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Abstract. Max-SAT with cardinality constraint (CC-Max-SAT) is
one of the classical NP-complete problems. In this problem, given a CNF-
formula Φ on n variables, positive integers k, t, the goal is to őnd an
assignment β with at most k variables set to true (also called a weight
k-assignment) such that the number of clauses satisőed by β is at least
t. The problem is known to be W[2]-hard with respect to the parameter
k. In this paper, we study the problem with respect to the parameter
t. The special case of CC-Max-SAT, when all the clauses contain only
positive literals (known as Maximum Coverage), is known to admit a
2O(t)nO(1) algorithm. We present a 2O(t)nO(1) algorithm for the general
case, CC-Max-SAT. We further study the problem through the lens of
kernelization. Since Maximum Coverage does not admit polynomial
kernel with respect to the parameter t, we focus our study on Kd,d-
free formulas (that is, the clause-variable incidence bipartite graph of
the formula that excludes Kd,d as a subgraph). Recently, in [Jain et al.,
SODA 2023], an O(dtd+1) kernel has been designed for the Maximum

Coverage problem on Kd,d-free incidence graphs. We extend this result

to Max-SAT on Kd,d-free formulas and design a O(d4d
2

td+1) kernel.

Keywords: FPT · Kernel · Max-SAT.

1 Introduction

SAT, the first problem that was shown to be NP-complete, is one of the most
fundamental, important, and well-studied problems in computer science. In this
problem, given a CNF-formula Φ, the goal is to decide if there exists an assign-
ment β that sets the variables of the given formula to true or false such that
the formula is satisfied. The optimisation version of the problem is Max-SAT,
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in which the goal is to find an assignment that satisfies the maximum num-
ber of clauses. There are several applications of Max-SAT e.g., cancer therapy
design, resource allocation, formal verification, and many more [15,10]. In this
paper, we study the Max-SAT problem under cardinality constraint, known as
CC-Max-SAT, which is a generalisation of Max-SAT. In this problem, given
a CNF-formula Φ, positive integers k and t; the goal is to find an assignment
β with at most k variables set to true (also called a weight k-assignment) such
that the number of clauses satisfied by β is at least t.

CC-Max-SAT has been studied from the approximation viewpoint. It ad-
mits a (1 − 1

e
)-factor approximation algorithm [13]. Here, e is the base of the

natural logarithm. Feige [5] showed that this approximation algorithm is optimal
even for a special case of CC-Max-SAT, where the clauses contain only positive
literals. This special case of CC-Max-SAT is known as Maximum Coverage,
in which we are given a family of subsets, F , over a universe U , and the goal is
to find a subfamily F ′ ⊆ F of size at most k such that the number of elements
of U that belong to a set in F ′ is at least t.

In this paper, we study the problem in the realm of parameterized complex-
ity. The Maximum Coverage problem is well-studied from the parameterized
viewpoint and is known to be W[2]-hard with respect to the parameter k [3]. In
fact, it is known that assuming GAP-ETH, we cannot hope for an approximation
algorithm with factor (1 − 1

e
+ ϵ) in running time f(k, ϵ)nO(1) for Maximum

Coverage [9,12]. Thus, the next natural parameter to study is t (the minimum
number of clauses to be satisfied).

As early as 2003, Bläser [2] showed that Maximum Coverage admits a
2O(t)nO(1) algorithm. We first generalise this result to CC-Max-SAT.

Theorem 1. There exists a deterministic algorithm that solves the CC-Max-

SAT problem in time 2O(t)n log n.

The next natural question is, “Does the problem admit a polynomial kernel
with respect to the parameter t?”. That is, does there exist a polynomial time
algorithm that, given an instance (Φ, k, t) of CC-Max-SAT returns an equiva-
lent instance (Φ′, k′, t′) of CC-Max-SAT whose size is bounded by a polynomial
in t. Unfortunately, Maximum Coverage does not admit a polynomial kernel
with respect to the parameter t unless PH = Σ

3
p [4]. Thus, we cannot hope for a

polynomial kernel with respect to the parameter t for CC-Max-SAT. So a nat-
ural question is for which families of input does the problem admit a polynomial
kernel.

In 2018, Agrawal et al. [1] designed a kernel for a special case of Maximum

Coverage when every element of the universe appears in at most d sets. In
this kernel, the universe is bounded by O(dt2), and the size of the family is
bounded by O(dt). Recently, in 2023, Jain et al. [7] designed an O(dtd+1) kernel
for the Maximum Coverage problem on Kd,d-free incident graphs. Here, by
an incident graph, we mean a bipartite graph G = (A∪B,E) where A contains
a vertex for each element of the set family and B contains a vertex for each
element of the ground set and there is an edge between u ∈ A and v ∈ B if the
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Fig. 1. Inclusion relation between the class of biclique-free graphs considered in this
paper and well-studied graph classes in the literature (őgure based on [14]). If there is
an arrow of the form A → B, then class A is a subclass of B.

set corresponding to u contains the element corresponding to v. Kd,d denotes a
complete bipartite graph with bipartitions of size d each. Kd,d-free (also called
biclique-free) graphs are very extensive classes of graphs and include many well-
studied graph classes such as bounded treewidth graphs, graphs that exclude a
fixed minor, graphs of bounded expansion, nowhere-dense graphs, and graphs of
bounded degeneracy. That is, for any of the classes – bounded treewidth graphs,
graphs that exclude a fixed minor, graphs of bounded expansion, nowhere-dense
graphs, and graphs of bounded degeneracy, there is a p such that the class is
contained in the class of Kp,p-free graphs (see Figure 1 for an illustration of the
inclusion relation between these classes). For a CNF-formula Φ, let GΦ denote
the clause-variable incident bipartite graph of Φ. That is, the vertex set of GΦ

is var(Φ) ⊎ cla(Φ). For each v ∈ var(Φ) and C ∈ cla(Φ), there is an edge between
v and C in GΦ if and only if v or v belongs to the clause C. We say that Φ is a
Kd,d-free formula, if GΦ excludes Kd,d as an induced subgraph [8].

Theorem 2. CC-Max-SAT in Kd,d-free formulae admits a kernel of size

O(d4d
2

td+1).

One may ask why not design a polynomial kernel for CC-Max-SAT in Kd,d-

free formulae with parameter k or k + d. We would like to point out that CC-

Max-SAT is W[1]-hard when parameterized by k+d, as explained in the below
reduction (also the problem generalizes the Max Coverage problem). A simple
reduction from a W[1]-hard problem, named Partial Vertex Cover is as
follows [6]. Here, we want to cover the maximum number of edges in the input
graph using k vertices. The construction of a formula for CC-Max-SAT is as
follows. We will have a variable xv for each vertex v in the input graph G. For an
edge e = {u, v}, we will construct a clause Ce = (xv ∨xu). The resulting formula
will be K2,2-free for a simple graph G. This implies that the CC-Max-SAT

problem is W[1]-hard when parameterized by k + d.
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2 Preliminaries

For a graph G, we denote its vertex set by V (G) and its edge set by E(G). We
define a bipartite graph G = (A,B,E) as a graph where V (G) can be partitioned
into two parts A and B, where each part is an independent set. For two sets A
and B, A\B denotes the set difference of A and B, i.e., the set of elements in
A, but not in B.

Let Φ be a CNF-formula. We use var(Φ) and cla(Φ) to denote the set of
variables and clauses in Φ, respectively. We use GΦ to denote the clause-variable
incident bipartite graph of Φ. That is, the vertex set of GΦ is var(Φ) ⊎ cla(Φ).
For each v ∈ var(Φ) and C ∈ cla(Φ), there is an edge between v and C in GΦ if
and only if v or v belongs to the clause C.

An all zero assignment β∅ assigns false value to every variable of the input
formula. With a slight abuse of terminology, for a clause C ∈ cla(Φ), by var(C),
we denote variables contained in C. For a subset Y of variables, N+

Φ (Y ) is the
set of clauses in Φ that contains at least one variable from Y positively. We
denote N−

Φ (Y ) as the set of clauses in Φ that contains at least one variable from
Y negatively. For a subset Y of variables NΦ(Y ) is the set of clauses in Φ that
contains at least one variable from Y either positively or negatively, that is the
set N+

Φ (Y ) ∪ N−
Φ (Y ). For a clause C and variable u ∈ var(Φ), by C \ {u}, we

denote the clause C after removing the literal corresponding to u from C. For
example let C = u ∨ v ∨w, then C \ {u} = v ∨w. If u /∈ var(C), then C \ {u} is
simply the clause C.

Kd,d denotes the complete bipartite graph with each bipartition containing
d vertices. A bipartite graph G = (A,B,E) is Kd,d-free when G excludes Kd,d

as a subgraph (no set of d vertices in A together have d common neighbors in
B).

3 FPT algorithm for CC-Max-SAT parameterized by t

In this section, we design an FPT algorithm for CC-Max-SAT problem param-
eterized by t, the number of satisfied clauses.

We use the algorithm for Partial Hitting Set given in the following propo-
sition.

Proposition 1 (Bläser [2]). There is an algorithm that given a universe U , a
family of sets F over U , and positive integers k and t, runs in time 2O(t)nO(1),
and checks whether there exists a k-sized subset of U , that hits at least t sets
from F . If such a subset exists, then the algorithm will output such a subset.

We use the above proposition to get the following lemma.

Lemma 1. There exists a randomized algorithm that solves the CC-Max-SAT

problem and outputs a satisying assignment in time 2O(t)nO(1).

Proof. We apply the procedure in Algorithm 1, 2t times and if in any of the
iteration it returns an assignment γ, then we output γ, otherwise we return NO.
Next we prove the correctness of the algorithm.
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Algorithm 1 Procedure: FPT Algorithm for CC-Max-SAT

1: Randomly assign values to all the variables in var(φ) from {0, 1}. Let T be the set
of variables assigned 1 and F be the set of variables assigned 0.

2: Delete all clauses C in cla(φ) that contains a negative literal of a variable v ∈ F .
Let t1 be the number of deleted clauses and φ′ be the resultant formula.

3: Construct a family F as follows.
4: for each clause C ∈ cla(φ′), do

5: Add var(C) \ F to F .
6: end for

7: Run the algorithm from Proposition 1 by converting to hitting set instance
(U ,F , k, t− t1) where U = var(φ′) \ F .

8: if the algorithm returns a NO. then return NO

9: else let S be the solution returned by the algorithm. We construct γ as follows.
10: if v ∈ S then

11: let γ(v) = 1.
12: else γ(v) = 0.
13: end if

14: return γ.
15: end if

Let (ϕ, k, t) be a YES instance for the problem. Let C1, C2, · · ·Ct be t clauses
that are satisfied by a particular assignment, say α. For each clause Ci, let xi

be the variable that is "responsible" for satisfying it by a feasible assignment α,
that is assignment where at most k variables are assigned 1. By "responsible" we
mean that the clause Ci is satisfied even if we give any other assignment to all
the variables except xi. Thus, x1, x2, · · ·xt are the "responsible" variables for the
clauses C1, C2, · · ·Ct by the assignment α. Let αt be the assignment α restricted
to these t variables. Now consider any random assignment α′ : var(ϕ) → {0, 1} of
var(ϕ). Then the assignments α and α′ agree on the variables x1, x2, · · ·xt with
probability 1

2t . Let α′ be the assignment obtained in step 1 of our procedure.
Therefore with probaility 1

2t the assignment α′ satisfies the clauses C1, C2, · · ·Ct.

W.l.o.g. let C1, C2, · · ·Ct1 be the set of clauses deleted in step 2 of our al-
gorithm. Every clause Ci that is not deleted in step 2 must contain one of the
variables from x1, x2, · · ·xt which is assigned 1. There are at most k such vari-
ables and hence the corresponding Partial Hitting Set instance in step 7
will return a solution. Since we repeat the algorithm 2t times, we get a success
probability of 1− 1

e
.

Running Time: Observe that the running time of Procedure FPT Algorithm
for CC-Max-SAT depends on the algorithm used in step 7 which runs in time
2O(t)nO(1). As we repeat the Procedure 2t times, our algorithm runs in time
2O(t)nO(1). ⊓⊔

We now derandomize the algorithm using Universal Sets. We deterministically
construct a family F of functions f : [n] → [2] instead of randomly assigning
values such that it is assured that one of the assignments when restricted to the
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t variables x1, x2, · · ·xt matches with the assignment αt. For this we state the
following definitions.

Definition 1 ((n, ℓ)-universal set). An (n, ℓ)-universal set is a family U of
subsets of [n] such that for every subset S ⊆ [n] of size at most ℓ, the family
{U ∩ S : U ∈ U} contains all 2|S| subsets of S.

Proposition 2 (Naor et al. [11]). There is an algorithm that given integers
n, ℓ ∈ N, runs in time 2ℓℓO(log ℓ)n log n, and outputs an (n, ℓ)-universal set of
cardinality at most 2ℓℓO(log ℓ) log n.

We construct an (n, t)-universal set U and then for every element of U we con-
struct an equivalent assignment by assigning true to the variables represented
by the elements in the subset and false to the elements outside. By the defini-
tion of universal sets we will have an assignment which when restricted to the t
responsible variables will be equal to αt which corresponds to the good event in
our random experiment. Thus, we have the following theorem.

Theorem 1. There exists a deterministic algorithm that solves the CC-Max-

SAT problem in time 2O(t)n log n.

4 Polynomial Kernel for CC-Max-SAT in Kd,d-free

formulas

In this section, we design a polynomial time kernelization algorithm for CC-

Max-SAT where the input is a Kd,d-free formula, parameterized by the number
of clauses to be satisfied by a solution – that is, the parameter is t. We begin by
defining and recalling some notations.

An all zero assignment β∅ assigns false value to every variable of the input
formula. With a slight abuse of terminology, for a clause C ∈ cla(Φ), by var(C),
we denote variables appearing in C. Recall that for a subset Y of variables N+

Φ (Y )
is the set of clauses in Φ that contains at least one variable from Y positively.
We denote N−

Φ (Y ) as the set of clauses in Φ that contains at least one variable
from Y negatively. We denote d+Φ (Y ) = |N+

Φ (Y )| and d−Φ (Y ) = |N−
Φ (Y )|. For a

subset Y of variables NΦ(Y ) is the set of clauses in Φ that contains at least one
variable from Y either positively or negatively, that is the set N+

Φ (Y )∪N−
Φ (Y ).

For a clause C and variable u ∈ var(Φ), by C \ {u}, we denote the clause C after
removing the literal corresponding to u from C. For example let C = u ∨ v ∨w,
then C \ {u} = v ∨ w. If u /∈ var(C), then C \ {u} is simply the clause C. Next,
we give an outline of our kernel.

Outline of the kernel: Consider an instance (Φ, k, t) of CC-Max-SAT, where
Φ is a Kd,d-free formula. Our kernelization algorithm works in three phases. In
the first phase, we apply some simple sanity check reduction rules to eliminate
trivial YES/NO instances of CC-Max-SAT. Reduction rules in this phase (1)
upper bounds the frequency of variables in Φ by t, and (2) leads to an observation
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that any minimum weight assignment can satisfy at most 2t clauses. The above
facts are useful to establish proofs in the next two phases.

Suppose (Φ, k, t) is a YES instance and let β be its minimum weight assign-
ment and let Cβ be the set of clauses satisfied by β. In the second phase, we
bound the size of clauses in Φ by a function of t and d, say f(t, d). Here, we
use Kd,d-free property crucially. By the definition of Kd,d-free formula, a set of d
variables cannot appear simultaneously in a set of d clauses. We generalize this
idea together with the frequency bound on variables (obtained in phase one) to
bound the size of a set of variables that appear together in p ∈ [d − 1] clauses
by identifying and deleting some “redundant” variables.

For a set Y ⊆ var(Φ), let claInt(Y ) denote the set of all the clauses that
contains all the variables in Y , that is the set {C | C ∈ cla(Φ), Y ⊆ var(C)}.

For an intuition, suppose we have already managed to bound the size of
every subset of var(Φ), that appear together in at least two clauses, by f(t, d).
Now consider a set Y ⊆ var(Φ) such that variables in Y appear together in at
least one clause say C, that is |claInt(Y )| ≥ 1 and C ∈ claInt(Y ). Now suppose
that there is a clause C∗ ∈ Cβ \ claInt(Y ) such that var(C∗) ∩ Y ̸= ∅. Then
observe that for the variable set var(C∗) ∩ Y , C and C∗ are common clauses.
Now by considering the bound on sizes of sets of variables that have at least
two common clauses (clauses in which they appear simultaneously), we obtain
that |var(C∗) ∩ Y | is also bounded by f(t, d). We will now mark variables of
all the clauses in Cβ \ claInt(Y ) in Y and will conclude that if Y is sufficiently
“large”, then there exists a redundant variable in Y , that can be removed from
Φ. Employing the above discussion, by repeatedly applying a careful deletion
procedure, we manage to bound the size of sets of variables that have at least
one common clause. By repeating these arguments we can show that to bound
the size of sets of variables with at least 2 common clauses, all we require is to
bound size of sets of variables with at least 3 common clauses. Thus, inductively,
we bound size of sets of variables with d− 1 common clauses, by using the fact
that the input formula is Kd,d-free. Thus the algorithm starts for d − 1 and
applies a reduction rule to bound size of sets of variables with d − 1 common
clauses. Once we apply reduction rule for d− 1 exhaustively, we apply for d− 2
and by inductive application we reach the one common clause case. To apply
reduction rule for p ∈ [d− 1] we assume that reduction rules for d− 1 common
clauses case have already been applied exhaustively. The bound on size of the
sets of variables with one common clause also gives bound on the size of clause
by f(k, d).

Finally in the third phase, the algorithm applies a reduction rule to remove
all the variables which are not among first g(t, d) high positive degree variables
and not among first g(t, d) high negative degree variables when sorted in non
decreasing ordering of their positive (negative) degrees, which together with the
upper bound obtained on size frequency of variables and size of clauses obtained
in phase one gives the desired kernel size.
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We now formally introduce our reduction rules. Our algorithm applies each
reduction rule exhaustively in the order in which they are stated. We begin by
stating some simple sanity check reduction rules.

Reduction Rule 1. If k < 0, or k = 0, t ≥ 1 and β∅ satisfies less than t
clauses in cla(Φ), then return that (Φ, k, t) is a NO instance of CC-Max-SAT.

The safeness of Reduction Rule 1 follows from the fact that the cardinality
of number of variables assigned 1 cannot be negative and since k = 0, all the
variables must be assigned 0 values and an all zero assignment must satisfy at
least t clauses for (Φ, k, t) to be a YES instance of CC-Max-SAT.

Reduction Rule 2. If at least one of the following holds, then return that
(Φ, k, t) is a YES instance of CC-Max-SAT.

1. β∅ satisfies at least t clauses in cla(Φ).
2. k ≥ 0 and there exists a variable v ∈ var(Φ) such that d+Φ (v) ≥ t.

The safeness of Reduction Rule 2 follows from the following facts: For the first
condition, if an all zero assignment satisfies at least t clauses, then trivially
(Φ, k, t) is a YES instance of CC-Max-SAT. For the second condition, there
exists an assignment which assigns v to true in case d+Φ (v) ≥ t, then the variable
v alone can satisfy at least t clauses in cla(Φ).

When none of the Reduction Rules 1 and 2 are applicable, we obtain the
following observation.

Observation 1 Consider a minimum weight assignment β of var(Φ) that satis-
fies at least t clauses in cla(Φ). Then the number of clauses satisfied by β is at
most 2t.

Proof. As Reduction Rule 2 is no longer applicable β is not an all zero assign-
ment. Let u be a variable that has been assigned true value by β. Now consider
another assignment β′, where for every u′ ∈ var(Φ), u′ ̸= u, β′(u′) = β(u′), and
β′(u) is false. As Reduction Rule 2 is no longer applicable, β′ is also not an all
zero assignment. Also, β′ satisfies strictly less than t clauses, as otherwise it con-
tradicts that β is a minimum weight assignment. Moreover, as Reduction Rule 2
is no longer applicable, d+Φ (u) < t and d−Φ (u) < t. Notice that the difference
between clauses satisfied by β and β′ is exactly the clauses where u appears.
The assignment β satisfies clauses where u appears positively, while β′ satisfies
clauses where u appears negatively. Above observations implies that β satisfies
at most t− d−Φ (u) + d+Φ (u) ≤ 2t clauses. ⊓⊔

Lemma 2. Consider a set Y ⊆ var(Φ). Let |claInt(Y )| = ℓ. If |Y | ≥ 2ℓ ·τ+1, for

some positive integer τ , then in polynomial time we can find sets Ŷpos, Ŷneg ⊆ Y

and a variable v̂ ∈ Y \ (Ŷpos ∪ Ŷneg) such that the following holds:

1. |Ŷpos| = |Ŷneg| =
τ
2 .
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2. Let Ŷ = Ŷpos ∪ Ŷneg ∪ {v̂}. For every pair of variables u, u′ ∈ Ŷ and every
clause C ∈ claInt(Y ), u appears in C positively (negatively) if and only if u′

appears in C positively (negatively).

3. For every variable u ∈ Ŷpos, d
+
Φ (v̂) ≤ d+Φ (u).

4. For every variable u ∈ Ŷneg, d
−
Φ (v̂) ≤ d−Φ (u).

Proof. Let claInt(Y ) = {C1, · · · , Cℓ}. For each u ∈ Y , we define a string Γu

on {0, 1} of length ℓ by setting i-th bit of Γu as 1 (0) if u appears as positively
(negatively) in Ci. By simple combinatorial arguments, we have that the number
of different Γ strings that we can obtain are at most 2ℓ. Since |Y | ≥ 2ℓ · τ +1, by
pigeonhole principle there exists a set Y ′ ⊆ Y of size at least τ +1 such that for
every pair u, u′ of variables in Y ′, Γu = Γu′ . Also for every clause C ∈ claInt(Y ),
u appears in C positively (negatively) if and only if u′ appears in C positively

(negatively). Now we obtain Ŷpos and Ŷneg from Y ′.

We let Ŷpos be a subset of Y ′ of size τ
2 such that for every u ∈ Ŷpos and every

u′ ∈ Y ′ \ Ŷpos, d
+
Φ (u

′) ≤ d+Φ (u). We let Ŷneg be a subset of Y ′ of size τ
2 such that

for every u ∈ Ŷneg and every u′ ∈ Y ′ \ Ŷneg, d
−
Φ (u

′) ≤ d−Φ (u), that is, Ŷpos is the

set of first τ
2 variables in Y ′ when sorted by their positive degrees. Similarly Ŷneg

is the set of first τ
2 variables in Y ′ when sorted by their negative degrees.

Observe that since |Ŷpos|+|Ŷneg| < |Y ′|, therefore Y ′\(Ŷpos∪Ŷneg) ̸= ∅. We let

v̂ be an arbitrary variable in Y ′ \ (Ŷpos ∪ Ŷneg). By the above description, clearly

v̂, Ŷpos, and Ŷneg satisfies the properties stated in lemma and are computed in
polynomial time. ⊓⊔

Next, we will describe reduction rules that help us bound the size of clauses
in cla(Φ). For each p ∈ [d − 1], we introduce Reduction Rule 3.p. We apply
Reduction Rule 3.p in the increasing order of p. That is, first apply Reduction
Rule 3.1 exhaustively, and for each p ∈ [d − 1] \ {1}, apply Reduction Rule 3.p
only if Reduction Rule 3.(p − 1) has been applied exhaustively. We apply our
reduction rule on a “large” subset of var(Φ). To quantify “large” we introduce the
following definition.

Definition 2. For each p ∈ [d− 1], we define an integer zp as follows:

– If p = 1, then z1 = 2d+1 · (t(d− 1) + 1), and
– zp = 2d−p+2 · (t · zp−1 + 1), otherwise.

The following observation will be helpful to bound the size of our kernel.

Observation 2 zd−1 ≤ 4d
2

(d · td + 1).

Reduction Rule 3. For each p ∈ [d − 1] we introduce Reduction Rule 3.p as
follows. If there exists Y ⊆ var(Φ) such that |claInt(Y )| = d−p and |Y | = zp+1.

Use Lemma 2 to find sets Ŷpos, Ŷneg ⊆ Y and a variable v̂ ∈ Y \ (Ŷpos ∪ Ŷneg)
which satisfies properties stated in Lemma 2. Remove v̂ from var(Φ) and return
the instance (Φ′, k, t). Here, Φ′ is the formula with variable set var(Φ) \ {v̂} and
clause set

⋃
C∈cla(Φ) C \ {v̂}.
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Clauses

Variables

Ŷ pos Ŷ neg v̂

claInt(Y )

Fig. 2. A visual representation of Reduction Rule 3

Lemma 3. Reduction Rule 3 is safe.

Proof. To show that the lemma holds, we will show that (Φ, k, t) is a YES instance
of CC-Max-SAT if and only if (Φ′, k, t) is a YES instance of CC-Max-SAT,
for each p ∈ [d− 1]. We prove the lemma by induction on p.
Base Case: p = 1. We have z1 = 2d+1 · (t(d − 1) + 1). By Lemma 2 we have

|Ŷpos| = |Ŷneg| = 2t(d − 1) + 2. In the forward direction suppose that (Φ, k, t) is
a YES instance of CC-Max-SAT and let β be its minimum weight assignment.
Let Cβ ⊆ cla(Φ) be the set of clauses satisfied by β and C̃β = Cβ \ claInt(Y ) be
the set of clauses satisfied by β but not in claInt(Y ). Observe the following:

1. By Observation 1, the number of clauses satisfied by β is at most 2t, that is
|Cβ | ≤ 2t.

2. Suppose that C ∈ C̃β . Then, since Φ is a Kd,d-free formula and |claInt(Y ) ∪
{C}| = d, we have |var(C) ∩ Y | ≤ d − 1. As otherwise the set of variables
var(C)∩ Y and set of clauses claInt(Y )∪ {C} will contradict Kd,d-free prop-
erty.

By (1) and (2) the set of variables in Y , that appear in clauses in the set C̃β is

bounded by 2t(d− 1). Hence the set of variables in Ŷpos and in Ŷneg, that appear

in clauses in the set C̃β is bounded by 2t(d− 1). That is |
⋃

C∈C̃β
var(C)∩ Ŷpos| ≤

2t(d− 1) and |
⋃

C∈C̃β
var(C) ∩ Ŷneg| ≤ 2t(d− 1).

Recall that |Ŷpos| = |Ŷneg| = 2t(d−1)+2. Therefore, there exists two variables

say w1, w2 ∈ Ŷpos such that w1, w2 do not appear in any clause in C̃β . Similarly,

there exists two variables say u1, u2 ∈ Ŷneg such that u1, u2 do not appear in
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any clause in C̃β . That is every clause that is satisfied by β and contains any of
w1, w2, u1, u2 is contained in claInt(Y ). This also implies that every clause that
is satisfied by any of the variables w1, w2, u1, u2 in assignment β, is contained in
claInt(Y ). Now consider the following cases:

Case 1: β(v̂) = 1. First we claim that w1 and w2 are both set to false by β.
Suppose for a contradiction that one of them say w1 is set to true, that is β(w1) =

1. By the properties of Ŷpos, and v̂ (See Lemma 2), in every clause C ∈ claInt(Y ),
either both v̂, w1 appear positively in C or both v̂, w1 appear negatively in C.
Further, since w1 can only satisfy clauses in claInt(Y ) by assignment β, we have
that w1 satisfies same set of clauses as v̂ in claInt(Y ). That is NΦ(w1) ∩ Cβ =
NΦ(v̂)∩Cβ . In this case, we can obtain another assignment of smaller weight by
setting w1 to false, which contradicts that β is a minimum weight assignment.
By similar arguments we can show that w2 is set to false by β.

Now we will construct an assignment β′ for variables var(Φ′) = var(Φ) \ {v̂},
by setting the value of w1 to true and we will show that β′ satisfies as many
clauses in Φ′ as satisfied by β in Φ. We define β′ formally as follows: β′(w1) = 1,
and for every u ∈ var(Φ)\{v̂, w1}, β

′(u) = β(u). Notice that Cβ comprises of the
following set of clauses satisfied by β (i) clauses that do not contain variables
v̂, w1, (ii) clauses that are in claInt(Y ) and that contains variable v̂ positively, (iii)
clauses that are in claInt(Y ) and that contains variable w1 negatively, and lastly
(iv) clauses that are not in claInt(Y ) and that contains variable v̂ positively.

Clearly cla(Φ′) contains every clause in the set (i) and they are also satisfied
by β′. For every clause C ∈ cla(Φ) that contain v̂, we have a clause C \ {v̂} in
cla(Φ′). If C is a clause in the set (ii), then C contains v̂ positively and thus
also contains w1 positively. Therefore, C \ {v̂} is satisfied by β′. Hence for every
clause in the set (ii), we have a clause in cla(Φ′) satisfied by w1 in β′. Next,
consider a clause C in the set (iii), then C contains w1 negatively and thus also
contains w2 negatively. As argued before β(w2) = β′(w2) = 0. Therefore, C \{v̂}
is satisfied by w2 in β′. Hence for every clause in set (iii), we have a clause in
cla(Φ′) satisfied by β′.

Now we are only remaining to show that β′ compensate for the clauses in
the set (iv) for Φ′. For that purpose recall that we have d+Φ (v̂) ≤ d+Φ (w1), by the

properties of Ŷpos, and v̂ (See Lemma 2). Therefore |N+
Φ (w1)| ≥ |N+

Φ (v̂)|, and
hence |N+

Φ′(w1)| ≥ |N+
Φ (v̂)|. Also (N+

Φ (w1) ∩ Cβ) \ claInt(Y ) = ∅. That is, the
clauses which contains w1 positively and are not in claInt(Y ) were not satisfied
by β. As β′ sets w1 to true, now clauses in N+

Φ′(w1) are satisfied by β′. We obtain
the following:

|(N+
Φ (w1)∩ Cβ)| − |N+

Φ (w1)∩ claInt(Y )| ≥ |(N+
Φ (v̂)∩ Cβ)| − |N+

Φ (v̂)∩ claInt(Y )|.

|(N+
Φ′(w1)∩Cβ′)| − |N+

Φ (w1)∩ claInt(Y )| ≥ |(N+
Φ (v̂)∩Cβ)| − |N+

Φ (v̂)∩ claInt(Y )|.

All the above discussion concludes that the number of clauses satisfied by β′ in
Φ′ are at least the number of clauses satisfied by β in Φ. Hence, (Φ′, k, t) is a
YES instance of CC-Max-SAT.

Case 2: β(v̂) = 0. We can show that at least one of u1, u2 is set to false by
β, by using analogous arguments that were used in Case 1 to show that when
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v̂ is set to true then both w1 and w2 are set to false. Without loss of generality
suppose that u1 is set to false by β. We will show that assignment β restricted
to var(Φ′) = var(Φ)\{v̂} satisfies as many clauses in Φ′ as satisfied by β in Φ. We
define β′ as β restricted to var(Φ′) formally as follows: for every u ∈ var(Φ)\{v̂},
β′(u) = β(u). Notice that Cβ comprises of the following set of clauses satisfied by
β (i) clauses that do contain variable v̂, (ii) clauses that are in claInt(Y ) and that
contains variable v̂ negatively, and lastly (iii) clauses that are not in claInt(Y )
and that contains variable v̂ negatively.

Clearly cla(Φ′) contains every clause in the set (i) and they are also satisfied
by β′. For every clause C ∈ cla(Φ) that contain v̂, we have a clause C \ {v̂} in
cla(Φ′). If C is a clause in the set (ii), then C contains v̂ negatively and thus
also contains u1 negatively. Therefore, C \ {v̂} is satisfied by β′. Hence for every
clause in the set (ii), we have a clause in cla(Φ′) satisfied by u1 in β′. Now we are
only remaining to consider the clauses in the set (iii). That is the set of clauses
that are not in claInt(Y ) and contains v̂ negatively. We claim that there is no
clause in set (iii), that is N−

Φ (v̂) \ claInt(Y ) = ∅.
To prove the claim first recall that we have d−Φ (v̂) ≤ d−Φ (u1), by the properties

of Ŷneg, and v̂ (See Lemma 2). Therefore |N−
Φ (u1)| ≥ |N−

Φ (v)|. Also N−
Φ (u1) ∩

claInt(Y ) = N−
Φ (v̂)∩claInt(Y ). Further, (N−

Φ (u1)∩Cβ)\claInt(Y ) = ∅. Therefore,
N−

Φ (u1)\claInt(Y ) = ∅, as u1 is set to false by β. If (N−
Φ (v̂)∩Cβ)\claInt(Y ) ̸= ∅,

then N−
Φ (v̂)\claInt(Y ) ̸= ∅. Therefore |N−

Φ (u1)\claInt(Y )| < |N−
Φ (v̂)\claInt(Y )|.

Hence, the following holds:

d−Φ (u1) = |(N−
Φ (u1) ∩ claInt(Y ))|+ |(N−

Φ (u1) ∩ claInt(Y ))|,

d−Φ (u1) = |(N−
Φ (u1) ∩ claInt(Y ))|+ |(N−

Φ (v̂) ∩ claInt(Y ))|,

d−Φ (u1) < |(N−
Φ (v̂) ∩ claInt(Y ))|+ |(N−

Φ (v̂) ∩ claInt(Y ))|.

Thus d−Φ (u1) < d−Φ (v̂), a contradiction. All the above discussion concludes
that the number of clauses satisfied by β′ in Φ′ are at least the number of
clauses satisfied by β in Φ. Hence, (Φ′, k, t) is a YES instance of CC-Max-SAT.

It is easy to see that in the backward direction if (Φ′, k, t) is a YES instance
of CC-Max-SAT then (Φ, k, t) is a YES instance of CC-Max-SAT. As any
assignment β′ of var(Φ′) can be extended to an assignment β of Φ by setting v̂
to false and assigning every variable u ̸= v̂ as β(u). By the definition of Φ′, β
satisfies as many clauses as β′ and weight of β is equal to weight of β′.
Induction Hypothesis: Assume that Reduction Rule 3.p is safe for all p < q,
q ∈ [d− 2].
Inductive Case: p = q. We have zp = 2d−p+2 ·(t ·zp−1+1)+1. By Lemma 2 we

have |Ŷpos| = |Ŷneg| = 2t · zp−1+2. In the forward direction suppose that (Φ, k, t)
is a YES instance of CC-Max-SAT and let β be its minimum weight assignment.
Let Cβ ⊆ cla(Φ) be the set of clauses satisfied by β and C̃β = Cβ \ claInt(Y ) be
the set of clauses satisfied by β but not in claInt(Y ). Observe the following:

1. By Observation 1, the number of clauses satisfied by β is at most 2t, that is
|Cβ | ≤ 2t.
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2. Suppose that C ∈ C̃β . Then, since Reduction Rule 3.(p−1) is not applicable
and |claInt(Y )∪{C}| = d− p+1 = d− (p− 1), we have |var(C)∩Y | ≤ zp−1.
As otherwise the set of variables var(C)∩Y and set of clause claInt(Y )∪{C}
will contradict that Reduction Rule 3.(p− 1) is not applicable.

By (1) and (2) the number of variables in Y , that appear in clauses in the set

C̃β is bounded by 2t·zp−1. Hence the number of variables in Ŷpos and in Ŷneg, that

appear in clauses in the set C̃β is bounded by 2t · zp−1. That is |
⋃

C∈C̃β
var(C)∩

Ŷpos| ≤ 2t · zp−1 and |
⋃

C∈C̃β
var(C) ∩ Ŷneg| ≤ 2t · zp−1.

Recall that |Ŷpos| = |Ŷneg| = 2t ·zp−1+2. Therefore, there exists two variables

say w1, w2 ∈ Ŷpos such that w1, w2 do not appear in any clause in C̃β . Similarly,

there exists two variables say u1, u2 ∈ Ŷneg such that u1, u2 do not appear in

any clause in C̃β . Now by analogous arguments as in Case 1 and Case 2 of the
base case, it follows that (Φ′, k, t) is a YES instance of CC-Max-SAT. Backward
direction also follows similar to the base case. This completes the proof. ⊓⊔

When Reduction Rule 3 is no longer applicable, we have that every set Y ⊆
var(Φ) such that |claInt(Y )| ≥ d − (d − 1) = 1, satisfies |Y | ≤ zd−1. In other
words for every clause C ∈ cla(Φ), |var(C)| ≤ zd−1. We record this observation
in the following.

Observation 3 When Reduction Rules 1-3 are not applicable, then for every
clause C ∈ cla(Φ), |var(C)| ≤ zd−1.

For stating our next reduction rule, we define two sets V̂pos, V̂neg ⊆ var(Φ)
of size min{n, zd−1 + 1} with the following properties: (1) For every variable

u ∈ V̂pos and every variable u′ ∈ var(Φ) \ V̂pos, d
+
Φ (u) ≥ d+Φ (u

′). (2) For every

variable u ∈ V̂neg and every variable u′ ∈ var(Φ) \ V̂neg , d−Φ (u) ≥ d−Φ (u
′). Clearly,

if var(Φ) ≥ 2t · zd−1 + 3, then by pigeonhole principle var(Φ) \ (V̂pos ∪ V̂neg) ̸= ∅.

Reduction Rule 4. If |var(Φ)| ≥ 2t ·zd−1+3, then let u ∈ var(Φ)\(V̂pos∪ V̂neg).
Remove u from var(Φ) and return the instance (Φ′, k, t). Here Φ′ is the formula
with variable set var(Φ) \ {u} and clause set

⋃
C∈cla(Φ) C \ {u}.

Lemma 4. Reduction Rule 4 is safe.

Proof. In the forward direction suppose that (Φ, k, t) is a YES instance of CC-

Max-SAT. Let β be its minimum weight assignment and let X be the set of
clauses satisfied by β. Since Reduction Rule 2 is not applicable β is not an all
zero assignment.

(1) By Observation 1, |X| ≤ 2t.
(2)By Observation 3, for every C ∈ cla(Φ), |var(C)| ≤ zd−1.
Let Y =

⋃
C∈X var(C), then by (1) and (2), |Y | ≤ 2t · zd−1. Therefore, there

exists a variable say w1 ∈ V̂pos and there exists a variable say w2 ∈ V̂neg such that
w1, w2 /∈ Y and hence, NΦ(w1) ∩X = NΦ(w2) ∩X = ∅. Since β is a minimum
weight assignment, β(w1) = β(w2) = 0.
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Case 1: β(u) = 1. We obtain another assignment by setting the value of w1

to true. That is we construct a new assignment β′ of var(Φ′) = var(Φ) \ {u} as
follows: β′(w1) = 1, and for every v ∈ var(Φ) \ {u,w1}, β

′(v) = β(v). We have

d+Φ (u) ≤ d+Φ (w1) (by the definition of V̂pos). Let X ′ = (X \ N+
Φ (u)) ∪ N+

Φ (w1)
and X ′′ =

⋃
C∈X′ C \ {u}. Then observe that X ′′ is the set of clauses satisfied

by β′. Also |X ′′| = |X ′| ≥ |X| ≥ t. This implies that β′ is a solution to (Φ′, k, t)
of CC-Max-SAT.

Case 2: β(u) = 0. We have d−Φ (u) ≤ d−Φ (w2) (by the definition of V̂neg) and
N−

Φ (w2)∩X = ∅. As both u,w2 are set to false by β, N−
Φ (w2)\X = N−

Φ (u)\X =
∅. Therefore N−

Φ (u) ∩X = ∅, as otherwise |N−
Φ (u) ∩X| > |N−

Φ (w2) ∩X| which
contradicts d−Φ (u) ≤ d−Φ (w2) . Then observe that X ′′ is the set of clauses satisfied
by β restricted to var(Φ)\{u} = var(Φ′). Also |X ′′| = |X ′| = |X| ≥ t. This implies
that assignment β restricted to var(Φ′) is a solution to (Φ′, k, t) of CC-Max-

SAT.
It is easy to see that in the backward direction if (Φ′, k, t) is a YES instance

of CC-Max-SAT then (Φ, k, t) is a YES instance of CC-Max-SAT. As any
assignment β′ of var(Φ) can be extended to an assignment β of Φ by setting u
to false and assigning every variable v ̸= u as β(v). Observe that β satisfies as
many clauses as β′ and weight of β is equal to weight of β′. This completes the
proof. ⊓⊔

Observe that Reduction Rules 1,2 and 4 can be applied in polynomial time.

Reduction Rule 3 can be applied in nO(4d
2

) time. Each of our reduction rule is
applicable only polynomial many times. Hence, the kernelization algorithm runs
in polynomial time. Each of our reduction rule is safe. When Reduction Rules
1-4 are no longer applicable, the size of the set var(Φ) is bounded by 2t(zd−1)+2,
and number of clauses a variable appear in is bounded by 2t, and there are no
variables which do not appear in any clause. Therefore by using Observation 1,
the number of variables and clauses in Φ is bounded by O(d4d

2+1td+1).

Theorem 2. CC-Max-SAT in Kd,d-free formulae admits a kernel of size

O(d4d
2

td+1).
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