagine replacing this particular r -
matrix with another skew-symmetric r -matrix. This leads to the question of whether
the nice properties of the generating Lagrangian multiform still hold. One of our
main results is that this is the case by virtue of the CYBE. Correspondingly, the
RHS of (1.11) can also be written as [Tr2 r12(λ, μ)Q2(μ), Q1(λ)] and the same
generalisation can be contemplated.

2. The choice of expanding all the objects as formal series in 1/λ and 1/μ is a sign that
one is performing an expansion around the point at infinity. However, nothing would
prevent us from considering other points in CP1.

3. The Pauli matrix σ3 appearing in (1.9) is a special choice of constant element in the
underlying loop algebra of sl2 and the form of Q(λ) indicates that one is building a
phase space for the field theory as a (co)adjoint orbit around this particular element.
One could consider other elements in the loop algebra to construct different phase
spaces and hence different models. Moreover, one could also consider other Lie
algebras than sl2.

The careful implementation of these natural observations requires some machinery
which is presented Sect. 2. In a first instance, the reader may choose to read the rest
of this introduction containing a summary of the formalism and results, and go directly
to Sect. 3.

1 The flow t0 is the trivial linear flow but is included in the construction for convenience. In practice, one
is interested in the nonlinear flows t j , j ≥ 1.



Classical Yang–Baxter Equation Page 7 of 67    12 

The idea is to substitute the loop algebra of sl2 with a much more versatile structure:
the Lie algebra of g-valued adèles associated with a Lie algebra g. This algebra is
presented in [STS2] as the relevant structure to implement the second observation above.
By doing so in our context, we build a “universal” generating Lagrangian multiform
which is capable of describing a large class of ultralocal integrable hierarchies and we
provide a large variety of examples.

In a nutshell, for a matrix Lie algebra g, the Lie algebra of g-valued adèles is defined
as

Aλ(g):=
∐

a∈CP1

g ⊗ C((λa)),

where λa = λ − a for a ∈ C and λ∞ = 1
λ

are the local series expansion parameters.
An element X(λ) = (Xa(λa))a∈CP1 of this algebra consist of tuples with all but finitely
many of the formal Laurent series Xa(λa) ∈ g ⊗ C((λa)) being Taylor series in λa , i.e.
there exists a finite subset S ⊂ CP1 such that Xa(λa) ∈ g⊗C�λa� for every a ∈ C\S.
Let Rλ(g) denote the Lie algebra of g-valued rational functions in the formal variable λ

and define the map

ιλ : Rλ(g) −→ Aλ(g), f 
−→ (ιλa f )a∈CP1 (1.13)

where ιλa f ∈ g ⊗ C((λa)) is the Laurent expansion of f ∈ Rλ(g) at a ∈ CP1. Using
certain solutions of the CYBE, it is possible to obtain a direct sum decomposition of this
Lie algebra into two maximally isotropic Lie subalgebras

Aλ(g) = A+
λ(g) � ιλ Rλ(g). (1.14)

We can also define a group A+
λ(G) associated to A+

λ(g). If μ is another formal variable,
we can work with double formal series locally in λa and μb, a, b ∈ CP1 and consider
tuples of the form X(λ,μ) = (Xa,b(λa, μb))a,b∈CP1 .

Thanks to this adèlic framework, we can retain the power of the algebraic formulation
of formal power series while working locally around arbitrary points in CP1. We intro-
duce the following generalisation of (1.9) which realises the above three observations

� (λ,μ) := K (λ,μ) − U(λ,μ) (1.15)

where the kinetic and potential terms are given by

K(λ,μ) := Tr
(
φ(λ)−1Dμφ(λ)(ιλF(λ))−

)− Tr
(
φ(μ)−1Dλφ(μ)(ιμF(μ))−

)
,

(1.16a)

U(λ,μ) := 1
2 Tr 12

(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)Q2(μ)

)
. (1.16b)

Here φ(λ) is an element of the group A+
λ(G), Q(λ) = φ(λ)

(
ιλF(λ)

)
−φ(λ)−1 is an

element of Aλ(g), where
(
ιλF(λ)

)
− = (

Fa(λa)−
)

a∈CP1 is the collection of principal
parts of a g-valued rational function F(λ) ∈ Rλ(g). In terms of components of the tuples,
we have

L a,b(λa, μb) = Tr
(
φa(λa)−1Dμb φ

a(λa)Fa(λa)−
)− Tr

(
φb(μb)

−1Dλa φ
b(μb)Fb(μb)−

)

− 1
2 Tr12

(
(ιλa ιμb + ιμb ιλa )r12(λ, μ)Qa

1(λa)Qb
2(μb)

)
,
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for every a, b ∈ CP1. The operator Dλ := (Dλa )a∈CP1 denotes the CP1-tuple of formal
operatorsDλa which contain the partial differential operators ∂ta

n
(see (3.6)). The times ta

n
will be the times of the integrable hierarchies we describe. The rational function r12(λ, μ)

is the classical r -matrix defining the type of ultralocal hierarchies we consider (e.g.
rational or trigonometric) and corresponds to the r -matrix yielding the decomposition
(1.14).

Main results

1. We show that the generating Lax equation

Dμ Q1(λ) = [Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
, Q1(λ)

]
(1.17)

is variational. It arises as the multiform EL equations associated to our generating
Lagrangian multiform (1.15). This is the content of Theorem 3.12. This generalises
the analogous result first obtained in [SNC] in the context of the Zakharov–Mikhailov
models [ZM1]. The generating Lax equation plays here for field theories a role similar
to the traditional Lax equation for finite dimensional systems. This is explained in
Sect. 3.1. We relate it to a generating zero curvature equation which is shown to hold
as a consequence of the CYBE for the r -matrix appearing in (1.15).

2. We relate for the first time the CYBE with the relatively recent notion of Lagrangian
multiforms. The closure relation (1.6) in generating form, i.e. the closure relation
for (1.15), is shown to be a consequence of the CYBE for the r -matrix appearing in
(1.15), see Theorem 3.13. On the one hand, this provides a variational interpretation
of the CYBE, a fundamental equation that has only been introduced and studied from
a Hamiltonian point of view so far. On the other hand, given the importance of the
CYBE as a criterion for classical integrability, this further establishes the Lagrangian
multiform approach as a variational criterion for integrability.

3. Specialising the generating Lagrangian multiform (1.15), we recover known exam-
ples of integrable hierarchies and produce several new examples. We also introduce
an easy method for coupling hierarchies together.

Plan of the paper
In Sect. 2, we introduce the Lie algebra of g-valued adèles and establish its decom-

position into two complementary maximal isotropic Lie subalgebras which allows us
to introduce the classical r -matrix of interest via the corresponding projectors onto the
Lie subalgebras. This generalises to the adèles case the well-known interpretation of a
classical r -matrix as a difference of projectors. This is done explicitly for the rational and
trigonometric cases. Section 3 introduces the main elements of our framework: we state
the generalisation of the generating FNR equations (1.11), which we call the generat-
ing Lax equation, taking into account the above observations. Its properties are directly
connected to the CYBE. Then we introduce the generating Lagrangian multiform that
produces the generating Lax equation as its multiform EL equations. Again, its proper-
ties, in particular the closure relation, are shown to be a direct consequence of the CYBE.
The subsequent Sects. 4–6 are devoted to examples. Several were known previously, and
these are used to show how our framework contains them naturally, e.g. the AKNS hier-
archy and the sine-Gordon hierarchy. For the latter example, we explain in detail how the
first few known Lagrangian coefficients are recovered but without the problem of alien
derivatives. Other examples, such as the trigonometric Zakharov–Mikhailov hierarchy,
are new. For the recently introduced deformed Gross-Neveu models, the new feature
brought in by our construction is that they are naturally embedded into an integrable
hierarchy. Various conclusions and discussions are presented in Sect. 8. Finally, we recall
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in an “Appendix” the relationship between the trigonometric r -matrix used in this paper
and the more familiar r -matrix of the sine-Gordon model.

2. Lie Algebra of g-valued Adèles

2.1. General setup. Let N ∈ Z≥1 and consider either the Lie algebra glN of all N ×
N matrices with complex entries or its Lie subalgebra slN of traceless matrices. We
will treat both of these cases in parallel, using the common notation g throughout.
The generalisation to other matrix Lie algebras is straightforward but for simplicity we
shall restrict to these two cases. We also denote by G the associated Lie group which
corresponds either to the general linear group GL N of invertible N × N matrices or to
its Lie subgroup SL N of matrices with determinant 1.

We use the trace Tr : glN → C to endow the Lie algebra g with the non-degenerate
invariant symmetric bilinear form g × g → C given by (X, Y ) 
→ Tr(XY ). Let P12 be
the tensor Casimir of gwith the property that Tr2(P12 X2) = X for any X ∈ g. Explicitly,
for glN it is given by P12 = ∑N

i, j=1 Ei j ⊗ E ji where Ei j for i, j = 1, . . . , N is the
standard basis of glN . Similarly, for slN we can write P12 = ∑

a Ia ⊗ I a where {Ia}
and {I a} are dual bases of slN with respect to the above bilinear form. For clarity, let us
also recall that the notation X2 means 1 ⊗ X and the notation Tr2(. . . ) means that we
apply the trace only in the second tensor factor.

Let λ be a formal variable. For any a ∈ C we define the formal local coordinate
around a as λa :=λ−a and to the point at infinity we associate the formal local coordinate
λ∞:=λ−1. We consider the Lie algebra of g-valued adèles defined as

Aλ(g):=
∐

a∈CP1

g ⊗ C((λa)).

Its elements consist of tuples X(λ) = (Xa(λa))a∈CP1 with all but finitely many of the
formal Laurent series Xa(λa) ∈ g⊗C((λa)) being Taylor series, i.e. there exists a finite
subset S ⊂ CP1 such that Xa(λa) ∈ g ⊗ C�λa� for every a ∈ C\S. The Lie bracket of
two elements X(λ) = (Xa(λa))a∈CP1 and Y(λ) = (Y a(λa))a∈CP1 in Aλ(g) is defined
component-wise, as

[X(λ),Y(λ)] = ([Xa(λa), Y a(λa)])a∈CP1 .

Let Rλ denote the algebra of rational functions in the formal variable λ. The Laurent
expansion of a rational function f ∈ Rλ at any a ∈ CP1 defines a homomorphism

ιλa : Rλ −→ C((λa)), f 
−→ ιλa f. (2.1)

We will consider two possible non-degenerate invariant bilinear forms on the Lie
algebra Aλ(g), namely

〈〈·, ·〉〉k : Aλ(g) × Aλ(g) −→ C (2.2a)

for k = 0 and k = −1, defined as

〈〈X(λ),Y(λ)〉〉k :=
∑

a∈CP1

resλ
a Tr

(
Xa(λa)Y a(λa)

)
λkdλ, (2.2b)

for any X(λ) = (Xa(λa))a∈CP1 and Y(λ) = (Y a(λa))a∈CP1 . Strictly speaking, the
rational function λk on the right hand side of (2.2b) should be expanded at a ∈ CP1,
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namely we should write ιλa λ
k instead of λk . In order to simplify the notation, such

expansions will always be implicit when taking residues. Here, for any a ∈ CP1, the
residue resλ

a : C((λa))dλa → C returns the coefficient of λ−1
a dλa . For computing the

residue at infinity we note that dλ = −λ−2∞ dλ∞. Note that only finitely many terms in
the sum in (2.2b) are non-zero by definition of Aλ(g).

Let Rλ(g):=g⊗ Rλ denote the Lie algebra of g-valued rational functions in the formal
variable λ. We have an embedding of Lie algebras

ιλ : Rλ(g) −→ Aλ(g), f 
−→ (ιλa f )a∈CP1 (2.3)

where ιλa f ∈ g ⊗ C((λa)) is the Laurent expansion of f ∈ Rλ(g) at a ∈ CP1 in the
second tensor factor, as in (2.1). The Lie subalgebra ιλ Rλ(g) ⊂ Aλ(g) is maximally
isotropic with respect to 〈〈·, ·〉〉k , for any k ∈ Z, by the strong residue theorem; see for
instance [Ta, Corollary 1].

In the remainder of this section we will describe two possible complementary Lie
algebras to ιλ Rλ(g) in Aλ(g), which are maximally isotropic with respect to 〈〈·, ·〉〉0 and
〈〈·, ·〉〉−1, respectively. These two main examples, which can be found for instance in
[Dr2, Example 4], correspond to the rational r -matrix and the trigonometric r -matrix,
respectively.

Notation We will generally use boldface to denote CP1-tuples. For instance, given any
n ∈ Z we will write λnX(λ) for the element (λn

a Xa(λa))a∈CP1 ∈ Aλ(g) of the Lie
algebra of g-valued adèles. More generally, we would write λnX(λ)dλ as a shorthand
for the CP1-tuple (λn

a Xa(λa)dλa)a∈CP1 . Note, crucially, that although dλa = dλ for all
a ∈ C, we have dλ∞ = −λ−2dλ for the point at infinity. Therefore the two expressions
λnX(λ)dλ and λnX(λ)dλ subtly differ only in the component at infinity. If μ is another
formal variable then μ will denote a separate CP1-tuple carrying an independent label
b ∈ CP1. For instance, we would have

[X(λ),Y(μ)] = (δab[Xa(λa), Y b(μb)]
)

a,b∈CP1

for any X(λ) ∈ Aλ(g) and Y(μ) ∈ Aμ(g). We will make use of such notation with
multiple formal variables extensively from Sect. 3 onwards.

2.2. Rational r-matrix. Throughout this section we fix the choice k = 0 in the bilinear
form (2.2). Consider the Lie subalgebra of g-valued integral adèles

Arat
λ (g):=g ⊗ λ∞C�λ∞� ×

∐

a∈C
g ⊗ C�λa�. (2.4)

Note that we have excluded the constant term from the Taylor series at infinity. We shall
also need the corresponding group

Arat
λ (G):=Ĝ∞ ×

∐

a∈C
Ĝa, (2.5)

where in the GL N case Ĝa consists of all invertible N × N matrices with entries in
C�λa� while Ĝ∞ consists of all invertible N × N matrices with off-diagonal entries in
λ∞C�λ∞� and diagonal entries in 1 + λ∞C�λ∞�. In the SL N case the groups Ĝa for
all a ∈ CP1 are defined in the same way but with the added condition that the matrices
are of determinant 1.

For later practical purposes, it is convenient to collect the following notations in a
definition.
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Definition 2.1. Let a ∈ C and Xa(λa) ∈ g ⊗ C((λa)) be a Laurent series in λa with
coefficients in g. We shall use the notation

Xa(λa)rat− ∈ g ⊗ λ−1
a C[λ−1

a ] (2.6a)

to represent the pole part of Xa(λa). Similarly, for X∞(λ∞) ∈ g ⊗ C((λ∞)) = g ⊗
C((λ−1)), we denote by

X∞(λ∞)rat− ∈ g ⊗ C[λ−1∞ ] = g ⊗ C[λ] (2.6b)

the pole part of X∞(λ∞). Note that the constant term in λ∞ is included around infinity.

The Lie subalgebra Arat
λ (g) ⊂ Aλ(g) is clearly maximally isotropic with respect to

the bilinear form 〈〈·, ·〉〉0 defined in (2.2). Here we made use of the fact that the constant
term was excluded from the Taylor series at infinity in the definition (2.4). It follows that
the Lie algebra Aλ(g) decomposes as a direct sum of vector spaces

Aλ(g) = Arat
λ (g) � ιλ Rλ(g) (2.7)

into complementary Lagrangian (i.e. maximal isotropic) Lie subalgebras. Let π rat± denote
the projections onto Arat

λ (g) and ιλ Rλ(g), respectively, relative to (2.7).

Definition 2.2. (Rational r -matrix). Recall the notation P12 for the tensor Casimir of g
from Sect. 2.1. The rational r -matrix is defined as the following rational function of the
formal variables λ and μ:

r rat
12 (λ, μ) = P12

μ − λ
. (2.8)

As is well-known, it is skew-symmetric: r rat
12 (λ, μ) = −r rat

21 (μ, λ). The following result
shows that its known connection to projectors associated to the decomposition of a Lie
algebra into isotropic Lie subalgebras extends to the present adèles setting.

Proposition 2.3. For any X(λ) ∈ Aλ(g), its projections onto the complementary subal-
gebras Arat

λ (g) and ιλ Rλ(g) relative to the direct sum decomposition (2.7) are given re-
spectively by π rat

+ X(λ) = ((π rat
+ X)a(λa)

)
a∈CP1 and π rat− X(λ) = ((π rat− X)a(λa)

)
a∈CP1

where

(π rat
+ X)a(λa) =

∑

b∈CP1

resμ
b Tr2

(
ιμb ιλa r rat

12 (λ, μ)Xb(μb)2

)
dμ, (2.9a)

(π rat− X)a(λa) = −
∑

b∈CP1

resμ
b Tr2

(
ιλa ιμbr rat

12 (λ, μ)Xb(μb)2

)
dμ. (2.9b)

Proof. Let X(λ) ∈ Aλ(g). We consider, to begin with, its projection onto ιλ Rλ(g). The
g-valued rational function in Rλ(g) constructed out of the pole parts of the collection of
Laurent series in X(λ) is given by

∑

b∈CP1

resμ
b Tr2

(
ιμb

P12

λ − μ
Xb(μb)2

)
dμ =

∑

b∈C

∞∑

n=0

resμ
b

μn
b

λn+1
b

Xb(μb)dμ

−
∞∑

n=0

resμ∞
λn

μn+1 X∞(μ∞)dμ =
∑

b∈CP1

Xb(λb)
rat−
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where in the first equality we took the trace and split the term at b = ∞ from the rest
of the sum over b ∈ CP1. The expression (2.9b) is then obtained by taking the Laurent
series expansion of this rational function at each a ∈ CP1, corresponding to applying
the map (2.3).

Consider now the projection of X(λ) ∈ Aλ(g) onto Arat
λ (g). Note that for any a ∈ C

we have

∑

b∈CP1

resμ
b Tr2

(
ιμb ιλa

P12

μ − λ
Xb(μb)2

)
dμ =

∞∑

n=0

λn
a

∑

b∈CP1

resμ
b ιμbμ

−n−1
a Xb(μb)dμ.

If X(λ) ∈ ιλ Rλ(g), say X(λ) = ιλ f (λ) for some f (λ) ∈ Rλ(g), then the above vanishes
at each order in the λa-expansion by the residue theorem. Indeed, the coefficient of λn

a
is given by the sum of all the residues of (μ − a)−n−1 f (μ)dμ. On the other hand, if
X(λ) ∈ Arat

λ (g) then the only term contributing to the sum over b ∈ CP1 is the term
for b = a which is equal to Xa(λa). The same statements hold for a = ∞ and hence
the result follows. �

Define the linear operator r rat:=π rat
+ − π rat− . It follows from Proposition 2.3 that its

kernel is given by

(
(ιμb ιλa + ιλa ιμb )

P12

μ − λ

)

a,b∈CP1
. (2.10)

The kernel of the identity operator id = π rat
+ + π rat− is similarly given by an expansion

of zero (see e.g. [LL, Chap. 2]) since

(
(ιμb ιλa − ιλa ιμb )

P12

μ − λ
dμ

)

a,b∈CP1
= (P12δabδ(λa, μa)dμa

)
a,b∈CP1 (2.11)

where we defined

δ(λa, μa):=
∑

n∈Z
λn

aμ−n−1
a . (2.12)

Lemma 2.4. Let X(μ) = (
Xa(μa)

)
a∈CP1 ∈ Aμ(g) with Xa(μa) =

∞∑

n=−Na

Xa
nμn

a for

some Na ∈ Z, where Na > 0 for finitely many a ∈ CP1. For any a ∈ C we have

ιμa

Xa(μa)

μ − λ
= −

∞∑

r=−Na

μr
a

(
λ−r−1

a Xa(λa)
)rat
−

and at infinity we have

ιμ∞
X∞(μ∞)

μ − λ
=

∞∑

r=−N∞
μr+1∞

(
λ−r∞ X∞(λ∞)

)rat
− .
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Proof. First, let a ∈ C. Then we have

ιμa

Xa(μa)

μ − λ
= −

∞∑

n=−Na

Xa
nμn

a

∞∑

s=0

μs
aλ−s−1

a = −
∞∑

n=−Na

∞∑

r=n

Xa
nμr

aλn−r−1
a

= −
∞∑

r=−Na

μr
a

r∑

n=−Na

Xa
nλn−r−1

a = −
∞∑

r=−Na

μr
a

(
λ−r−1

a Xa(λa)
)rat
−

where in the second equality we changed variables from s to r = s + n in the second
sum and in the second line we changed the order of the sums.

Consider now the point at infinity. We have

ιμ∞
X∞(μ∞)

μ − λ
=

∞∑

n=−N∞
X∞

n μn∞
∞∑

s=0

μs+1∞ λ−s∞ =
∞∑

n=−N∞

∞∑

r=n

X∞
n μr+1∞ λn−r∞

=
∞∑

r=−N∞
μr+1∞

r∑

n=−N∞
X∞

n λn−r∞ =
∞∑

r=−N∞
μr+1∞

(
λ−r∞ X∞(λ∞)

)rat
−

where in the second equality we changed variables s = r −n as before and in the second
line we changed the order of the sums. �

2.3. Trigonometric r-matrix. Throughout this section we will choose k = −1 in the
bilinear form (2.2). We shall also make use of the standard nilpotent subalgebras n±
and Borel subalgebras b± of g. Explicitly, n+ (resp. n−) is spanned by Ei j for i < j
(resp. i > j). In the glN case b+ (resp. b−) is spanned by Ei j for i ≤ j (resp. i ≥ j)
while in the slN case b+ (resp. b−) is spanned by Ei j for i < j (resp. i > j) together
with Eii − E j j for i < j . The Cartan subalgebra h is spanned by Eii for i = 1, . . . , N
in the glN case and by Eii − E j j for i < j in the slN case. We have the direct sum
decompositions b± = h ⊕ n±. We shall also make use of the corresponding subgroups
N±, B± and H in G. For GL N these are the groups of unipotent upper/lower-triangular
N×N matrices, invertible upper/lower-triangular N×N matrices and invertible diagonal
N × N matrices, respectively. For SL N we add the condition that the matrices are of
determinant 1.

Recall the notation P12 for the tensor Casimir of g from Sect. 2.1. We can split this
into three parts as P12 = P−

12 + P0
12 + P+

12 where P±
12 ∈ n± ⊗ n∓ and P0

12 ∈ h ⊗ h.
Explicitly, in the glN case these read

P+
12 =

N∑

i, j=1
i< j

Ei j ⊗ E ji , P0
12 =

N∑

i=1

Eii ⊗ Eii , P−
12 =

N∑

i, j=1
i< j

E ji ⊗ Ei j .

For slN the expression for P0
12 is given in terms of dual bases {ui } and {ui } of the Cartan

subalgebra h with respect to the trace bilinear form as P0
12 = ∑N−1

i=1 ui ⊗ ui . We note
that P+

21 = P−
12, P0

21 = P0
12 and P21 = P12. We also define the corresponding projectors

P± : g → n± and P0 : g → h onto the nilpotent Lie subalgebras n± and the Cartan
subalgebra h, respectively, given for any X ∈ g as

P± X := Tr2(P±
12 X2), P0 X := Tr2(P0

12 X2),
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so that idg = P− + P0 + P+.
In the trigonometric setting, the role of the Lie subalgebra Arat

λ (g) ⊂ Aλ(g) in (2.4)
will be played by the following alternative Lie subalgebra

A
trig
λ (g) :=B

0,∞
λ (g) ×

∐

a∈C×
g ⊗ C�λa� (2.13)

where C
×:=C\{0} and

B
0,∞
λ (g) ⊂ (b+ ⊕ g ⊗ λC�λ�

)× (b− ⊕ g ⊗ λ∞C�λ∞�
)

is the Lie subalgebra consisting of pairs of Taylor series X0(λ) = ∑∞
n=0 X0

nλn and
X∞(λ∞) =∑∞

n=0 X∞
n λn∞ with X0

n, X∞
n ∈ g for all n ≥ 1 but with X0

0 ∈ b+ and X∞
0 ∈

b− subject to the constraint P0 X0
0 = −P0 X∞

0 . We shall also need the corresponding

group A
trig
λ (G) defined as follows.

In the GL N case we let B̂+ denote the group of all invertible N × N matrices with
entries below the diagonal in λC�λ� and entries on or above the diagonal in C�λ�.
Likewise, we let B̂− be the group of all invertible N × N matrices with entries on or
below the diagonal in C�λ∞� and entries above the diagonal in λ∞C�λ∞�. Concretely,
an element of B̂+ can be expanded as a Taylor series g(λ) = ∑∞

n=0 gnλ
n with g0

upper triangular and gn ∈ glN for n ≥ 1, while an element of B̂− is a Taylor series
h(λ∞) =∑∞

n=0 hnλn∞ with h0 lower triangular and hn ∈ glN for n ≥ 1. As usual, in the
SL N case we define the subgroups B̂± as in the GL N case but with the added condition
that the matrices are of determinant 1. We then set

A
trig
λ (G) :=B

0,∞
λ (G) ×

∐

a∈C
Ĝa (2.14)

where the first factor is the subgroup B
0,∞
λ (GL N ) ⊂ B̂+ × B̂− consisting of pairs of

Taylor series g0(λ) = ∑∞
n=0 g0

nλn and g∞(λ∞) = ∑∞
n=0 g∞

n λn∞ with g0
n, g∞

n ∈ glN
for all n ≥ 1 but where the upper triangular matrix g0

0 and the lower triangular matrix
g∞

0 are subject to the constraint P0 g0
0 = (P0 g∞

0 )−1.
Note that for consistency we should really keep denoting the local coordinate at the

origin as λ0, following the general notation introduced in Sect. 2.1. However, since λ0 is
nothing but λ, we will most often prefer to write the local coordinate at the origin simply
as λ, rather than use the more cumbersome notation λ0.

It will be convenient in what follows to introduce slightly different notions of pole
parts of Laurent series at the origin and infinity in the trigonometric case. As they are
important in practical calculations, we gather them in the following definition.

Definition 2.5. Given any X0(λ) =
∞∑

n=−N0

X0
nλn ∈ g ⊗ C((λ)) we define

X0(λ)
trig
− := (P− + 1

2 P0)X0
0 + X0(λ)rat− ∈ b− ⊕ g ⊗ λ−1

C[λ−1]. (2.15a)

Similarly, for any X∞(λ−1) =
∞∑

n=−N∞
X∞

n λ−n ∈ g ⊗ C((λ−1)) we define

X∞(λ∞)
trig
− := (P+ + 1

2 P0)X∞
0 +

−1∑

n=−N∞
X∞

n λn∞ ∈ b+ ⊕ g ⊗ λ−1∞ C[λ−1∞ ]. (2.15b)
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Furthermore, for a Laurent series Xb(λb) =
∞∑

n=−Nb

Xb
nλn

b ∈ g ⊗ C((λb)) at any other

point b ∈ C
× we set

Xb(λb)
trig
− := − (P− + 1

2 P0)Xb(−b)rat− + Xb(λb)
rat− ∈ b− ⊕ g ⊗ λ−1

b C[λ−1
b ],

(2.15c)

where in the first term Xb(−b)rat− is the pole part Xb(λb)
rat− at b evaluated at λ = 0.

In particular, as compared to the pole part Xb(λb)
rat− ∈ g ⊗ λ−1

b C[λ−1
b ] introduced in

(2.6a), we note that the pole part Xb(λb)
trig
− includes a constant term (provided that

(P− + 1
2 P0)Xb(−b)rat− �= 0) which, moreover, is valued in b−.

Proposition 2.6. The Lie subalgebra A
trig
λ (g) ⊂ Aλ(g) is maximally isotropic with

respect to 〈〈·, ·〉〉−1. Moreover, we have a direct sum of vector spaces

Aλ(g) = A
trig
λ (g) � ιλ Rλ(g) (2.16)

into complementary Lagrangian (i.e. maximal isotropic) Lie subalgebras.

Proof. To see that Atrig
λ (g) is isotropic with respect to the bilinear form 〈〈·, ·〉〉−1, let

X(λ),Y(λ) ∈ A
trig
λ (g) be arbitrary and consider the pairing 〈〈X(λ),Y(λ)〉〉−1 as given

in (2.2b). There are no contributions from any a ∈ C
×. The only contributions come

from 0 and ∞, which read

resλ
0 Tr

(
X0(λ)Y 0(λ)

)
λ−1dλ + resλ∞ Tr

(
X∞(λ∞)Y ∞(λ∞)

)
λ−1dλ

= Tr(X0
0Y 0

0 ) − Tr(X∞
0 Y ∞

0 )

= Tr
(
P0(X0

0)P0(Y 0
0 )
)− Tr

(
P0(X∞

0 )P0(Y ∞
0 )
) = 0.

In the first equality we wrote X0(λ) = ∑∞
n=0 X0

nλn , X∞(λ∞) = ∑∞
n=0 X∞

n λn∞ and
similarly for Y 0(λ) and Y ∞(λ∞). The second equality above follows from the fact that
X0

0, Y 0
0 ∈ b+ and X∞

0 , Y ∞
0 ∈ b− and the last step makes use of the conditions in the

definition of B0,∞
λ (g) that P0 X0

0 = −P0 X∞
0 and P0Y 0

0 = −P0Y ∞
0 . In order to show

that Atrig
λ (g) is maximally isotropic it suffices to prove the second statement, namely

that we have the direct sum decomposition of vector spaces as in (2.16).
To any X(λ) ∈ Aλ(g) we associate the rational function

fX (λ) = X0(λ)
trig
− +

∑

b∈C×
Xb(λb)

trig
− + X∞(λ∞)

trig
− (2.17)

in Rλ(g). Consider the element X̃(λ) = (X̃a(λa))a∈CP1 defined by

X̃a(λa) := Xa(λa) − ιλa fX (λ)

for every a ∈ CP1. We have X̃a(λa) ∈ g ⊗ C�λa� for every a ∈ CP1. But more
precisely, noting that

Xb(λb)
trig
−
∣∣
λ=0 = (P+ + 1

2 P0)Xb(−b)rat− , X∞(λ∞)
trig
−
∣∣
λ=0 = (P+ + 1

2 P0)X∞
0
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for every b ∈ C
×, we have, in fact, X̃0(λ0) ∈ b+ ⊕ g ⊗ λC�λ� whose leading term in

b+ is given by

(
P+ + 1

2 P0)(X0
0 − X∞

0 − Xb(−b)rat−
) ∈ b+. (2.18)

Likewise, we have

Xb(λb)
trig
−
∣∣
λ=∞ = −(P− + 1

2 P0)Xb(−b)rat− ,

X0(λ)
trig
−
∣∣
λ=∞ = (P− + 1

2 P0)X0
0

from which it follows that X̃∞(λ∞) ∈ b− ⊕ g ⊗ λ∞C�λ∞� with leading coefficient in
b− given by

(
P− + 1

2 P0)(− X0
0 + X∞

0 + Xb(−b)rat−
) ∈ b−. (2.19)

Moreover, comparing the Cartan components of (2.18) and (2.19) we see that these are
opposite. Hence we conclude that X̃(λ) ∈ A

trig
λ (g). In other words,

X(λ) = X̃(λ) + ιλ fX (λ)

gives the desired decomposition of a general element X(λ) ∈ Aλ(g) as in (2.16).
This decomposition is unique since any element which belongs to both A

trig
λ (g) and

ιλ Rλ(g) must vanish. Indeed, suppose f (λ) ∈ Rλ(g) is such that ιλ f (λ) ∈ A
trig
λ (g).

Then it is clear from the definition of Atrig
λ (g) in (2.13) that f (λ) cannot be singular at

any point in CP1 and so must be constant. But then it follows from the definition of
B

0,∞
λ (g) that this constant must in fact be zero. �

Definition 2.7. (Trigonometric r -matrix). The trigonometric r -matrix is defined as the
following function of two formal variables λ and μ:

r trig
12 (λ, μ) = 1

2

(
P+

12 − P−
12 +

μ + λ

μ − λ
P12

)
= μP12

μ − λ
− P−

12 − 1
2 P0

12. (2.20)

It is skew-symmetric, namely we have r trig
21 (μ, λ) = −r trig

12 (λ, μ). It provides the trigono-
metric counterpart of the kernel (2.10) for the choice of complement (2.13). Indeed, we
have the following analogue of Proposition 2.3 in the trigonometric case.

Proposition 2.8. For any X(λ) ∈ Aλ(g), its projections onto the complementary subal-
gebrasAtrig

λ (g) and ιλ Rλ(g) relative to the direct sum decomposition (2.16) are given re-

spectively by π
trig
+ X(λ)=((π trig

+ X)a(λa)
)

a∈CP1 and π
trig
− X(λ)=((π trig

− X)a(λa)
)

a∈CP1

where

(π
trig
+ X)a(λa) =

∑

b∈CP1

resμ
b Tr2

(
ιμb ιλa r trig

12 (λ, μ)Xb(μb)2
)
μ−1dμ, (2.21a)

(π
trig
− X)a(λa) = −

∑

b∈CP1

resμ
b Tr2

(
ιλa ιμbr trig

12 (λ, μ)Xb(μb)2
)
μ−1dμ. (2.21b)
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Proof. We first describe the image of π
trig
− explicitly. Then we show that π

trig
− sends

A
trig
λ (g) to zero and that it acts as the identity on ιλ Rλ(g). Hence, π

trig
− is the projection

onto ιλ Rλ(g) alongAtrig
λ (g). Similarly, we prove that π trig

+ is the projection ontoAtrig
λ (g)

along ιλ Rλ(g).
Given any X(λ) ∈ Aλ(g), consider the g-valued rational function

fX (λ) = −
∑

b∈CP1

resμ
b Tr2

(
ιμbr trig

12 (λ, μ)Xb(μb)2
)
μ−1dμ

=
∑

b∈CP1

resμ
b

(
ιμbμ

−1(P− + 1
2 P0)(Xb(μb)) + ιμb

1

λ − μ
Xb(μb)

)
dμ.

We compute the residues at each b ∈ C
× and then at the origin and infinity. Firstly, for

the residue at b ∈ C
× we find Xb(λb)

trig
− . For the residue at the origin we find X0(λ)

trig
−

and, likewise, for the residue at infinity we find

−(P− + 1
2 P0)X∞

0 + X∞(λ∞)rat− = X∞(λ∞)
trig
− ,

where in the first expression we are using the pole part X∞(λ∞)rat− ∈ g⊗C[λ−1∞ ] defined
in (2.6b) of a Laurent series at infinity, and in the second expression we are using the other
notion of pole part X∞(λ∞)

trig
− introduced above in (2.15b). Putting the above together

we conclude that fX (λ) is the rational function (2.17) used in the proof of Proposition
2.6. By construction we have (π

trig
− X)a(λa) = ιλa fX (λ) for every a ∈ CP1.

Now suppose X(λ) ∈ A
trig
λ (g). Clearly Xb(λb)

rat− = 0, hence also Xb(λb)
trig
− = 0

using the definition (2.15c), so the sum over b ∈ C
× on the right hand side of (2.17)

vanishes. On the other hand, X0(λ)
trig
− = 1

2 P0 X0
0 and X∞(λ∞)

trig
− = 1

2 P0 X∞
0 . But

since P0 X0
0 = −P0 X∞

0 by definition of X(λ) belonging to A
trig
λ (g), it follows that the

remaining two terms in (2.17) cancel. So we have shown that π
trig
− X(λ) = 0 for any

X(λ) ∈ A
trig
λ (g).

On the other hand, suppose now that X(λ) = ιλ f (λ) for some f (λ) ∈ Rλ(g). If the
latter has a pole at some a ∈ C

× then its pole part there is given by Xa(λa)rat− . If it has
a pole at the origin then its pole part there is equal to

X0(λ)
trig
− −

∑

b∈C×

(
P− + 1

2 P0)Xb(−b)rat− − (P− + 1
2 P0)X∞

0 , (2.22)

where X∞
0 is the constant term in the expansion of f (λ) at infinity. Indeed, recall from

(2.15a) that X0(λ)
trig
− is given by the pole part X0(λ)rat− at the origin plus (P− + 1

2 P0)X0
0

where X0
0 is given here by the value at the origin of all the other pole parts of f (λ).

This is why we must subtract the latter from X0(λ)
trig
− in (2.22) to be left only with the

desired pole part at the origin. Finally, the pole part of f (λ) at infinity is given by

X∞(λ∞)
trig
− +

(
P− + 1

2 P0)X∞
0 . (2.23)

Indeed, the pole part at infinity should contain the constant term but X∞(λ∞)
trig
− only

contains part of it. The remaining part is precisely the piece added in (2.23). It now
follows that the expression on the right hand side of (2.17) built from X(λ) = ιλ f (λ)
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coincides exactly with the partial fraction decomposition of f (λ). This establishes that
π

trig
− X(λ) = X(λ) for any X(λ) ∈ ιλ f (λ). In other words, we have therefore shown

that π
trig
− is indeed the projection onto ιλ Rλ(g) along A

trig
λ (g).

It remains to consider π
trig
+ . For any X(λ) ∈ Aλ(g) and a ∈ C we have

(π
trig
+ X)a(λa) = −

∑

b∈CP1

resμ
b

(
ιμbμ

−1(P− + 1
2 P0)(Xb(μb))

)
dμ

+
∞∑

n=0

λn
a

∑

b∈CP1

resμ
b ιμbμ

−n−1
a Xb(μb)dμ. (2.24)

If X(λ) ∈ ιλ Rλ(g) then the first term on the right hand side vanishes by the residue
theorem and the second term likewise at each order in the λa-expansion. If instead we
consider a = ∞ then

(π
trig
+ X)∞(λ∞) = −

∑

b∈CP1

resμ
b

(
ιμbμ

−1(P− + 1
2 P0)(Xb(μb))

)
dμ

−
∞∑

n=0

λ−n−1
∑

b∈CP1

resμ
b ιμbμ

n Xb(μb)dμ, (2.25)

but both terms vanish once again by the residue theorem if X(λ) ∈ ιλ Rλ(g). So we
deduce that π

trig
+ X(λ) = 0 for every X(λ) ∈ ιλ Rλ(g).

Suppose now that X(λ) ∈ A
trig
λ (g). The first term on the right hand side of (2.24)

gets a contribution only from the terms b = 0 and b = ∞, which read

− resμ
0

(
μ−1(P− + 1

2 P0)(X0(μ))
)

dμ − resμ∞
(
μ−1(P− + 1

2 P0)(X∞(μ∞))
)

dμ

= −(P− + 1
2 P0)X0

0 +
(
P− + 1

2 P0)X∞
0 = (P− + P0)X∞

0 = X∞
0

where we wrote X0(μ) = ∑∞
n=0 X0

nμn and X∞(μ∞) = ∑∞
n=0 X∞

n μn∞. The second
equality above follows since by assumption we have X0

0 ∈ b+ so that P− X0
0 = 0 and

also P0 X0
0 = −P0 X∞

0 . The third equality also follows since by assumption X∞
0 ∈ b−.

The second sum in (2.24) is just as in the rational case, however since the series at
infinity now contains a constant term we get a contribution to the sum over b ∈ CP1

from both b = a and b = ∞, yielding Xa(λa) − X∞
0 . So in total, we deduce that

(π
trig
+ X)a(λa) = Xa(λa) for every a ∈ C.
Consider now the case a = ∞. The first term on the right hand side of (2.25) is again

equal to X∞
0 while the second term gives

∞∑

n=1

X∞
n λn∞ = X∞(λ∞) − X∞

0 . Putting these

together we deduce that (π trig
+ X)∞(λ∞) = X∞(λ∞). In conclusion, we have shown that

π
trig
+ X(λ) = X(λ) for all X(λ) ∈ A

trig
λ (g) so that π

trig
+ is the projection onto A

trig
λ (g)

along ιλ Rλ(g), as claimed. �
We can now define the linear operator r trig:=π

trig
+ −π

trig
− . It follows from Proposition

2.8 that its kernel reads
(
(ιμb ιλa + ιλa ιμb )r

trig
12 (λ, μ)

)
a,b∈CP1 . (2.26)
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Moreover, the kernel of the identity operator id = π
trig
+ + π

trig
− is similarly given by an

expansion of zero since
(
(ιμb ιλa − ιλa ιμb )r

trig
12 (λ, μ)μ−1dμ

)
a,b∈CP1 = (P12δabδ(λa, μa)dμa

)
a,b∈CP1

(2.27)

using the same notation δab and δ(λ, μ) as in the rational case.
The following is the analogue of Lemma 2.4 in the trigonometric case.

Lemma 2.9. Let X(μ) = (Xa(μa)
)

a∈CP1 ∈ Aμ(g) with Xa(μa)=∑∞
n=−Na

Xa
nμn

a for

some Na ∈ Z, where Na > 0 for finitely many a ∈ CP1. For any a ∈ C we have

ιμa Tr2
(
r trig

12 (λ, μ)Xa(μa)2
) = −

∞∑

r=−Na

μr
a

(
(λ−r

a + aλ−r−1
a )Xa(λa)

)trig
− ,

while at infinity we have

ιμ∞ Tr2
(
r trig

12 (λ, μ)X∞(μ∞)2
) =

∞∑

r=−N∞
μr∞
(
λ−r∞ X∞(λ∞)

)trig
− .

Proof. First, let a ∈ C
×. We have

ιμa Tr2
(
r trig

12 (λ, μ)Xa(μa)2
) = −(P− + 1

2 P0)(Xa(μa)) − ιμa

μ

λ − μ
Xa(μa)

= −
∞∑

r=−Na

μr
a(P− + 1

2 P0)Xa
r −

∞∑

n=−Na

∞∑

s=0

(μa + a)
μn+s

a

λs+1
a

Xa
n

= −
∞∑

r=−Na

μr
a

(
(P− + 1

2 P0)Xa
r +

r−1∑

n=−Na

λn−r
a Xa

n + a
r∑

n=−Na

λn−r−1
a Xa

n

)
.

In the third equality we split the double sum into two terms, containing μa and a
respectively from the first factor. We changed variable from s to r = s + n + 1 in
the first and from s to r = s + n in the second, and then changed the order of the two
double sums. It remains to note that

r−1∑

n=−Na

λn−r
a Xa

n + a
r∑

n=−Na

λn−r−1
a Xa

n = ((λ−r
a + aλ−r−1

a )Xa(λa)
)rat
−

and that this is equal to −Xa
r when evaluated at λ = 0. The result at a ∈ C

× now follows
by definition (2.15c) of the pole part at a.

At the origin we have

ιμ Tr2
(
r trig

12 (λ, μ)X0(μ)2
) = −

∞∑

r=−N0

μr (P− + 1
2 P0)X0

r −
∞∑

n=−N0

∞∑

s=1

μn+sλ−s X0
n

= −
∞∑

r=−N0

μr
(

(P− + 1
2 P0)X0

r +
r−1∑

n=−N0

λn−r X0
n

)
= −

∞∑

r=−N0

μr (λ−r X0(λ)
)trig
− .
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In the second equality we changed variable in the double sum from s to r = n + s and
then changed the order of the two sums. We have also added the term r = −N0 in this
double sum since this term vanishes due to the range in the sum over n being empty. The
last equality uses the definition (2.15a). Note that the result at the origin coincides with
the result obtained above for a ∈ C

× but taken at a = 0. This is not completely obvious
since the definitions of the pole parts (2.15a) and (2.15c) at 0 and a generic point a ∈ C

×
are different. Likewise, at infinity we have

ιμ∞ Tr2
(
r trig

12 (λ, μ)X∞(μ∞)2
) = −

∞∑

r=−N∞
μr∞(P− + 1

2 P0)X∞
r +

∞∑

n=−N∞

∞∑

s=0

μn+s∞ λ−s∞ X∞
n

=
∞∑

r=−N∞
μr∞
(

− (P− + 1
2 P0)X∞

r +
r∑

n=−N∞
λn−r∞ X∞

n

)

=
∞∑

r=−N∞
μr∞
(
λ−r∞ X∞(λ∞)

)trig
− .

In the second equality we changed variable in the double sum from s to r = n + s
and then changed the order of the two sums. The last equality uses (2.15b). �

3. Generating Lagrangian Multiform and CYBE

In this section we will treat uniformly both the rational and trigonometric cases discussed
in Sect. 2.2 and Sect. 2.3, respectively. More precisely, we shall work with the Lie algebra
of g-valued adèles Aλ(g) equipped with the bilinear form (2.2) with either k = 0 or
k = −1. The corresponding vector space direct sum decompositions (2.7) and (2.16)
will be denoted by

Aλ(g) = A+
λ(g) � ιλ Rλ(g)

where A+
λ(g) stands for the rational Lie subalgebra Arat

λ (g) when k = 0 and the trigono-

metric Lie subalgebra A
trig
λ (g) when k = −1. Correspondingly, we shall use the com-

mon notation A+
λ(G) for the groups Arat

λ (G) in the rational case and A
trig
λ (G) in the

trigonometric case.
Given a general element X(λ) = (Xa(λa))a∈CP1 ∈ Aλ(g) of the Lie algebra of g-

valued adèles, we will also denote by Xa(λa)− the principal part of the formal Laurent
series Xa(λa), which stands for Xa(λa)rat− in the rational case, see (2.6), or for Xa(λa)

trig
−

in the trigonometric case, see (2.15).

3.1. Dynamical equations. We will describe integrable field theories by taking the point
of view that the spatial coordinate x , on which all the Hamiltonian fields are usually taken
to depend, should be treated on an equal footing to all the other times in the hierarchy. To
explain this new perspective on integrable hierarchies it is useful to begin by recalling
the traditional point of view.

The dynamical equations of different integrable field theories in the same hierarchy
are usually described as zero curvature equations

∂x V a
n (λ) − ∂ta

n
U (λ) + [V a

n (λ), U (λ)] = 0 (3.1)
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where the Lax matrix U (λ) ∈ Rλ(g) is a coadjoint orbit of A+
λ(G) in Rλ(g) which

encodes the finite collection of fields of the hierarchy. The V a
n (λ) ∈ Rλ(g), associated

to the times ta
n for some labels a ∈ C and n ∈ Z to be specified below and which

we also refer to as Lax matrices, are coadjoint orbits of A+
λ(G) in Rλ(g) built out of

differential polynomials in the fields. From this traditional point of view, (3.1) represents
a set of equations which is seen as a natural extension of the Lax equations ∂ta

n
L(λ) =

[Ma
n (λ), L(λ)], used to describe finite-dimensional systems, to the field theory case

where every degree of freedom now depends on x . In particular, U (λ) is usually treated
as the fundamental object since the V a

n (λ) can all be built out of it and as such it is seen
as the natural analogue of the Lax matrix L(λ) in the field theory case.

The crucial point is that the particular flow ∂x can, and from our point of view should,
be thought of as a linear combination of some of the elementary time flows ∂ta

n
. But if

we are to treat the coadjoint orbit U (λ) ∈ Rλ(g) on an equal footing to all the other
coadjoint orbits V a

n (λ) ∈ Rλ(g) then we should also abandon the idea that each V a
n (λ)

is parametrised by differential polynomials with respect to x of the finite collection of
fields contained in U (λ). Instead, we should treat all the coadjoint orbits V a

n (λ) ∈ Rλ(g)
as truly independent. We shall see, in a sense which is much closer in spirit to the Lax
formalism for finite-dimensional systems, that all the Lax matrices V a

n (λ) can be derived
from a single object Q(λ) ∈ Aλ(g), a certain adjoint orbit of A+

λ(G) in the full space
of adèles Aλ(g). In particular, the latter will satisfy a Lax equation (see (3.16) below)

∂ta
n
Q(λ) = [ιλV a

n (λ), Q(λ)]
with respect to all the times ta

n . As such, in our approach to hierarchies of integrable
field theories, Q(λ) will play a very similar role to that of the usual Lax matrix L(λ) for
finite-dimensional systems. For us, the fundamental object will therefore be Q(λ) rather
than U (λ). The relationship between these two objects, and in particular the connection
between our approach to hierarchies of integrable field theories and the usual one recalled
above, comes from fixing a particular linear combination of time flows as our choice of
spatial derivative ∂x . We discuss this in detail in Sect. 3.1.4, together with what we call
the FNR procedure.

Since there is a close parallel between our treatment of integrable field theories and
various familiar constructions in the theory of finite-dimensional integrable systems, we
will draw the comparison throughout this section in a series of remarks.

3.1.1. Adjoint orbit Let φ(λ) = (φa(λa))a∈CP1 ∈ A+
λ(G). We regard the entries of the

matrix coefficients in the expansions

φa(λa) =
∞∑

n=0

φa
n λn

a

for all a ∈ CP1 as an infinite collection of dynamical variables. In general, these are
not all independent. For instance, φa(λa) should be invertible in the GL N case, which
means that the first term φa

0 should be invertible, or φa(λa) should have determinant
1 in the SL N case which will impose non-trivial relations between the coefficients
at each order in λa . The infinitely many degrees of freedom contained in φ(λ), or
equivalently in Q(λ) defined in (3.3) below, will be used to describe infinitely many
different integrable hierarchies of integrable field theories. We will refer to these as
group or algebra coordinates (respectively): they represent the dependent variables and
are the fields satisfying the equations of motion of a hierarchies.
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A particular integrable hierarchy will be determined by a choice of non-dynamical
rational function, with poles in a finite subset S ⊂ CP1, which we can write using a
partial fraction decomposition as

F(λ) =
∑

a∈S

Fa(λa)− ∈ Rλ(g)

where Fa(λa)− ∈ g ⊗ C[λ−1
a ] are (rational or trigonometric, depending on the case)

principal parts at each a ∈ S. In particular, Fa(λa)−dλ has a pole of order Na > 0 at
any a ∈ S ∩ C and a pole of order N∞ + 2 ≥ 2 at infinity if ∞ ∈ S. Its expansion at all
of the points a ∈ CP1 defines an element ιλF(λ) = (ιλa F(λ))a∈CP1 ∈ Aλ(g) of the
g-valued adèles, via the embedding (2.3). By design, we have (ιλa F(λ))− = Fa(λa)−
for each a ∈ S and (ιλa F(λ))− = 0 for every other points a ∈ CP1\S. The element of
the g-valued adèles with these components, which we can denote by

(
ιλF(λ)

)
− := (Fa(λa)−

)
a∈CP1 ∈ Aλ(g), (3.2)

is just a finite collection of principal parts. We consider its adjoint orbit under the group
element φ(λ) ∈ A+

λ(G) introduced above, namely

Q(λ) := φ(λ)
(
ιλF(λ)

)
−φ(λ)−1 ∈ Aλ(g). (3.3)

Explicitly, its component at any pole a ∈ S is Qa(λa) = φa(λa)Fa(λa)−φa(λa)−1

while the component at any other a ∈ CP1\S vanishes. We can further expand the latter
as a Laurent series in λa , namely

Qa(λa) =
∞∑

n=−Na

Qa
nλn

a, (3.4)

for some Qa
n ∈ g, where Na > 0 is the order of the pole of F(λ) at a ∈ S ∩ C. For the

point at infinity we can have N∞ ≥ 0.

Remark 3.1. The adjoint orbit (3.3) within the full Lie algebra of g-valued adèles Aλ(g)
will play the role of the Lax matrix in the present infinite-dimensional setting. For
comparison, it is useful to recall that in the finite-dimensional setting the Lax matrix is
given by a coadjoint orbit

L(λ) = 
−
(
φ(λ)

(
ιλF(λ)

)
−φ(λ)−1

)
∈ Rλ(g) (3.5)

where 
− denotes either π rat− or π
trig
− , depending on whether we are in the rational or

trigonometric setting, but without applying the expansion ιλ so that we obtain an element
of Rλ(g) rather than ιλ Rλ(g). In particular, the rational function L(λ) depends only on
finitely many dynamical variables in φ(λ) ∈ Aλ(g).
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3.1.2. Generating Lax equation As our aim is to work with hierarchies of equations of
motion, to each point a ∈ CP1 we attach an infinite family of time coordinates ta

n for
n ∈ Z. Related to each time is the usual partial derivative ∂ta

n
(meant as a total derivative

when acting on functions of the fields). For our purposes, let us define the following
generating operators

Dλa :=
∑

n∈Z
λn

a∂ta
n
, a ∈ C, Dλ∞:=

∑

n∈Z
λn+k+1∞ ∂t∞n (3.6)

with k = 0 in the rational case and k = −1 in the trigonometric case. We let Dλ:=
(Dλa )a∈CP1 denote the CP1-tuple of these differential operators. Then, if μ is another
formal variable we will use the notation

Dλ Q(μ) =
(
Dλa Qb(μb)

)

a,b∈CP1
(3.7)

which encodes the flows ∂ta
m

Qb
n of all the dynamical variables Qb

n with respect to all the
times ta

m for each pair of points a, b ∈ CP1.
Following the first observation in Sect. 1.2 of the introduction, we want to declare

the evolution of Q(λ) ∈ Aλ(g) with respect to the above infinite family of times ta
n to

be governed by the following general Lax equation in r -matrix and generating form

Dμ Q1(λ) = [Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
, Q1(λ)

]
. (3.8)

However, a few comments and precautions are necessary. First, writing such an equation
with the understanding that Dμ is the CP1-tuple of commuting differential operators
defined in (3.6) assumes that the vector fields on the right-hand side commute, if we
want to be able to interpret the times ta

n as coordinates on a manifold. In other words,
defining the generating vector Xμ acting on Aλ(g) by

Xμ Q1(λ) = [Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
, Q1(λ)

]
, (3.9)

we must first prove that [Xμ,Xν] = 0. Only then can we set Xμ = Dμ and view the
generating Lax equation (3.8) as describing compatible time flows on Aλ(g). This is
shown below in Proposition 3.4 and is a beautiful consequence of the CYBE for r .

Second, note that the right-hand side of (3.8) lives in
∐

a,b∈CP1 g⊗λ−Na μ−NbC�λ,μ�.
Indeed, at b ∈ CP1 the power of μb is bounded below by −Nb since ιλa ιμbr12(λ, μ) is

a Taylor series in μb while Qb
2(μb) is a Laurent series with leading term of order μ

−Nb
b

by definition (3.4). By the following lemma we then also deduce that at a ∈ CP1 the
power of λa on the right hand side of (3.8) is bounded below by −Na . For the left hand
side, this means that the flow with respect to the times tb

m , with m < −Nb are trivial:
Q(λ) does not depend on those times and for all practical purposes related to a hierarchy
of field theories, they can be ignored.

Lemma 3.2. We have
[

Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
, Q1(λ)

] = [Tr2
(
ιμιλr12(λ, μ)Q2(μ)

)
, Q1(λ)

]
.

Proof. Using the identity (2.11) (or (2.27) in the trigonometric case) we deduce that for
any a, b ∈ CP1 we have
[

Tr2
(
(ιλa ιμb − ιμb ιλa )r12(λ, μ)Qb

2(μb)
)
, Qa

1(λa)
] ∝ δ(λa, μa)[Qa(λa), Qa(μa)].

Since [Qa(λa), Qa(μa)] vanishes when λa = μa it is proportional to λa − μa and so it
follows that the right hand side above vanishes, as required. �
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Remark 3.3. The Lax equation (3.8) is to be compared with the Lax equation in the usual
finite-dimensional setting for the evolution of the Lax matrix with respect to the times
associated with the coefficients in the partial fraction decomposition of the quadratic
Hamiltonian

H(μ) = 1
2 Tr

(
L(μ)2) =

∑

a∈S

na−1∑

n=0

Ha
n

(μ − a)n+1 .

If we gather together the flows ∂ta
n

= {Ha
n , ·} associated with the Hamiltonians Ha

n by
defining the differential operator valued rational function

Dμ =
∑

a∈S

na−1∑

n=0

∂ta
n

(μ − a)n+1 ,

which is to be compared with the adèlic object (3.6) in the present infinite-dimensional
setting, then the Lax equations in the finite-dimensional setting take the form

DμL1(λ) = [Tr2
(
r12(λ, μ)L2(μ)

)
, L1(λ)

]
. (3.10)

Both sides of this equation are g-valued rational functions in both λ and μ with poles in
λ and μ at each a ∈ S of order at most Na .

Proposition 3.4. The flows (3.8) are compatible as a consequence of the commutativity
of the corresponding vector fields, i.e. for any three formal variables λ, μ and ν we have

XνXμ Q(λ) = XμXν Q(λ). (3.11)

Proof. We have

XνXμ Q1(λ) = [Tr2
(
ιλιμr12(λ, μ)Xν Q2(μ)

)
, Q1(λ)

]

+
[

Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
,Xν Q1(λ)

]

= Tr23

[
ιλιμr12(λ, μ)

[
ιμινr23(μ, ν)Q3(ν), Q2(μ)

]
, Q1(λ)

]

+ Tr23

[
ιλιμr12(λ, μ)Q2(μ),

[
ιλινr13(λ, ν)Q3(ν), Q1(λ)

]]
. (3.12)

By using the cyclicity of the trace over space 2 in the first term on the right hand side
and the Jacobi identity on the last term, this can be rewritten as

XνXμ Q1(λ) = Tr23

[
ιλιμιν

[
r12(λ, μ), r23(μ, ν)

]
Q2(μ)Q3(ν), Q1(λ)

]

+ Tr23

[
ιλιμιν

[
r12(λ, μ), r13(λ, ν)

]
Q2(μ)Q3(ν), Q1(λ)

]

+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιμr12(λ, μ)Q2(μ), Q1(λ)

]]
.

Likewise, exchanging μ ↔ ν in (3.12) we obtain

XμXν Q1(λ) = Tr23

[
ιλινr13(λ, ν)

[
ινιμr32(ν, μ)Q2(μ), Q3(ν)

]
, Q1(λ)

]

+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιμr12(λ, μ)Q2(μ), Q1(λ)

]]

= Tr23

[
ιλιμιν

[
r13(λ, ν), r32(ν, μ)

]
Q2(μ)Q3(ν), Q1(λ)

]

+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιμr12(λ, μ)Q2(μ), Q1(λ)

]]
,
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where in the second equality we used Lemma 3.2 to swap the order of ιν and ιμ in the
first term, along with the cyclicity of the trace over space 3. Thus

[
Xν,Xμ

]
Q1(λ) equals

Tr23

[
ιλιμιν

(
[r12(λ, μ), r13(λ, ν)] + [r12(λ, μ), r23(μ, ν)]

− [r13(λ, ν), r32(ν, μ)]
)
Q2(μ)Q3(ν), Q1(λ)

]

which vanishes as a consequence of the CYBE (1.1). �
3.1.3. Generating zero curvature equation In the context of integrable field theories the
role of the Lax equation, cf. (3.10), is replaced by the zero curvature equation for a Lax
connection. Therefore, as a first step towards relating the present formalism to integrable
field theories, we now associate with each time ta

n , for any a ∈ S and n ≥ −Na , a rational
Lax matrix V a

n (λ) ∈ Rλ(g) such that any pair of these satisfies a zero curvature equation.
The equations of motion (3.8) can be written succinctly as

Dμ Q(λ) = [ιλV (λ;μ), Q(λ)] (3.13)

where we have introduced

V (λ;μ) := Tr2
(
ιμr12(λ, μ)Q2(μ)

)
. (3.14)

Note that in (3.14) we do not expand the right hand side in powers of λa for a ∈ CP1,
i.e. we do not apply the homomorphism ιλ. Instead, this expansion is taken explicitly in
(3.13). In particular, the semi-colon in the notation V (λ;μ) is used to emphasise that
λ is just a formal variable whereas μ is the usual boldface notation used as a shorthand
for a collection

(
V b(λ;μb)

)
b∈CP1 where

V b(λ;μb) =
∞∑

n=−Nb

V b
n (λ)μn

b , b ∈ C , (3.15a)

V ∞(λ;μ∞) =
∞∑

n=−N∞
V ∞

n (λ)μn+k+1∞ . (3.15b)

As usual, we take k = 0 in the rational case and k = −1 in the trigonometric case. Here
V b

n (λ) ∈ Rλ(g) are g-valued rational functions in λ with a pole at λ = b. Unpacking
the notation in (3.13) slightly, recalling the definition of the operators Dμ and (3.6), we
see that the flow of Q(λ) with respect to the time ta

n is controlled by V a
n (λ), namely we

have the Lax equation

∂ta
n
Q(λ) = [ιλV a

n (λ), Q(λ)]. (3.16)

Moreover, by the following proposition V b(λ;μb) can be seen as a generating series in
μb of a hierarchy of Lax matrices V b

n (λ) associated with the times tb
n .

Proposition 3.5. We have the zero curvature equation in generating form

DνV (λ;μ) − DμV (λ; ν) +
[
V (λ;μ), V (λ; ν)

] = 0. (3.17)

Equivalently, in components we have the zero curvature equation

∂tb
n

V a
m(λ) − ∂ta

m
V b

n (λ) +
[
V a

m(λ), V b
n (λ)

] = 0

for every a, b ∈ CP1 and m ≥ −Na and n ≥ −Nb.



   12 Page 26 of 67 V. Caudrelier, M. Stoppato, B. Vicedo

Proof. Using the Lax equation (3.8) we find

DνV (λ;μ) = Tr2
(
ιμr12(λ, μ)Dν Q2(μ)

)

= Tr23
(
ιμr12(λ, μ)

[
ιμινr23(μ, ν)Q3(ν), Q2(μ)

])

= Tr23
(
ιμιν

[
r12(λ, μ), r23(μ, ν)

]
Q2(μ)Q3(ν)

)
,

where in the last equality we used the cyclicity of the trace in space 2. Likewise, we also
have

DμV (λ; ν) = Tr3
(
ινr13(λ, ν)Dμ Q3(ν)

)

= Tr23
(
ινr13(λ, ν)

[
ινιμr32(ν, μ)Q2(μ), Q3(ν)

])

= Tr23
(
ιμιν

[
r13(λ, ν), r32(ν, μ)

]
Q2(μ)Q3(ν)

)

where in the final step we used Lemma 3.2 to swap the order of ιν and ιμ, before using
the cyclicity of the trace in space 3. Finally, we have

[
V (λ;μ), V (λ; ν)

] = Tr23
[
ιμr12(λ, μ)Q2(μ), ιλινr13(λ, ν)Q3(ν)

]

= Tr23
(
ιμιν

[
r12(λ, μ), r13(λ, ν)

]
Q2(μ)Q3(ν)

)
.

The result now follows by the classical Yang–Baxter equation (1.1). �
Remark 3.6. Note the clear resemblance between the generating series (3.14) for the
hierarchy of Lax matrices V a

n (λ) and the usual generating rational function

M(λ;μ) = Tr2
(
r12(λ, μ)L2(μ)

)

in the finite-dimensional case. The coefficients in the partial fraction decomposition
of the latter with respect to μ are g-valued rational matrices Ma

n (λ) which control the
flow of the Lax matrix L(λ) with respect to the associated time ta

n via the Lax equation
∂ta

n
L(λ) = [Ma

n (λ), L(λ)], which is to be compared with (3.16).
In the finite-dimensional case, however, one may also need to consider the more

general generating rational function

M (n)(λ;μ) = Tr2
(
r12(λ, μ)L2(μ)n−1)

for integers n ≥ 2. Indeed, the Lax equation in (3.10) involves M(λ;μ) = M (2)(λ;μ)

which is only associated with the quadratic Hamiltonians H(μ) = 1
2 Tr(L(μ)2). But

in the finite-dimensional setting one should equally consider the Lax equations where
M (n)(λ;μ) replaces M (2)(λ;μ) since these describe the flows of the Lax matrix L(λ)

with respect to the higher order Hamiltonians built from 1
n Tr(L(μ)n).

In the present infinite-dimensional context, we observe that the generating series
(3.14) is sufficient to produce the infinite number of Lax matrices V a

n (λ) associated with
the infinite number of times ta

n in the hierarchy that one expects from the traditional
examples of the AKNS or the sine-Gordon hierarchies (see below). It is not clear to us
what an appropriate analog of taking higher powers of L(λ) is in terms of Q(λ) and
whether the resulting Lax matrices and commuting flows would be independent of those
obtained already.
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Remark 3.7. It is instructive to compare the generating series (3.14) for the hierarchy
of Lax matrices V a

n (λ) with formulas for similar generating series of Lax matrices
obtained in the more traditional approach to integrable field theories which involves the
monodromy matrix associated to a given auxiliary equation ∂x� = U�. For example,
in [FT, pp. 203–204], it is shown that the object

V (x, λ, μ) = 1

2(λ − μ)
(1 + W (x, μ))(−iσ3)(1 + W (x, μ))−1 (3.18)

“is the generating series of the Lax matrices Vn(x, λ) appearing in the zero curvature
equation representation of the higher NS equations”. The expansion is to be understood
as

V (x, λ, μ) =
∞∑

n=1

Vn(x, λ)μ−n . (3.19)

The point is that (3.18) can be rewritten as

V (x, λ, μ) = −1

2
Tr2

(
ιμ∞r12(λ,μ)(1 + W (x, μ))2(−iσ3)2(1 + W (x, μ))−1

2

)
.

(3.20)

We note the explicit dependence of the preferred variable x , indicative of the fact that
this object has been built from a particular, preferred time x associated to the Lax
matrix denoted U (x, λ), which is nothing but V1(x, λ), as it should be. Other than this
dependence, formula (3.18) has exactly the same structure as our formula (3.14) when
specialised to the AKNS hierarchy, see Sect. 4. Indeed, in that case the only pole to
consider is at infinity and the function F(λ) is taken to be −iσ3. Hence the only non
zero element in the tuple (3.14) is

V ∞(λ;μ∞) = Tr2
(
ιμ∞r12(λ, μ)φ∞

2 (μ∞)(−iσ3)2φ
∞
2 (μ∞)−1). (3.21)

To complete the comparison, note that the term (1 + W (x, μ)) in (3.20) comes from
writing the monodromy matrix T (x, y, λ) on the finite interval [y, x], associated to
U (x, λ), as

T (x, y, μ) = (1 + W (x, μ))eZ(x,y,μ)(1 + W (y, μ))−1 (3.22)

where Z is a diagonal matrix and both Z and W are Taylor series in 1/μ (with no constant
term for W ). We refer the curious reader to [FT] for more details about Z and W which
are not of importance for our discussion here. Considering for instance the case of fast
decaying fields as |x | → ∞, we can work with the monodromy matrix on (−∞, x)

T −(x, μ) = (1 + W (x, μ))eZ−(x,μ). (3.23)

This is the object that plays the role of our group element φ∞(μ∞). Indeed, formally
plugging T −(x, μ) into (3.21) in place of φ∞(μ∞), and remembering that eZ−(x,μ)

commutes with σ3, we see that we get (3.20) (up to an irrelevant factor −1/2 which
comes from a different choice of normalisation between us and [FT]).

In [ACDK,AC], the argument from [FT] was generalised to obtain the analog of
formula (3.20) but where one now builds it from the monodromy matrix associated to
the time tk and Lax matrix Vk(tk, λ), for an arbitrary but fixed k ≥ 1. This represented
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the first step towards providing a generating function of Lax matrices that treats all times
in the AKNS hierarchy equally. Our formula (3.14) achieves this fully in that it makes
no reference to a preferred time and an associated monodromy matrix as a starting point.
It is also valid well beyond the realm of AKNS only, as our various examples below
demonstrate.

It will be useful, in view of applying our general framework to construct explicit
examples in the next few sections, to be more explicit about the form of the Lax matrices
V a

n (λ). This can be done using Lemma 2.4 in the rational case or Lemma 2.9 in the
trigonometric case.

Proposition 3.8. In the rational case, for every a ∈ C and n ≥ −Na, we have

V a
n (λ) = −(λ−n−1

a Qa(λa)
)rat
− ,

while at infinity, for any n ≥ −N∞ we have

V ∞
n (λ) = (λ−n∞ Q∞(λ∞)

)rat
− .

In the trigonometric case, for every a ∈ C and n ≥ −Na we have

V a
n (λ) = −((λ−n

a + aλ−n−1
a )Qa(λa)

)trig
− ,

which at the origin simply reads V 0
n (λ) = −(λ−n Q0(λ)

)trig
− , while at infinity we have,

for every n ≥ −N∞,

V ∞
n (λ) = (λn Q∞(λ−1)

)trig
− .

Proof. In the rational (resp. trigonometric) case this is a direct consequence of the
definition (3.15) together with Lemma 2.4 (resp. Lemma 2.9). �

Recall that Qa(λa) = 0 if a ∈ CP1\S so that, in fact, V a
n (λ) = 0 unless a ∈ S. By

construction each Lax matrix V a
n (λ) ∈ Rλ(g) for any a ∈ S and n ≥ −Na , or rather

their embedding in Aλ(g) via (2.3), is a coadjoint orbit in ιλ Rλ(g). For instance, in the
rational case for a ∈ C ∩ S we have

V a
n (λ) = −

(
φa(λa)λ−n−1

a Fa(λa)−φa(λa)−1
)rat

− ∈ g ⊗ C[λ−1
a ] ⊂ Rλ(g).

3.1.4. Connection to integrable field theory and FNR procedure Up to this point, the
framework we have been discussing is very similar to the one used to describe finite-
dimensional integrable systems, as emphasised in Remarks 3.1, 3.3 and 3.6. However,
as we will see explicitly in all the examples discussed in later sections, our formalism
encodes entire hierarchies of integrable field theories!
The FNR procedure

One way to make explicit contact with the traditional approach to integrable field
theory is to choose a preferred coordinate, denote it by x and set it as a particular
combination of the fundamental times ta

n for a ∈ S and n ≥ −Na . Quite generally, we can

choose some finite subsets Ta ⊂ Z≥−Na for each a ∈ S and define ∂x :=
∑

a∈S

∑

n∈Ta

ra
n ∂ta

n

for some ra
n ∈ C

∗. The Lax matrix associated with the coordinate x is then given by

U (λ):=
∑

a∈S

∑

n∈Ta

ra
n V a

n (λ) ∈ Rλ(g). (3.24)
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As explained above, ιλU (λ) is then a coadjoint orbit in the dual space ιλ Rλ(g) of A+
λ(g).

This is the coadjoint orbit alluded to at the very start of this section which encodes the
finite collection of fields of our integrable hierarchy. It follows from (3.13), or even
more directly from (3.16), that the spatial dependence of Q(λ) is governed by the Lax
equation

∂x Q(λ) = [ιλU (λ), Q(λ)]. (3.25)

As we will see on examples, the equation (3.25) can be solved recursively to express the
coefficients Qa

n of Qa(λa), cf. (3.4), as differential polynomials in the fields, i.e. the vari-
ables contained in the Lax matrix U (λ). All other Lax matrices V a

n (λ) associated to the
fundamental times ta

n will then have components expressed as differential polynomials
of the fields.

We will outline below how (3.25) can, in principle, be solved recursively for each Qa
n .

Since certain details of the recursive procedure depend on the model considered, we will
only illustrate here the part of the construction which applies universally to all models
in Lemma 3.9 below. We will see later on examples how to apply this construction to
specific models.

To state the lemma, we first need to make a few observations and definitions. Since
the Laurent expansions ιλa V a

n (λ) each have a non-zero principal part, it follows from
the definition (3.24) that we can write

ιλa U (λ) =
∞∑

p=−na

U a
pλ

p
a (3.26)

for some na ≥ 1 and non-zero leading coefficient U a−na
∈ g. By definition (3.3) we have

that Qa(λa) = φa(λa)Fa(λa)−φa(λa)−1. It thus follows from the relationship between
each ιλa V a

n (λ) and Qa(λa), as described explicitly in Proposition 3.8, that the coefficients
of the most singular terms in the formal Laurent series Qa(λa) and ιλa U (λ), given in
(3.4) and (3.26) respectively, are proportional. In other words, we have Qa

−Na
= c U a−na

for some c ∈ C
∗. Explicitly, it can be seen from Proposition 3.8 that c is given up to a

sign by the coefficient ra
n in (3.24) with n = max Ta . We can thus write

λNa
a Qa(λa) = c U a−na

+
∞∑

r=1

Qa
−Na+rλ

r
a . (3.27)

Now let k:= ker(ad U a−na
) and i:= im(ad U a−na

). We fix any complements k′ of k and i′
of i in g so that we have the direct sum decompositions

g = k ⊕ k′ = i ⊕ i′. (3.28)

Let πk : g → k and πk′ : g → k′ denote the projections onto k and k′ relative to the first
decomposition. Likewise, let πi : g → i and πi′ : g → i′ denote the projections onto i
and i′ relative to the second decomposition in (3.28).

Lemma 3.9. For any r ≥ 1, πk′(Qa
−Na+r ) is expressible as a differential polynomial in

x of the elements Qa
−Na+s for s < r .
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Proof. Using the explicit forms (3.4) and (3.26) for the Laurent series of Qa(λa) and
ιλa U (λ), we may rewrite the component of (3.25) at a ∈ S more explicitly as

∞∑

n=−Na

λn
a∂x Qa

n =
∞∑

m=−Na

∞∑

p=−na

λ
m+p
a [U a

p , Qa
m] =

∞∑

n=−Na−na

λn
a

∞∑

p=−na

[U a
p , Qa

n−p].

In the second equality we have changed variables in the double sum from m ≥ −Na to
n:=m + p ≥ −Na − na . Comparing the coefficients of λ

−Na−na+r
a on both sides of the

above equation for all r ≥ 0 we find the following. For every 0 ≤ r ≤ na − 1,

[U a−na
, Qa

−Na+r ] = −
r∑

q=1

[U a−na+q , Qa
−Na+r−q ] (3.29a)

where we changed variables in the sum from p to q:=p + na . Notice that for r = 0 this
gives [U a−na

, Qa
−Na

] = 0 which is consistent with the observation in (3.27) that Qa
−Na

is proportional to U a−na
. On the other hand, for r ≥ na we have

[U a−na
, Qa

−Na+r ] = ∂x Qa
−Na−na+r −

r∑

q=1

[U a−na+q , Qa
−Na+r−q ]. (3.29b)

Denoting the right hand side of the equations (3.29) by Br , for each r ≥ 0 we can rewrite
all of them more uniformly as

[U a−na
, Qa

−Na+r ] = Br (3.30)

for r ≥ 0. Since the left hand side of (3.30) lies in i we have, for every r ≥ 0,
[
U a−na

, πk′(Qa
−Na+r )

] = πi(Br ), 0 = πi′(Br ), (3.31)

where in the first equation we have also decomposed Qa
−Na+r relative to the first decom-

position in (3.28) and used the fact that πk(Qa
−Na+r ) commutes with U a−na

.
Now the linear map ad U a−na

: k′ → i is a bijection. Indeed, it is clearly surjective
by definition of i. To see that it is injective, note that if [U a−na

, X ] = [U a−na
, Y ] for any

X, Y ∈ k′ then X −Y ∈ k and hence X −Y = 0, as required. It follows that πk′(Qa
−Na+r )

is uniquely determined in terms of πi(Br ) for every r ≥ 0 by the first equation in (3.31).
The result now follows. �

In order to completely determine the coefficients Qa
−Na+r for r ≥ 0, it remains to

show that the πk(Qa
−Na+r ) for every r ≥ 0 can also be determined recursively. This

is the part which will typically depend on the model considered. Here we will show,
generalising an argument for the ZS-AKNS n × n hierarchy given in [TU, Theoerem
2.2], see also [Sa], how this can be done under the assumption that there is a polynomial
Pa with coefficients in C[λa] such that Pa

(
λ

Na
a Fa(λa)−

) = 0 and P ′
a(c U a−na

) ∈ C[λa]
is invertible in C�λa�. Recalling (3.27), we have the identity

Pa

(
c U a−na

+
∞∑

r=1

Qa
−Na+rλ

r
a

)
= 0.
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And using the fact that each πk(Qa
−Na+r ) commutes with U a−na

, by definition of k, we
can then rewrite the above in the form

Pa(c U a−na
) + P ′

a(c U a−na
)

∞∑

r=1

πk(Qa
−Na+r )λ

r
a = R

({
Qa

−Na+r

}∞
r=1

)
(3.32)

where the right hand side is a sum of terms, each of which contains either higher powers
of
∑∞

r=1 πk(Qa
−Na+r )λ

r
a or at least one factor of

∑∞
r=1 πk′(Qa

−Na+r )λ
r
a . Since we are

assuming that P ′
a(c U a−na

) ∈ C[λa] is invertible, it follows by comparing powers of
λr

a on both sides of (3.32) that πk(Qa
−Na+r ) can be expressed as a finite sum of terms

involving only πk(Qa
−Na+s) for s < r or πk′(Qa

−Na+s) for s ≤ r .
In conjunction with Lemma 3.9, this shows that each πk(Qa

−Na+r ) and πk′(Qa
−Na+r ),

and therefore Qa
−Na+r itself, can be determined recursively for each r ≥ 0. In particular,

all the coefficients Qa
n , n ≥ −Na of the Laurent series Qa(λa) in (3.4) can be expressed

as differential polynomials in x of the coefficients of the rational function U (λ). The same
conclusion still holds even when there is no polynomial Pa with the above properties,
as will be shown on the example of the sine-Gordon hierarchy in Sect. 5.

It is important to observe that our choice of ‘spatial’ coordinate x defined by the
linear combination ∂x =∑a∈S

∑
n∈Ta

ra
n ∂ta

n
and its associated Lax matrix in (3.24) was

completely arbitrary. Indeed, one of the main advantages of working with the adjoint
orbit Q(λ) in Aλ(g) rather than the coadjoint orbit U (λ) in Rλ(g) is that it keeps all the
times on an equal footing by not singling out a particular (linear combination of) time
as ‘space’.

On the redundancy of the FNR procedure The previous discussion casts in the present
framework the original idea of [FNR] whereby one should first solve for the coordinates
in Q(λ) in terms of the finite collection of fields contained in a given Lax matrix U (λ),
now interpreted as fields depending on a preferred space variable x . The other times in
the hierarchies are viewed as (compatible) time flows imposed on this finite collection
of fields and define a preferred field theory alongside its higher symmetries.

Here we want to elaborate on a point of view originally advocated in [CS3] whereby
the above “traditional” approach is not needed at all and, in fact, represents a conceptual
obstruction to the formalism we want to put forward in this work: we treat all the times in
a hierarchy as well as all the (algebra or group) coordinates (i.e. the dependent variables
contained in Q(λ) or φ(λ) respectively) on the same footing. From this point of view,
one should consider the entirety of the Lax equations contained in the generating Lax
equation (3.8), or equivalently, the collection of zero curvature equations (3.5). The point
is that the latter implement the FNR procedure anyway but they present the advantage
of being amenable to a covariant Hamiltonian formulation, which was one of the main
results of [CS1,CS3]. This aspect is beyond the scope of the present work but remains
one motivation for it. The fact that the zero curvature equations contain the equations of
the FNR procedure was already observed and used in the particular example of the AKNS
hierarchy in [AC]. For convenience, let us sketch the argument here in the simplest case
of a single pole a ∈ C, with a collection of times ta

n , n ≥ −Na . Suppose we fix n ≥ −Na
and we want to solve

∂ta
n

Qa(λa) = [ιλa V a
n (λ), Qa(λa)], (3.33)

given Qa
−Na

, along the lines of Lemma 3.9 and the discussion after it. Without loss of
generality, shifting the power of λa by Na , we can always assume for simplicity that



   12 Page 32 of 67 V. Caudrelier, M. Stoppato, B. Vicedo

Na = 0. Then, (3.33) amounts to the collection of equations

∂ta
n

Qa
j =

n∑

p=0

[Qa
j+n−p+1, Qa

p], j ≥ 0. (3.34)

As discussed above, in certain cases (which include the AKNS hierarchy and the sG
hierarchy as we show explicitly in Sect. 5), this allows one to express all the algebra
coordinates in Q j , j ≥ n as differential polynomials with respect to ta

n in the coordinates
contained in Qk , k = 0, . . . , n. Now consider the zero curvature equations, for m ≥ n+1,

∂ta
n

V a
m(λ) − ∂ta

m
V a

n (λ) + [V a
n (λ), V a

m(λ)] = 0. (3.35)

Looking at the coefficient of 1/λ j , for j = n + 2, . . . , m + 1, we find that they contain
the equations

∂ta
n

Qa
m+1−k =

n∑

p=0

[Qa
m+n+2−k−p, Qa

p], k = n + 2, . . . , m + 1. (3.36)

If we set j = m + 1 − k, these become

∂ta
n

Qa
j =

n∑

p=0

[Qa
j+n+1−p, Qa

p], j = 0, . . . , m − n − 1. (3.37)

So the collection of zero curvature equations (3.35) for m ≥ n+1 produces exactly the set
of FNR equations (3.34). Hence, there is no point in implementing the FNR procedure a
priori to determine the “fields” and then impose the zero curvature equations to determine
their equations of motion. The latter suffices. With this in mind, we will come back to
this point in certain examples below to illustrate our position and show how abandoning
the FNR procedure allows us to eliminate the problem of alien derivatives mentioned in
the introduction.

3.2. Generating Lagrangian multiform. In this section, we introduce the main object of
this paper, the generating Lagrangian multiform (1.15)–(3.40), and we show that the Lax
equation (3.8) as it derives from� (λ,μ). Although the equations of motion (3.8) can be
written in terms of Q(λ) ∈ Aλ(g) alone, in order to write� (λ,μ) we need the group-
valued element φ(λ) ∈ A+

λ(G). This is very reminiscent of the fact that writing down
the Zakharov–Mikhailov action describing the Zakharov–Shabat equations of motion
requires introducing a group valued field [ZM1]. Recall the definition of Q(λ) ∈ Aλ(g)
in (3.3) as an adjoint orbit of the element (ιλF(λ))− ∈ Aλ(g), defined in (3.2), under
the action of φ(λ) ∈ A+

λ(G).
We consider the following generating Lagrangian multiform

� (λ,μ) := K (λ,μ) − U(λ,μ) (3.38)

where the kinetic and potential terms are given by

K(λ,μ) := Tr
(
φ(λ)−1Dμφ(λ)(ιλF(λ))−

)− Tr
(
φ(μ)−1Dλφ(μ)(ιμF(μ))−

)
,

(3.39a)

U(λ,μ) := 1
2 Tr 12

(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)Q2(μ)

)
. (3.39b)
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As mentioned at the end of Sect. 2.1, the boldface notation (1.15) is used as a shorthand
for an equality of components

L a,b(λa, μb) = K a,b(λa, μb) − U a,b(λa, μb)

for every a, b ∈ CP1, and the kinetic and potential terms (1.16) in components are given
explicitly by

K a,b(λa, μb) = Tr
(
φa(λa)−1Dμbφ

a(λa)Fa(λa)−
)

− Tr
(
φb(μb)

−1Dλa φ
b(μb)Fb(μb)−

)
, (3.40a)

U a,b(λa, μb) = 1
2 Tr12

(
(ιλa ιμb + ιμb ιλa )r12(λ, μ)Qa

1(λa)Qb
2(μb)

)
. (3.40b)

The kinetic term (3.39a) is clearly skew-symmetric under the exchange λ ↔ μ, so the
skew-symmetry of � (λ,μ) is equivalent to the skew-symmetry of the potential term
(1.16b), namely

Tr12
(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)Q2(μ)

)

= − Tr12
(
(ιλιμ + ιμιλ)r21(μ, λ)Q1(λ)Q2(μ)

)
.

This holds since r is skew-symmetric.

3.2.1. Extracting Lagrangians and Lagrangian multiforms We have been using the gen-
erating formalism efficiently so far. Here, we spend some time discussing the connection
of our generating Lagrangian multiform with Lagrangians and Lagrangian multiforms.
This will be useful to reformulate the multiform EL equations and the closure relation in
generating form, allowing to continue to take advantage of this for general computations.

From the definition of the generating Lagrangian multiform (1.15), we see that the
kinetic term K a,b(λa, μb) given by (3.40a) is a Laurent series in both λa and μb, with
powers bounded below by −Na and −Nb, respectively. In particular, for any m, n ∈ Z

the coefficient of λm
a μn

b is well defined. The same is true for the potential term (3.40b)
by the following lemma.

Lemma 3.10. For any m, n ∈ Z and any a, b ∈ CP1, the coefficient of λm
a μn

b in the po-
tential term U a,b(λa, μb) given by (3.40b) is a well defined expression which is quadratic
in the coefficients of Qa(λa) and Qb(μb).

Proof. If b �= a then (ιλa ιμb + ιμb ιλa )r12(λ, μ) is valued in (g⊗ g) ⊗C�λa, μb�. Since

by definition (3.4) we have Qa(λa) ∈ g⊗ λ
−Na
a C�λa� and Qb(μb) ∈ g⊗ μ

−Nb
b C�μb�,

it follows that U a,b(λa, μb) is a Laurent series in both λa and μb, with powers bounded
below by −Na and −Nb, respectively.

If b = a then (ιλa ιμa + ιμa ιλa )r12(λ, μ) contains a doubly infinite Laurent series
in λaμ−1

a coming from the expansion of 1/(λ − μ), possibly also multiplied by some
polynomial in λa and μa depending on the precise form of the r -matrix. Multiplying
this by the Laurent series Qa(λa) ∈ g ⊗ λ

−Na
a C�λa� and Qa(μa) ∈ g ⊗ μ

−Na
a C�μa�,

we produce terms of the form λ
r+ j+p
a μ

s− j+q
a with r, s ≥ −Na , j ∈ Z and p, q ranging

over finitely many possible values. In order to form a term proportional to λm
a μn

a we
need m = r + j + p and n = s − j + q. But then m − j − p = r ≥ −Na so that
j ≤ m + Na − p and also n + j − q = s ≥ −Na so that j ≥ −n − Na + q. In other
words, j ∈ Z must be bounded from above and below so that it ranges only over finitely
many values. Hence, there are only finitely many terms contributing to the coefficient
of λm

a μn
a and the result follows. �
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As a consequence, for any a, b ∈ CP1 and m, n ∈ Z with m ≥ −Na and n ≥ −Nb,
we may now extract the following Lagrangian coefficients associated to the times ta

n and
tb
m :

Definition 3.11 (Elementary Lagrangians).

L a,b
m,n := resλ

a resμ
b L a,b(λa, μb)λ

−m−1dλ μ−n−1dμ. (3.41)

Recall the notational convention explained after (2.2b), in particular for residues com-
puted at infinity. In short, Definition (3.41) means that L a,b

m,n is the coefficient of λm
a μn

b
in the expansion of L a,b(λa, μb), as one would want. This is what we use to compute
elementary Lagrangians in all our examples.

As explained below, when building a hierarchy, one chooses a finite set S ∈ CP1

and all but a finite number of the elementary Lagrangians L a,b
m,n vanish (those for which

a and/or b is in CP1\S). The Lagrangian multiform of the hierarchy is then given by

L S:= 1
2

∑

a,b∈S

∑

m,n

L a,b
m,n dta

m ∧ dtb
n =

∑

(m,a)<(n,b)

L a,b
m,n dta

m ∧ dtb
n . (3.42)

Note that we introduced an order on the pairs (m, a) ∈ Z× S in the last equality (recall
that L a,b

m,n = −L b,a
n,m). With S = {a1, . . . , an}, it is defined by

(m, ai ) < (n, a j ) ⇔ i < j or (i = j and m < n).

These definitions generalise the correspondence explained in the introductory section
1.1.3 between L [u] and L (λ, μ) for the AKNS hierarchy. As we will see in detail in
Sect. 4, the latter indeed corresponds to the case where S = {∞}. In practice, one
calculates the elementary Lagrangians (3.41) directly by computing the appropriate
Laurent series expansion of L a,b(λa, μb). The corresponding Lagrangian multiform is
easily obtained as in (3.42).

The essential point of the present discussion is to identify the generating form of the
two main equations of the theory of Lagrangian multiforms: the multiform EL equations
δdL S = 0 and the closure relation dL S = 0 which should hold on solutions of the
multiform EL equations. We see that the key object to translate in generating form is
therefore dL S. In view of (3.42), dL S has the form

dL S =
∑

(k,c)<(m,a)<(n,b)

(
∂tc

k
L a,b

m,n + ∂tb
n
L c,a

k,m + ∂ta
m
L b,c

n,k

)
dtc

k ∧ dta
m ∧ dtb

n .

The generating function corresponding to the coefficient ∂tc
k
L a,b

m,n + ∂tb
n
L c,a

k,m + ∂ta
m
L b,c

n,k
is

DνcL
a,b(λa, μb) + DμbL

c,a(νc, λa) + DλaL
b,c(μb, νc).

Summarizing our discussion, the set S was fixed but arbitrary, so going back to the adélic
setting, we will be working compactly with

δDνL (λ,μ) + δDμL (ν,λ) + δDλL (μ, ν)

when deriving the multiform EL equations in generating form, and with

DνL (λ,μ) + DμL (ν,λ) + DλL (μ, ν)

when studying the closure relation.
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3.2.2. Generating multiform Euler–Lagrange equations Having introduced the main
object of our framework, we proceed to derive the associated multiform EL equations
(in generating form) and show that they give the generating Lax equation (3.8).

Theorem 3.12. The generating Lax equation (3.8) is variational: the multiform EL equa-
tions deriving from the generating Lagrangian multiform� (λ,μ) take the form

Dμ Q1(λ) = [Tr2
(
ιλιμr12(λ, μ)Q2(μ)

)
, Q1(λ)

]
.

Proof. We derive the equations induced by the requirement δdL = 0 in generating form.
This means that we compute δDνL (λ,μ)+ �= 0, where � means cyclic permutations
of λ,μ, ν, and set the independent coefficients to zero. We start with the kinetic terms.

Dν K (λ,μ) = Tr
(

− φ−1(λ)Dνφ(λ)φ−1(λ)Dμφ(λ)(ιλF(λ))− + φ−1(λ)DνDμφ(λ)(ιλF(λ))−

+φ−1(μ)Dνφ(μ)φ−1(μ)Dλφ(μ)(ιμF(μ))− − φ−1(μ)DνDλφ(μ)(ιμF(μ))−
)

so that DνK (λ,μ)+ � is equal to

Tr
( [

φ−1(λ)Dμφ(λ),φ−1(λ)Dνφ(λ)
]
(ιλF(λ))−

)
+ � . (3.43)

After we apply the δ differential we get

δDν K (λ,μ)+ � = Tr
(
Dνφ(λ)φ−1(λ)Dμ Q(λ) − Dμφ(λ)φ−1(λ)Dν Q(λ)

)
δφ(λ)φ−1(λ)

+ Tr
(
φ−1(λ)Dν Q(λ)δDμφ(λ) − φ−1(λ)Dμ Q(λ)δDνφ(λ)

)
+ � .

We now turn to the the potential term

U(λ,μ) = 1
2 Tr12

(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)Q2(μ)

)
. (3.44)

We drop λ and μ in φ and Q for conciseness since they follow the spaces 1 and 2
consistently. Let us also denote (ιλιμ + ιμιλ)r12(λ, μ) by r12. We compute

DνU(λ,μ) = 1
2 Tr12

(
r12
(
Dν Q1 Q2 + Q1Dν Q2

) )
(3.45)

and after applying the δ-differential we get

δDνU(λ,μ) = 1
2 Tr12

(
r12
(
δDν Q1 Q2 + Dν Q1δQ2 + δQ1Dν Q2 + Q1δDν Q2

) )

(3.46)

and similarly for the cyclic permutations. We use the following identities

Tr12 r12δDν Q1 Q2 = Tr12(−Q2r12Dν Q1 − Q1Dνφ1φ
−1
1 Q2r12

+Dνφ1φ
−1
1 Q2r12 Q1 + φ1Dν X1φ

−1
1 Q2r12)δφ1φ

−1
1

+ Tr12[Q1, r12 Q2]δDνφ1φ
−1
1

= Tr12([Dν Q1, r12 Q2] − Dνφ1φ
−1
1 [Q1, r12 Q2])δφ1φ

−1
1

+ Tr12[Q1, r12 Q2]δDνφ1φ
−1
1 ,

Tr12 r12 Q1δDν Q2 = Tr12(−r12 Q1Dν Q2 − Q2Dνφ2φ
−1
2 r12 Q1

+Dνφ2φ
−1
2 r12 Q1 Q2 + φ2Dν X2φ

−1
2 r12 Q1)δφ2φ

−1
2

+ Tr12[Q2, r12 Q1]δDνφ2φ
−1
2

= Tr12([Dν Q2, r12 Q1] − Dνφ2φ
−1
2 [Q2, r12 Q1])δφ2φ

−1
2

+ Tr12[Q2, r12 Q1]δDνφ2φ
−1
2 ,
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and

Tr12 r12δQ1Dν Q2 = Tr12[Q1, r12Dν Q2]δφ1φ
−1
1 ,

Tr12 r12Dν Q1δQ2 = Tr12[Q2, r12Dν Q1]δφ2φ
−1
2 ,

to express δDνU(λ,μ) on the basis of δφ1, δDμφ1 and δDνφ1 (and similarly on the
space 2). Then, we collect the coefficients of δφ1, δDμφ1 and δDνφ1 which provide
the independent equations. From δDνK (λ,μ)+ � we have

Tr1(−Dμφ1φ
−1
1 Dν Q1 + Dνφ1φ

−1
1 Dμ Q1)δφ1φ

−1
1 + Tr1(−DμδDνφ1φ

−1
1

+Dν Q1δDμφ1φ
−1
1 )+ � (3.47)

and from δDνU(λ,μ)+ �, using the skew-symmetry of r , we obtain

Tr12[Q1, r12 Q2]δDνφ1φ
−1
1 − Tr13[Q1, r13 Q3]δDμφ1φ

−1
1

+ Tr12([Dν Q1, r12 Q2] − Dνφ1φ
−1
1 [Q1, r12 Q2] + [Q1, r12Dν Q2])δφ1φ

−1
1 (3.48)

+ Tr13(−[Dμ Q1, r13 Q3] + Dμφ1φ
−1
1 [Q1, r13 Q3] − [Q1, r13Dμ Q3])δφ1φ

−1
1 + � .

The coefficients of δDμφ1 and δDνφ1 in δDνL (λ,μ)+ �= 0 give

Dμ Q1 = 1
2 [Tr2 r12 Q2, Q1], Dν Q1 = 1

2 [Tr3 r13 Q3, Q1],
i.e. two equivalent copies of the same equation under the irrelevant change 2 ↔ 3 and
μ ↔ ν. Explicitly, it reads

Dμ Q1(λ) = 1
2

[
Tr2
(
(ιλιμ + ιμιλ)r12(λ, μ)Q2(μ)

)
, Q1(λ)

]
, (3.49)

which gives the desired result (3.8) upon recalling Lemma 3.2. The coefficient of δφ1 is
just a consequence of this equation and of the commutativity of the flows: [Dμ,Dν] = 0.
The coefficients of δφ2, δφ3 etc. contained in the cyclic permutations � give equivalent
equations under the corresponding cyclic permutations of the spectral parameters and
auxiliary spaces.

�

3.2.3. Generating closure relation

Theorem 3.13. The generating closure relation

Dν� (λ,μ) + Dλ� (μ, ν) + Dμ� (ν,λ) = 0. (3.50)

holds when (3.8) is satisfied. It is a consequence of the CYBE for r .

Proof. First consider the kinetic term (3.39a). We have

DνK (λ,μ) = Tr
(
φ(λ)−1DνDμφ(λ)(ιλF(λ))−

)

− Tr
(
φ(μ)−1DνDλφ(μ)(ιμF(μ))−

)

− Tr
(
φ(λ)−1Dνφ(λ)φ(λ)−1Dμφ(λ)(ιλF(λ))−

)

+ Tr
(
φ(μ)−1Dνφ(μ)φ(μ)−1Dλφ(μ)(ιμF(μ))−

)
.
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It follows by adding the cyclic permutations of this expression in the variables λ, μ and
ν that

DνK (λ,μ) + DλK (μ, ν) + DμK (ν,λ) = 0. (3.51)

Consider now the potential term (1.16b). Using Theorem 3.12 we find

DνU(λ,μ) = 1
2 Tr12

(
(ιλιμ + ιμιλ)r12(λ, μ)Dν Q1(λ)Q2(μ)

)

+ 1
2 Tr12

(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)Dν Q2(μ)

)

= 1
2 Tr123

(
(ιλιμ + ιμιλ)r12(λ, μ)

[
ιλινr13(λ, ν)Q3(ν), Q1(λ)

]
Q2(μ)

)

+ 1
2 Tr123

(
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ)

[
ιμινr23(μ, ν)Q3(ν), Q2(μ)

])
.

By using the cyclicity of the trace in space 1 and 2 in the first and second terms, respec-
tively, we may write this as

DνU(λ,μ) = − 1
2 Tr123

([
(ιλιμ + ιμιλ)r12(λ, μ)Q2(μ), Q1(λ)

]
ιλινr13(λ, ν)Q3(ν)

)

− 1
2 Tr123

([
(ιλιμ + ιμιλ)r12(λ, μ)Q1(λ), Q2(μ)

]
ιμινr23(μ, ν)Q3(ν)

)

= − Tr123
([

ιλιμr12(λ, μ)Q2(μ), Q1(λ)
]
ιλινr13(λ, ν)Q3(ν)

)

− Tr123
([

ιλιμr12(λ, μ)Q1(λ), Q2(μ)
]
ιμινr23(μ, ν)Q3(ν)

)

where in the second equality we used Lemma 3.2 in both terms. By using once again
the cyclicity of the trace in space 1 and 2 in the first and second terms, respectively, we
arrive at the expression

DνU(λ,μ) = Tr123
(
ιλιμιν

([r12(λ, μ), r13(λ, ν)]
+ [r12(λ, μ), r23(μ, ν)])Q1(λ)Q2(μ)Q3(ν)

)
. (3.52a)

Likewise, using the skew-symmetry of the r -matrix we find

DλU(μ, ν) = − 1
2 Tr123

(
(ιμιν + ινιμ)r23(μ, ν)

[
ιμιλr12(λ, μ)Q1(λ), Q2(μ)

]
Q3(ν)

)

− 1
2 Tr123

(
(ιμιν + ινιμ)r23(μ, ν)Q2(μ)

[
ινιλr13(λ, ν)Q1(λ), Q3(ν)

])
.

Then by following the same steps as above for DνU(λ,μ) we deduce that

DλU(μ, ν) = Tr123
(
ιλιμιν

([r12(λ, μ), r23(μ, ν)]
+ [r13(λ, ν), r23(μ, ν)])Q1(λ)Q2(μ)Q3(ν)

)
. (3.52b)

Similarly, we also find using the skew-symmetry of the r -matrix that

DμU(ν,λ) = Tr123
(
ιλιμιν

([r13(λ, ν), r23(μ, ν)]
+ [r12(λ, μ), r13(λ, ν)])Q1(λ)Q2(μ)Q3(ν)

)
. (3.52c)

It now follows from combining the three equations in (3.52) and using the classical
Yang–Baxter equation for the skew-symmetry r -matrix that

DνU(λ,μ) + DλU(μ, ν) + DμU(ν,λ) = 0. (3.53)

The result now follows from (3.51) and (3.53) but together. �
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The rest of the paper is devoted to examples. To specify an example, the following
ingredients need to be fixed:

(i) a skew-symmetric r -matrix as in Sect. 2 (rational or trigonometric in this work),
(i i) an effective divisor D:=∑a∈S Naa, in particular with support given by a finite

subset S ⊂ CP1 and with Na ∈ Z≥1 for each a ∈ S, (N∞ ∈ Z≥0 if ∞ ∈ S),
(i i) a Lie algebra g which for simplicity we take to be either glN or slN ,
(iv) a g-valued rational function F(λ) ∈ Rλ(g) with pole divisor (F)∞ = D, i.e. with

a pole of order Na ∈ Z≥1 at each point a ∈ S, (N∞ ∈ Z≥0 if ∞ ∈ S).

Each section contains an example of a hierarchy for which the above formalism pro-
duces Lagrangian multiforms, Lax matrices and zero curvature equations. Some sections
consist of known examples that we recover or cast in a new light, e.g. AKNS and sine-
Gordon. Other examples are new to the best of our knowledge and show the power of the
formalism, e.g. the trigonometric Zakharov–Mikhailov class of models or the examples
where we couple different integrable field theories together.

4. AKNS Hierarchy

We keep this section short as it is a matter of “closing the loop”: we reproduce the
motivating example of Sect. 1.1.3 which was dealt with in detail in [CS3]) and the starting
point of this whole project. The main objective is to illustrate how to use our machinery
on the simplest and most well known example. We choose the rational r -matrix and we
fix the required data as follows:

S = {∞}, N∞ = 0, g = sl2, F(λ) = −iσ3. (4.1)

The adjoint orbit description of Sect. 3.1 is implemented with

φ∞(λ∞) = 1 +
∞∑

n=1

φ∞
n λn∞, (4.2)

and gives

Q∞(λ∞) =
∞∑

n=0

Q∞
n λn∞, (4.3)

with Q∞
0 = −iσ3 and Q∞

1 = i[σ3, φ
∞
1 ], the familiar first two elements in the AKNS

hierarchy. Since there is only one pole in this example, let us drop the subscripts and
superscripts and simply write the fundamental objects in (4.2) and (4.3) as

φ(λ) = 1 +
∞∑

n=1

φnλ−n, Q(λ) =
∞∑

n=0

Qnλ−n . (4.4)

Similarly, we will just write tn instead of t∞n for the times of the hierarchy. The generating
Lax equation (3.8) gives us, using the definitions (3.6), (3.14) and (3.15),

∂tn Q(λ) = [Vn(λ), Q(λ)] (4.5)
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where

Vn(λ) =
n∑

r=0

Qrλ
n−r (4.6)

are the Lax matrices of the hierarchy. Eqs (4.5) are the the central equations of [FNR]
where only Hamiltonian aspects of the theory were developed. The associated zero
curvature equations read

∂tk Vn(λ) − ∂tn Vk(λ) + [Vn(λ), Vk(λ)] = 0, n, k ≥ 0, (4.7)

and produce the equations of motion of the hierarchy. The famous (unreduced) NLS
system corresponds to n = 1 and k = 2. From our generating Lagrangian (1.15), we can
of course reproduce the generating Lagrangian of [CS3] and all the Lagrangians forming
the Lagrangian multiform that gives these equations as its (multiform) EL equations.
Since S = {∞} we only have L ∞,∞(λ∞, μ∞) to consider. As above, let us simply
denote it as L (λ, μ). The coefficient Lmn of λ−m−1μ−n−1 in its expansion reads

Lmn =
m∑

i=1

Tr φ̃i∂tn φm−i+1 X0 −
n∑

i=1

Tr φ̃i∂tm φn−i+1 X0 − Umn (4.8)

where we wrote φ−1(λ) = 1 +
∞∑

n=1

φ̃nλ
−n for convenience and where Umn is given by

Umn = − Tr
m∑

j=0

Qm+n+1− j Q j . (4.9)

These are the coefficients of the AKNS Lagrangian multiform found in [CS3] (up to an
overall minus sign) to which we refer for more details. It was explained in [CS3] that

there exists a parametrization of φ(λ) in terms of very nice coordinates e(λ) =
∞∑

i=1

eiλ
−i ,

f (λ) =
∞∑

i=1

fiλ
−i as

φ(λ) = 1√
2i

(√
2i − e(λ) f (λ) e(λ)

− f (λ)
√

2i − e(λ) f (λ)

)
. (4.10)

For the reader’s convenience, let us give for instance

L12 = 1

2
( f1∂t2 e1 − e1∂t2 f1) − 1

2

2∑

j=1

( f j∂t1e2− j+1 − e j∂t1 f2− j+1) − 2ie2 f2 − e2
1 f 2

1

(4.11)

and

L13 = 1

2
( f1∂t3 e1 − e1∂t3 f1) − 1

2

3∑

j=1

( f j∂t1 e3− j+1 − e j∂t1 f3− j+1)

−2i(e2 f3 + e3 f2) − 3

2
e1 f1( f1e2 + f2e1) (4.12)
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Of course, one can check that the equations of motion for these Lagrangians give pre-
cisely the zero curvature equations (4.7) for (k, n) = (1, 2) and (k, n) = (1, 3) respec-
tively. For instance, varying L12 with respect to e j , f j , j = 1, 2, we have

∂t1e1 + 2ie2 = 0 , ∂t1 f1 − 2i f2 = 0, (4.13)

∂t2 e1 − ∂t1 e2 − 2e2
1 f1 = 0 , ∂t2 f1 − ∂t1 f2 + 2 f 2

1 e1 = 0. (4.14)

This is equivalent to (4.7) for (k, n) = (1, 2), upon recalling that

Q1 =
(

0
√

2ie1√
2i f1 0

)
, Q2 =

(
e1 f1

√
2ie2√

2i f2 −e1 f1

)
.

The top two equations can be used to eliminate e2, f2 in the bottom two equations.
With t2 = t , t1 = x , e1 = 1√

2i
q, f1 = 1√

2i
r we get

i∂t q +
1

2
∂2

x q − q2r = 0, − i∂t r +
1

2
∂2

x r − r2q = 0, (4.15)

and the reduction r = ∓r∗ yields the well-known (de)focusing NLS equation

i∂t q +
1

2
∂2

x q ± |q|2q = 0

for the complex field q. Similarly, L13 gives the complex modified KdV equation.

5. Sine-Gordon Hierarchy

For the example of the sine-Gordon equation

uxy + sin u = 0, (5.1)

we choose the trigonometric r -matrix (2.20). The required data is fixed as follows

S = {0,∞}, N0 = 1 = N∞, g = sl2, F(λ) = i

2

(
1

λ
σ+ + σ− − σ+ − λσ−

)
,

(5.2)

and we work with the basis σ3, σ+, σ−. The adjoint orbit description of Sect. 3.1 is
implemented with

φ0(λ) =
∞∑

n=0

φ0
nλn, φ0

0 = ei u
4 σ3 , (5.3)

φ∞(λ∞) =
∞∑

n=0

φ∞
n λn∞, φ∞

0 = e−i u
4 σ3 . (5.4)

The phase space coordinate u will be the sine-Gordon field as will become clear soon.
This gives, with (ιλ0 F(λ))

trig
− = i

2

( 1
λ
σ+ + σ−

)
and (ιλ∞ F(λ))

trig
− = − i

2 (λσ− + σ+),

Q0(λ0) = i

2
φ0(λ)

(
1

λ
σ+ + σ−

)
φ0(λ)−1 =

∞∑

n=−1

Q0
nλ

n, (5.5)

Q∞(λ∞) = − i

2
φ∞(λ∞)

(
1

λ∞
σ− + σ+

)
φ∞(λ∞)−1 =

∞∑

n=−1

Q∞
n λn∞, (5.6)
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with Q0−1 = i
2 e

iu
2 σ+ and Q∞−1 = − i

2 e
iu
2 σ−. We now show how to use our formalism to

recover the sine-Gordon equation (in light cone coordinates) as well as its first higher
compatible flow which is nothing but the modified KdV equation, as presented in [Su].
We take advantage of this example to illustrate how our formalism also produces the
Lagrangian multiform corresponding to these 3 times. In this context, our motivation is
to show that the so-called “alien derivatives” problem that was discussed in [V] does not
appear with our approach. The problem only arises if one insists on using the variational
equations we obtain to eliminate some of the phase space coordinates in favour of the
sine-Gordon field u and its derivatives with respect to a given time. In other words, we
show in detail how our general discussion about the FNR procedure, when applied at
the variational level, leads to this alien derivative problem. This is yet another reason in
our opinion why it is preferable to work with the natural phase space coordinates that
are provided by φ(λ).

It is convenient to parametrise (5.3)–(5.4) as

φ0(λ0) = ei u
4 σ3(1 + ψ0(λ)), ψ0(λ) =

∞∑

n=1

ψ0
n λn, (5.7)

φ∞(λ∞) = e−i u
4 σ3(1 + ψ∞(λ∞)), ψ∞(λ∞) =

∞∑

n=1

ψ∞
n λn∞, (5.8)

where we recall that det φ0 = 1 = φ∞ should hold. Using the gauge freedom of
multiplying φ0(λ0) (resp. φ∞(λ∞)) on the right by a matrix which commutes with
(ιλ0 F(λ))

trig
− (resp. (ιλ∞ F(λ))

trig
− ), we can work with

ψ0(λ) =
∞∑

n=1

ψ0
n λn, ψ0

n =
(

A0
n 0

C0
n D0

n

)
, (5.9)

ψ∞(λ∞) =
∞∑

n=1

ψ∞
n λn∞, ψ∞

n =
(

A∞
n B∞

n
0 D∞

n

)
. (5.10)

Note that one can show that there is a bijection between the group coordinates A0
n , C0

n ,
D0

n and A∞
n , C∞

n , D∞
n , and the algebra coordinates a0

n , b0
n and c0

n , which we would
introduce via Q0

n = a0
nσ3 + b0

nσ+ + c0
nσ− (and similarly at ∞). The reader familiar with

the FNR construction or only interested in zero curvature equations would tend to use the
algebra coordinates. However, since our Lagrangians are naturally expressed with group
coordinates, we use the latter both for the zero curvature equations and the Lagrangians.
It also facilitates comparison between the two ways of obtaining the equations of motion.

By our general results in Sects. 3.1.2 and 3.1.3, all the time flows commute and all the
corresponding zero curvature equations of Proposition 3.5 hold, with the Lax matrices
reading for n ≥ −1, (see Proposition 3.8)

V 0
n (λ) = −(P− + 1

2 P0)Q0
n − 1

λ
Q0

n−1 − · · · − 1

λn
Q0

0 − 1

λn+1 Q0−1, (5.11)

V ∞
n (λ) = (P+ + 1

2 P0)Q∞
n + λQ∞

n−1 + · · · + λn Q∞
0 + λn+1 Q∞−1. (5.12)

The sine-Gordon equation is recovered by taking the pair of Lax matrices (V 0
0 (λ), V ∞

0 (λ))

and the compatible higher flow attached to the pair (V ∞
0 (λ), V ∞

1 (λ)) gives the mKdV
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equation in potential form. The third possible Lax pair is (V 0
0 (λ), V ∞

1 (λ)) and will be
called the mixed equation. For convenience, let us label the corresponding times as fol-
lows t0

0 = y, t∞0 = x , t∞1 = z. Therefore, we focus on the following three zero curvature
equations

1. ∂x V 0
0 (λ) − ∂y V ∞

0 (λ) +
[
V 0

0 (λ), V ∞
0 (λ)

] = 0 (sG);
2. ∂z V ∞

0 (λ) − ∂x V ∞
1 (λ) +

[
V ∞

0 (λ), V ∞
1 (λ)

] = 0 (mKdV);
3. ∂z V 0

0 (λ) − ∂y V ∞
1 (λ) +

[
V 0

0 (λ), V ∞
1 (λ)

] = 0 (mixed).

A direct calculation gives

Q0−1 = i

2
e

iu
2 σ+, Q0

0 = i

2

(−C0
1 2A0

1ei u
2

e−i u
2 C0

1

)
, (5.13)

Q0
1 = i

2

( −C0
2 − A0

1C0
1 (2A0

2 + (A0
1)

2)ei u
2

(2D0
1 − (C0

1 )2)e−i u
2 C0

2 + A0
1C0

1

)
, (5.14)

Q∞−1 = − i

2
e

iu
2 σ−, Q∞

0 = − i

2

(
B∞

1 e−i u
2

2D∞
1 ei u

2 −B∞
1

)
, (5.15)

Q∞
1 = − i

2

(
B∞

2 + B∞
1 D∞

1 (2A∞
1 − (B∞

1 ))2e−i u
2

(2D∞
2 + (D∞

1 )2)ei u
2 −B∞

2 − B∞
1 D∞

1

)
. (5.16)

Hence,

V 0
0 (λ) = −(P− + 1

2 P0)Q0
0 − 1

λ
Q0−1 = − i

4

( −C0
1 2ei u

2 /λ

2e−i u
2 C0

1

)
, (5.17)

V ∞
0 (λ) = (P+ + 1

2 P0)Q∞
0 + λQ∞−1 = − i

4

(
B∞

1 2e−i u
2

2λei u
2 −B∞

1

)
, (5.18)

V ∞
1 (λ) = (P+ + 1

2 P0)Q∞
1 + λQ∞

0 + λ2 Q∞−1

= − i

4

(
2λB∞

1 + B∞
2 − A∞

1 B∞
1 2(λ + 2A∞

1 − B∞
1 )e−i u

2

2λ(λ − 2A∞
1 )ei u

2 −2λB∞
1 − B∞

2 + A∞
1 B∞

1

)
. (5.19)

Therefore, we obtain the following equations of motion from the zero curvature equa-
tions:

(sG)

⎧
⎪⎨

⎪⎩

C0
1 = −uy,

B∞
1 = −ux ,

∂x C0
1 + ∂y B∞

1 − 2 sin u = 0 .

(5.20)

The first two equations show that the group coordinates C0
1 , B∞

1 can be thought of as
auxiliary fields and can be eliminated from the dynamics to get (5.1), as desired.

(mKdV)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B∞
1 = −ux ,

A∞
1 = − i

2 ∂x B∞
1 + 1

4 (B∞
1 )2,

uz − ux (2A∞
1 − (B∞

1 )2) − 2i∂x (2A∞
1 − (B∞

1 )2) − (B∞
1 )3 + 3A∞

1 B∞
1 − B∞

2 = 0

uz + 2ux A∞
1 − 4i∂x A∞

1 − A∞
1 B∞

1 − B∞
2 = 0,

∂z B∞
1 + ∂x (A∞

1 B∞
1 − B∞

2 ) = 0

(5.21)
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We see that both (5.20) and (5.21) contain the same equation for B∞
1 in terms of

u, as it should be. A comment is in order. Under the first two equations, the third and
fourth equation consistently give the same expression for B∞

2 . In turn, replacing all the
auxiliary fields into the last equation yields mKdV in potential form (i.e. mKdV for
v = ux )

uxz + uxxxx +
3

2
uxx u2

x = 0. (5.22)

(mixed)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0
1 = −uy,

A∞
1 B∞

1 − B∞
2 = uz,

∂y B∞
1 = sin u,

i∂y
(
e−iu/2(2A∞

1 − (B∞
1 )2)

)
+ 1

2 C0
1

(
2A∞

1 − (B∞
1 )2

)
e−iu/2 + B∞

1 eiu/2 = 0,

2i∂y
(

A∞
1 eiu

)
+ B∞

1 e−iu/2 − A∞
1 C0

1 eiu/2 = 0,

i∂zC0
1 − i∂y(A∞

1 B∞
1 − B∞

2 ) + 2A∞
1 (eiu + e−iu) − (B∞

1 )2e−iu = 0.

(5.23)

Using the first two equations to eliminate the auxiliary fields and noting that the
fourth and fifth equations are equivalent (modulo the third equation), we obtain after
simplification the following system of equations for the three fields u, A∞

1 and B∞
1 ,

(mixed)

⎧
⎪⎨

⎪⎩

∂y B∞
1 = sin u,

∂y A∞
1 = i

2 B∞
1 e−iu,

−2iuyz + 2A∞
1 (eiu + e−iu) − (B∞

1 )2e−iu = 0.

(5.24)

Note that this system of equations in (y, z) can be perfectly studied on its own and is
integrable. However, from our point of view, it should be included together with (5.20)
and (5.21) into the sG hierarchy. This leads to interesting observations which are related
to the Lagrangian multiform description we present below. First of all, using B∞

1 = −ux
and the sine-Gordon equation, we see that the first equation in (5.24) is trivially satisfied.
Similarly, the second equation in (5.24) is a consequence of B∞

1 = −ux , the sine-Gordon
equation and the second equation in (5.21). Perhaps more interesting is the fact that
combining the first three equations in (5.21) with the second equation in (5.23) yields

uz + uxxx +
1

2
u3

x = 0, (5.25)

of which (5.22) is simply a differential consequence.
We now turn to the extraction of the coefficients of the Lagrangian multiform for the

corresponding time flows. We need L 0,∞
00 for (sG), L 0,∞

01 for (mixed) and L ∞,∞
01 for

(mKdV). We have

K 0,∞(λ0, μ∞) = Tr

[
i

2

(
1

λ
σ+ + σ−

)(
φ

(0)
0 + λφ

(0)
1 + λ2φ

(0)
2 + O(λ3)

)−1

×
(

1

μ∞
∂t∞−1

+ ∂t∞0 + μ∞∂t∞1 + O(μ2∞)

)(
φ

(0)
0 + λφ

(0)
1 + λ2φ

(0)
2 · · · + O(λ3)

)]

+ Tr

[
i

2

(
1

μ∞
σ− + σ+

)(
φ∞

0 + μ∞φ∞
1 + μ2∞φ∞

2 + O(λ3)
)−1

×
(

1

λ
∂t0−1

+ ∂t0
0

+ λ∂t0
1

+ O(λ2)

)(
φ∞

0 + μ∞φ∞
1 + μ2∞φ∞

2 · · · + O(μ3∞)
)]

.
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Hence, dropping irrelevant total derivative terms and using again t0
0 = y, t∞0 = x ,

t∞1 = z for convenience, we find

K 0,∞
00 = 1

4
C0

1 ux +
1

4
B∞

1 uy, K 0,∞
01 = 1

4
C0

1 uz − 1

4
(A∞

1 B∞
1 − B∞

2 )uy

−A∞
1 ∂y B∞

1 + B∞
1 ∂y A∞

1 .

To compute the potential terms, observe that for the trigonometric r -matrix, we have

(ιλ0 ιμ∞ + ιμ∞ ιλ0)r12(λ, μ) = −2P−
12 − P0

12 + 2P12

∞∑

n=0

λnμn∞.

Hence,

U 0,∞
00 = Tr

(
Q0

0(P+ +
1

2
P0)Q∞

0 + Q0−1 Q∞−1

)
= 1

4

(
eiu + e−iu − C0

1 B∞
1

)
,

U 0,∞
01 = Tr

(
Q0

0(P+ +
1

2
P0)Q∞

1 + Q0−1 Q∞
0

)

= 1

4

(
2A∞

1 − (B∞
1 )2

)
e−iu +

1

4
C0

1

(
A∞

1 B∞
1 − B∞

2

)− 1

2
A∞

1 eiu .

This gives us the desired Lagrangian densities for (sG) and (mixed) as

LsG ≡ L 0,∞
00 = K 0,∞

00 − U 0,∞
00 , (5.26)

and

Lmixed ≡ L 0,∞
01 = K 0,∞

01 − U 0,∞
01 . (5.27)

Similarly, we find

K ∞,∞
01 = −1

4
B∞

1 uz − 1

4

(
A∞

1 B∞
1 − B∞

2

)
ux − i

2
A∞

1 ∂x B∞
1 +

i

2
B∞

1 ∂x A∞
1

and, with

(ιλ∞ ιμ∞ + ιμ∞ ιλ∞)r12(λ, μ) = −2P−
12 − P0

12 + P12

∞∑

n=0

μn∞
λn∞

− P12

∞∑

n=0

λn+1∞
μn+1∞

,

we get

U∞,∞
01 = Tr

(
Q∞

0 (P+ +
1

2
P0)Q∞

1

)
= 1

4
B∞

1

(
A∞

1 B∞
1 − B∞

2

)
+

1

2
A∞

1

(
2A∞

1 − (B∞
1 )2

)
.

Thus, the Lagrangian density for (mKdV) is given by

LmKdV ≡ L ∞,∞
01 = K ∞,∞

01 − U∞,∞
01 . (5.28)

It remains to derive the EL equations associated to each Lagrangian. For instance, by
varying B∞

1 , C0
1 and u in LsG we find exactly the three equations in (5.20). Similarly,

it can be checked that the E-L equations for LmKdV and Lmixed reproduce (5.21) and
(5.23) respectively.
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In particular, all the equations that determine the group coordinates in terms of u and
its (relevant) derivatives are reproduced variationally. This is an interesting feature that
the FNR procedure is also obtained variationally with our construction. An important by-
product is that the so-called problem of “alien-derivatives” is eliminated systematically.
In the present context, the manifestation of this problem would be for instance that
the Lagrangian Lmixed contains terms with derivatives of u with respect to x , while this
Lagrangian is supposed to produce equations of motion with respect to the variables y and
z only. Clearly, our Lagrangians do not suffer from this problem since by construction,
they always only involve the two times they are supposed to produce equations of motion
for. The problem is an artefact of using some of the equations of motion to solve for
some of the fields in terms of u and its derivatives. In other words, it is an artefact of
implementing the FNR procedure a priori to eliminate some of the group coordinates.
If we do implement this procedure of elimination, we obtain Lagrangians which form a
Lagrangian multiform equivalent to the one given originally in [Su] and which suffers
from this problem. Eliminating the auxiliary fields in favour of u and its derivatives, we
obtain

LsG = −1

4
ux uy − 1

2
cos u

which is a well-known Lagrangian for (5.1), as well as

LmKdV = 1

4
ux uz +

1

16
u4

x − 1

4
u2

xx − i

4
∂x

(
1

6
u3

x + iux uxx

)

and

Lmixed = −1

4
uyuz − 1

2
uxx (uxy + sin u) +

1

4
u2

x cos u − i

4
∂y

(
1

6
u3

x + iux uxx

)
.

Changing x to −x , multiplying all our Lagrangian by 2 and dropping the irrelevant
total derivatives in x and y, we recover exactly the three Lagrangian coefficients, eqs
(31)-(33), in [Su]. Our Lagrangian multiform expressed with the group coordinates (and
restricted to the three times x, y, z) is thus equivalent to that in [Su] but, as noted before,
it does not suffer from the alien derivative problem.

The poles at 0 and ∞ play a symmetric role in the construction so it would be natural
to consider also the time t0

1 and the associated Lax matrix V 0
1 (λ). This naturally leads

to two additional zero curvature equations (denote t0
1 = t and the other times as above)

that can be combined with (sG)

1. ∂t V 0
0 (λ) − ∂y V 0

1 (λ) +
[
V 0

0 (λ), V 0
1 (λ)

] = 0 (mKdV2):
2. ∂t V ∞

0 (λ) − ∂x V 0
1 (λ) +

[
V ∞

0 (λ), V 0
1 (λ)

] = 0 (mixed 2):

The first one is called (mKdV2) as it is another copy of the mKdV equation but in
(y, t) instead of (x, t). It is a compatible flow with (sG) where we can think of the
roles of x and y being swapped. Then, naturally (mixed 2) is the remaining compatible
flow between the variables x and t . All the expressions for the Lax matrices, the zero
curvature equations and the corresponding Lagrangians are similar to the above ones
with the appropriate changes and we omit them. To complete the picture related to the
four times we have focussed on, it would remain to consider the zero curvature equation

∂z V 0
1 (λ) − ∂t V

∞
1 (λ) +

[
V 0

1 (λ), V ∞
1 (λ)

]
= 0.
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The set of equations of motion is not particularly enlightening. When embedded in
the hierarchy of the five zero curvature equations already discussed, this system is a
consequence of them, as it should be. Our contruction gives us the means to derive
the corresponding Lagrangian density L (0,∞)

11 if required but again we omit its lengthy
expression here.

FNR procedure for the sine-Gordon hierarchy
We have discussed the FNR procedure at the level of the EL equations above, using

some of the equations to eliminate certain auxiliary coordinates/fields. Here, we discuss it
at the level of the algebra coordinates using the Lax equation. This is more in line with the
original work [FNR] and with the explanation around Lemma 3.9 for which it provides
an illustration in the sG case. We recall that our point of view is that the procedure is
unnecessary. We show it in the sG case to make contact with a more traditional approach
but also because to our knowledge, this is the first time that the FNR construction is
obtained for a hierarchy other than AKNS. In the present sG case, it is based on the Lax
equations (5.29)–(5.30) below.

The generating Lax equation (3.8) gives the following equations, for n ≥ −1,

∂t0
n

Q0(λ) =
[
V 0

n (λ), Q0(λ)
]

=
[
−(λ−n Q0(λ)

)trig
− , Q0(λ)

]
, (5.29)

∂t∞n Q∞(λ∞) = [V ∞
n (λ), Q∞(λ∞)

] =
[(

λ−n∞ Q∞(λ∞)
)trig
− , Q∞(λ∞)

]
.

(5.30)

We could use the Lax equations (5.29)–(5.30) to derive the coefficients of Q0
n and Q∞

n
as differential polynomials in the coordinate u. Given the form of F(λ) here, we do not
fall into the area of applicability of the argument given after Lemma 3.9. Nevertheless,
it is still possible to proceed. We illustrate this with (5.30), the other case being similar.

Our choices (5.2) and (5.3) give c−1 = − i
2 eiu/2, a−1 = 0 = b−1. Then, consider

(5.30) for n = 0 with Q∞(λ) =
(

a(λ) b(λ)

c(λ) −a(λ)

)
(we drop the superscript for concise-

ness). Writing t∞0 = x for convenience and projecting onto σ3, σ+ and σ−, we obtain
⎧
⎪⎨

⎪⎩

∂x a(λ) = b0c(λ) − 1
λ

c−1b(λ),

∂x b(λ) = a0b(λ) − 2b0a(λ),

∂x c(λ) = −a0c(λ) + 2
λ

c−1a(λ).

(5.31)

Looking at the λ j coefficient, this yields the following system
⎧
⎪⎨

⎪⎩

∂x a j = b0c j − c−1b j+1,

∂x b j = a0b j − 2b0a j ,

∂x c j = −a0c j + 2c−1a j+1,

(5.32)

which we should use to determine the coefficients recursively. Suppose, we have deter-
mined ak , bk , ck for k = 1, . . . , n − 1 then the first equation gives us bn and hence the
second equation yields an . However, we cannot deduce cn from the third equation since
it would require the knowledge of an+1. It is possible to replace (5.31) by the following
equivalent system

⎧
⎪⎨

⎪⎩

∂x a(λ) = b0c(λ) − 1
λ

c−1b(λ),

∂x b(λ) = a0b(λ) − 2b0a(λ),

a2(λ) + b(λ)c(λ) = −λ
4 .

(5.33)
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To see this, note that (5.31) implies ∂x Tr Q∞(λ∞)2 = 0 so that

L
ai ,b j
−1−1 = − Tr

(

(φ
ai
0 )−1∂

t
b j
−1

φ
ai
0 Ai0 − (φ

b j
0 )−1∂t

ai−1
φ

b j
0 B j0 − φ

ai
0 Ai0(φ

ai
0 )−1 φ

b j
0 B j0(φ

b j
0 )−1

ai − b j

)

as it should by construction. Conversely, assume (5.33) holds. The third equation implies
2∂x a(λ)a(λ) + ∂x b(λ)c(λ) + b(λ)∂x c(λ) = 0. Using the first two equations to elimi-
nate ∂x a(λ) and ∂x b(λ) yields b(λ)

(
∂x c(λ) + a0c(λ) − 2

λ
c−1a(λ)

) = 0, and the claim
follows. Now the advantage of system (5.33) is that the j-th term of the third equation
gives the following relation:

j+1∑

i=0

(
ai a j−i + bi c j−i

) = −1

4
δ j,−1. (5.34)

Spelling it out, it can be seen that it can be used to determine cn from ak , bk , ck ,
k = 1, . . . , n − 1 and bn , an obtained from the first two equations as explained before.
Thus, (5.33) allow us to determine all a j , b j , c j , j ≥ 0 recursively. We find the first few
as

a0 = i

2
ux , b0 = − i

2 e−iu/2, c0 = i
2 eiu/2

(
1 + iuxx + 1

2 u2
x

)
, (5.35)

a1 = − i
2

(
ux + uxxx + 1

2 u3
x

)
, b1 = i

2 e−iu/2
(

1 − iuxx + 1
2 u2

x

)
, (5.36)

c1 = − i
2 eiu/2

(
1
2 u2

x + 3
8 u4

x + iuxx + ux uxxx − 1
2 u2

xx + iuxxxx + 3i
8 uxx u2

x

)
.

(5.37)

Now, for instance, the expression we find for a0 is consistent with the fact that a0 =
− i

2 B∞
1 from (5.15) and with the second equation in (5.20). This is what we mean

when we say that the FNR procedure is automatically implemented with our Lagrangian
approach. We reiterate that the advantage of not applying it is that the problem of alien
derivatives disappears and that dependent variables are also treated on an equal footing,
like the independent variables.

6. Hierarchies of Zakharov–Mikhailov Type

In this section, we introduce a rather large class of models and their hierarchies by using
the following data

S = {a1, . . . , aP } ⊂ C, P > 0, g = glN , (6.1)

F(λ) = −
P∑

i=1

ni∑

r=0

Air

(λ − ai )r+1 . (6.2)

Each Air ∈ glN is a non-dynamical constant matrix and we have chosen to write the
order Nai of the pole ai , i = 1, . . . , P as Nai = ni + 1 for convenience. All the poles in
S are distinct. The r -matrix can be the rational or trigonometric one at this stage.

The motivation behind such choices is that in the simplest setting (rational r -matrix
and simple poles), our construction reproduces the Zakharov–Shabat Lax pair with
simple poles whose equations of motion were cast in variational form in [ZM1]. In fact,
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our construction automatically embeds this single Lax pair, its zero curvature equation
and its Lagrangian into an integrable hierarchy. This point of view was first introduced in
[SNC] where the class of Zakharov–Mikhailov (ZM) models was cast into the formalism
of Lagrangian multiforms. Allowing for higher order poles gives us the generalisation
discussed in [Di, Chap. 20]. When we switch to the trigonometric r -matrix, we produce
for the first time the trigonometric version of the large class of ZM models and their
hierarchies. Finally, when specialising the construction via an appropriate reduction and
choice of matrices Air , we obtain as a special case the class of models studied in [ABW].
Their integrability is guaranteed by construction and they are naturally embedded in an
integrable hierachy, a new feature for these models that were originally obtained as
standalone models by a different method related to the 4d Chern–Simons construction
(see conclusions for details and references). These examples are detailed in the next
three subsections.

6.1. Rational Zakharov–Mikhailov models. We first describe in detail how to reproduce
the class of Lax pairs and Lagrangians originally discussed in the pioneering paper
[ZM1]. The generalisation to higher order poles presented in [Di] will be straightforward.
The r -matrix is fixed to be the rational one in this subsection. We split the data (6.1)–(6.2)
in the following way: P = P1 + P2, P1, P2 > 0, and

S = {a1, . . . , aP1 , b1, . . . , bP2} ⊂ C, g = glN , (6.3)

F(λ) = −
P1∑

i=1

ni∑

r=0

Air

(λ − ai )r+1 −
P2∑

j=1

m j∑

r=0

B jr

(λ − b j )r+1 . (6.4)

For notational convenience, we simply denoted A j+P1,r = B jr and n j+P1 = m j for
j = 1, . . . , P2.

6.1.1. Case of simple poles Following [ZM1], let us consider a Lax pair of the form2

U (λ) =
P1∑

i=1

Ui

λ − ai
, V (λ) =

P2∑

j=1

Vj

λ − b j
. (6.5)

A prominent example of an integrable field theory that falls into this class is the Faddeev-
Reshetikhin model [FR] which was proposed as an ultralocal variant of the principal
chiral model. The main result of [ZM1] is that the equations of motions encoded in the
zero curvature equation ∂ηU (λ)−∂ξ V (λ)+[U (λ), V (λ)] = 0 associated to the auxiliary
problem

�ξ = U�, �η = V �, (6.6)

are variational and are obtained as the EL equations of the following Lagrangian density

LZ M = Tr

⎛

⎝
P1∑

i=1

φ−1
i ∂ηφi U

(0)
i −

P2∑

j=1

ψ−1
j ∂ξψ j V (0)

j −
P1∑

i=1

P2∑

j=1

φi U
(0)
i φ−1

i ψ j V (0)
j ψ−1

j

ai − b j

⎞

⎠ .

(6.7)

2 In [ZM1], the authors include an additional term in U and V corresponding to a pole at ∞ but it can be
gauged away.
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The key insight to obtain this result is to parametrise Ui as ϕiU
(0)
i ϕ−1

i and Vj as

ψ j V (0)
j ψ−1

j . The matrices U (0)
i and V (0)

j are constant and all the dynamical variables
are contained in the fields ϕi and ψ j .

We can reproduce (6.5) by choosing ni = 0 and m j = 0 in our data (6.4). Since

(
ιλai

F(λ)
)rat

− = − Ai0

λ − ai
,
(
ιλb j

F(λ)
)rat

− = − B j0

λ − b j
,

a direct calculation using Proposition 3.8 gives

V ai−1(λ) = φ
ai
0 Ai0(φ

ai
0 )−1

λ − ai
, V

b j
−1(λ) = φ

b j
0 B j0(φ

b j
0 )−1

λ − b j
. (6.8)

Therefore, it remains to make the identifications φ
ai
0 = ϕi and Ai0 = U (0)

i , and φ
b j
0 = ψ j

and B j0 = V (0)
j and take linear combinations ∂ξ =

P1∑

i=1

∂t
ai−1

, ∂η =
P2∑

j=1

∂
t
b j
−1

of the

elementary time flows ∂t
ai−1

and ∂
t
b j
−1

. The corresponding Lax matrices are simply the

sum of the elementary Lax matrices (6.8) which gives precisely (6.5).
To understand how to recover the Lagrangian (6.7) with our method, note that the

zero curvature equation associated to the elementary times tai−1 and t
b j
−1 reads

∂t
ai−1

V
b j
−1(λ) − ∂

t
b j
−1

V ai−1(λ) +
[
V

b j
−1(λ), V ai−1(λ)

]
= 0. (6.9)

Summing these elementary zero curvature equations over i = 1 . . . , P1 and j =
1, . . . , P2 yields the desired ∂ηU (λ)−∂ξ V (λ)+[U (λ), V (λ)] = 0. Therefore, to find the

Lagrangian LZ M it suffices to sum the elementary Lagrangians L
ai ,b j
−1−1 (the coefficient

of λ−1
ai

μ−1
b j

in L ai ,b j (λai , μb j ) which yields the equations of motion in (6.9)). A direct
calculation gives

L
ai ,b j
−1−1 = − Tr

(

(φ
ai
0 )−1∂

t
b j
−1

φ
ai
0 Ai0 − (φ

b j
0 )−1∂t

ai−1
φ

b j
0 B j0 − φ

ai
0 Ai0(φ

ai
0 )−1 φ

b j
0 B j0(φ

b j
0 )−1

ai − b j

)

(6.10)

and the claim follows, i.e. , with identifications made above, we derive LZ M (up to an

irrelevant minus sign) as in (6.7) by taking the double sum
P1∑

i=1

P2∑

j=1

L
ai ,b j
−1−1.

It was shown for the first time in [SNC] that the ZM Lagrangian can be incorpo-
rated into a Lagrangian multiform where each coefficient is a copy of the original ZM
Lagrangian associated to the corresponding times. The explicit case of 3 times was con-
sidered. We now explain how to recover this multiform from our data. Instead of splitting
the data (6.1)–(6.2) into two types of poles as in (6.3)–(6.4), we split it into three types
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of poles by setting P = P1 + P2 + P3 and restrict our attention to simple poles, i.e. we
set

S = {a1, . . . , aP1 , b1, . . . , bP2 , c1, . . . , cP3} ⊂ C, P1, P2, P3 > 0, g = glN ,

(6.11)

F(λ) = −
P1∑

i=1

Ai

λ − ai
−

P2∑

j=1

B j

λ − b j
−

P3∑

k=1

Ck

λ − ck
. (6.12)

As before, we take the linear combinations ∂ξ =
P1∑

i=1

∂t
ai−1

, ∂η =
P2∑

j=1

∂
t
b j
−1

of the elementary

time flows, as well as the new combinations ∂ν =
P3∑

k=1

∂t
ck−1

. The original ZM Lagrangian

is now denoted by Lξη and is accompanied by two new copies

Lην =
P2∑

j=1

P3∑

k=1

L
b j ,ck
−1−1, Lνξ =

P3∑

k=1

P1∑

i=1

L ck ,ai−1−1. (6.13)

The Lagrangian multiform in [SNC, Section 2.4] is precisely

L = Lξη dξ ∧ dη + Lην dη ∧ dν + Lνξ dν ∧ dξ. (6.14)

The associated Lax matrices and zero curvature equations also reproduce those of [SNC].

6.1.2. Case of higher poles The generalisation of the ZM result to Lax matrices with
higher order poles of the form

U (λ) =
P1∑

i=1

Ui (λ), V (λ) =
P2∑

j=1

Vj (λ), (6.15)

where

Ui =
ni∑

r=0

Uir

(λ − ai )r+1 , Vj =
m j∑

r=0

Vjr

(λ − b j )r+1 (6.16)

was presented in [Di]. We can reproduce it by simply allowing ni and m j in the data
(6.4) to be arbitrary positive integers and by following the same steps as for simple poles.
In that case we find

V ai−1(λ) = −
ni∑

r=0

Qai−r−1

(λ − ai )r+1 ≡ Ui (λ), V
b j
−1(λ) = −

m j∑

r=0

Q
b j
−r−1

(λ − b j )r+1 ≡ Vj (λ)

(6.17)

where the coefficients are identified as

Qai−r−1=: − Uir , i = 1, . . . , P1 , r = 0, . . . , ni , (6.18)

Q
b j
−r−1=: − Vjr , j = 1, . . . , P2 , r = 0, . . . , m j , (6.19)
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and calculated from the group coordinates using the following expansions

Qai (λai ) = −φai (λai )

ni∑

r=0

Air

(λ − ai )r+1 φai (λai )
−1 =

∞∑

k=−ni −1

Qai
k (λ − ai )

k , (6.20)

Qb j (λb j ) = −φb j (λb j )

m j∑

r=0

B jr

(λ − b j )r+1 φb j (λb j )
−1 =

∞∑

k=−m j −1

Q
b j
k (λ − b j )

k .

(6.21)

As before, we simply assemble the elementary time flows into ∂ξ =
P1∑

i=1

∂t
ai−1

and ∂η =
P2∑

j=1

∂
t
b j
−1

which have the desired Lax pair (6.15). This gives the corresponding equations

of motion in zero curvature form ∂ηU (λ)−∂ξ V (λ)+[U (λ), V (λ)] = 0. The Lagrangian
producing these equations of motion is obtained by adding the elementary Lagrangians

L
ai ,b j
−1−1. We give some details to show that we recover exactly [Di, Formula 20.2.12] (in

the case of non coinciding poles which we consider here).

The kinetic part of L
ai ,b j
−1−1 reads

K
ai ,b j
−1−1 = res

λ=ai
res

μ=b j
Tr(−φai (λai )

−1Dμb j
φai (λai )

ni∑

r=0

Air

(λ − ai )r+1

+ φb j (λb j )
−1Dλai

φb j (λb j )

m j∑

r=0

B jr

(λ − b j )r+1 )

= Tr(− res
λ=ai

φai (λai )
−1∂

t
b j
−1

φai (λai )

ni∑

r=0

Air

(λ − ai )r+1

+ res
μ=b j

φb j (λb j )
−1∂t

ai−1
φb j (λb j )

m j∑

r=0

B jr

(λ − b j )r+1 )

= Tr(− res
λ=a j

g−1
i ∂

t
b j
−1

gi Ai + res
μ=b j

h−1
j ∂t

ai−1
h j B j )

where in the last equality, we introduced gi (resp. h j ) to denote the truncation of φai (λai )

(resp. φb j (λb j )) up to the order ni (resp. m j ), in order to help make the comparison with
Dickey’s formula. The equality holds since the truncation is possible under the residue.

We also denoted Ai :=
ni∑

r=0

Air

(λ − ai )r+1 and B j :=
m j∑

r=0

B jr

(λ − b j )r+1 for conciseness.
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The potential term reads, noting that ιλai
ιμb j

= ιμb j
ιλai

when ai �= b j ,

U
ai ,b j
−1−1 = Tr12

(
res
λ=ai

res
μ=b j

ιλai
ιμb j

P12

μ − λ
(Qai (λai ))1(Qb j (μb j ))2

)

= − res
λ=ai

Qai (λai )
(

Qb j (λb j )
)rat

−
= − res

λ=ai
(Qai (λai ))

rat− (Qb j (λb j ))
rat−

= − res
λ=ai

(gi Ai g
−1
i )rat− (h j B j h

−1
j )rat− .

We obtain Dickey’s Lagrangian, up to an overall sign and a relative sign due to a different
convention in the zero-curvature equation, by taking the following sums

L D = −
P1∑

i=1

P2∑

j=1

(
K

ai b j
−1−1 − U

ai b j
−1−1

)
. (6.22)

6.1.3. Interplay between hierarchies associated to simple and higher order poles Fol-
lowing Proposition 3.8, the Lax matrices read, for each n ≥ −ni − 1 and i = 1, . . . , P1,
and for each m ≥ −m j − 1 and j = 1, . . . , P2:

V ai
n (λ) = −

(
Qai (λai )

(λ − ai )n+1

)rat

−
= −

n+ni +1∑

r=0

Qai
n−r

(λ − ai )r+1 , (6.23)

V
b j
m (λ) = −

(
Qb j (λb j )

(λ − b j )m+1

)rat

−
= −

m+m j +1∑

r=0

Q
b j
m−r

(λ − b j )r+1 . (6.24)

At first glance, it is tempting to suggest that a Dickey hierarchy with certain fixed order
ni and m j simply sits higher or lower in another Dickey hierarchy with different fixed
ni and m j . The situation is much more complicated in general. To illustrate what we
mean and show that this is too naive, let us focus on the field content of a Lax matrix
around a pole a and compare the ZM case (where a is a simple pole) with the Dickey
case (where a has order n1 + 1 > 1). The corresponding Lax matrices are

V Z M,a
n (λ) = −

(
Q Z M,a(λa)

(λ − a)n+1

)rat

−
= −

n+1∑

r=0

Q Z M,a
n−r

(λ − a)r+1 , n ≥ −1, (6.25)

and

V D,a
n (λ) = −

(
Q D,a(λa)

(λ − a)n+1

)rat

−
= −

n+n1+1∑

r=0

Q D,a
n−r

(λ − a)r+1 , n ≥ −n1 − 1. (6.26)

In general, it is always the case that the Dickey hierarchy contains the ZM case as its
lowest level. Indeed,

V D,a
−n1−1(λ) =

(

(λ − a)n1φa(λa)

n1∑

r=0

AD
r

(λ − a)r+1 (φa(λa))−1

)rat

−
= φa

0 AD
n1

(φa
0 )−1

λ − a

(6.27)
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and it suffices to choose AD
n1

= AZ M
0 to see that this is equal to

V Z M,a
−1 (λ) =

(

φa(λa)
AZ M

0

λ − a
(φa(λa))−1

)rat

−
= φa

0 AZ M
0 (φa

0 )−1

λ − a
. (6.28)

However, the crucial point is that Q Z M,a(λa) and Q D,a(λa) are constructed as orbits
around different elements in general so the phase space is different in general. This
means that the previous identification only gives some of the fields of the Dickey case
which happen to be identifiable with the full phase space for ZM. The “converse” is not
true in general. The Dickey case can only be seen as a higher flow in the ZM hierarchy

if we construct it around a special element of the form
n1∑

r=0

AD
r

(λ − a)r+1 with AD
r = 0 for

r = 1, . . . , n1 and AD
n1

= AZ M
0 . In that case, we see that

V D,a
n (λ) = V Z M,a

n+n1 (λ) (6.29)

so that the two hierarchies simply correspond to shifting the starting point in the ele-
mentary times ta

j . This discussion was local in the sense that we looked at a typical pole
a. Of course, similar conclusions hold around the other poles. If one assembles them to
obtain compound times, then the situation is similar but technically more complicated.
The summary is that in general, the Dickey case is a genuine generalisation of the ZM
case unless it is constructed as an orbit around a specific element dictated by the ZM
element. Of course, this comparison extends to the corresponding Lagrangians since the
building blocks are the same as for the Lax matrices.

6.2. Trigonometric Zakharov–Mikhailov models. We can repeat the construction of the
previous subsection but with the rational r -matrix replaced by the trigonometric one. To
the best of our knowledge, this produces for the first time a new class of models which
we call trigonometric Zakharov–Mikhailov models.

For conciseness, we simply illustrate this on the simplest example of simple poles in
the data (6.4). To derive the elementary Lax matrices, we need to use the trigonometric
formula in Proposition 3.8 which brings interesting differences compared to the rational

case, already for the lowest times tai−1 and t
b j
−1. With Qai−1 = φ

ai
0 Ai0(φ

ai
0 )−1 and Q

b j
−1 =

φ
b j
0 B j0(φ

b j
0 )−1, the corresponding elementary Lax matrices read

V ai−1(λ) = −ai Qai−1

λ − ai
−
(

P− +
1

2
P0
)

Qai−1, (6.30)

V
b j
−1(λ) = −b j Q

b j
−1

λ − b j
−
(

P− +
1

2
P0
)

Q
b j
−1. (6.31)

It will be convenient to introduce the following notations, for M ∈ glN :

(
P+ +

1

2
P0
)

M = M>,

(
P− +

1

2
P0
)

M = M<. (6.32)
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In particular M = M> + M<. We derive from our general formula the following ele-
mentary Lagrangian:

L
ai ,b j
−1−1 = Tr

(
(φ

ai
0 )−1∂

t
b j
−1

φ
ai
0 Ai0 − (φ

b j
0 )−1∂t

ai−1
φ

b j
0 B j0

)
(6.33)

− b j

b j − ai
Tr
(
φ

ai
0 Ai0(φ

ai
0 )−1φ

b j
0 B j0(φ

b j
0 )−1

)
+ Tr

[
φ

ai
0 Ai0(φ

ai
0 )−1

(
φ

b j
0 B j0(φ

b j
0 )−1

)<]
.

The last term represents the main difference with the rational case, see (6.10).
We now show that the so-called anisotropic chiral model presented in Section 6 of

[FR] can be obtained as a particular case of our trigonometric ZM Lagrangians and ZS
Lax matrices. We will refer to it as anisotropic Faddeev-Reshetikhin model to avoid the
confusion with the “anisotropic chiral model” terminology used in [FR] which would
assume that we parametrise the currents differently from our coadjoint parametrization,
see (6.34).

We proceed in two steps. First, we specialise our data as follows: in (6.3), we take
P1 = P2 = 1 and write a1 = a and b1 = b; in (6.4), we simply write

F(λ) = A

λ − a
+

B

λ − b
.

We also restrict g to sl2.3 Second, we apply the automorphism discussed in “Appendix
A” to make the connection with [FR] easier. Let us denote for convenience ta−1 = ξ ,
tb−1 = η,

Qa−1 = φa
0 A(φa

0 )−1 ≡ J0, Qb−1 = φb
0 B(φb

0 )−1 ≡ J1, (6.34)

and the Lax pair (6.30),

V a−1(λ) ≡ U (λ) = − a J0

λ − a
− J<

0 , (6.35)

V b−1(λ) ≡ V (λ) = − bJ1

λ − b
− J<

1 . (6.36)

The Lagrangian (6.33) becomes

LaFR = Tr

(
(φa

0 )−1∂ηφ
a
0 A − (φb

0 )−1∂ξφ
b
0 B − b

b − a
J0 J1 + J0 J<

1

)
. (6.37)

Varying with respect to φa
0 and φb

0 , the EL equations read4

∂η J0 =
[
− bJ1

a − b
− J<

1 , J0

]
, ∂ξ J1 =

[
− a J0

b − a
− J<

0 , J1

]
. (6.38)

Projecting on the basis J0,1 = J +
0,1σ+ + J−

0,1σ− + J 3
0,1σ3, we get

⎧
⎨

⎩

∂η J +
0 = 2b

a−b J +
1 J 3

0 − a+b
a−b J 3

1 J +
0 ,

∂η J−
0 = 2a

b−a J−
1 J 3

0 + a+b
a−b J 3

1 J−
0 ,

∂η J 3
0 = b

b−a J +
1 J−

0 + a
a−b J−

1 J +
0 ,

⎧
⎨

⎩

∂ξ J +
1 = 2a

b−a J +
0 J 3

1 + a+b
a−b J 3

0 J +
1 ,

∂ξ J−
1 = 2b

a−b J−
0 J 3

1 − a+b
a−b J 3

0 J−
1 ,

∂ξ J 3
1 = a

a−b J +
0 J−

1 + b
b−a J−

0 J +
1 .

(6.39)

3 Thus, it would be more accurate to say that we derive the sl2 anisotropic FR model, as opposed to the
su(2) version of [FR]. This is not important for our considerations here.

4 The property Tr
(
J0 J<

1
) = Tr

(
J>
0 J1

)
is useful in deriving the EL equations.
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The residue at infinity of the zero curvature equation for the Lax pair (6.35)–(6.36)
yields the equation −∂η J<

0 + ∂ξ J<
1 +

[
J<

0 , J<
1

] = 0 in addition to (6.38). However,
when projecting, one can see that this is a consequence of the system (6.39).

To make the comparison with the equations for the fields S1,2,3 and T1,2,3 used in
[FR], we use the automorphism mentioned above and express the final answer using the
Pauli matrices σ1,2,3. We also implement the changes λ → e2λ, a → e2a , b → e−2a to
go from rational to hyperbolic parametrisation. We find

eλ/2σ3U (e2λ)e−λ/2σ3 = −1

2

[
w1(λ − a)

1

2

(
ea J +

0 + e−a J−
0

)
σ1

+w2(λ − a)
i

2

(
ea J +

0 − e−a J−
0

)
σ2 + w3(λ − a)J 3

0 σ3

]
,

and

eλ/2σ3 V (e2λ)e−λ/2σ3 = −1

2

[
w1(λ + a)

1

2

(
e−a J +

1 + ea J−
1

)
σ1

+w2(λ + a)
i

2

(
e−a J +

1 − ea J−
1

)
σ2 + w3(λ + a)J 3

1 σ3

]
,

where w1(λ) = w2(λ) = 1
sinh λ

, w3(λ) = coth λ. It remains to compare with the Lax
operator (6.22) in [FR] and remember that they work with x and t instead of the light-cone
coordinates ξ and η. This leads to the identifications

⎧
⎪⎨

⎪⎩

S1 = − 1
4

(
ea J +

0 + e−a J−
0

)
,

S2 = − i
4

(
ea J +

0 − e−a J−
0

)
,

S3 = − 1
2 J 3

0 ,

⎧
⎪⎨

⎪⎩

T1 = − 1
4

(
e−a J +

1 + ea J−
1

)
,

T2 = − i
4

(
e−a J +

1 − ea J−
1

)
,

T3 = − 1
2 J 3

1 .

(6.40)

Using (6.40), eqs (6.39) become

∂ηSa = 2i
∑

b,c

εabcwb(2a)Tb Sc, (6.41)

∂ξ Ta = −2i
∑

b,c

εabcwb(2a)SbTc, (6.42)

which are of the same form as (6.26)-(6.27) in [FR] when moving from the light-cone
coordinates ξ, η to the coordinates x, t .

6.3. Deformed Gross–Neveu models. Here, we show how to produce the Lax pair and
Lagrangian for the deformed Gross-Neveu model discussed in [ABW, Section 16.2] (see
also [By] and references therein for the particular case of rank M = 1) as a particular case
of our construction. The deformation is controlled by the r -matrix in the potential term
which appears naturally in our construction. In fact, more than just the single Lagrangian
and its Lax pair, we can in principle generate all the elementary Lagrangians in the whole
Lagrangian multiform and all the elementary Lax pairs for the hierarchy containing this
model as its main representative. This explains the origin of the integrability of such
a class of models observed in [ABW,By] and is seen to be a particular case of our
construction.
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The idea is to apply a reduction, in the spirit of [Mik], to a Zakharov–Mikhailov
model. The r -matrix could in principle be any skew-symmetric solution of the CYBE
as we have already mentioned. Of course, if we want to resort to our explicit formulas
for Lagrangians or Lax matrices, then it will be either the rational or trigonometric one
since we have given an explicit construction only in those cases. Nevertheless, we will
write most results without specifying the r -matrix to emphasize this observation.

Choose the data in (6.3)–(6.4) as follows

S = {a, a∗}, a /∈ R, g = glN , (6.43)

F(λ) = A

λ − a
− A†

λ − a∗ . (6.44)

In particular, we chose Na = 1 = Na∗ . As mentioned, we want to use the idea of
reduction which we implement as a reality condition on the objects of the theory. Writing

Qa(λa) =
∞∑

k=−1

Qa
k (λ − a)k (6.45)

and

Qa∗
(λa∗) =

∞∑

k=−1

Qa∗
k (λ − a∗)k (6.46)

we require Qa∗
k = − (Qa

k

)† for all k ≥ −1. Accordingly, at the group level, we require
that when writing

ϕ−1
a (λa) =

∞∑

k=0

ϕ̃a
k (λ − a)k (6.47)

and

ϕa∗(λa∗) =
∞∑

k=0

ϕa∗
k (λ − a∗)k (6.48)

we must have ϕ̃a
k =

(
ϕa∗

k

)†
for all k ≥ 0. Then, for any skew-symmetric r -matrix which

is well-defined at λ = a and μ = a∗, a direct computation gives

L a,a∗
−1−1 = Tr

((
ϕa∗

0

)†
∂ta∗

−1
ϕa

0 A +
(
ϕa

0

)†
∂ta−1

ϕa∗
0 A†

)

+ Tr12

(

r12(a, a∗)
(

ϕa
0 A
(
ϕa∗

0

)†
)

1

(
ϕa

0 A
(
ϕa∗

0

)†
)†

2

)

. (6.49)

It remains to choose A as a rank M matrix and parametrize it as A = (uv)† where u is
a constant N × M matrix and v is a constant M × N matrix (M ≤ N ). Then, setting
U = ϕa∗

0 u, V = v
(
ϕa

0

)†, ta−1 = z̄ and ta∗
−1 = z, we get

L a,a∗
−1−1 = Tr

(
V ∂z̄U + U †∂z V †

)
+ Tr12

(
r12(a, a∗)(U V )1 (U V )

†
2

)
. (6.50)



Classical Yang–Baxter Equation Page 57 of 67    12 

This is the Lagrangian given in [ABW] (without the covariant derivative), with the
relation to their notation being ra(A)1 = Tr2(r12(a, a∗)A2) so that the potential term
reads

Tr12

(
r12(a, a∗) (U V )

†
1 (U V )2

)
= Tr

(
ra(U V ) (U V )†

)
.

The interpretation of the parameter appearing in the r -matrix (a here, s in [ABW]) is
clear in our context: it corresponds to the pole structure of the constant matrix in our
data (6.4).

The corresponding Lax pair is derived from (3.14) and reads, with K = U V ,

V a−1(λ) = Tr2
(
r12(λ, a)K †

2

)
, V a∗

−1(λ) = − Tr2
(
r12(λ, a∗)K2

)
, (6.51)

and coincides with the Lax connection (16.7) in [ABW]. Hence, the zero curvature
equation yields

∂z Tr2
(

resa
λ r12(λ, a)K †

2

) =
[
Tr2
(

resa
λ r12(λ, a)K †

2

)
, Tr2

(
r12(a, a∗)K2

)]
,

∂z̄ Tr2
(

resa∗
λ r12(λ, a∗)K2

) =
[
Tr2
(
r12(λ, a)K †

2

)
, Tr2

(
resa∗

λ r12(λ, a∗)K2
)]

,

which reduces to5

∂z K † =
[

K †, Tr2
(
r12(a, a∗)K2

)]
,

∂z̄ K2 =
[
Tr2
(
r12(λ, a)K †

2

)
, K
]
.

In our opinion, it is rather beautiful that our generating Lagrangian multiform produces
this class of models which was originally obtained via a completely different method,
related to 4d Chern–Simons theory (see the conclusion for details and references). Unlike
the latter method which necessarily focuses on a single Lagrangian at a time, we can
also obtain all the Lagrangians corresponding to the higher commuting flows of the
hierarchy, if desired.

7. Coupling Integrable Hierarchies Together

To show the flexibility of the construction, we explain by way of two examples how we
can couple integrable field theories together in a simple way. The reader familiar with
integrable hierarchies will recognize the procedure of assembling elementary time flows
and the corresponding Lax matrices into linear combinations. What we gain here is the
possibility to derive the corresponding Lagrangian (multiform) systematically for the
new model as well. The procedure is an analog in the ultralocal case of the construction
presented in [DLMV1] for a class of non ultralocal field theories. Unlike the latter, the
coupling here is at the level of an entire hierarchy. We give an example in the rational class
and one in the trigonometric class of models. In the rational class, we couple together
the AKNS hierarchy with the hierarchy of the Faddeev-Reshetikhin model (the simplest
instance of a ZM model). In the trigonometric class, we couple the sine-Gordon hierarchy
as discussed in Sect. 5 with the hierarchy of the anisotropic Faddeev-Reshetikhin model
as presented in Sect. 6.2. In each case, for conciseness, we present all the details for the
lowest levels of the hierarchy but it should be clear by now that one can extract higher
levels (Lagrangians and Lax matrices) systematically if desired.

5 This is true for r -matrices whose singular part at λ = μ is of the form f (μ)
μ−λ

P12, which is the case for the
rational and trigonometric matrices we work with here.
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7.1. AKNS-FR hierarchy. To couple models in the AKNS hierarchy with models in the
simplest ZM hierarchy (with two poles), we assemble the corresponding data as

S = {a,−a,∞}, a ∈ C
×, Na = Nb = 1, N∞ = 0, g = sl2, (7.1)

and we choose

F(λ) = −iασ3 +
A

λ − a
+

B

λ + a
≡ αF AK N S(λ) + F F R(λ), (7.2)

where A, B are constant sl2 matrices. The parameter α is the coupling between the
two theories: α = 0 gives a pure FR theory while sending α to infinity produces a
pure AKNS hierarchy. The effect of multiplying F AK N S(λ) = −iσ3 by α is to yield
Q∞(λ∞) = αQ(λ) where Q(λ) is the AKNS series (4.4). Hence the Lax matrix V ∞

n (λ)

is equal to the AKNS Lax matrix Vn(λ) multiplied by α. With this in mind, we have for
instance V ∞

1 (λ) = −iαλσ3 + αQ1.
For simplicity, we illustrate the coupling by looking at the two main models in each

hierarchy( NLS in AKNS and FR in ZM), i.e. by considering the Lax pair

V a−1(λ) + V ∞
1 (λ) ≡ U (λ), V b−1(λ) + V ∞

2 (λ) ≡ V (λ), (7.3)

with associated times ξ and η respectively. This choice of Lax pair corresponds to
assembling the four flows t∞1 , t∞2 (AKNS) and ta−1, t−a

−1 (FR) such that ∂ξ = ∂ta−1
+ ∂t∞1

and ∂η = ∂t−a
−1

+ ∂t∞2 .

Denoting Qa−1 = J0 and Q−a
−1 = J1 and recalling the above comments on the effect

of multiplying by α, we have

U (λ) = J0

λ − a
− iαλσ3 + αQ1 ≡ UF R(λ) + αUN L S(λ), (7.4)

V (λ) = J1

λ − b
− iλ2ασ3 + λαQ1 + αQ2 ≡ VF R(λ) + αVN L S(λ). (7.5)

The zero curvature equation ∂ηU (λ)− ∂ξ V (λ) + [U (λ), V (λ)] = 0 yields the following
four (matrix) equations by looking at the residue at λ = a, λ = −a, λ = ∞ and at the
constant term in the 1/λ expansion respectively,

∂η J0 +
1

2a
[J0, J1] + α [J0, VN L S(a)] = 0, (7.6)

∂ξ J1 +
1

2a
[J0, J1] − α [UN L S(−a), J1] = 0, (7.7)

α∂ξ Q1 + iα2[σ3, Q2] + iα[J0, σ3] = 0, (7.8)

α∂η Q1 − α∂ξ Q2 + α2[Q1, Q2] − iaα[J0, σ3] − iα[σ3, J1] + α[J0, Q1] = 0. (7.9)
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Setting α = 0, (7.6) and (7.7) gives the FR version of the principal chiral model [ZM2,
FR] which is usually written as

∂η J0 + ∂ξ J1 +
1

a
[J0, J1] = 0, ∂η J0 − ∂ξ J1 = 0. (7.10)

In the limit α → ∞ (recall that ∂ξ scales like α∂t1 and ∂η scales like α∂t2 , with t1, t2 the
NLS times), we see that (7.8)–(7.9) yield the NLS system (4.13)–(4.14)

∂t1 Q1 + i[σ3, Q2] = 0, ∂t2 Q1 − ∂t1 Q2 + [Q1, Q2] = 0. (7.11)

The Lagrangian of this coupled model is obtained by adding the NLS Lagrangian
L ∞∞

12 (which is L12 in (4.11) properly rescaled)

L ∞∞
12 = α

2
( f1∂t∞2 e1 − e1∂t∞2 f1) − α

2

2∑

j=1

( f j∂t∞1 e2− j+1 − e j∂t∞1 f2− j+1)

−α2
(

2ie2 f2 + e2
1 f 2

1

)
, (7.12)

the FR Lagrangian L a,−a
−1−1

L a,−a
−1−1 = Tr

[
(φa

0 )−1∂t−a
−1

φa
0 A − (φ−a

0 )−1∂ta−1
φ−a

0 B − J0 J1

2a

]
, (7.13)

and the following two mixed elementary Lagrangians (discarding some irrelevant total
derivatives),

L a,∞
−12 = Tr

[
(φa

0 )−1∂t∞2 φa
0 A
]

− α

2

2∑

j=1

( f j∂ta−1
e2− j+1 − e j∂ta−1

f2− j+1)

−α Tr [J0VN L S(a)] , (7.14)

L ∞,−a
1−1 = α

2
( f1∂t−a

−1
e1 − e1∂t−a

−1
f1) − Tr

[
(φ−a

0 )−1∂t∞1 φ−a
0 B + α J1UN L S(−a)

]
.

(7.15)

Summing we get our Lagrangian for the coupled model

LNLS−FR = Tr
[
(φa

0 )−1∂ηφa
0 A − (φ−a

0 )−1∂ξ φ−a
0 B

]

+
α

2
( f1∂ηe1 − e1∂η f1) − α

2

2∑

j=1

( f j ∂ξ e2− j+1 − e j ∂ξ f2− j+1)

−α2
(

2ie2 f2 + e2
1 f 2

1

)
− Tr

[
J0 J1

2a
+ α J0VN L S(a) − α J1UN L S(−a)

]
.

(7.16)

It can be checked directly that the variations with respect to φa
0 , φ−a

0 , e2, f2 and e1, f1
gives (7.6), (7.7), (7.8) and (7.9) respectively.
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7.2. sG-aFR hierarchy. The same strategy can of course be applied in the trigonometric
case and we illustrate this by assembling the data of the sine-Gordon (sG) hierarchy as
in Sect. 5 with that of the anisotropic Faddeev-Reshetikhin (aFR) model as in Sect. 6.2,
in the following way

S = {0, a, b,∞}, a, b ∈ C
×, N0 = Na = Nb = N∞ = 1, g = sl2, (7.17)

and we choose

F(λ) = iβ

2

(
1

λ
σ+ + σ− − σ+ − λσ−

)
+

A

λ − a
+

B

λ − b
, (7.18)

where A, B are constant sl2 matrices and it is understood that b = 1/a. We keep b
instead of 1/a as it makes notations lighter but all calculations are done with b = 1/a.
The parameter β is the coupling between the two theories: β = 0 gives a pure aFR
theory while sending β to infinity produces a pure sG model.

To illustrate the procedure on the easiest case, we choose the main representative
of each hierarchy, i.e. we consider the Lax pair (recall from Sect. 6.2 that we set J0 =
Qa−1 = φa

0 A(φa
0 )−1 and J1 = Qb−1 = φb

0 B(φb
0 )−1)

U (λ) = V a−1(λ) + V 0
0 (λ) = −a J>

0 − λJ<
0

λ − a
− iβ

4

( −C0
1 2ei u

2 /λ

2e−i u
2 C0

1

)

≡ UaFR(λ) + βUsG(λ), (7.19)

V (λ) = V b−1(λ) + V ∞
0 (λ) = −bJ>

1 −λJ<
1

λ−b − iβ
4

(
B∞

1 2e−i u
2

2λei u
2 −B∞

1

)

≡ VaFR(λ) + βVsG(λ), (7.20)

with associated times ξ and η respectively. This corresponds to assembling the two sG
times t0

0 , t∞0 with the two aFR times ta−1, tb−1 such that ∂ξ = ∂ta−1
+∂t0

0
and ∂η = ∂tb−1

+∂t∞0 .

The zero curvature equation ∂ηU (λ)− ∂ξ V (λ) + [U (λ), V (λ)] = 0 yields the following
four equations by looking at the residue at λ = 0, λ = ∞, λ = a, λ = b respectively,

uη + βB∞
1 = −2i J 3

1 , (7.21)

uξ + βC0
1 = −2i J 3

0 , (7.22)

∂η J0 = [VaFR(a), J0] − β [J0, VsG(a)] , (7.23)

∂ξ J1 = [UaFR(b), J1] + β [UsG(b), J1] . (7.24)

Equations (7.21)–(7.22) should be compared with the first two equations in (5.20) and
(7.23)–(7.24) should be compared with (6.38). The last independent equation contained
in the zero curvature can be obtained for instance by setting λ = 1. It can be shown
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that only the component σ3 gives an equation that is not a consequence of those already
written. It takes the form

iβ

4

(
∂ηC0

1 + ∂ξ B∞
1

)
− iβ2

2
sin u

+
1

2

a + 1

a − 1

(
∂η J 3

0 + ∂ξ J 3
1

)
+

1

(a − 1)(b − 1)

(
a J +

0 J−
1 − bJ−

0 J +
1

)

+
iβ

2(a − 1)

(
J−

0 e−i u
2 − a J +

0 ei u
2 − J +

1 e−i u
2 + a J−

1 ei u
2

)
= 0. (7.25)

We can use (7.21)–(7.24) to cast this equation in the following more suggestive form
which shows the coupling between sG and the aFR currents

i
(
∂η J 3

0 + ∂ξ J 3
1

)
+ uηξ + β2 sin u +

β

2

(
(J−

0 − J +
1 )e−i u

2 + a(J−
1 − J +

0 )ei u
2

)
= 0.

(7.26)

We can derive the Lagrangian producing (7.21)–(7.24) and (7.26) by adding the
sine-Gordon Lagrangian (5.26) (with appropriate inclusion of β)

LsG = β

4
C0

1∂t∞0 u +
β

4
B∞

1 ∂t0
0
u − β2

4

(
eiu + e−iu − C0

1 B∞
1

)
, (7.27)

the anisotropic FR Lagrangian (6.37)

LaFR = Tr

(
(φa

0 )−1∂tb−1
φa

0 A − (φb
0 )−1∂ta−1

φb
0 B − b

b − a
J0 J1 + J0 J<

1

)
, (7.28)

and the following two mixed elementary Lagrangians

L a,∞
−10 = Tr

(
(φa

0 )−1∂t∞0 φa
0 A +

β

4
C0

1∂ta−1
u − β J0VsG(a)

)
, (7.29)

L 0,b
0−1 = Tr

(
β

4
C0

1∂tb−1
u − (φb

0 )−1∂t0
0
φb

0 B + β J1UsG(b)

)
. (7.30)

We obtain

LsG−aFR = β

4
C0

1∂ηu +
β

4
B∞

1 ∂ξ u + Tr
(
(φa

0 )−1∂ηφa
0 A − (φb

0 )−1∂ξ φb
0 B
)

(7.31)

−β2

4

(
eiu + e−iu − C0

1 B∞
1

)
− Tr

(
b

b − a
J0 J1 + J0 J<

1 + β J0VsG(a) − β J1UsG(b)

)
.

The variation with respect to C0
1 , B∞

1 , φa
0 , φb

0 , and u gives (7.21), (7.22), (7.23), (7.24),
and (7.25) respectively.
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8. Discussion and Conclusion

By introducing a certain generating Lagrangian multiform, we were able to relate two
important but so far separate aspects of integrable systems: the well established theory
of the classical r -matrix and the comparatively much newer framework of Lagrangian
multiforms. In doing so, we bring closer together the vast amount of results in the
Hamiltonian approach to integrable systems and the Lagrangian approach in the form
advocated in the seminal paper [LN]. A rich byproduct of this effort is that the generating
Lagrangian multiform and its accompanying generating Lax equation and zero curvature
equation provide a systematic framework to construct integrable hierarchies of field
theories, both in terms of Lagrangians and of Lax matrices. This was illustrated at length
over many examples, both known and new. As already emphasised in the introduction,
this versatility to accommodate a very large class of examples stems from the fact that
we work in the adèlic framework.

The most immediate open question that comes to mind relates to the restrictions
imposed on the classical r -matrix appearing in the generating Lagrangian multiform.
Certain aspects of our construction appear to remain true under only the assumption
that r is a solution of the CYBE (1.1). In particular, the restriction to the rational or
trigonometric case that we studied in detail only played a role in the explicit construction
of the projectors associated to the decomposition of the Lie algebra of g-valued adèles. It
is easy to imagine that one could use a more general skew-symmetric r -matrix provided
similar technicalities can be dealt with. Specifically, given a solution r of the CYBE,
one would like to establish results along the following lines:

- Define a pair of linear operators on the Lie algebra of g-valued adèles Aλ(g) as

π± : Aλ(g) −→ Aλ(g), X(λ) 
−→ (
(π± X)a(λa)

)
a∈CP1 (8.1)

with formulas similar to e.g. (2.21).
- Show that the linear maps π± so defined are projection operators onto complemen-

tary subspaces of Aλ(g), i.e. (π±)2 = π± and π+ + πk− = id.
- Show that the images π±Aλ(g) of the projection operators π± are both Lie sub-

algebras of Aλ(g) and are isotropic with respect to the bilinear form analogous to that
defined in (2.2).

If one could accomplish this then it would follow that one would have a direct sum
decomposition of Aλ(g) into complementary Lagrangian Lie subalgebras

Aλ(g) = π+Aλ(g) � π−Aλ(g).

The corresponding r -matrix would be defined as r :=π+ − π− ∈ End Aλ(g) and would
presumably have a kernel of the form

(
(ιμb ιλa + ιλa ιμb )r12(λ, μ)

)
a,b∈CP1 . We could then

use this kernel into our generating Lagrangian multiform and construct integrable hier-
archies by the same method as we have done. One candidate to see if such a programme
can be realised is the elliptic r -matrix [Sk,Be].

The other obvious restriction of the present work is the condition that r be skew-
symmetric. In fact, we wrote the CYBE (1.1) in its non-skew-symmetric form on purpose.
Once again, some of our results appear to hold without this assumption. This is the
case for the commutativity of the vector fields (3.9) as can be seen from the proof of
Proposition 3.4. The extension of our construction to the non-skew-symmetric case,
hence to non-ultralocal field theories, appears rather challenging as the current form of
our generating Lagrangian multiform simply does not allow for such an extension. We
are currently investigating this exciting issue which promises to have connection with the
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framework of classical affine Gaudin models, developed in [V1,DLMV2], that provides
a unifying formalism for constructing and studying a very broad class of non-ultralocal
classical integrable field theories. A first step in that direction was achieved recently
[CDS] where it was shown how to incorporate the non-skew symmetric case naturally
in the context of finite-dimensional integrable hierarchies.

It was shown in [V2] that classical affine Gaudin models are closely related to 4d
mixed topological-holomorphic Chern–Simons theory introduced and studied in [Cos1,
Cos2,CWY1,CWY2,CY], see also [DLMV3,BSV,LV]. In fact, 4d Chern–Simons the-
ory also naturally provides a framework for constructing a very broad class of ultralocal
integrable field theories (see also [Zo] for a description of ultralocal integrable field the-
ories as affine Gaudin models). In this context, it was shown in [CSV], see also [FSY],
that the rational Zakharov–Mikhailov models, one of the main classes of examples that
we reproduced here, could be obtained from 4d Chern–Simons theory with certain line
defects. However, the construction of [CSV] is, by design, able to produce only the ac-
tion of a single Zakharov–Mikhailov model, as opposed to its entire hierarchy, starting
from that of 4d Chern–Simons theory. It seems natural to wonder if such a construction,
and in fact the whole 4d Chern–Simons approach, could be adapted to our generating
Lagrangian multiform framework in order to derive entire integrable hierarchies and not
just single models from this point of view.

In the simplest case of the AKNS hierarchy, the concept of Hamiltonian multiform,
initially introduced in [CS2], was illustrated in [CS3]. The main idea is that it is possible
to apply a version of the covariant Legendre transformation to an entire Lagrangian
multiform to obtain the Hamiltonian analog of a multiform. Each coefficient of the
resulting Hamiltonian multiform can be seen as a covariant Hamiltonian for the field
theory described by the associated Lagrangian coefficient in the Lagrangian multiform.
Important accompanying objects are the symplectic multiform and the multitime Poisson
bracket which generalise to an entire hierarchy the concepts of multisymplectic form
and of covariant Poisson bracket respectively. The latter are essential ingredients of
the framework generally called covariant Hamiltonian field theory, see e.g. [Gi] and
references therein for a very useful recent review of the many facets of this rich topic. We
believe it is important to try and obtain the generating Hamiltonian multiform and related
structures corresponding to our generating Lagrangian multiform. Indeed, historically,
one of the driving motivations of the above mentioned covariant Hamiltonian approach
to field theory has been to allow for a (canonical) quantization of field theories that
removes from the start the breaking of covariance associated to the standard Hamiltonian
approach. The idea of covariant Hamiltonian field theory is to use a Poisson bracket that
does not suffer from the lack of covariance of the traditional Poisson bracket: a covariant
Poisson bracket. The results of [CS2,CS3] show that one can extend this idea to a whole
integrable hierarchy and that the classical r -matrix plays a key role in this “covariant”
context, see also [CS1,CSV]. The hope is that this could allow one to use the nice features
of integrability encoded in the passage from the classical r -matrix to the quantum R-
matrix, to fully implement the idea of covariant canonical quantization for such field
theories.

Finally, our work also opens the possibility for quantization using another route:
combining Feynman’s path integral ideas with a Lagrangian multiform, thus taking
advantage again of integrability features now encoded in a Lagrangian object entering
the path integral. This tantalising idea was first put forward and explored in [KN] but is
still very much in its infancy.
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A. Comparison of Trigonometric r-matrices for Sine-Gordon

For the reader’s convenience, we make the connection between the trigonometric r -
matrix we used in this paper and the perhaps more familiar one usually used for treating
the sine-Gordon model. The former reads

r12(λ, μ) = σ+ ⊗ σ− − σ− ⊗ σ+ +
μ + λ

μ − λ
P12, (A.1)

with

P12 = 1

2
(1 ⊗ 1 + σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3) , (A.2)

while the latter, which can be found for instance in [FT, pp. 432–433], reads

r̃12(λ, μ) = γ

2

μ2 + λ2

λ2 − μ2 (1 ⊗ 1 − σ3 ⊗ σ3) − γμλ

λ2 − μ2 (σ1 ⊗ σ1 + σ2 ⊗ σ2) ,

(A.3)

where γ is related to the coupling constant of the sine-Gordon model and is set to 1 as
it is not relevant here. We relate the two matrices by showing that they both give rise to
the same matrix in trigonometric form. Set λ = e2iα , μ = e2iβ and define

M(α) = e
iα
2 σ3 (A.4)

with property M(α)σ±M−1(α) = e±iασ±. Then we have

M(α) ⊗ M(β)r12(α, β)M−1(α) ⊗ M−1(β)

= − 1

2i sin(α − β)

[
2 (σ+ ⊗ σ− + σ− ⊗ σ+) + cos(α − β) (σ3 ⊗ σ3 + 1 ⊗ 1)

]
.

(A.5)

Now set instead λ = eiα , μ = eiβ , and recall the relation σ1 ⊗ σ1 + σ2 ⊗ σ2 =
2 (σ+ ⊗ σ− + σ− ⊗ σ+), to get

r̃12(α, β) = − 1

2i sin(α − β)

[
2 (σ+ ⊗ σ−+σ− ⊗ σ+) + cos(α−β) (σ3 ⊗ σ3−1 ⊗ 1)

]
.

(A.6)

http://creativecommons.org/licenses/by/4.0/
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The term proportional to 1 ⊗ 1 is irrelevant as it plays no role in the Sklyanin bracket or
in the CYBE.
There is a deeper reason for this connection which has to do with the fact that the twist
of a loop algebra by an inner automorphism is isomorphic to the loop algebra. In simple
terms here, the version of sine-Gordon considered in [FT] is built on the twisted loop
algebra Lθ (g) where θ is an automorphism of order 2 of g, defined by θ X = σ3 Xσ3 for
all X ∈ g, and extended to the algebra

L(g) =
⊕

n∈Z
g ⊗ λn (A.7)

by setting θ(Xλn) = (−1)nθ(X)λn for all X ∈ g. With g = n− ⊕ h⊕ n+, Lθ (g) can be
decomposed as

Lθ (g) =
(
⊕

n∈Z
n− ⊗ λ2n+1

)

⊕
(
⊕

n∈Z
h ⊗ λ2n

)

⊕
(
⊕

n∈Z
n+ ⊗ λ2n+1

)

. (A.8)

Now we apply the map

σ+λ2n+1 
→ σ+λ2n, σ−λ2n+1 
→ σ−λ2n+2, σ3λ
2n 
→ σ3λ

2n (A.9)

which amounts to the transformation X (e2iα) 
→ M(−α)X (e2iα)M−1(−α) to obtain
that Lθ (g) is isomorphic to

(
⊕

n∈Z
n− ⊗ λ2n+2

)

⊕
(
⊕

n∈Z
h ⊗ λ2n

)

⊕
(
⊕

n∈Z
n+ ⊗ λ2n

)

. (A.10)

We now apply a second map

σiλ
2n 
→ σiλ

n, i = 3,±, (A.11)

to obtain that Lθ (g) is isomorphic to
(
⊕

n∈Z
n− ⊗ λn

)

⊕
(
⊕

n∈Z
h ⊗ λn

)

⊕
(
⊕

n∈Z
n+ ⊗ λn

)

= L(g). (A.12)
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