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Abstract
While self-supervised learning has improved anomaly detection in computer vision and natural language processing, it is 
unclear whether tabular data can benefit from it. This paper explores the limitations of self-supervision for tabular anomaly 
detection. We conduct several experiments spanning various pretext tasks on 26 benchmark datasets to understand why this 
is the case. Our results confirm representations derived from self-supervision do not improve tabular anomaly detection 
performance compared to using the raw representations of the data. We show this is due to neural networks introducing 
irrelevant features, which reduces the effectiveness of anomaly detectors. However, we demonstrate that using a subspace 
of the neural network’s representation can recover performance.
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1  Introduction

Anomaly detection is the task of identifying unusual 
instances. Two issues hinder performance: how to obtain 
a “good" representation of the normal data and a lack of 
knowledge about the nature of anomalies. The emergence of 
self-supervised learning techniques has primarily addressed 
these issues in complex domains such as computer vision 
and natural language processing [1, 2]. However, these tech-
niques have not yielded the same benefits for tabular data 
[3].

Self-supervised learning typically uses a pretext task to 
learn the intrinsic structure of the training data [4]. Exam-
ples of pretext tasks include colourising greyscale images 

[5] or predicting the next word in a sentence [6, 7]. Under-
standing the typical characteristics of a domain allows one 
to choose an effective pretext task. For instance, colourisa-
tion requires knowledge of object boundaries and seman-
tics. These aspects are useful for image classification [8, 9]. 
However, unlike images or text where spatial or sequential 
biases are natural starting points for self-supervision, the 
starting points for tabular data are unclear.

A recent study indicated that self-supervised learning 
does not help tabular anomaly detection [3]. Reiss et al. 
compared two self-supervised methods with k-nearest 
neighbours (k-NN) on the original features. Even though 
the methods were designed for tabular data, they found that 
k-NN on the original features worked the best.

We seek to understand why this is the case. We extend 
the experiments to include a more comprehensive suite of 
pretext tasks. We also incorporate synthetic test cases and 
analyse the underlying learnt representations. Our results 
reinforce that self-supervision does not improve tabular 
anomaly detection performance and indicate deep neural 
networks introduce redundant features, which reduces the 
effectiveness of anomaly detectors. Conversely, we can 
recover performance using a subspace of the neural net-
work’s representation. We also show that self-supervised 
learning can outperform the original representation in the 
case of purely localised anomalies and those with different 
dependency structures.
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In addition to the above investigations, we ran a series of 
experiments to benchmark anomaly detection performance 
in a setting where we do not have access to anomalies dur-
ing training. We include our findings as a complement to the 
self-supervision results and to provide practical insight into 
scenarios where specific detectors work better than others.

Our contributions are as follows: 

1.	 We reconfirm the ineffectiveness of self-supervision for 
tabular anomaly detection.

2.	 We empirically investigate why self-supervision does 
not benefit tabular anomaly detection.

3.	 We introduce a comprehensive one-class anomaly detec-
tion benchmark using several self-supervised methods.

4.	 We provide practical insights and identify instances 
where particular anomaly detectors and pretext tasks 
may be beneficial.

In Sect. 2, we cover the anomaly detection setup. We pro-
ceed to outline our experimental approach in Sect. 3. We 
evaluate our findings in Sect. 4. Finally, we summarise our 
work and conclude in Sect. 5.

2 � Background

2.1 � Anomaly detection

Anomaly detection can be characterised as follows:
Let X ∈ ℝ

d represent the data space. We assume the nor-
mal data are drawn from a distribution P on X  . Anomalies 
are data points x ∈ X  that lie in a low probability region in 
P . Therefore, the set of anomalies can be defined as follows 
[10]:

Where � is a threshold. Often, the original input space is not 
used as anomaly detection performance can be improved 
by using a different representation space. In the context of 
deep learning, a neural network parameterised by � ∶ X ↦ Y 
(where Y ∈ ℝ

m ) is used to transform the input data. The 
anomalies are assumed to lie in a low-probability region 
in the new space. Namely, P on X  transforms to P′ on Y 
according to P�(�(x)) = |J�| , where J is the Jacobian of � . 
If � is an effective mapping, then �(A) will still be a low 
probability of P′ and �(A) will have a simpler boundary in 
Y than A in X .

There are deep anomaly detectors (which aim to simul-
taneously transform the data to a new subspace and classify 
it) and shallow anomaly detectors (which do not transform 
the data but solely rely on an existing representation). This 
paper focuses on shallow anomaly detectors to isolate the 

(1)A = {x ∈ X|p(x) ≤ �}, � ≥ 0,

differences in representations derived from different self-
supervision tasks. Evaluating the transformative proper-
ties of deep anomaly detectors is out of scope. In addition, 
recent approaches suggest state-of-the-art anomaly detection 
performance is achievable by separating the representation 
learning and detection components [3, 11–14]. In this setup, 
we also assume only normal samples are present in the train-
ing set. This is referred to as a “one-class” setting in anomaly 
detection literature. The expressions “one-class learning” 
and “anomaly detection” are synonymous [10, 15, 16]. We 
use the same terms for consistency with the literature. We 
describe the anomaly detectors used in our analyses below. 
For a more detailed overview of anomaly detection tech-
niques, we refer the reader to Ruff et al. [10].

k-NN assumes normal data closely surround other similar 
samples in the feature space, while anomalies have relatively 
fewer nearby neighbours. Despite being a simple approach, 
k-NN remains competitive in big data instances [3, 13, 14, 
17, 18]. k-NN typically uses features extracted from pre-
trained classification neural networks [13, 14, 18] for image-
based anomaly detection. However, equivalent neural net-
works for tabular data do not exist.

Local outlier factor (LOF) is a density-based outlier 
detection method [19]. It compares the local density of a 
data point against its k-nearest neighbours. If the point’s den-
sity is significantly lower, it is deemed anomalous.

Isolation forest (iForest) is an ensemble-based algo-
rithm [20]. It uses a set of isolation trees. Each tree aims to 
isolate the training data into leaves. The tree construction 
algorithm randomly selects an attribute and a random split 
inside the attribute’s range until each data point lies in a 
leaf. Each observation is assigned a score by calculating the 
length of the root node to the leaf and averaging across the 
trees. Points with shorter path lengths are considered more 
unusual, as the algorithm assumes anomalies are easier to 
isolate.

One-class support vector machine (OCSVM) assumes 
normal data lies in a high-density region [15]. Taking the 
origin as an anchor in the absence of anomalous data dur-
ing training, it learns a maximum margin hyperplane that 
separates most training data from the origin. The algorithm 
considers a test datum’s distance to the learnt hyperplane 
to classify anomalies. The method classifies a point as an 
anomaly if it lies on the side of the hyperplane closer to the 
origin.

Residual norms belong to the category of dictionary-
based approaches. Dictionary-based approaches assume the 
building blocks of a feature space can reconstruct normal 
data but cannot construct anomalies. Methods using dic-
tionaries use either linear or nonlinear manifold learning 
techniques (e.g. principal components analysis or autoen-
coders) to determine the building blocks [21–23]. We use 
the linear principal space approach from Wang et al. [23] 
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for our experiments. This technique achieves state-of-the-art 
results for out-of-distribution detection on images, verified 
in independent benchmarks [24]. Although introduced for 
images, the method itself is modality-neutral. We follow pre-
vious anomaly detection methodologies that have adapted 
image-based methods to other modalities while retaining 
acceptable performance [2, 3].

For consistency, we use Wang et al.’s [23] original nota-
tion and code implementation.1 Given X as the in-distribu-
tion data matrix of training samples, we find the principal 
subspace W from the matrix XT

X . This subspace spans 
the eigenvectors of the D largest eigenvalues of XT

X . We 
assume anomalies have more variance on the components 
with smaller explained variance [25]. Therefore, we project 
X to the subspace spanned by the smallest eigenvalues of D 
(represented by W⟂ ) to encapsulate the residual space and 
take its norm as the anomaly score:

2.2 � An overview of self‑supervised learning

Self-supervision approaches devise tasks based on the intrin-
sic properties of the training data. By exploiting these prop-
erties, neural networks hopefully learn about the regularities 
of the data. Examples across different modalities include:

Classifying perturbations: Each training datum is sub-
ject to a perturbation randomly selected from a fixed set, 
such as rotating the input data [26] or reordering patches in 
an image [27]. A classification model then learns to predict 
which perturbation was applied.

Conditional prediction. A neural network sees pieces of 
the input data and learns to complete the remaining parts. 
Examples include predicting the next word given a portion 
of a sentence [6] or filling in masked areas of an image [28, 
29].

Clustering. Under this category, models learn to group 
semantically similar instances and place them far away 
from observations representing other semantic categories. 
k-means clustering is a classic example that measures simi-
larity in Euclidean space.

More modern techniques learn a similarity metric using 
neural mappings. One popular loss function that enables this 
is InfoNCE [30, 31]. InfoNCE takes augmented views of the 
same data point as positives and learns to group them while 
pushing away other data points. Variants of this method sam-
ple from the positive’s nearest neighbours to create more 
semantic variations [32, 33]. Augmentations are usually in 
the form of transformations. In the case of images, these can 

(2)||xW
⟂

||.

involve adding noise, colour jittering, or horizontal flips. 
However, InfoNCE relies on large batch sizes to enable suf-
ficiently challenging comparisons. Augmentation choices 
are also vital, as aggressive transformations could remove 
relevant semantic features.

VICReg [34] attempts to overcome some of the issues 
of InfoNCE by enforcing specific statistical properties. It 
encourages augmented views to have a high variance to 
ensure the neural mapping learns diverse aspects of the data. 
It also regularises the covariance matrix of the representa-
tions. This regularisation ensures the neural mapping covers 
complementary information across the representation space.

Additional pretext tasks are covered in more detail in Bal-
estriero et al. [4].

2.3 � Self‑supervised learning and anomaly 
detection for non‑tabular data

Anomaly detection for non-tabular data has benefited from 
self-supervision. Golan and El-Yaniv [35] show that com-
pared to OCSVMs trained on pixel space, outputs from a 
convolutional neural network trained to predict image rota-
tions were more reliable for anomaly detection. Mai et al. [2] 
demonstrate similar findings on text. They show that good 
anomaly detection performance is achievable by fine-tuning 
a transformer with a self-supervised objective and using the 
loss as an anomaly score.

Other successful approaches do not use a self-supervised 
model in an end-to-end manner for anomaly detection. The 
works of Sehwag et al. [12] and Tack et al. [11] both extract 
features from neural networks trained with an InfoNCE 
objective to perform anomaly detection on images. Sehwag 
et al. classify anomalies using the Mahalanobis distance on 
the extracted space, while Tack et al. use a product of cosine 
similarities and norms.

2.4 � Self‑supervised learning and anomaly 
detection for tabular data

Literature covering self-supervision for anomaly detection 
in tabular data is more limited. GOAD [36] extends the work 
of Golan and El-Yaniv [35] to a more generalised setting. 
They apply random affine transformations to the data and 
train a neural network to predict these transformations. At 
inference, they apply all possible transformations to the 
test data, obtain the prediction of each transformation from 
the network and aggregate the predictions to produce the 
anomaly score. The network should be able to predict the 
correct modification with higher confidence for the normal 
data versus the anomalies.

ICL [37] adapts the InfoNCE objective. It considers one 
sample at a time. Taking a sample xi of dimensionality d, 
ICL splits xi into two parts. The dimensionality of the two 1  https://​github.​com/​haoqi​wang/​vim.

https://github.com/haoqiwang/vim
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parts depends on a given window size, k (k < d) . The first 
part ai is a continuous section of size k, while the second bi 
is its complement of size d − k . A Siamese neural network 
containing two heads with dimensionalities k and d − k aims 
to push the representations together. The negatives are other 
contiguous segments of xi of size k. As the neural network 
should be capable of aligning the normal data and not anom-
alies, the loss is the anomaly score.

Although both methods claim to be state-of-the-art for 
tabular anomaly detection, Reiss et al. [3] did not find this to 
be the case. They replicated the pipelines of GOAD and ICL. 
In addition, they used the trained neural networks of GOAD 
and ICL as feature extractors. After extracting the features, 
they ran k-NN on the new representations. They compared 
both setups to k-NN on the original data. Although GOAD 
and ICL are specifically designed to process tabular data, 
Reiss et al. found that k-NN on the original data was the 
best-performing approach. However, they did not run a 
hyperparameter search to optimise the choice of k (leav-
ing it as k = 5 ). They also used the original architectures 
designed for GOAD and ICL, which differ from each other. 
This choice could be another confounding factor affecting 
results.

We summarise the works that cover self-supervision and 
anomaly detection in Table 1.

3 � Method

3.1 � Datasets

We use 26 multi-dimensional point datasets from Outlier 
Detection Datasets (ODDS) [38]. Each datum comprises one 
record, which contains multiple attributes. Table 2 summa-
rises the properties of the datasets. We treat each dataset as 
distinct and train and test separate anomaly detection models 
for each dataset.

We follow the data split protocols described in pre-
vious tabular anomaly detection literature [36, 37]. We 

randomly select 50% of the normal data for training, with 
the remainder used for testing. The test split includes all 
anomalies. The training split did not use any anomalies as 
we adopt a one-class setup. We partition the training set 
further by leaving 20% for validation.

Table 1   Summary of related 
self-supervised anomaly 
detection literature across 
modalities

Modality Year Author Pretext task Anomaly detector

Images 2018 Golan and El-Yaniv [35] Rotation prediction Classification confidence
2020 Tack et al. [11] Contrastive learning Cosine similarity and norm
2021 Sehwag et al. [12] Contrastive learning Mahalanobis distance

Text 2022 Mai et al. [2] Masked language modelling
Causal language modelling
Contrastive learning

Loss

Tabular 2022 Shenkar and Wolf [37] Contrastive learning Loss
Multiple 2020 Bergman and Hoshen [36] Transformation prediction Classification confidence

2022 Reiss et al. [3] Contrastive learning
Transformation prediction

k-NN

Table 2   Summary of ODDS datasets

Dataset Total size Number of anomalies 
(%)

Dimensionality

Annthyroid 7,200 534 (7.4%) 6
Arrhythmia 452 66 (14.6%) 274
BreastW 683 239 (35.0%) 9
Cardio 1,831 176 (9.6%) 9
Glass 214 9 (4.2%) 9
Heart 224 10 (4.4%) 44
HTTP 567,469 2,211 (0.4%) 3
Ionosphere 351 126 (35.8%) 33
Letter 1,600 100 (6.3%) 32
Lympho 148 6 (4.1%) 18
Mammography 11,183 260 (2.3%) 6
MNIST 7,603 700 (9.2%) 100
Musk 3,062 97 (3.2%) 166
Optdigits 5,216 150 (2.9%) 64
Pendigits 6,870 156 (2.3%) 16
Pima 768 268 (34.9%) 8
Satellite 6,435 2,036 (31.6%) 36
Satimage-2 5,803 71 (1.2%) 36
Seismic 2,584 170 (6.5%) 11
Shuttle 49,097 3,511 (6.6%) 9
SMTP 95,156 30 (0.03%) 3
Speech 3,686 61 (1.7%) 400
Thyroid 3,772 93 (2.4%) 6
Vertebral 240 30 (12.5%) 6
Vowels 1,456 50 (3.4%) 12
WBC 278 21 (5.6%) 30
Wine 129 10 (7.7%) 13
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3.2 � Baseline approach

We run k-NN, iForest, LOF, OCSVM, and residual norms 
on the original training data. As we aim to expand on the 
work of Reiss et al. [3], we only implement one-class detec-
tors for comparability. Even though Reiss et al. [3] only 
use k-NN in their experiments, we use multiple detectors 
to establish whether k-NN is the best detector or if there 
are other more appropriate detectors depending on the type 
of anomalies present. We analyse our findings in Sect. 4.7. 
Another anomaly detection study, ADBench [39], follows a 
similar protocol. However, their setup assumes anomalies 
are present in the training data. Through our experiments, 
we establish whether a purely one-class setup affects overall 
detector ranking. We use scikit-learn [40] to implement all 
detectors except for k-NN, which uses the faiss library [41].

We also investigate the detectors’ sensitivity to different 
configurations by varying the hyperparameters. For k-NN 
and LOF, we report results for k = {1, 2, 5, 10, 20, 50} . For 
the residual norms, we look at how results change with a 
proportion of features, with percentages ranging from 10% 
to 90% in 10% increments [10%, 20%, ..., 90%] . We record 
our findings in Sect. 4.7. For the self-supervised tasks, we 
report the results based on the best hyperparameter configu-
ration derived from these ablations. We retain the default 
scikit-learn parameters for iForest and OCSVM, which uses 
a radial basis function kernel.

The detectors run directly on the data and on a standard-
ised version. We standardise each dimension independently 
by removing the mean and scaling to unit variance. We also 
experimented with fully whitening the data but found attrib-
ute-wise standardisation rendered similar results.

3.3 � Self‑supervision

3.3.1 � Pretext tasks

Although tabular data lack overt intrinsic properties like 
those in images or text, we choose self-supervised tasks that 
we hypothesise can take advantage of its structure.

Firstly, we adapt ICL [37] and GOAD [36] to use them 
as pretext tasks. We do not directly implement ICL and 
GOAD as they score anomalies in an end-to-end manner. 
In contrast, our experiments focus on how representations 
from different pretext tasks affect shallow detection per-
formance. Therefore, we refer to the ICL-inspired task as 
“EICL” (embedding-ICL) for the remainder of the paper. 
As GOAD uses random affine transformations, we can con-
sider this a combination of predicting rotation and stretches. 
This configuration conflates two different tasks and could be 
trivial to solve. Therefore, we attempt to align it closer to the 
RotNet [1, 26] experiments for image-based anomaly detec-
tion by training a model to classify orthonormal rotations. 

This pretext task should profit from the rotationally invariant 
property of tabular data [42]. Hence, we refer to the GOAD-
inspired task as “Rotation”.

The additional objectives used in the experiments are as 
follows:

Predefined shuffling prediction (Shuffle): We pick a 
permutation of the dimensions of the data from a fixed set of 
permutations and shuffle the order of the attributes based on 
the selection. The model learns to predict that permutation.

Predefined mask prediction (Mask classification): 
Given a mask rate r (r < d) , we initialise predefined 
classes that indicate which attributes to mask. We perform 
masking by randomly selecting another sample �� from the 
training set and replacing the chosen attributes in �� with 
those from �� . We follow the protocol outlined in Yoon et al. 
[43]. This approach generated better representations com-
pared to alternative masking strategies like imputation, and 
constructing a mask classification pretext task outperformed 
alternative supervised and semi-supervised methods on tab-
ular classification tasks. The model learns to classify which 
predefined class was applied.

Masked columns prediction (Mask columns): The 
model picks which attributes were masked given a mask 
rate r. For example, if only the first attribute was masked, a 
correct classification should identify the first attribute and 
should not pick the other attributes. This is different from 
the mask classification task, where the predefined mask 
class is given a label from a fixed set of combinations rather 
than from the particular attribute that has been masked. (For 
example, if there are only two classes, the labels for mask 
classification are 0 or 1.)

Denoising autoencoding (Autoencoder): Given a mask 
rate r, we perturb �� by randomly selecting another sample �� 
and replacing a subset of �� ’s attributes with those of �� . The 
perturbed �� is the input. Given this input, the model learns 
to reconstruct the unperturbed ��.

Contrastive learning: We create positive views of �� by 
rotating the data using an orthonormal matrix (Contras-
tive rotation), permuting the attributes per the shuffle task 
(Contrastive shuffle), or masking the attributes per the 
mask classification task (Contrastive mask). We treat other 
data points in a minibatch as negatives. We only apply one 
augmentation at a time to isolate their effects.

3.3.2 � Network architectures and loss functions

We use the same neural network architectures to control for 
any potential effects on performance. Per the findings of 
Gorishniy et al. [44], we use ResNets [45] and FT-Trans-
formers. Gorishniy et  al. examined the performance of 
several deep learning architectures on tabular classification 
and regression, including multilayer perceptrons, recurrent 
neural networks, ResNets and transformers. Their results 
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indicated that ResNets and FT-Transformers were the best 
overall. Based on these findings, we restrict our architec-
tures to the most promising variants. FT-Transformer is a 
transformer specially adapted for tabular inputs where each 
transformer layer operates on the feature level of one datum.

We train both architectures on all objectives except for 
EICL, where we only use ResNets. As EICL requires spe-
cific partitioning of the features, the FT-Transformer archi-
tecture would need to be modified. This modification is out 
of the scope of our experiments. We retain the same archi-
tecture (e.g. the number of blocks) for each pretext task and 
only vary the dimensionality of the output layer. The dimen-
sionality corresponds to the number of preset classes for the 
rotation, shuffle, and mask classification tasks. The output 
dimensionality of the autoencoder task mirrors the input 
dimensionality. For the contrastive objectives (including 
EICL), we set the output as one of {128, 256, 512} depend-
ing on validation performance.

As previous literature has claimed specialised loss func-
tions can improve out-of-distribution detection on other 
modalities [46, 47], we examine these to confirm whether 
they also improve tabular anomaly detection.

For the rotation, shuffle, and mask classification tasks, 
we use cross-entropy, adversarial reciprocal points learn-
ing (ARPL) [46], and additive angular margin (AAM) [48]. 
ARPL is a specialised loss function for out-of-distribution 
detection. The probability of a datum belonging to a class is 
proportional to its distance to a reciprocal point. The point 
represents “otherness” in the learnt feature space. AAM is 
a loss function typically used for facial recognition. AAM 
specifically enforces interclass similarity and ensures inter-
class separation using a specified margin. This results in 
more spherical features for each class. We include AAM 
as some literature claims spherical per-class features make 
out-of-distribution detection easier [49]. Finally, we incor-
porate the cross-entropy loss as studies have shown mod-
els trained with this loss function can meet or outperform 

specialised losses like ARPL with careful hyperparameter 
selection [47]. We experiment with mean squared error and 
mean absolute error for the autoencoders. We use the binary 
cross-entropy loss for masked column prediction, as multiple 
masked columns correspond to more than one label for each 
datum. For the contrastive objectives, we experiment with 
both InfoNCE and VICReg.

We summarise all the possible model configurations in 
Table 3.

3.3.3 � Model selection

Due to the number of potential hyperparameter combina-
tions, we perform random searches to determine the most 
appropriate models for anomaly detection. We pick hyper-
parameters randomly and train on the training split for each 
self-supervised task and dataset. As we cannot evaluate 
using anomalies, we select models that achieve the lowest 
loss on the normal validation data. As we want to analyse 
the effect of different loss functions and architecture, the 
hyperparameter sweep stage results in a maximum of twelve 
configurations for each dataset and task. For example, the 
models trained on the rotation task would include ResNets 
and FT-Transformers, each architecture also includes the 
cross-entropy, ARPL, and AAM losses. There are also dif-
ferent configurations for standardised and non-standardised 
input data.

3.3.4 � Feature extraction

After training, we obtain the learnt features by passing input 
data through the self-supervised models. We extract the fea-
tures from the penultimate layer. As we fix the architecture 
for the different tasks, we obtain 128-dimensional embed-
dings for ResNets and 192-dimensional embeddings for FT-
Transformer. We train the anomaly detectors using the new 
training features and test them using the transformed test 

Table 3   Summary of the model 
configurations

Anomaly detectors Architectures Self-supervised tasks Loss functions

k-nearest neighbours
Isolation forest
Local outlier factor
One-class support vector machine
Residual norms

ResNet
FT-Transformer

Rotation Cross-entropy
Shuffle ARPL
Mask classification AAM
Mask columns Binary cross-entropy
Autoencoder MSE

MAE
EICL
Contrastive - rotation InfoNCE
Contrastive - shuffle VICReg
Contrastive - mask
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features. We do not apply any augmentations during infer-
ence to ensure a fair comparison between the self-supervised 
tasks. Figure 1 shows the workflow.

3.4 � Evaluation

We evaluate all anomaly detectors using the area under the 
receiving operator curve (AUROC) score. We can consider 
AUROC as the probability that a randomly selected anom-
aly will be ranked as more abnormal than a normal sample. 
Scores fall between 0% and 100%. A score of 50% indi-
cates the detector cannot distinguish between anomalies and 
normal data points, while a score of 100% signals perfect 
anomaly discrimination. We choose AUROC as it does not 
require a threshold to control for false positives, for example.

3.5 � Additional ablations

In addition to evaluations with the ODDS dataset, we run 
more experiments to understand detector performance and 
scenarios where specific self-supervised objectives may per-
form better than others.

3.5.1 � Synthesised anomalies

Although ODDS contains several datasets, the datasets may 
mix different types of anomalies. These mixes can make it 
difficult to diagnose why one representation performs better 
than another. Therefore, we evaluate how the pretext tasks 
and their learnt representations fare with synthesised anoma-
lies. We keep the normal data in the train and test splits and 

only generate anomalies by perturbing the properties of the 
normal training data. We use the four synthetic anomaly cat-
egories as defined in ADBench [39, 50]. We use ADBench’s 
code to create all types.

•	 Local anomalies deviate from their local cluster. We use 
Gaussian mixture models (GMM) to learn the underlying 
normal distribution. The covariance matrix undergoes 
scaling by a factor � to generate the anomalies. We use 
� = 2 in our experiments.

•	 Cluster anomalies use GMMs to learn the normal distri-
bution. A factor � scales the mean feature vector to create 
the cluster anomalies. We use � = 2 in our experiments.

•	 Global anomalies originate from a uniform distribution 
U[� ⋅min(Xk

i
), � ⋅max(Xk

i
)] . � is a scaling factor, and the 

minimum and maximum values of an attribute Xk

i
 define 

the boundaries. We use � = 0.01.
•	 Dependency anomalies do not follow the regular depend-

ency structure seen in normal data. We use vine copulas 
to learn the normal distribution and Gaussian kernel den-
sity estimators to generate anomalies.

3.5.2 � Corrupted input data

Previous work hypothesises neural networks underperform 
on tabular classification and regression because of their 
rotational invariance and lack of robustness to uninforma-
tive features [42]. We investigate if this occurs for anomaly 
detection. Simultaneously, we explore the shallow anomaly 
detectors’ sensitivity to corrupted attributes. Understand-
ing these results can give a practical insight into what 

Fig. 1   Self-supervised anomaly 
detection workflow. The data 
are only augmented and fed 
through the projector during 
training
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self-supervision objectives and anomaly detectors work best 
when the data are noisy or incomplete. For our ablations, we 
follow Grinsztajn et al. [42] and apply the following corrup-
tions to the raw data: 

1.	 Adding uninformative features: We add extra attrib-
utes to X . We select a subset of attributes to imitate. We 
then generate features by sampling from a multivariate 
Gaussian based on the mean and interquartile range of 
the subset’s values. We experiment with different pro-
portions of additional features and limit the maximum 
number of extra attributes to be no greater than the exist-
ing number of features in the dataset.

2.	 Missing values: We randomly remove a proportion 
of the entries and replace the missing values using the 
mean of the attribute the value belongs to. We apply this 
transformation to both the train and test sets.

3.	 Removing important features: We train a random for-
est classifier to classify between normal samples and 
anomalies. We then drop a proportion of attributes based 
on the feature importance values output by the random 
forest, starting from the least important. This corruption 
violates the one-class assumption within our anomaly 
detection setup. However, we use this to analyse the 
robustness of the detectors and self-supervised models.

4.	 Selecting a subset of features: Similar to (3), we train 
a random forest classifier. We choose a proportion of 
attributes based on the feature importance values output 
from the random forest, starting from the most impor-
tant.

After corrupting the data, we follow the same process of 
training the self-supervised models and feature extraction 
for the neural network experiments.

4 � Results

We organise our results as follows: Sect. 4.1 reconfirms 
the ineffectiveness of self-supervision for tabular anomaly 
detection and summarises the main results at a high level. 
We investigate this phenomenon through a series of case 
studies and ablations. Sections 4.2 and 4.3 drill down on per-
formance using a subset of ODDS (HTTP) and simplified toy 
scenarios. Our working hypothesis is that self-supervision 
introduces irrelevant directions. We empirically verify our 
hypothesis by investigating the residual space of the embed-
dings in Sect. 4.4. We attempt to compare the properties 
of the self-supervised pretext tasks by replacing ODDS 
anomalies with synthetic variants in Sect. 4.5. Finally, we 
investigate the effect of architecture and detector choices in 
Sect. 4.6.

4.1 � Self‑supervision results

No self-supervision task outperforms the baseline Fig-
ure 2 summarises the nearest neighbour performance derived 
from the embeddings of each self-supervised approach. We 
aggregate performance by representation rather than data-
set to concentrate on the influence each representation has 
on performance. No self-supervision task exceeds k-NN on 
the raw tabular data. When comparing results at a pairwise 
level, Fig. 3 shows that the baseline scores greatly outrank 
the self-supervised objectives. Similarly, performance using 
the self-supervised embeddings drops in the presence of cor-
rupted data (Appendix, Fig. 18). These results extend the 
findings in [42] that neural networks are also more sensi-
tive to corrupted attributes in the anomaly detection task. 
When excluding the baseline, the classification-based tasks 
(shuffle, mask classification, and rotation) outperform their 
contrastive and reconstructive counterparts.

We observe similar results when we use different shallow 
detectors to perform anomaly detection (Fig. 4), with one 
exception. Using residual norms on the embedding space 

Fig. 2   Box plot comparing nearest neighbour AUROCs for each 
of the embeddings, ordered by median performance. For each self-
supervised task, we filter the results by architecture and loss function 
to include the embedding with the best-performing results

Fig. 3   Critical difference diagram comparing the embeddings in a 
pairwise manner. The horizontal scale denotes the average rank of 
each embedding. The dark lines between different detectors indicate 
a statistical difference ( p < 0.05 ) in results when running pairwise 
comparison tests. The baseline scores greatly outrank the pretext 
tasks. In contrast, the scores among the pretext tasks are more closely 
aligned
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is a better choice than k-NN. However, they still lag behind 
k-NN scores on the original embeddings. We also observe 
that OCSVM performs consistently worse across all tasks.

4.2 � A case study on HTTP

To understand why self-supervision does not help, we will 
explore one ODDS dataset in detail. We proceed to test our 
reasoning on toy datasets and then analyse the remaining 
ODDS datasets.

We use HTTP for our analyses. HTTP is a modified subset 
of the KDD Cup 1999 competition data [51]. The competi-
tion task involved building a detector to distinguish between 
intrusive (attack) and typical network connections. The data-
set initially contained 41 attributes from different sources, 
including HTTP, SMTP, and FTP. The ODDS version only 
uses the “service” attribute from the HTTP information as 
it is considered one of the most basic features. The result-
ing subset is three-dimensional and comprises over 500,000 
observations. Out of these samples, 2,211 (0.4%) are attacks.

It is easy to find attacks when running detectors directly 
on the raw ODDS variant of HTTP. In our experiments, 
all shallow methods achieve AUROCs between 87.9% and 
100% on non-standardised data, with the median score being 
99.7%. Further investigations show the attacks are separate 
from typical connections. A supervised logistic regression 
model trained to classify the two classes achieves 99.6% 
AUROC, even with only 200 sample anomalies for training.

However, we observe peculiar results when using repre-
sentations devised from the pretext tasks for HTTP. k-NN 
performance drops drastically across the majority of tasks 
(Fig. 5), sometimes yielding scores worse than random. Con-
versely, the other detectors maintain their performance. For 
example, when extracting features from the rotation task,2 
k-NN obtains 71.8% AUROC, while iForest, OCSVM, and 

residual norms preserve AUROCs around 99%. In addition, 
logistic regression continues to classify anomalies with 
99% AUROC in the supervised setting using the rotation 
task representations. As k-NN is susceptible to the curse 
of dimensionality, these initial results suggest the neural 
network representation introduces directions that obscure 
informative distances between the typical and intrusive sam-
ples. Moreover, as iForest uses a splitting strategy for detec-
tion, its consistent results indicate some direction signalling 
anomalousness exists.

4.3 � Toy data analysis

It can be challenging to draw conclusions based on existing 
datasets, as they are large and often contain uninterpretable 
features. Therefore, we pivot to toy examples to understand 
these behaviours. We devise nine two-dimensional toy 
datasets of varying difficulty (Appendix, Fig. 19). Like the 
experiments on the ODDS, we first evaluate performance 
directly on the two-dimensional representations. We then 
train ResNets on a two-class rotation prediction task, extract 
features from the penultimate embedding and re-run the 
detectors on the new space. We use this setting as rotations 
can be performed on two-dimensional data, and ResNets 
require less compute than the FT-Transformers. We apply 
the same architecture as the ODDS experiments, making the 
extracted features 128-dimensional.

Regardless of whether the network can or cannot iden-
tify the rotation applied to the data, we observe behaviours 
consistent with ODDS in most toy instances. Compared to 
the original two-dimensional results, detection performance 
drops for almost all detectors after extracting representa-
tions from the ResNets. As two dimensions are sufficient 
to capture the characteristics of the datasets, projecting the 

Fig. 4   Box plot comparing detector performance on the self-super-
vised embeddings

Fig. 5   Bar chart comparing baseline and self-supervised embedding 
results on HTTP

2  Using the best-performing rotation model, which is an FT-Trans-
former trained with ARPL loss.
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data to a 128-dimensional space only results in a stretched 
and narrow representation without extra information. The 
t-SNE plots highlight this activity. We show an example of 
the multiple Gaussian dataset in Fig. 6.

We project the embeddings extracted from the ResNets 
to a lower dimensional space using the residual eigenvec-
tors from the training data to verify whether the curse of 
dimensionality affects performance. We conduct this projec-
tion because the residual norm method outperforms k-NN in 
the self-supervised experiments. Therefore, we hypothesise 
that projecting to a smaller space should reduce the distract-
ing influence of the primary principal components. Conse-
quently, running shallow detectors in this new space should 
garner improvements. We discard half of the directions for 
the toy experiments to form 64-dimensional embeddings. 
The anomaly detectors perform better in this new space 
(Fig. 7), corroborating the view that the neural network 
embeddings introduce irrelevant directions.

We can also use the toy scenarios to attempt to under-
stand the behaviour of the detectors such as OCSVM. Our 
experiments suggest OCSVM fails when anomalies lie in 
the centre of the normal data. For example, the AUROC for 
OCSVM trained on the raw ring data signalled random per-
formance at 50%, whereas k-NN could detect the anomalies 
perfectly.

4.4 � Analysing ODDS embeddings

We now proceed to run ablations on ODDS. Previous studies 
have shown that supervised classification performance cor-
relates highly with out-of-distribution detection performance 
[47]. Therefore, we train linear classifiers on the self-super-
vised and original representation and compare classification 
performance. If there is a drop in performance on the self-
supervised embeddings, the results would suggest the neural 
networks transform the data in a way that mixes anomalies 

with the normal samples. We could consequently attribute 
the poor self-supervised performance to this mixing rather 
than the presence of irrelevant directions.

Figure 8a illustrates classification scores on the raw data. 
Most datasets are almost perfectly linearly separable in this 
embedding space, indicating that anomaly detectors should 
perform well. Figure 8b depicts the mean difference between 
the raw and self-supervised classification performances. 
Except for EICL, the differences between linear classifica-
tion performance on the raw embeddings and the self-super-
vised embeddings are close to zero. These trends suggest the 
self-supervised embeddings retain reasonable separability 
between the normal data and anomalies. We can rule out 
the mixing effect and conclude that self-supervision gener-
ally does not affect the separability between the two classes.

We now investigate the residual space of the embeddings 
by extending the toy dataset analyses to ODDS. We take the 
smallest eigenvalues (from 1% to 90% in 10% increments) 
to project the neural network embeddings to their residual 
representations. We proceed to re-run the shallow anom-
aly detectors in the new space. Figure 9 shows the results. 
We aggregate both ResNet and FT-Transformer scores as 
observed similar behaviour across the two architectures. 
Reducing the dimensionality indeed boosts performance.

On all of the shallow detectors, using the entire represen-
tation space (100% dimensionality in Fig. 9) results in lower 
AUROCs than using a subset. Throwing away the top 10% of 
principal components garners most improvements, although 

Fig. 6   Visualisations of the multiple Gaussian toy dataset. Light 
blue are the normal data and orange are the anomalies. The features 
extracted from the neural network appear to be more narrow (b) and 
stretched compared to their original 2D representation (a)

Fig. 7   Nearest neighbour performance on the toy datasets. The raw 
embedding (blue) is the best in almost all instances. However, the 
self-supervision embeddings (orange) improve when projecting to a 
lower dimensional space (green)
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performance generally remains stable when discarding more 
components - up to the top 90%.

This observation aligns with previous findings that show 
residual directions capture information important for out-of-
distribution detection [25]. The magnitude of normal data 
is minute in this space, which is not necessarily the case for 
anomalies. Based on these results, we do not need complete 
neural network representations to perform anomaly detec-
tion. A subset suffices.

4.5 � Synthetic anomalies

Anomaly detection depends on two factors: the nature of 
the normal data and the nature of anomalies. Both classes 
can originate from complex, irregular distributions. These 
aspects make it difficult to pinpoint the causes of results 
on ODDS and other curated datasets. We attempt to disen-
tangle these factors by analysing performance on synthetic 
anomalies. The anomalies curated in ODDS are a compos-
ite of these types. We calculated the correlation between 
the ODDS and the synthetic anomaly scores and found that 
the datasets exhibited correlations between multiple syn-
thetic categories, highlighting the complex qualities of the 
anomalies. For example, when analysing the raw data rep-
resentations, k-NN on the curated Letter anomalies corre-
lates strongly with local ( � = 0.84 ), global ( � = 0.49 ), and 
dependency ( � = 0.94 ) anomaly scores.

Figure 10a–d shows the results across the four synthetic 
types. We show comparisons using k-NN as we found simi-
lar behaviours across the detectors. The contrastive objec-
tives outperform the baseline in the local (Fig. 10a) and 
cluster anomaly (Fig. 10b) scenarios. This result suggests 
contrastive tasks are better at discerning differences at a 
local neighbourhood level.

No self-supervised approach beats the baseline when 
faced with global anomalies (Fig. 10c). This result contrib-
utes to the idea that self-supervised representations intro-
duce irrelevant directions. Since the global anomalies scatter 
across the representation space, these additional directions 
mask the meaningful distances between the anomalies and 
normal points. As a result, methods like k-NN become less 
effective. In addition, the ranking of the self-supervised 
tasks aligns most closely with their rankings on ODDS 
(Fig. 13), which potentially highlights the overall proper-
ties of the ODDS datasets.

For the dependency anomalies, rotation and mask clas-
sification surpass the baseline (Fig. 10d). Conversely, con-
trastive tasks perform the worst. Using a rotation or mask 
classification pretext task could help promote the intrinsic 
property that tabular data are non-invariant, which may help 
identify this type of anomaly.

Fig. 8   Supervised linear classification results (normal versus anom-
aly) on raw data (a) and supervised classification comparisons against 
the self-supervised embeddings (b)

Fig. 9   Ablation study showing how shallow detector results vary with 
subspace dimensionality
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4.6 � Architectural choices for self‑supervision

We analyse the effects of architectures and loss functions on 
performance to provide starting points for improving deep 
learning methods for tabular anomaly detection. We illus-
trate the results using k-NN as we observe similar behav-
iours across detectors.

ResNets outperform transformers. Our experiments 
indicate ResNets are a better choice than FT-Transformer 
(Fig. 11a). This result may be due to transformers need-
ing more training data during the learning phase [52]—the 
ODDS datasets are relatively small.

Standardisation is not necessary. Standardising data 
before training neural networks does not offer much benefit 
(Fig. 11b).

ARPL is a better choice for classification-type losses. 
ARPL significantly outperforms cross-entropy and AAM 
when training classification-type tasks (Fig. 11c). Special-
ised losses like ARPL might represent “other” spaces better 
in the context of smaller datasets.

InfoNCE is better than VICReg for contrastive-type 
losses. This result (Fig. 11d) may be due to the intricacies of 

VICReg, which requires balancing three components (pair 
similarity, variance and covariance).

4.7 � Benchmarking unsupervised anomaly 
detection

Finally, we compare the performance of each of the detectors 
overall to see how well they perform in one-class settings. 
We aggregate results across the baseline and self-supervised 
embeddings to provide a more generalised understanding of 
detector behaviour.

Figures 12 and 13 summarise the overall performances of 
each anomaly detector on ODDS. Even with the inclusion 
of self-supervised representations, k-NN performs best. Our 
findings align with other works highlighting k-NN as a per-
formant anomaly detector [12–14, 17]. However, apart from 
k-NN and residual norm, Fig. 13 shows no significant statis-
tical differences between the detectors, suggesting the detec-
tors make similar classification decisions. k-NN might be a 
sensible starting point that does not make strong assump-
tions about the normal distribution. Nonetheless, the choice 

Fig. 10   Bar plots comparing synthetic anomaly results across the representations
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of underlying representation should take precedence over the 
detector when designing anomaly detection systems.

4.7.1 � Hyperparameter ablations

We now examine the sensitivity of the detectors to changes 
in hyperparameters. These experiments were conducted 
directly on the raw ODDS data only to understand detector 
performance in an optimal representation space. By doing 
so, these results enable a better understanding of the detec-
tors’ inductive biases and why they may deteriorate in sub-
optimal self-supervised representations.

k-NN: Figure  14 shows performance remains rela-
tively stable to changes in k, suggesting the choice of this 

hyperparameter is trivial. As k-NN considers global rela-
tionships, this result indicates that anomalies already lie in 
distinct regions separate from the normal raw data.

LOF: Figure  15 illustrates how LOF performance 
changes with k. Although LOF and k-NN consider points 
in a neighbourhood, LOF is more sensitive to the number 
of neighbours (as evidenced by the increase in performance 
when k = 1 and k = 5 for LOF). However, it is unclear how 
to choose a value of k so that LOF is competitive with the 
other detectors in the one-class setting.

Residual norms: Figure 16 shows how performance 
varies with the percentage of attributes used. There are no 
notable trends, although performance remains better than 
random, even with a small subset (10%) of features. The 

Fig. 11   Comparisons of how architecture and losses affect performance on the self-supervised embeddings
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number of relevant attributes in the original representation 
space is dataset-dependent as ODDS contains datasets from 
differing tasks. It is unclear how to choose the number of 
features to maximise the performance of residual norms in 
the original dataset space.

4.7.2 � Corrupted input data

Adding uninformative features: All detectors are sensitive 
to irrelevant features (Fig. 17a). Although residual norms do 
not achieve the highest performance, it is more stable under 
increasing noise levels. This result may be due to the residu-
als capturing the most meaningful directions of the data. In 
contrast, k-NN performance declines the most.

Removing and selecting important features: Overall, 
performance plateaus at around 50% of attributes, suggesting 
half of the raw features are irrelevant for anomaly detection. 
iForest and OCSVM are the most stable under varying sub-
sets of features (Figs. 17b and c).

Missing values: Most detectors exhibit a slight decline 
in AUROC with increasing proportions of missing values 

(Fig. 17d). LOF is the exception, as performance drops 
significantly.

Overall, the results indicate k-NN is the best-perform-
ing detector when faced with clean and relevant features. 
However, the relative ranking of detectors changes in the 

Fig. 12   Box plot comparing detector performance on the raw and 
standardised data. The results include all hyperparameter variations 
where available

Fig. 13   Critical difference diagram ranking the different detectors. 
The dark lines between different detectors indicate a statistical differ-
ence ( p < 0.05 ) in results when running pairwise comparison tests

Fig. 14   Line plot showing how k-NN varies with the change in the 
number of nearest neighbours, aggregated across the ODDS datasets, 
with 95% confidence intervals

Fig. 15   Line plot showing how LOF varies with the change in the 
number of nearest neighbours, aggregated across the ODDS dataset, 
with 95% confidence intervals

Fig. 16   Line plot showing how residual norm varies with the change 
in residual dimensionality, aggregated across the ODDS dataset, with 
95% confidence intervals
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presence of corrupted input data. As observed in our self-
supervised results (Sect. 4.4), residual norms might be better 
at filtering out noisy directions. Furthermore, when there 
are fewer relevant features, iForest may be a better choice.

5 � Conclusion

5.1 � Limitations and future work

We limited our experiments to the ODDS, which is not nec-
essarily representative of all tabular anomaly datasets. Sev-
eral datasets underwent preprocessing during the curation of 
ODDS, which could affect results. For example, the values 

Fig. 17   Ablations showing how detector performance varies with changing levels of corrupt data
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in HTTP were log-transformed. In addition, the datasets are 
relatively small. As neural networks (particularly transform-
ers) benefit from large amounts of data [52], it is unclear if 
self-supervision would be more advantageous in the big data 
case. Contrastive objectives are particularly reliant on large 
datasets and batch sizes [30, 31]. Additional ablations could 
examine the effects of dataset size on representation quality 
and detection performance.

Furthermore, we isolated our analyses by extracting 
embeddings at the penultimate layer and running shallow 
anomaly detection algorithms. Although feature extraction 
at this stage combined with simple detectors is a popular 
strategy [12–14, 17], different parts of the neural network 
could provide more informative features [22]. Moreover, 
we chose to use shallow detectors to prioritise studying the 
effect of representations rather than studying the detection 
approach. In addition, the original implementations of ICL 
and GOAD evaluate anomalies using an entire neural net-
work pipeline and use specific architectures for the tasks. 
Adapting these implementations for a pretext task with dif-
ferent architectures deviates from the original setup and 
could affect performance. Future work could look at extend-
ing the experiments to examine how varying pretext tasks 
with deep anomaly detection can yield better results [53].

Another direction for future work that focuses on repre-
sentation quality could replace the one-class detectors with 
semi-supervised or supervised classifiers. We decided to 
concentrate on one-class detectors to align with the anom-
aly detection field [3, 10, 15, 16]. However, anomalies can 
manifest in different ways, and it could be challenging for 
an unsupervised detector to capture the relevant features for 
a specific task in practice. Incorporating prior knowledge 
about anomalies through weak or semi-supervised detection 
approaches could improve detection [54].

In addition, studies focusing on improving deep tabular 
anomaly detectors could also start examining regularisation 
strategies. Our experiments suggest neural networks add 
irrelevant features; hence, regularisation during the training 
process could help to control this behaviour.

5.2 � Summary

We trained multiple neural networks on various self-super-
vised pretext tasks to learn new representations for ODDS, 
a series of tabular anomaly detection datasets. We ran a suite 
of shallow anomaly detectors on the new embeddings and 
compared the results to the performance of the original data. 
None of the self-supervised representations outperformed 
the raw baseline.

We conducted ablations to try to understand this behav-
iour. Our empirical findings suggested that neural net-
works introduce irrelevant features, which degrade detec-
tor capability. As normal and anomalous data were easily 
distinguishable in the original tabular representations, 
neural networks merely stretched the data. They did not 
introduce any additional informative information. How-
ever, we demonstrated performance was recoverable by 
projecting the embeddings to a residual subspace.

As the anomalies from ODDS derive from complex 
distributions, we repeated the experiments on synthetic 
data to understand the pretext tasks’ influence on detecting 
particular anomaly types. We showed in specific scenarios 
that self-supervision can be beneficial. Contrastive tasks 
were better at picking up localised anomalies, while clas-
sification tasks were better at identifying differences in 
dependency structures.

Finally, we studied different shallow detectors by aggre-
gating performances across the baseline and self-super-
vised representations. We showed that localised methods 
like k-NN and LOF worked best on ODDS but were sus-
ceptible to performance degradation with corrupted data. 
In contrast, iForest was more robust. Our findings provided 
practical insights into when one detector might be prefer-
able to another.

Overall, our findings complement the growing land-
scape of theories on why self-supervised learning works. 
Effective self-supervised pretext tasks learn to compress 
the input data when there are irrelevant features [55–57]. 
Our findings suggest current deep learning approaches 
do not add much benefit when the original feature space 
succinctly represents the normal data. This situation is 
often the case for tabular data, and we demonstrated this 
by showing performance degrades when removing features 
in the original space. If the feature space did not succinctly 
represent the normal data, we would not observe such 
large degradations. This setup differs from other domains. 
For example, pixels in images contain lots of semantically 
irrelevant information. Therefore, neural networks can 
distil information from pixels to extract useful semantic 
features and self-supervision is beneficial.

Appendix

See Figs. 18 and 19.
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Fig. 18   Box plot comparing nearest neighbour AUROCs for each of the self-supervised pretext tasks on corrupted input data
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