
This is a repository copy of Improved FPT Algorithms for Deletion to Forest-Like
Structures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208303/

Version: Accepted Version

Article:

Gowda, K.N., Lonkar, A., Panolan, F. orcid.org/0000-0001-6213-8687 et al. (2 more
authors) (2024) Improved FPT Algorithms for Deletion to Forest-Like Structures.
Algorithmica, 86. pp. 1657-1699. ISSN 0178-4617

https://doi.org/10.1007/s00453-023-01206-z

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Improved FPT Algorithms for Deletion to

Forest-like Structures

Kishen N Gowda1*, Aditya Lonkar2, Fahad Panolan3,

Vraj Patel4, Saket Saurabh5

1*University of Maryland, College Park, US.
2IIT Madras, India.

3School of Computing, University of Leeds, UK.
4ETH Zürich, Switzerland.

5Institute of Mathematical Sciences, Chennai, India.

*Corresponding author(s). E-mail(s): kishen19@cs.umd.edu;
Contributing authors: laditya1235@gmail.com; F.Panolan@leeds.ac.uk;

vpatel@ethz.ch; saket@imsc.res.in;

Abstract

The Feedback Vertex Set problem is undoubtedly one of the most well-studied
problems in Parameterized Complexity. In this problem, given an undirected
graph G and a non-negative integer k, the objective is to test whether there
exists a subset S ⊆ V (G) of size at most k such that G − S is a forest. After
a long line of improvement, recently, Li and Nederlof [TALG, 2022] designed a
randomized algorithm for the problem running in time O

?(2.7k)∗. In the Param-
eterized Complexity literature, several problems around Feedback Vertex Set
have been studied. Some of these include Independent Feedback Vertex Set
(where the set S should be an independent set in G), Almost Forest Deletion
and Pseudoforest Deletion. In Pseudoforest Deletion, each connected
component in G − S has at most one cycle in it. However, in Almost Forest
Deletion, the input is a graph G and non-negative integers k, ` ∈ N, and the
objective is to test whether there exists a vertex subset S of size at most k, such
that G − S is ` edges away from a forest. In this paper, using the methodology
of Li and Nederlof [TALG, 2022], we obtain the current fastest algorithms for all
these problems. In particular we obtain the following randomized algorithms.

1. Independent Feedback Vertex Set can be solved in time O?(2.7k).
2. Pseudo Forest Deletion can be solved in time O?(2.85k).

∗Polynomial dependency on the input size n is hidden in O
? notation.

1

Manuscript Click here to access/download;Manuscript;sn-article.tex

Click here to view linked References

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www2.cloud.editorialmanager.com/algo/download.aspx?id=158047&guid=d515d575-3ed4-4d28-a0df-ec70aec74625&scheme=1
https://www2.cloud.editorialmanager.com/algo/download.aspx?id=158047&guid=d515d575-3ed4-4d28-a0df-ec70aec74625&scheme=1
https://www2.cloud.editorialmanager.com/algo/viewRCResults.aspx?pdf=1&docID=6943&rev=1&fileID=158047&msid=44467bc8-8cb2-4c92-886c-a3d1d710b7d9

3. Almost Forest Deletion can be solved in time O?(min{2.85k · 8.54`, 2.7k ·
36.61`, 3k · 1.78`}).

Keywords: Parameterized Complexity, Independent Feedback Vertex Set,
PseudoForest, Almost Forest, Cut and Count, Treewidth

AMS Classification: 68Q27 , 05C85 , 68W20

1 Introduction

Feedback Vertex Set (FVS) is a classical NP-complete problem and has been
extensively studied in all subfields of algorithms and complexity. In this problem we
are given an undirected graph G and a non-negative integer k as input, and the goal
is to check whether there exists a subset S ✓ V (G) (called feedback vertex set or in
short fvs) of size at most k such that G � S is a forest. This problem originated in
combinatorial circuit design and found its way into diverse applications such as dead-
lock prevention in operating systems, constraint satisfaction and Bayesian inference
in artificial intelligence. We refer to the survey by Festa et al. [1] for further details on
the algorithmic study of feedback set problems in a variety of areas like approximation
algorithms, linear programming and polyhedral combinatorics.

FVS has played a pivotal role in the development of the field of Parameter-
ized Complexity. The earliest known FPT algorithms for FVS go back to the late
80s and the early 90s [2, 3] and used the seminal Graph Minor Theory of Robert-
son and Seymour. These algorithms are quite impractical because of large hidden
constants in the run-time expressions. Raman et al. [4] designed an algorithm with
running time O?(2O(k log log k)) which basically branched on short cycles in a bounded
search tree approach. For FVS, the first deterministic O?(ck) algorithm was designed
only in 2005; independently by Dehne et al. [5] and Guo et al. [6]. It is impor-
tant to note here that a randomized algorithm for FVS with running time O?(4k)
was known in as early as 1999 [7]. The deterministic algorithms led to the race of
improving the base of the exponent for FVS algorithms and several algorithms [8–
14], both deterministic and randomized, have been designed. Until recently, the best
known deterministic algorithm for FVS ran in time O?(3.619k) [13], while the Cut
& Count technique by Cygan et al. [11] gave the best known randomized algorithm
running in time O?(3k). However, both these algorithms have been improved; Iwata
and Kobayashi [12] designed the fastest known deterministic algorithm with running
time O?(3.460k) and Li and Nederlof [14] designed the fastest known randomized
algorithm with running time O?(2.7k). The success on FVS has led to the study of
many variants of FVS in literature such as Connected FVS [11, 15], Independent
FVS [16–18], Simultaneous FVS [19, 20], Subset FVS [21–25], Pseudofor-
est Deletion [26, 27], Generalized Pseudoforest Deletion [27], and Almost
Forest Deletion [28, 29].

2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1.1 Our Problems, Results and Methods

In this paper we study three problems around FVS, namely, Independent FVS,
Almost Forest Deletion, and Pseudoforest Deletion. We first define the
generalizations of forests that are considered in these problems. We say that a graph
F is an `-forest, if we can delete at most ` edges from F to get a forest. That is, F
is at most ` edges away from being a forest. On the other hand, a pseudoforest is an
undirected graph, in which every connected component has at most one cycle. Now,
we are ready to define our problems.

Independent FVS (IFVS): Given a graph G and a non-negative integer k, does
there exist a fvs S of size at most k, that is also an independent set in G?

Almost Forest Deletion (AFD): Given a graph G and two non-negative integers
k and `, does there exist a vertex subset S of size at most k such that G � S is an
`-forest?

Pseudoforest Deletion (PDS): Given a graph G and a non-negative integer k,
does there exist a vertex subset S of size at most k such that G�S is a pseudoforest?

Given an instance of FVS, by subdividing every edge we get an instance of Inde-
pendent FVS, which is a reduction from FVS to Independent FVS leaving k
unchanged showing that it generalizes FVS. On the other hand setting ` = 0 in
Almost Forest Deletion results in FVS. The best known algorithms for Inde-
pendent FVS, Almost Forest Deletion, and Pseudoforest Deletion are
O?(3.619k) [17], O?(5k4`) [29], and O?(3k) [26], respectively. Our main objective is to
improve over these running times for the corresponding problems. Our paper can be
briefly summarized as follows.

Motivated by the methodology developed by Li and Nederlof [14] for FVS, we
relook at several problems around FVS, such as Independent FVS, Almost
Forest Deletion, and Pseudoforest Deletion, and design the current
fastest randomized algorithm for these problems. Our results show that the
method of Li and Nederlof [14] is extremely broad and should be applicable to
more problems. Table 1 presents a summary of new and existing results for the
problems that we discuss.

To achieve improvements and tackle Independent FVS and Almost Forest
Deletion at once, we propose a more generalized version of the Almost Forest
Deletion problem.

Restricted Independent Almost Forest Deletion (RIAFD)
Parameter(s): k and `

Input: A graph G, a set R ✓ V (G), and integers k and `

Question: Does there exist a set S ✓ V (G) of size at most k that
does not contain any element from R, that is also an independent
set in G, and G� S is an `-forest?

3

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Problem Running Time Deterministic? Reference

FVS O?(3.460k) Yes Iwata and Kobayashi [12]

FVS O?(2.7k) No Li and Nederlof [14]

IFVS O?(3.619k) Yes Li and Pilipczuk [17]

IFVS O?(2.7k) No this paper

AFD O?(5k4`) Yes Lin et al. [29]

AFD O?(2.85k · 8.54`) No this paper

AFD O?(2.7k · 36.61`) No this paper

AFD O?(3k · 1.78`) No this paper

PDS O?(3k) Yes Bodlaender et al. [26]

PDS O?(2.85k) No this paper

Table 1 Summary of existing and new results

Setting ` = 0, R = ∅ we get the Independent FVS problem. A simple polynomial
time reduction, where we subdivide every edge and add all the subdivision vertices to
R, yields an instance of RIAFD, given an instance of Almost Forest Deletion.
The reduction leaves ` and k unchanged.

To describe our results, we first summarize the method of Li and Nederlof [14](for
FVS) which we adopt accordingly. The main observation guiding the method is the
fact that after doing some simple preprocessing on the graph, we can ensure that a
large fraction of edges are incident on every solution to the problem. This leads to two-
step algorithms, one for the dense case and the other for the sparse case. In particular,
if we are aiming for an algorithm with running time O?(↵k), then we do as follows.

Dense Case: In this case, the number of edges incident to any FVS of size k is
superlinear (in k), and we select a vertex into our solution with probability at least 1

↵
.

Sparse Case: Once the dense case is done, we know that we have selected vertices,
say k1, with probability (1

↵
)k1 . Now, we know that the number of edges incident to

an FVS of the graph is O(k) and the existence of solution S of size at most k, implies
that the input graph has treewidth at most k + 1. Now, using this fact and the fact
that deleting the solution leaves a graph of constant treewidth, we can actually show
that graph has treewidth (1�Ω(1))k = �k (in [14] as well as our paper, this is referred
to as the small separator lemma). This implies that if we have an algorithm on graphs
of treewidth (tw) with running time �tw, such that �� ↵, then we get the desired
algorithm with running time O?(↵k).

So a natural approach for our problems which are parameterized by solution size
is to devise an algorithm using another algorithm parameterized by treewidth with
an appropriate base in the exponent, along with probabilistic reductions with a good
success probability. However, to get the best out of methods of Li and Nederlof [14], it
is important to have an algorithm parameterized by treewidth that is based on Cut &
Count method [11]. However, for all the problems we consider, only non Cut & Count
algorithms were known. Thus, our first result is as follows.

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Theorem 1.1. There exists an O?
�

3tw
�

time Monte-Carlo algorithm that given a
tree decomposition of the input graph of width tw solves the following problems:

1. Restricted-Independent Almost Forest Deletion in exponential
space.

2. Pseudoforest Deletion in exponential space.

Note that a yes-instance of RIAFD has treewidth k + ` + 1. Thus, as our first
result, we design a randomized algorithm based on Theorem 1.1 and iterative com-
pression with running time O?(3k ·3`) for RIAFD. This yields O?(3k) and O?(3k ·3`)
running time algorithms for Independent FVS and Almost Forest Deletion,
respectively, which take polynomial space (though, these do not appear in literature).
Next, we devise probabilistic reduction rules to implement the first step in the method
of Li and Nederlof [14]. We analyze these rules by modifying the analysis of their
lemmas to get an O?(2.85k · 8.54`) time algorithm that takes polynomial space, and
an O?(2.7k · 36.61`) time algorithm that takes exponential space for solving RIAFD.
All these algorithms, while progressively improving the dependence on k slightly, sig-
nificantly worsen the dependence on `. Therefore, to obtain an algorithm with an
improved dependence on `, we describe a procedure to construct a tree decomposition
of treewidth at most k + 3

5.769` + O(log(n)) given a solution of size k to an instance
of RIAFD. This procedure, when combined with an iterative compression routine,
yields an O?(3k · 1.78`) algorithm for RIAFD. This brings us to the following result.
Theorem 1.2. There exist Monte-Carlo algorithms that solves the RIAFD problem
in

1. O?(3k · 3`) time and polynomial space.
2. O?(2.85k · 8.54`) time and polynomial space.
3. O?(2.7k · 36.61`) time and exponential space.
4. O?(3k · 1.78`) time and exponential space.

As a corollary to Theorem 1.2, we get the following result about Independent
FVS.
Theorem 1.3. There exist Monte-Carlo algorithms that solves the Independent
FVS in:

1. O?(3tw) time, given a tree decomposition of width tw.
2. O?(2.85k) time and polynomial space.
3. O?(2.7k) time and exponential space.

Although we have a deterministic O?(3k) algorithm for Pseudoforest dele-
tion given by Bodlaender et al. [26] which runs in exponential space, to make use of
the techniques from [14] we develop our Cut & Count algorithm which has the same
asymptotic running time. However, even with our Cut & Count algorithm, we can-
not make full use of the methods of Li and Nederlof [14] and only get the following
improvement.
Theorem 1.4. There exists a Monte-Carlo algorithm that solves Pseudoforest
Deletion in O?(2.85k) time and polynomial space.

5

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2 Preliminaries

For a set A,
�

A
·,·,·

�

denotes the set of all partitions of A into three subsets. Let G =

(V,E) be an undirected graph, where V is the set of vertices and E is the set of edges.
We also denote V (G) to be the vertex set and E(G) to be the edge set of graph G.
Also, |V | = n and |E| = m. For a vertex subset S ✓ V (G), G[S] denotes the subgraph
induced on the vertex set S, and E[S] denotes the set of edges in G[S]. For S, T ✓ V ,
E[S, T] denotes the edges intersecting both S and T , i.e. the “cut edges”. For a vertex
subset V 0, the graph G� V 0 denotes the graph G[V \ V 0]. For an edge subset E0, the
graph G�E0 denotes the graph G0 = (V,E \E0). For a vertex v 2 V , deg(v) denotes
the degree of the vertex, i.e., the number of edges incident on v. For a vertex subset
S ✓ V (G), deg(S) =

P

v2S deg(v). Given an edge e = (u, v), the subdivision of the
edge e is the addition of a new vertex between u and v, i.e., the edge e is replaced
by two edges (u,w) and (w, v), where w is the newly added vertex. Here, w is called
a “subdivision vertex”. Now, we make note of the following lemma on the number of
connected components of a forest.
Lemma 2.1 ([11]). A graph with n vertices and m edges is a forest iff it has at most
n�m connected components.
Definition 2.2 ([11]). A tree decomposition of a graph G = (V,E) is a pair T =
({Bx | x 2 I}, T = (I, F)), where T is a tree and {Bx | x 2 I} is a collection of
subsets (called bags) of V such that,

1.
S

x2I Bx = V
2. For all (u, v) 2 E there is an x 2 I with {u, v} ✓ Bx

3. For all v 2 V , the set of nodes {x 2 I | v 2 Bx} forms a connected subtree in
T = (I, F).

The width of the tree decomposition T is maxx2I |Bx| � 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all tree decompositions of G.

We sometimes abuse notation and use tw(T) to denote the width of the tree
decomposition T. For the definition above, if there are parallel edges or self loops we
can just ignore them, i.e., a tree decomposition of a graph with parallel edges and
self loops is just the tree decomposition of the underlying simple graph (obtained by
keeping only one set of parallel edges and removing all self loops).

There is also the notion of a nice tree decomposition which is used in this paper.
In literature, there are a few variants of this notion that differ in details. We use the
one described by Cygan et al. [11], with introduce edge nodes and root bag and leaf
bags of size zero. A nice tree decomposition is a tree decomposition ({Bx | x 2 I},
T = (I, F)) where T is a rooted tree and the nodes are one of the following five types.
With each bag in the tree decomposition, we also associate a subgraph of G; the
subgraph associated with bag x is denoted Gx = (Vx, Ex). We give each type together
with how the corresponding subgraph is formed.

• Leaf nodes x. x is a leaf of T ; |Bx| = 0 and Gx = (∅,∅) is the empty graph.
• Introduce vertex nodes x. x has one child, say y. There is a vertex v with Bx =
By[{v}, v /2 By and Gx = (Vy[{v}, Ey), i.e., Gx is obtained by adding an isolated
vertex v to Gy.

6

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

• Introduce edge nodes x. x has one child, say y. There are two vertices v, w 2 Bx,
Bx = By and Gx = (Vy, Ey [{(v, w)}), i.e., Gx is obtained from Gy by adding
an edge between these two vertices in Bx. If we have parallel edges, we have one
introduce edge node for each parallel edge. A self loop with endpoint v is handled in
the same way, i.e., there is an introduce edge node with v 2 Bx and Gx is obtained
from Gy by adding the self loop on v.

• Forget vertex nodes x. x has one child, say y. There is a vertex v such that
Bx = By \ {v} and Gx and Gy are the same graph.

• Join nodes x. x has two children, say y and z. Bx = By = Bz, Vy \ Vz = Bx and
Ey \ Ez = ∅. Gx = (Vy [Vz, Ey [Ez), i.e., Gx is the union of Gy and Gz, where
the vertex set Bx is the intersection of the vertex sets of these two graphs.

For the Cut & Count algorithms, the following lemma is essential. For a family of
sets F over a universe U , we say that a weight function w : U 7! N isolates F , if there
is a unique set S in F with minimum weight w(S). Here, w(S) =

P

x2S w(x).
Lemma 2.3. ([30, Isolation Lemma]) Let F ✓ 2U be a non-empty set family over
a universe U . For each u 2 U , choose a weight ! 2 {1, 2, . . .W} uniformly and
independently at random. Then Pr[! isolates F] � 1� |U |/W .

In the Cut & Count algorithms and proofs, for a function f : S ! T , given a set R,
f |R refers to the function f with its domain restricted to R. Formally, f |R is a function
from R to a subset of T such that f |R(r) = f(r) for all r 2 R. Given values u and v,
f [u! v] refers to a function with u in domain and v in range with all mappings from
S to T preserved and u mapped to v. Formally, f [u ! v] is a function from S [{u}
to T [{v} such that f [u ! v](s) = f(s) for all s 2 S and f [u ! v](u) = v. Also, we
define f�1(s) := {x|x 2 S ^ f(x) = s}. We use the Iverson’s bracket notation [b] for a
Boolean predicate [b] which denotes 1 if b is True and 0 otherwise.

In this paper, we will be dealing with randomized algorithms with one-sided
error-probability, i.e. only false negatives are possible. The success-probability of an
algorithm is the probability that the algorithm finds a solution, given that at least one
such solution exists. We define high-probability to be probability at least 1 � 1

2c|x| or

sometimes 1� 1
|x|c , where |x| is the input size and c is a constant. Given an algorithm

with constant success-probability, we can boost it to high-probability by performing
O?(1) independent trials. We cite the following folklore observation:
Lemma 2.4. ([14, Folklore]) If a problem can be solved with success probability 1

S
and in expected time T , and its solutions can be verified for correctness in polynomial
time, then it can also be solved in O?(S · T) time with high probability.

We will use the following notion of separations in a graph from [14]:
Definition 2.5. ([14, Simple Separator]) Given a graph G = (V,E), a partition

(A,B, S) 2
�

V (G)
·,·,·

�

of V is a (simple) separation if there are no edges between A and B.

Definition 2.6. ([14, Three-Way Separator]) Given a graph G = (V,E), a three-way
separator is a partition (S{1}, S{2}, S{3}, S{1,2}, S{1,3}, S{2,3}, S{1,2,3}) of V such that
there are no edges between any two sets SI , SJ whose sets I and J are disjoint.

A �-separator for a graph G = (V,E) is a set of vertices whose removal from G

leaves no connected component of size larger than |V |
�
, where � > 0 is some constant.

Thus, a �-separator is a balanced separator of the graph. More generally, one can

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

define a �-separator with respect to a weight function on the vertices. It is a well-
known fact that a �-separator of cardinality � exists for forests and can be computed
in polynomial time (for e.g., see Lemma 3.1 in [14]). We now give a method, which is
a simple extension to the aforementioned construction, to construct a �-separator of
a graph G given a tree decomposition of width tw.
Lemma 2.7. Given a graph G = (V,E) on n vertices with vertex weights !(v) and its
tree decomposition T of width tw, for any � > 0, we can delete a set S of �(tw + 1)

vertices so that every connected component of G � S has weight at most !(V)
�

, in
polynomial time.

Proof. Given a bag x of T, we define the weight of the subtree rooted at x (w(x)) to
be the sum of weights of vertices present in the set formed by union of all bags in the
subtree of x. Formally, w(x) :=

P

v2Vx

!(v). Start with an empty set S.

Exhaustively, select a bag x of maximal depth such that w(x) > !(V)
�

, then remove
the bag x and its subtree and add all vertices in Bx to the set S. Also, delete the
vertices in Bx from all other bags. Note that the maximality condition assures us that

the subtrees rooted at the children of x have total weight at most !(V)
�

each. Moreover,

by deleting the subtree rooted at x, we remove at least !(V)
�

weight, which can happen
at most � times. Since each bag has size at most tw+ 1, the total number of vertices
added to S is at most �(tw + 1).

To see how there are no connected components of weight more than !(V)
�

in G�S,

suppose that the tree decomposition T is reduced to the tree decomposition T
0 after

the above algorithm. Now, assume that a connected component C of weight more

than !(V)
�

exists in G � S. Then all of its vertices in their entirety must lie inside

T
0 (since all children of a deleted bag have weight at most !(V)/�). Now, take the

vertex of C which is at the least depth in T
0 and say it belongs to the bag c. Then,

all the members of its connected component have to appear in the subtree rooted at

c. Therefore, w(c) > !(V)
�

which would mean that this is not the terminal condition
for our algorithm.

From the description of the algorithm it is easy to see that it runs in polynomial
time.

In [14], the authors presented a method involving randomized reductions and small
separators to get faster randomized algorithms for FVS. It turns out that this method
can be generalized to work for a certain set of “vertex-deletion problems”. We will
now describe the basic structure of this method and will follow this outline wherever
this method is used in the rest of the paper.

Throughout this outline, assume that we are working on some vertex-deletion
problem P. Let G = (V,E) be the graph involved in a given instance of P. A valid
solution S ✓ V is a set of vertices of G which solves the given problem instance of P.

The method is divided into two cases: a dense case and a sparse case.

Dense Case. The algorithm goes into this case when for a given instance all the
existing solution sets are of high average degree. In formal terms, every set S ✓ V of

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

size k which is a valid solution of the given instance satisfies deg(S) > c · k, where
c = Θ(1).

To handle this case, a vertex v 2 V is sampled randomly based on a weight
function !(v) which depends on deg(v), deletes v and makes appropriate updates to
the parameters. In this paper, we use !(v) = deg(v)�2 for all the problems discussed.
This process acts like a probabilistic reduction rule for the problem as it may fail with
certain probability.

Sparse Case. The algorithm goes into this case when for a given instance there exists
a solution set which has low average degree. In formal terms, there exists a vertex
subset S ✓ V of size k which is a valid solution of the given instance and satisfies
deg(S) c · k, where c = O(1). Due to this reason, the number of edges in the given
graph can be bounded, thus the input graph G is sparse.

The proof for the small separator lemma in [14] doesn’t require the remaining
graph, i.e. the graph obtained by deleting the solution set, to be a forest only. As
long as there is a good �-separator of the graph G � S, the proof works. Lemma 2.7
helps to construct such a �-separator of size �(tw + 1) for a graph with given tree
decomposition of width tw.

The small separator helps to construct a tree decomposition of small width, given
a solution set with bounded degree. The idea suggested in [14] was to use iterative
compression techniques to construct a solution utilizing the small separator. This also
requires solving a bounded degree version of the problem, which can be done using
Cut & Count based algorithms. Specific details for each problem will be explained in
the corresponding sections in due course.

3 Restricted-Independent Almost Forest Deletion

In this section we give our algorithm for RIAFD and prove Theorem 1.2 and the
first part of Theorem 1.1. We first formally show that RIAFD is a generalization of
Almost Forest Deletion. For any instance G of Almost Forest Deletion,
subdivide the edges of G and add all the newly created subdivision vertices to R. The
parameters k and ` remain the same.
Lemma 3.1. Given an instance of Almost Forest Deletion (G = (V,E), k, `),
an equivalent instance of RIAFD, (G0(V 0, E0), k0, `0, R), can be constructed as follows:

1. Start with V 0 = V,E0 = ∅, R = ∅.
2. For each e = (u, v) 2 E, add a vertex ve to V 0 as well as to R. Add edge (u, ve)

and (ve, v) to E0 (Essentially, subdivide e).
3. k0 = k, `0 = `.

In this section, we present fast randomized algorithms for RIAFD. In Section 3.1
we present an O?(3tw) running time algorithm based on the Cut & Count paradigm.
Using this, we give an O?(3k3`) time and polynomial space algorithm in Section 3.2. In
Section 3.3, we further improve the dependency on k by using modified techniques from
[14] to get an algorithm with running time O?(2.85k8.54`) and polynomial space as
well as an algorithm with running time O?(2.7k36.61`) but exponential space. Finally,
in Section 3.4, we improve the dependency on ` by creating a tree decomposition of

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

width k+ 3
5.769`+O(log(`)) to get an algorithm with running time O?(3k1.78`) (with

help of the Cut & Count algorithm presented in Section 3.1). Henceforth, the term
riafd-set corresponds to a solution for given instance of RIAFD and the term afd-set

corresponds to a solution for given instance of AFD.

3.1 3tw Algorithm

We use the Cut & Count technique [11] to solve RIAFD in O?(3tw) time. First of all,
we require the following lemma,
Lemma 3.2. A graph G = (V,E) with n vertices and m edges and a non-negative
integer ` is an `-forest if and only if it has at most n�m+ ` connected components.

Proof. Forward Direction: By definition of an `-forest, if we are given an `-forest
with n vertices and m edges, there exists a set S of ` edges whose removal leaves a
forest with n vertices and m � ` edges. By Lemma 2.1, this remaining forest has at
most n� (m� `) connected components. Adding back the edges from the set S to the
remaining forest cannot result in an increase in the number of connected components.
Therefore, the `-forest also has at most n�m+ ` connected components.

Reverse Direction: We are given a graph G = (V,E) with n vertices, m edges
and at most n � m + ` connected components. Let the r connected components be
C1, C2, . . . Cr having n1, n2, . . . nr vertices each respectively. The subgraph consisting

of only the spanning trees of the connected components is a forest with
r
P

i=0

(ni � 1) =

n � r � n � (n � m + `) � m � ` edges. Let the edge set of the subgraph be E0.
Therefore, E \E0 of cardinality at most ` is the set of edges to be removed from G to
obtain a forest. Therefore, G is an `-forest.

Moving on to the Cut & Count Algorithm. Firstly, we define the set U = V . We
assume that we are given a weight function ! : U ! {1, . . . , N}, where N is some
fixed integer.
The Cut Part: For integers A,B,W we define:

1. RA,B
W to be the family of solution candidates: RA,B

W is the family of sets X, where
X ✓ V , |X| = A, G[X] contains exactly B edges, (V \X)\R = ∅, G[V \X] is an
independent set and !(V \X) = W ;

2. SA,B
W to be the set of solutions: the family of sets X, where X 2 RA,B

W and G[X] is
an `-forest;

3. CA,B
W to be the family of pairs

�

X, (XL, XR)
�

, where X 2 RA,B
W and (XL, XR) is a

consistent cut1 of G[X].

Observe that the graph G admits an Restricted Independent Almost Forest Deletion
set F ✓ V of size k if and only if there exist integers B,W such that the set Sn�k,B

W

is non-empty.
The Count Part: Note that for any non-negative integers A,B,W and setX 2 RA,B

W ,

there are 2cc(G[X]) cuts (XL, XR) such that
�

X, (XL, XR)
�

2 CA,B
W , where by cc(G[X])

we denote the number of connected components of G[X].

1A cut (V1, V2) of G = (V,E) is consistent if 8u 2 V1, v 2 V2, (u, v) /2 E

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Now we describe a procedure that, given a nice tree decomposition T, weight
function ! and integers A,B,W, t, computes |CA,B

W | modulo 2t using dynamic
programming.

For every bag x 2 T, integers 0 a |V |, 0 b < |V |, 0 w !(V) and
s 2 {F,L,R}Bx (called the coloring), define:

Rx(a, b, w) =
n

X
�

� X ✓ Vx ^ |X| = a ^ |Ex \ E[X]| = b ^

(Vx \X) \R = ∅ ^ |E[Vx \X]| = 0 ^ !(Vx \X) = W
o

Cx(a, b, w) =
n

�

X, (XL, XR)
�
�

� X 2 Rx(a, b, w) ^

�

X, (XL, XR)
�

is a consistently cut subgraph of Gx

o

Ax(a, b, w, s) =
�

�

�

n

�

X, (XL, XR)
�

2 Cx(a, b, w)
�

�

�

s(v) 2 {L,R} =) v 2 Xs(v)

�

^
�

s(v) = F =) v /2 X
�

o
�

�

�

The algorithm computes Ax(a, b, w, s) for all bags x 2 T in a bottom-up fashion for
all reasonable values of a, b, w and s. We now define the recurrence for Ax(a, b, w, s)
that is used by the dynamic programming algorithm. Let v denote the vertex intro-
duced (resp. forgotten) and contained in an introduce (resp. forget) vertex bag, (u, v)
the edge introduced in the introduce edge bag, and let y, z stand for the left and right
child of x 2 T. Assume all computations to be modulo 2t.

• Leaf bag:

Ax(0, 0, 0,∅) = 1

• Introduce vertex bag:

Ax(a, b, w, s [{(v,F)}) = [v /2 R] Ay(a, b, w � !(v), s)

Ax(a, b, w, s [{(v,L)}) = Ay(a� 1, b, w, s)

Ax(a, b, w, s [{(v,R)}) = Ay(a� 1, b, w, s)

• Introduce edge bag:

Ax(a, b, w, s) = [Z] ·Ay(a, b� [s(u) = s(v) 6= F], w, s)

where Z := (s(u) 6= s(v) () (s(u) = F _ s(v) = F))

• Forget bag:

Ax(a, b, c, w, s) =
X

↵2{F,L,R}

Ax(a, b, w, s[v ! ↵])

11

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

• Join bag:

Ax(a, b, w, s) =
X

a1+a2=a+|s�1({L,R})|
b1+b2=b

w1+w2=w+!(s�1({F}))

Ay(a1, b1, w1, s) ·Az(a2, b2, w2, s)

Let r 2 T be the root bag. Therefore, Ar(A,B,W,∅) ⌘ |CA,B
W | (mod 2t) which is

our required answer.
Lemma 3.3. Let G = (V,E) be a graph and d be an integer. Pick !0(v) 2 {1, . . . ,
2|V |} uniformly and independent at random for every v 2 V , and define !(v) :=
|V |2!0(v) + deg(v) and n = |V |. The following statements hold:

1. If for some integers m0, W = i|V |2 + d, we have that |Cn�k,m0

W | 6⌘ 0 (mod

2n�k�m0+l+1), then G has a riafd-set F of size k satisfying deg(F) = d.
2. If G has a riafd-set F of size k satisfying deg(F) = d, then with probability at least

1/2 for some m0, W = i|V |2 + d, we have that |Cn�k,m0

W | 6⌘ 0 (mod 2n�k�m0+`+1).

Proof. This proof is similar to the one for fvs in [14].

Item 1: Note that if |Cn�k,m0

W | 6⌘ 0 (mod 2n�k�m0+`+1), then there must be some
vertex subset F of size k such that F \ R = ∅, G[F] is an independent set and the

number of choices of XL, XR with (V \ F, (XL, XR)) 2 Cn�k,m0

W is not a multiple

of 2n�k�m0+`+1. Due to independency in choice of cuts for connected components of
G[V \F] on whether to put it in XL or XR, G[V \F] must have at most n�k�m0+ `
connected components. Therefore, by Lemma 3.2, G[V \F] must be an `-forest, making
F a riafd-set of size k. The condition on degree follows from the weighting.

Item 2: First apply Lemma 2.3 with U = V and the set family F being the set of
all riafd-set F satisfying deg(F) = d with weighting done based on !0. With probability
1/2, there will be some weight i such that there is a unique riafd-set F with deg(F) = d
and weight i. Therefore, for the weight function !, we have W = !(F) = i|V |2 + d.
Since !0 isolated F out of F and d < |V |2 (for k > 0), this is the only F which has a

contribution in Cn�k,m0

W that is not a multiple of 2n�k�m0+`+1 as it has 2cc(G[V \F])

2n�k�m0+` valid cuts.

While it is clear from the DP and Lemma 3.3 that we can get O?
�

3tw
�

running
time, we will provide the details of a slightly more generalized algorithm which is able
to utilize additional structure in the tree decomposition and improves the space bound.

3.2 3k+` Algorithm in Polynomial Space

The above Cut & Count algorithm utilizes exponential space. Notice that in all the
problems discussed in this paper, the tree decomposition that we have always has a
large set which is present in all bags of the tree decomposition. We will exploit this
structure to obtain a polynomial space algorithm.
Definition 3.4. Given a set S ✓ V and a function f : S ! {F,L,R}, we define the

quantity CA,B
W,f as follows:

12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

CA,B
W,f =

n

�

X, (XL, XR)
�

�

�

�
X 2 RA,B

W ^ (XL, XR) is a consistent cut of G
⇥

X
⇤

^

�

8v 2 S, v agrees with f
�

o

.

where “v agrees with f” means that v 2 V \X if f(v) = F, v 2 XL if f(v) = L
and v 2 XR if f(v) = R.
Claim 3.5. Given a tree decomposition T with a set S ✓ V which is present in
all its bags, a fixed integer t and a function f : S ! {F,L,R}, there is a rou-

tine RIAFD-FCCount(T, R,A,B,W, f, t) which can compute |CA,B
W,f | (mod 2t) in time

O?
�

3tw�|S|
�

.

Proof. We will give a brief description of the routine RIAFD-FCCount as that will suffice
to prove this claim. In every entry of the DP table described for |CA,B

W |, just compute
all values of Ax(a, b, w, s), where s|Bx\S = f |Bx\S and ignore all computations that do
not agree to this condition. This means per bag, only O?(3tw�|S|) computations are
required (since in all bags at most tw+ 1� |S| values of s are not “fixed” by f). The

required answer is in the root bag r as the entry Ar(A,B,W,∅) ⌘ |CA,B
W,f | (mod 2t).

Now, given a tree decomposition T with a set S ✓ V which is present in all its
bags, we can see that,

|CA,B
W | =

X

All possible f :S!{F,L,R}

|CA,B
W,f |.

Now, we define a procedure RIAFDCutandCount which given a tree decomposition
T, a set S ✓ V present in all bags of T uses the above fact to improve the space bound
from O?

�

3tw
�

to O?
�

3tw�|S|
�

.
Theorem 3.6. Given a tree decomposition T, a set S ✓ V present in all bags of T,
a set R and parameters k and `, RIAFDCutandCount solves RIAFD in O?

�

3tw
�

time

and O?
�

3tw�|S|
�

space with high probability.

Proof. We first prove the probability bound. By Lemma 3.3 Item (2) if a riafd-set of
size at most k exists, then for some values satisfying n�k A |V |, 0 B A+`+1
and 0 W 2|V |4+2|E|, in each iteration of the for block starting at Line 3, count
6⌘ 0 (mod 2t) with probability 1/2. Lemma 3.3 Item (1) makes it so that whenever we
have count 6⌘ 0 (mod 2t), there is guaranteed to be a riafd-set, i.e., there are no false
positives. Therefore, in nO(1) iterations, we obtain the required riafd-set, if it exist,
with high probability and if such a set doesn’t exist, RIAFDCutandCount will always
return Infeasible.

Now, to prove the time and space complexity bounds, we first take note of the fact
that by Claim 3.5, Line 7 takes O?

�

3tw�|S|
�

time and O?
�

3tw�|S|
�

space. Since the

number of possible f : S ! {F,L,R} is 3|S|, Line 6 runs for O?
�

3tw
�

time but since

13

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 1 RIAFDCutandCount(T, R, k, `, S)

Input: Tree decomposition T, G = (V,E), set R, parameters k n and ` = O(n2)
Output: A riafd-set F of size at most k or Infeasible
1: for n� k A n, 0 B A+ `� 1, 0 W 2|V |4 + 2|E| do
2: t A�B + `+ 1
3: for nO(1) iterations do
4: count 0
5: Randomly initialize ! as stated in Lemma 3.3 considering G = G
6: for all possible f : S ! {F,L,R} do
7: count count +RIAFD� FCCount(T,R,A,B,W ,f ,t)
8: end for
9: if count 6⌘ 0 (mod 2t) then

10: F a riafd-set of G constructed using self-reduction
11: return F
12: end if
13: end for
14: end for
15: return Infeasible

each run is independent it still requires only O?
�

3tw�|S|
�

space. All other lines con-
tribute at most polynomial cost overall to the total running time and space. Therefore,
the time and space bounds for Line 6 are the ones for the complete algorithm.

Lemma 3.7. Given a graph G = (V,E) and a riafd-set F of size k one can construct
a tree-decomposition T which contains a set S ◆ F of size at most k + ` in all bags
and has width at most |S|+ 1 in polynomial time.

Proof. Initially the set S = F . G[V \ F] is an `-forest. Now, find any spanning tree
of each connected component. We can see that the union of the spanning trees is the
forest with maximum number of edges that spans G[V \F]. Therefore, there can be at
most ` edges that were left out from the forest since G[V \ F] is an `-forest. Add one
end-point from each of these leftover edges to the set S. This set S is now an fvs of G
of size at most k + `. Therefore, we can construct a tree decomposition T of width 1
of the forest G[V \ S]. Add the set S to all bags of T. Therefore, width of T is now at
most |S|+1. This completes our construction. It’s easy to see from the description of
the construction procedure that it takes polynomial time.

Now, we prove the following theorem, which is a restatement of Theorem 1.2 (1).
Also, note that we set R = ∅ in all the cases except for when there is an explicit
requirement of a restricted set of vertices.
Theorem 3.8 (Restatement of Theorem 1.2 (1)). The randomized algorithm
RIAFD3k3l solves Almost Forest Deletion in O?

�

3k3`
�

time and polynomial
space with high probability.

Proof. Suppose that there exists a riafd-set F ? of size at most k. Let (v1, . . . , vi) be the
ordering from Line 1, and define Vi := {v1, . . . , vi}. Observe that F ? \ Vi is a riafd-set

of G[Vi], so RIAFD problem on Line 7 is feasible. Line 7 correctly computes a riafd-set

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 2 RIAFD3k3l(G,R, k, `)

Input: Graph G = (V,E), set R, parameters k n and ` = O(n2).
Output: A riafd-set F of size at most k or Infeasible.
1: Order the vertices V arbitrarily as (v1, v2, . . . , vn)
2: F ∅

3: for i = 1, 2, . . . , n do
4: T Compute the tree decomposition of G [{v1, . . . , vi�1}] by

Lemma 3.7 on input F
5: S F
6: Add vi to all bags of T and to S
7: F RIAFDCutandCount(T,R,k,`,S)
8: if F is Infeasible then
9: return Infeasible

10: end if
11: end for
12: return F

with high probability on any given iteration. Therefore, with high probability, such a
riafd-set for G is returned by a union bound.

We now bound the running time and space complexity. On Line 4, the current set
F is a riafd-set of G[Vi�1], so Lemma 3.7 guarantees a tree decomposition T of width
at most k+ `+1, and adding vi to each bag on Line 6 increases the width by at most
1. Also Lemma 3.7 guarantees a set S with |S| k+ ` such that tw(T)� |S| 1 and
adding vi to the set S increases its size by 1. Therefore, by Theorem 3.6, Line 7 runs
in time O?(3k+`) and space O?(1) as desired.

3.3 Improving the dependency on k

In this subsection, we try to reduce the dependency on k by allowing an increase in
dependency on `. We use the method of [14] using the outline described in Section 2.
Following are some trivial reduction rules for RIAFD:
Definition 3.9 (Reduction 1). Apply the following rules exhaustively, until the
remaining graph has minimum vertex degree at least 2:

1. Delete all vertices of degree at most one in the input graph.
2. If k < 0, then we have a no instance. If k > 0 and G is an `-forest, we have a yes

instance. If k = 0, we have a yes instance iff G is an `-forest.

3.3.1 Dense Case

Now we give a probabilistic reduction for RIAFD that capitalizes on the fact that a
large number of edges are incident to the riafd-set. In particular, for a yes instance
we focus on obtaining a probabilistic reduction that succeeds with probability strictly
greater than 1/3 so as to achieve a randomized algorithm running in timeO?

�

(3� ✏)k
�

with high probability.

15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Definition 3.10 (Reduction 2 (P)). Assume that Reduction 1 does not apply and
G has a vertex of degree at least 3. Sample a vertex v 2 V proportional to !(v) :=

(deg(v)� 2) if v /2 R, else !(v) := 0. That is, select each vertex with probability !(v)
!(V) .

Delete v and add its neighbours to R. Decrease k by 1.
Claim 3.11. Let G be a graph, F an afd-set of G. Denote F := V \F . We have that,

deg(F) deg(F) + 2(|F |� 1 + `)

Proof. This proof is based on simple observations. Notice that deg(F) = 2|E[F]| +
|E[F , F]|. As G[F] is an `-forest, |E[F]| |F | � 1 + `. Also, |E[F , F]| deg(F).
Therefore,

deg(F) 2(|F |� 1 + `) + deg(F)

Lemma 3.12. Given a graph G, if there exists a riafd-set F of size k such that
deg(F) � 4�2✏

1�✏
(k + `), then success of Reduction 2, which is the event of sampling a

vertex v 2 F , occurs with probability at least 1
3�✏

.

Proof. Let F ✓ V is a riafd-set of G of size exactly k. For Reduction 2 to succeed with

probability at least 1
3�✏

, we need !(F)

!(F)
� 1

2�✏
.

The value of !(F) can be rewritten as,

!(F) =
X

v2F

(deg(v)� 2) = deg(F)� 2k.

By Claim 3.11 (as riafd-set is also an afd-set),

!(F)
X

v2F

(deg(v)�2) = deg(F)�2|F | deg(F)+2(|F |�1+`)�2|F | deg(F)+2`.

Therefore,

!(F)

!(F)
�

deg(F)� 2k

deg(F) + 2`
= 1�

2(k + `)

deg(F) + 2`

(`�0)

� 1�
2(k + `)

deg(F)
.

Hence, we need

1�
2(k + `)

deg(F)
�

1

2� ✏
() deg(F) �

4� 2✏

1� ✏
(k + `).

3.3.2 Sparse Case

For the sparse case, we first construct a small separator. Due to the presence of two
variables (k and `), we have to modify the small separator lemma in [14, Lemma 3.2]

16

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

with a bivariate analysis. Also, though we are discussing RIAFD, we will show how
to construct a small separator assuming that we are given an afd-set, as a riafd-set is
also an afd-set.

Small Separator

The main idea, as presented in [14], is to convert an afd-set with small average degree
into a good tree decomposition. In particular, suppose a graph G has an afd-set F
of size k with deg(F) d(k + `), where d = O(1). We show how to construct a tree
decomposition of width (1�Ω(1))k+(2�Ω(1))`. Note that d is not exactly the average
degree of F . This definition helps us to bound the width of the tree decomposition
well.

Before constructing this separator, we will first see a construction of a �-separator
of an `-forest. We could use Lemma 2.7, but the size of the separator obtained would
be ` · o(k) which is huge (treewidth `). We now give a method to construct a
�-separator of size `+ o(k).
Lemma 3.13. Given an `-forest T (V,E) on n vertices with vertex weights !(v), for
any � > 0, we can delete a set S of � + ` vertices in polynomial time so that every

connected component of T � S has total weight at most !(V)
�

.

Proof. Construct some spanning tree for each connected component of T , call this
resultant forest T 0. Let X be the set of remaining edges which are not in T 0. For each
edge in X, delete one vertex from T 0. As |X| `, we will delete at most ` vertices.
The resultant will still be a forest, call it T 00.

Using [14, Lemma 3.1], there exists a set S0 with |S0| = � in T 00 such that every

connected component of T 00 � S has total weight at most !(V)
�

. Thus, we delete at
most �+ ` vertices overall. We present the proof of the aforementioned lemma for the
sake of completeness.

Root every component of the forest T 00 at an arbitrary vertex. Iteratively select

a vertex v of maximal depth whose subtree has total weight more than !(V)
�

, and
then remove v and its subtree. The subtrees rooted at the children of v have total
weight at most !(V)

�
, since otherwise, v would not satisfy the maximal depth condition.

Moreover, by removing the subtree rooted at v, we remove at least !(V)
�

total weight,
and this can only happen � times.

With the help of Lemma 3.13, we will now proceed to the small separator lemma.
Lemma 3.14 (Small Separator). Given an instance (G, k, `) and an afd-set F of G of

size k, define d := deg(F)
k+`

, and suppose that d = O(1). There is a randomized algorithm
running in expected polynomial time that computes a separation (A,B, S) of G such
that:

1. |A \ F |, |B \ F | � (2�d � o(1))(k + `)� `
2. |S| (1 + o(1))(k + `)� |A \ F |� |B \ F |

Proof. The proof will be similar to [14] (Lemma 4). First, we fix a parameter ✏ :=
(k + `)�0.01 throughout the proof. Apply Lemma 3.13 to the `-forest G � F with
� = ✏(k + `) and every vertex v 2 V \ F weighted by |E[v, F]|. Let S✏ be the output.

17

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Observe that:
|S✏| `+ ✏(k + `) = `+ o(k + `),

and every connected component C of G� F � S✏ satisfies,

|E[C,F]|
|E[F , F]|

✏(k + `)

deg(F)

✏(k + `)

d(k + `)

✏(k + `)
=

d

✏

Now form a bipartite graph H, as in [14], i.e., on the vertex bipartition F] R,
where F is the afd-set, and there are two types of vertices in R, the component vertices
and the subdivision vertices. For every connected component C in G� F � S✏, there
is a component vertex vC in R that represents that component, and it is connected
to all vertices in F adjacent to at least one vertex in C. For every edge e = (u, v) in
E[F], there is a vertex ve in R with u and v as its neighbours. Observe that:

• |R| |E[F , F]|+ 2|E[F]| = deg(F).

• every component vertex in R has degree at most d
✏
.

• the degree of a vertex v 2 F in H is at most deg(v).

The algorithm that finds a separator (A,B, S) works as follows. For each vertex in R,
color it red or blue uniformly and independently at random. Every component C in
G� F � S✏ whose vertex vC is colored red is added to A in the separation (A,B, S),
and every component whose vertex vC is colored blue is added to B. Every vertex in
F whose neighbors are all colored red joins A, and every vertex in F whose neighbors
are all colored blue joins B. The remaining vertices in F , along with the vertices in
S✏, comprise S. It is easy to see that (A,B, S) is a separation.

Claim 3.15. (A,B, S) is a separation.

We now show with good probability both conditions (1) and (2) hold. The
algorithm can then repeat the process until both conditions hold.

Claim 3.16. With probability at least 1� 1
kO(1) condition (1) holds for (A,B, S).

Proof. Firstly, notice that F has at most ✏(k+`) vertices with degree at least d
✏
. These

can be ignored as they affect condition (1) only by an additive ✏(k + `) = o(k + `)

factor. Let F 0 be the vertices with degree at most d
✏
. Now, consider the intersection

graph I on vertices of F 0 formed by connecting two vertices if they share a common
neighbour (in R). Since every vertex in F 0 and all the component vertices have degree

at most d
✏
, the maximum degree of I is at most

⇣

d
✏

⌘2

. Color the vertices of F 0 with
⇣

d
✏

⌘2

+ 1 colors such that the vertices of the same color class form an independent

set in I, using the standard greedy algorithm. Note that, within each color class, the
outcome of each vertex whether it joins A,B or S is independent across vertices.

Let F 0
i be the set of vertices colored i. If |F 0

i | k0.9, then this color class can be

ignored since the sum of all such |F 0
i | is at most

✓

⇣

d
✏

⌘2

+ 1

◆

k0.9 = o(k) and this affects

condition (1) by an additive o(k) factor. Henceforth, assume |F 0
i | � k0.9. Each vertex

18

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

v 2 F 0
i has at most deg(v) neighbours in H. So, it can join A with an independent

probability of at least 2�deg(v). Let Xi = |F 0
i \A|, then by Hoeffding’s inequality 2,

Pr[Xi E[Xi]� k0.8] 2 · exp

�2 ·

�

k0.8
�2

|F 0
i |

!

 2 · exp

✓

�2 ·
k1.6

k

◆

1

kO(1)

for large enough k.
By a union bound over all the k0.1 such color classes with |F 0

i | � k0.9, the
probability that |F 0

i \A| � E[|F 0
i \A|]� k0.8 for each F 0

i is at least 1� 1
kO(1) . In this

case,

|F \A| �
X

i:|F 0

i |�k0.9

�

E[|F 0
i \A|]� k0.8

�

�
X

i:|F 0

i |�k0.9

X

v2F 0

i

⇣

2�deg(v)
⌘

� k0.1 · k0.8

=
X

v2F 0

2�deg(v) +
X̀

j=1

20 � `� o(k)

� (|F 0|+ `) · 2
�

deg(F 0)

|F 0|+` � `� o(k),

where the last inequality follows from convexity of the function 2�x. Recall that |F 0| �

k � o(k + `), and observe that deg(F 0)
|F 0|+`

deg(F)
k+`

= d since the vertices in F \ F 0 are

vertices with degree greater than some threshold. Thus,

|F \A| � (k + `� o(k + `)) · 2�d � l � o(k) �
⇣

2�d � o(1)
⌘

(k + `)� `,

proving condition (1) for A. The argument for |B \ F | is analogous.

Claim 3.17. With probability at least 1� 1
kO(1) condition (2) holds for (A,B, S).

Proof. Note that at most `+ o(k+ l) vertices in S are from S✏, and the other vertices
in S are from the set F \ ((F \ A) [(F \ B)) which has size k � |A \ F | � |B \ F |.
Thus, |S| (1 + o(1)) (k + `)� |A \ F |� |B \ F |

Lemma 3.18. Let G be a graph and F be a afd-set of G of size k, and define

d := deg(F)
k+`

. There is a randomized algorithm that, given G and F , computes a tree

decomposition of G of width at most (1� 2�d + o(1))k + (2� 2�d + o(1))`, and runs
in polynomial time in expectation.

2We use the notation exp(x) to denote the function ex.

19

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Proof. Compute a separation (A,B, S) following Lemma 3.14. Notice that G[A[S]�
(F [S) is a forest, as S✏ (from proof of Lemma 3.14) includes the ` vertices corre-
sponding to the ` extra edges of the `-forest G�F . Thus, (A\F)[S is a fvs of A[S.
The size of this fvs is,

|(A \ F) [S| = |A \ F |+ |S|

 (1 + o(1))(k + `)� |B \ F |

 (1� 2�d + o(1))k + (2� 2�d + o(1))`.

Therefore, we can compute a tree decomposition of G[A [S] of width (1� 2�d +

o(1))k+(2� 2�d+ o(1))` as follows: start with a tree decomposition of width 1 of the
forest G[A [S]� (F [S), and then add all vertices in (A \ F) [S to each bag. Call
this tree decomposition of G[A[S] as T1. Similarly, compute a tree decomposition of
G[B [S] in the same way, call it T2.

Since there is no edge connecting A and B, and S is present in all bags of T1 and
T2, we can construct the tree decomposition T of G by simply adding an edge between
an arbitrary node from T1 and T2. Thus, it is evident from the construction procedure
that T is a valid tree decomposition of G and it takes polynomial time to compute
it.

Note 3.19. Using the tree decomposition obtained in Lemma 3.18, we can run the
Cut & Count algorithm from Section 3.1. But this will utilize exponential space. To
get polynomial space, we use the idea from Claim 3.5. In the proof of Lemma 3.18,
observe that the set (A \ F) [S is present in every bag of T1. Similarly, (B \ F) [S
is present in every bag of T2. This observation is crucial for the proof of Lemma 3.20.

As we are in the sparse case, there exists a riafd-set F of size k with bounded
degree, i.e., deg(F) dk. We call this bounded version of the problem BRIAFD. As
we saw, the small separator helps in constructing a tree decomposition of small width,
but requires that we are given an afd-set of size k and bounded degree. To attain this,
we use an Iterative Compression based procedure which at every iteration constructs
a riafd-set of size at most k with bounded degree and uses it to construct the small
separator. Using this small separator we construct a tree decomposition of small width
and run a Cut & Count based procedure to solve bounded RIAFD problem for the
current induced subgraph, i.e, get a riafd-set of size at most k with bounded degree.

Now, we give the claimed BRIAFD1 algorithm, which is a Cut & Count based
algorithm which solves BRIAFD given a small separator.
Lemma 3.20. Given a graph G, a set R, an afd-set F of G of size at most k +
1, parameter d, and a separation (A,B, S) as given by Lemma 3.14, the Algorithm
BRIAFD1 outputs an riafd-set F ? of size at most k satisfying deg(F ?) d(|F ?|+ `), or

Infeasible if none exists. The algorithm uses O?(3(1�2�d+o(1))k · 3(2�2�d+o(1))`) time
and polynomial space and succeeds with high probability.

Proof. For the time bound, firstly notice that Lines 11 and 15 take polynomial time
due to the observation given in Note 3.19 and Claim 3.5. All other steps listed in the
algorithm BRIAFD1 are polynomial time except lines 7, 10 and 14, which jointly give

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 3 BRIAFD1(G,R, k, `, F, A,B, S, d)

Input: Graph G = (V,E), a set R, an afd-set F of size at most k+1, the parameters
k, d n and ` m and a separation (A,B, S) from Lemma 3.14.

Output: Either output a riafd-set F ? of size at most k satisfying deg(F ?) d(|F ?|+
`), or conclude that one does not exist (Infeasible).

1: for A � n� k, 0 B A+ `� 1, W = i|V |2 + d for some d d(n�A+ `) do
2: t A�B + `+ 1
3: for nO(1) iterations do
4: count 0
5: Randomly initialize ! as stated in Lemma 3.3
6: Generate tree decompositions T1 and T2 as defined in proof of

Lemma 3.18
7: for all possible f : S ! {F,L,R} do
8: for W 0, A0, B0 s.t. 0 W 0 W , 0 A0 A, 0 B0 B do
9: countA 0

10: for all possible fA : (A \ F)! {F,L,R} do
11: countA countA +RIAFD� FCCount(T1,R,A0,B0,W 0,

f] fA,t)
12: end for
13: countB 0
14: for all possible fB : (B \ F)! {F,L,R} do
15: countB countB + RIAFD� FCCount(T2, R, A�A0+

|f�1 ({L,R}) |, B �B0 +
�

�E
⇥

f�1 ({L,R})
⇤�

�, W �W 0+
!(f�1(F)), f] fB , t)

16: end for
17: count count + countA · countB
18: end for
19: end for
20: if count 6⌘ 0 (mod 2t) then
21: F ? a riafd-set of G of size at most k satisfying deg(F ?)

d(|F ?|+ `) constructed using self-reduction
22: return F ?

23: end if
24: end for
25: end for
26: return Infeasible

rise to 3|S|+|A\F |+3|S|+|B\F | iterations. By the conditions (1) and (2) of the separator
(A,B, S) in Lemma 3.14, we get the desired time bound. The space bound is evident
from the description of the algorithm BRIAFD1 and Claim 3.5. Also, by Line 3 and
Lemma 2.4, the algorithm succeeds with high probability.

For the correctness, first we claim that at Line 15, count = |Cn�k,B
W | for some

A, B and W = i · n2 + d (from Lemma 3.3). To see the claim, observe that we
are iterating over all possible mappings of S. For each mapping and every possible
split of the parameters W and B, the algorithm computes the number countA (resp.

21

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

countB) denoting the “extensions” of the mapping in G[A [S] (resp. G[B [S]) that
respect the split, and then multiplies countA and countB. To see why these counts
are multiplied, notice that there are no edges between A and B. So, extending into
G[A [S] is independent to extending into G[B [S]. This along with the correctness
of RIAFD-FCCount proves the claim, thereby proving the correctness.

And now we give the Iterative Compression routine RIAFD IC1, as explained above,
which solves BRIAFD.

Algorithm 4 RIAFD IC1(G,R, k, `, d)

Input: Graph G = (V,E), a set R and parameters k, d n and ` m where
d = O(1).

Output: A riafd-set F ? of G of size at most k satisfying deg(F ?) d(|F ?| + `) or
Infeasible.

1: Order the vertices V in ascending order of degrees and call them (v1, v2, . . . , vn)
2: F ? ∅

3: for i = 1, 2 . . . , n do
4: . Invariant: deg(F ?) d(|F ?|+ `)
5: Compute a separation (A,B, S0) of G [{v1, . . . , vi�1}] by Lemma 3.14

using F ?, d
6: S S0 [{vi} so (A,B, S) is a separation of G [{v1, . . . , vi}]
7: F ? BRIAFD1(G,R, k, `, F ? [{vi}, A,B, S, d)
8: if F ? is Infeasible then
9: return Infeasible

10: end if
11: end for
12: return F ?

Lemma 3.21. Algorithm RIAFD IC1 solves BRIAFD in time O?(3(1�2�d+o(1))k ·

3(2�2�d+o(1))`) with high probability and polynomial space.

Proof. Suppose there exists a riafd-set F of size k satisfying deg(F) d(k + `). Let
(v1, . . . , vi) be the ordering from Line 1, and define Vi := {v1, . . . , vi}. Observe that
F \ Vi is a riafd-set of G[Vi] of size at most k. Let Fi = F \ Vi and |Fi| = ki k.
Due to the ordering from Line 1, Fi are the vertices of least degrees in F . Thus,
deg(Fi)
ki+`

deg(F)
k+l d. Hence, BRIAFD problem on Line 7 is feasible.

Line 7 correctly computes a bounded degree riafd-set of size at most k with high
probability, by Lemma 3.20. Therefore, with high probability, a riafd-set of size k is
returned.

We now bound the running time. On Line 5, the current set F ? is a riafd-set of
G[Vi�1] satisfying deg(F ?) d(|F ?|+ `), so Lemma 3.18 guarantees tree decomposi-

tions T1 and T2 of width at most (1�2�d+o(1))k+(2�2�d+o(1))`, and adding vi to
each bag on Line 6 increases the width by at most 1. By Lemma 3.20, Line 7 runs in

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

time O?
⇣

3(1�2�d+o(1))k · 3(2�2�d+o(1))`
⌘

, as desired. The space bound is evident from

the description of RIAFD IC1 and Lemma 3.20.

Three-Way Separator

Similar to small separator, a bivariate analysis has to be done in the case of the
three-way separator too. The outline of the analysis is similar to Lemma 3.14.
Lemma 3.22. (Three-Way Separator). Given an instance (G, k) and an afd-set F

of size k, define d := deg(F)
k+`

, and suppose that d = O(1). There is a randomized
algorithm running in expected polynomial time that computes a three-way separation
(S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G such that there exists values f1, f2 satisfying:

1. f1k � (3�d � o(1))(k + `)� `
2. f1k � o(k + `) |Si \ F | f1k + o(k + `) for all i 2 [3]

3. (f2 + 2f1)k �
�

(23)
d � o(1)

�

(k + `)� `
4. f2k � o(k + `) |Si,j | f2k + o(k + `) for all 1 i < j 3

Proof. This proof is similar to [14](Lemma 14) and uses the idea from Lemma 3.14.
Indeed, the same choice of values for f1 and f2 considered by [14] works. Firstly, we
start out the same: fix ✏ := (k + `)�0.01, apply Lemma 3.13 on G � F (to construct
S✏), and construct the bipartite graph H on the bipartition F]R in the same way as
in Lemma 3.14. Recall that,

• |R| |E[F , F]|+ 2|E[F]| = deg(F).

• every component vertex in R has degree at most d
✏
.

• the degree of a vertex v 2 F in H is at most deg(v).

Now, instead of randomly two-coloring the vertex set R, the algorithm three-colors
it. That is, for each vertex in R, color it with a color in {1, 2, 3} chosen uniformly
and independently at random. For each subset I ✓ 2[3] \ {∅}, create a vertex set SI

consisting of all vertices v 2 F whose neighborhood in H sees the color set I precisely.
More formally, let c(v) and N(v) be the color of v 2 R and the neighbors of v in H,
and define SI = {v 2 F :

S

u2N(v) c(u) = I}. Furthermore, if I is a singleton set {i},

then add (to SI) all vertices in the connected components C whose component vertex
in R is colored i. We also add S✏ to S{1,2,3}. Henceforth, we abuse notation, referring
to sets S{1}, S{1,2}, etc. as S1, S1,2, etc. Let F

0 denote the set of vertices in F whose

degree are at most d/✏, same as before. For each d d/✏, let F 0
d denote the set of

degree d vertices in F 0. Further, let p1,d be the probability that a vertex of degree d
joins S1, WLOG (since we will have the same values for S2 and S3). Also, let p2,d be
the probability that a vertex of degree d joins S1,2, WLOG. Observe that p1,d = 3�d.

Claim 3.23. (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way separator.

Claim 3.24. For f1 :=

d/✏P

d=1

p1,d|F
0

d|

|F 0| , condition (2) holds with probability at least 1 �
1

kO(1) .

23

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Claim 3.25. For f2 :=

d/✏P

d=1

p2,d|F
0

d|

|F 0| , condition (4) holds with probability at least 1 �
1

kO(1) .

The proofs of Claim 3.23, Claim 3.24 and Claim 3.25 are very similar to the proofs
in [14] and the proof of Lemma 3.14. Hence, they are omitted.

Claim 3.26. For the value of f1 defined in Claim 3.24, condition (1) holds with
probability at least 1� 1

kO(1)

Proof. Observe that deg(F 0)
|F 0|+`

deg(F)
k+`

= d, since the vertices in F \ F 0 are precisely

vertices with degree exceeding some threshold, and |F 0| � k � o(k + `). Also, due to
the convexity of the function 3�x, we get

f1k � f1|F
0| =

X

d

|F 0
d| · p1,d

=
X

d

|F 0
d| · 3

�d

=
X

v2F 0

3�deg(v) +
X̀

j=1

30 � `

� (|F 0|+ `)3
�

deg(F 0)

|F 0|+` � `

� (3�d � o(1))(k + `)� `,

proving condition (1).

Claim 3.27. For the values of f1 and f2 defined in Claim 3.24 and Claim 3.25,
respectively, condition (3) holds.

Proof. Let qd be the probability that a vertex v of degree d joins one of S1, S2 or S1,2

(WLOG). Since this is also the probability that no neighbour of v is colored 3, we

have qd =
�

2
3

�d
. Also, observe that qd = 2p1,d + p2,d. Therefore,

2f1k + f2k � 2f1|F
0|+ f2|F

0| = 2 ·
X

d

p1,d · |F
0
d|+

X

d

p2,d · |F
0
d|

=
X

d

|F 0
d| · qd

=
X

v2F 0

✓

2

3

◆deg(v)

+
X̀

j=1

30 � `

� (|F 0|+ `)

✓

2

3

◆

deg(F 0)

|F 0|+`

� `,

24

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

where the last inequality follows from convexity of
�

2
3

�x
. Again, we have deg(F 0)

|F 0|+`

deg(F)
k+`

= d, and |F 0| � k � o(k + `). So,

(f2 + 2f1)k �

✓

2

3

◆d

� o(1)

!

(k + `)� `,

proving condition (3).

We now describe the structure of the three-way separator in more detail which will
help in designing the algorithm utilizing it. Let’s say we are given a graph G = (V,E),
an afd-set F of size at most k+1 and a three-way separation (S1, S2, S3, S1,2, S2,3, S2,3,
S1,2,3) as in Lemma 3.22. Let f1 and f2 be from the conditions of Lemma 3.22. Define
f3 := 1� 3f1 � 3f2, so that f3k + `� o(k + `) |S1,2,3| f3k + `+ o(k + `).

Notice that G[S1 [S1,2 [S1,3 [S1,2,3] � (F [S1,2,3) is a forest, as S✏ (from
Lemma 3.22) includes the ` vertices corresponding to the ` extra edges of the `-forest
G � F . Thus, (S1 \ F) [S1,2 [S1,3 [S1,2,3 is an fvs of S1 [S1,2 [S1,3 [S1,2,3. The
size of this fvs is,

|(S1 \ F) [S1,2 [S1,3 [S1,2,3| = |S1 \ F |+ |S1,2|+ |S1,3|+ |S1,2,3|

 (f3 + 2f2 + f1)k + `+ o(k + `)

Therefore, we can compute a tree decomposition of G[S1 [S1,2 [S1,3 [S1,2,3]
of width (f3 + 2f2 + f1)k + ` + o(k + `) as follows: start with a tree decomposition
of width 1 of the forest G[S1 [S1,2 [S1,3 [S1,2,3] � (F [S1,2,3), and then add all
vertices in (S1 \ F) [S1,2 [S1,3 [S1,2,3 to each bag. Call this tree decomposition
T1. Similarly, we can compute a tree decomposition of G[S2 [S1,2 [S2,3 [S1,2,3] and
G[S3 [S1,3 [S2,3 [S1,2,3] in the same way, call them T2 and T3 respectively. It is
evident from the construction procedure it takes polynomial time to compute these
tree decompositions.
Note 3.28. Observe that there is no edge connecting any pair among S1, S2 and S3,
and Si,j has neighbours only in Si and Sj. Also, the set (S1 \ F) [S1,2 [S1,3 [S1,2,3

is present in every bag of T1. Similarly, (S2 \ F) [S1,2 [S2,3 [S1,2,3 and (S3 \ F) [
S1,3[S2,3[S1,2,3 are present in every bag of T2 and T3 respectively. This observation
and the three decompositions obtained will be crucial for the proof of Lemma 3.30.

Similar to the two-way separator case, we now describe the routines BRIAFD2 and
RIAFD IC2 which will utilize the three-way separator.
Note 3.29. In BRIAFD2, values of some variables are not assigned to maintain clarity.
In the algorithm, w, a, b are variables to account for overcounting in S1,2,3. If we define
s1 = f�1({L,R}) then w = 2 ·!(S1,2,3 \ s1), a = 2 · |s1| and b = 2 · |E[s1, s1]|. For the
overcounting that takes place within S1,2, S2,3 and S1,3, we define the variables wi, ai
and bi for i 2 [3]. We take w1 = a1 = b1 = 0. If we define s2 = f�1

2 ({L,R}), then w2 =
!(S1,2 \ s2), a2 = |s2|, b2 = |E[s2, s2]|. If we define s3 = f�1

1 ({L,R})] f�1
2 ({L,R}),

then w3 = !((S2,3] S1,3) \ s3), a3 = |s3|, b3 = |E[s3, s3]|.

25

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 5 BRIAFD2(G,R, k, `, F, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3, d)

Input: Graph G = (V,E), a set R, an afd-set of size at most k + 1, the parame-
ters k, d n and ` m and a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) from
Lemma 3.22.

Output: Either output a riafd-set F ? of size at most k satisfying deg(F ?) d(|F ?|+
`), or conclude that one does not exist (Infeasible).

1: for A � n� k, 0 B A+ `� 1, W = i|V |2 + d for some d d(n�A+ `) do
2: t A�B + `+ 1
3: for nO(1) iterations do
4: count 0
5: Randomly initialize ! as stated in Lemma 3.3
6: Generate tree decompositions T1, T2 and T3 as stated in Note 3.28
7: for all possible g : S1,2,3 ! {F,L,R} do
8: for nonnegative Wi, Ai, Bi, i 2 [3] such that

P

i Wi = W +w,
P

i Ai =
A+ a,

P

i Bi = B + b do

9: H an empty graph with vertices indexed by
�

S1,2

.,.,.

�

[
�

S2,3

.,.,.

�

[
�

S1,3

.,.,.

�

10: for (i, j, k) in {(1, 2, 3), (2, 3, 1), (3, 1, 2)} do
11: for all possible g1 : Si,j ! {F,L,R}, g2 : Si,k ! {F,L,R} do
12: count3 0
13: for all possible g3 : Si \ F ! {F,L,R} do
14: count3 count3 + RIAFD� FCCount(Ti, R, Ai+

ai, Bi + bi, Wi + wi, g] g1] g2] g3)
15: end for
16: Add edge e between vertices (g�1

1 (F), g�1
1 (L),

g�1
1 (R)) and

�

g�1
2 (F), g�1

2 (L), g�1
2 (R)

�

of H
17: Assign weight count3 (mod 2t) to edge e
18: end for
19: end for
20: count0 sum over the product of the three edges of all

triangles of H
21: count count + count0

22: end for
23: end for
24: if count 6⌘ 0 (mod 2t) then
25: F ? a riafd-set of G of size k satisfying deg(F ?) d(|F ?|+ `)

constructed using self-reduction
26: return F ?

27: end if
28: end for
29: end for
30: return Infeasible

26

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Lemma 3.30. Given a graph G, an afd-set F of G of size at most k+1, parameter d,
and a three-way separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) as given by Lemma 3.22,
the Algorithm BRIAFD2 outputs a riafd-set of size at most k satisfying deg(F)
d(|F | + `), or Infeasible if none exists, with high probability. The algorithm runs in

time O?(3(1�min{(2
3)

d
,(3�!)(2

3)
d
+(2!�3)3�d}+o(1))k ·3(1+!�((3�!)(2

3)
d
+(2!�3)3�d)+o(1))`),

where ! is the exponent of the matrix multiplication algorithm used.

Proof. For the time bound, firstly notice that lines 14 takes polynomial time due to the
observation given in Note 3.28 and Claim 3.5. Let f1, f2 and f3 be from Lemma 3.22
and Note 3.28. For each of the O?(3f3k+`+o(k+`)) iterations on Line 7, building the
graph H (Lines 9 � 19) takes time O?(3(2f2+f1)k+o(k+`)), and running matrix mul-
tiplication on Line 20 on a graph with O?(3f2k+o(k+`)) vertices to compute the sum
over product of weights on the three edges of all triangles takes time O?(3!f2k+o(k+`)).
Therefore, the total running time is

O?(3f3k+`+o(k+`)(3(2f2+f1)k+o(k+`) + 3!f2k+o(k+`)))

= O?(3(f3+2f2+f1)k+`+o(k+`)) + 3(f3+!f2)k+l+o(k+`))

= O?(3(1�f2�2f1)k+`+o(k+`)) + 3(1�(3�!)f2�3f1)k+l+o(k+`))

= O?(3(1�(f2+2f1))k+`+o(k+`)) + 3(1�(3�!)(f2+2f1)�(2!�3)f1)k+l+o(k+`))

 O?((3(1�(2
3)

d+o(1))k + 3(1�((3�!)(2
3)

d+(2!�3)3�d+o(1))k) ·

3(1+!�((3�!)(2
3)

d+(2!�3)3�d)+o(1))`),

where the last inequality uses the conditions (1) and (3) of Lemma 3.22, and the fact
that 2! � 3 � 0. This gives the desired time bound. Also, by Line 3 and Lemma 2.4,
the algorithm succeeds with high probability.

The proof of correctness is similar to proof of Lemma 15 in [14]. We claim that

at Line 21, count = |Cn�k,B
W | for some A, B and W = i · n2 + d (from Lemma 3.3).

First observe that there is no edge between S1 and S2,3. So, number of extensions of
S1 only depend on S1,2 and S1,3. For each mapping of S1,2 [S1,3, imagine adding an
edge between the respective mappings in the graph H, with weight as the number
of extensions in S1. Proceed analogously in S2 and S3. Thus, H will be a tripartite
graph. Now, merging the solutions, i.e. finding the total number of extensions (for
a fixed mapping of S1,2,3), amounts to computing the sum over product of weights
of three edges forming triangles in H, which can be solved using a standard matrix
multiplication routine. This along with correctness of RIAFD-FCCount completes the
proof of the claim, thereby completing the proof of correctness.

Lemma 3.31. Algorithm RIAFD IC2 solves BRIAFD with high probability, in

O?(3(1�min{(2
3)

d,(3�!)(2
3)

d+(2!�3)3�d}+o(1))k · 3(1+!�((3�!)(2
3)

d+(2!�3)3�d)+o(1))`) time.
The proof is similar to the proof of Lemma 3.21, hence it is omitted.

3.3.3 Algorithms for RIAFD

Having described the Dense and the Sparse Cases, we now combine them to give the
final randomized algorithms.

27

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 6 RIAFD IC2(G,R, k, `, d)

Input: Graph G = (V,E), a set R and parameters k, d n and ` m where
d = O(1).

Output: A riafd-set F ? of size at most k satisfying deg(F ?) d(|F ?| + `) or
Infeasible.

1: Order the vertices V in ascending order of degrees and call them (v1, v2, . . . , vn)
2: F ? ∅

3: for i = 1, 2, . . . , n do
4: . Invariant: deg(F ?) d(|F ?|+ `)
5: Compute a separation (S1, S2, S3, S1,2, S1,3, S2,3, S

0
1,2,3) of

G [{v1, . . . , vi�1}] by Lemma 3.22 for given F ?, d
6: S1,2,3 S0

1,2,3 [{vi}, so (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way
separation of G [{v1, . . . , vi}]

7: F ? BRIAFD2(G,R, k, `, F ? [{vi}, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3, d)
8: if F ? is Infeasible then
9: return Infeasible

10: end if
11: end for
12: return F ?

O?(2.85k8.54`) Algorithm in Polynomial Space

Now, we give the Algorithm RIAFD1, which is the complete randomized algorithm
combining the Dense and the Sparse Cases (small separator).
Lemma 3.32. Fix the parameter ✏ 2 (0, 1) and d := 4�2✏

1�✏
, let ck := max

�

3 �

✏, 31�2�d

and c` := 32�2�d

. Then RIAFD1 succeeds with probability at least
c�k
k c�`

`

k+1

and has O?(3o(k+`)) expected running time and uses polynomial space.

Proof. We will focus on running time for each iteration of the outer loop. The computa-

tion till line 5 takes nO(1) time. Line 6 is executed with probability 3�(1�2d)k0

·3�(2�2d)`

and takes time O?(3(1�2d+o(1))k0

· 3(2�2d+o(1))`). So, in expectation, the total compu-
tation cost of Line 6 is O?(3o(k+`)) per value of k0, and also O?(3o(k+`)) overall. Note
here that for all values of ✏ 2 (0, 1), ck � 2 and cl � 1. The space bound follows from
Lemma 3.21.

Now, we prove that RIAFD1(G, k, `) succeeds with probability at least
c�k
k ·c�`

`

k+1 . We
use induction on k0. The statement is trivial when k0 = 0, since no probabilistic
reduction is used and hence it succeeds with probability 1. For the inductive step,
consider an instance RIAFD1(G, k0, `). Let (G0, k0, `) be the reduced instance after Line
2. Suppose that every riafd-set F of G of size k0 satisfies the condition deg(F)
d(k0 + l); here, we only need the existence of one such F . In this case, if Line 6 is
executed, then it will correctly output a riafd-set F of size at most k0, with high

28

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 7 RIAFD1(G,R, k, `)

Input: Graph G = (V,E), a set R, two parameters k n and ` m.
Output: Either output a riafd-set F of size at most k, or (possibly incorrectly)

conclude that one does not exist (Infeasible).
1: for 0 k0 k do
2: Exhaustively apply Reduction 1 to (G,R, k0, `) to get the instance

(G0, R, k0, `)
3: d (4� 2✏)/(1� ✏)

4: Flip a coin with Heads probability 3�(1�2d)k0

· 3�(2�2d)`

5: if coin flipped Heads then
6: F RIAFD IC1(G0,R,k0,`, d)
7: else
8: Apply Reduction 2 to (G0, R0, k0, `) to get vertex v 2 V and instance

(G00, R00, k0 � 1, `)
9: F RIAFD1(G00,R00, k0 � 1, `)[{v}

10: end if
11: if F is not Infeasible then
12: return F
13: end if
14: end for
15: return Infeasible

probability by Lemma 3.21. This happens with probability at least

3�(1�2d)k0

· 3�(2�2d)` ·

✓

1�
1

nO(1)

◆

� c�k0

k · c�`
` ·

1

k + 1
�

c�k
k · c�`

`

k + 1
,

as desired.
Otherwise, suppose that the above condition doesn’t hold for every riafd-set F of

G0 of size k0. This means that there exists a riafd-set F of size k0 such that deg(F) �
d(k0 + l). In this case, by Lemma 3.12, Reduction 2 succeeds with probability at least
1

3�✏
. This is assuming, of course, that Line 6 is not executed, which happens with

probability 1� c�k0

k · c�`
` � 1� c�k0

k � 1� 2�k0

� 1� 1
k0
, since cl � 1 and ck � 2. By

induction, the recursive call on Line 9 succeeds with probability at least
c
�(k0

�1)
k ·c�`

`

(k0�1) .

So, the overall probability of success is at least,

✓

1�
1

k0

◆

·
1

3� ✏
·
c
�(k0�1)
k · c�`

`

(k0 � 1)
�

✓

k0 � 1

k0

◆

·
1

ck
·
c
�(k0�1)
k · c�`

`

(k0 � 1)

=
c�k0

k · c�`
`

k0

�
c�k
k · c�`

`

k + 1
,

29

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

as desired. Note that on line 9 adding the neighbours of v to R0 in the recursive call
ensures that F is independent on addition of v to it.

Unless R is explicitly nonempty, we set R = ∅ to solve RIAFD. To optimize for
ck, we set ✏ ⇡ 0.155433, giving ck 2.8446 and c` 8.5337. Theorem 1.2 (2) now
follows by combining Lemma 3.32 and Lemma 2.4.

O?(2.7k36.61`) Algorithm using Matrix Multiplication

Using Lemma 3.30 and Lemma 3.31 and the Dense Case, we now prove the main
result, Theorem 1.2 (3), restated below.

Theorem 3.33 (Restatement of Theorem 1.2 (3)). There is a randomized algorithm
that solves RIAFD in time O?(2.7k36.61`), with high probability.

Proof. We run RIAFD1, replacing every occurrence of RIAFD IC1 with RIAFD IC2. We
define d := 4�2✏

1�✏
for some ✏ > 0 (to be determined later); note that d � 4 for any

✏ > 0. By Lemma 3.31, RIAFD IC2 runs in time O?(3(1�((3�!)(2
3)

d+(2!�3)3�d)+o(1))k ·

3(1+!�((3�!)(2
3)

d+(2!�3)3�d)+o(1))`). Hence, RIAFD1 runs in time O?(ckk · c``),
by Lemma 2.4 to get a high success probability, for ck := max

�

3 �

✏, 31�((3�!)(2
3)

d+(2!�3)3�d)

and

c` := 31+!�((3�!)(2
3)

d+(2!�3)3�d). Since ! < 2.3728639 [31], we set ! = 2.3728639 and
optimize for ck and c`. By setting ✏ ⇡ 0.3000237, we get ck 2.699977 and c` 36.602,
as desired.

3.4 Improving Dependency on `

In this subsection, we will try to reduce the dependency on ` in the Cut & Count algo-
rithm. To achieve this, we will construct a tree decomposition with reduced dependency
on `.
Lemma 3.34. Given a graph G = (V,E) and an riafd-set F of size k, there exists
a tree decomposition of width at most k + 3

5.769` + O(log(n)) for G and it can be
constructed in polynomial time.

Proof. Given a graph G = (V,E) with n vertices and m edges, we define the graph
G0(V 0, E0) := G[V/F]. G0 is an `-forest from the definition of riafd-set. We apply the
following reduction rules exhaustively on G0:

• R0: If there is a v 2 V 0 with deg(v) = 0, then remove v.
• R1: If there is a v 2 V 0 with deg(v) = 1, then remove v.
• R2: If there is a v 2 V 0 with deg(v) = 2, then contract v, i.e. remove v and insert a
new edge between its two neighbors, if no such edge exists.

For the safeness of the above reduction rules refer to [32]. Let the reduced graph
be called G00(V 00, E00). If G00 is an empty graph, tw(G0) 2 [32, Lemma 4.1] and a
tree decomposition of width at most O(log n) can be computed in polynomial time
[32, Lemma 4.3].

30

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Otherwise, we have tw(G0) > 2. It is trivial to see that after applying the above
reduction rules the G00 we get is also an `-forest. Therefore, after removing at most `
edges from G00, we are left with at most |V 00|�1 edges (since the remaining graph is a
forest). Therefore, we get that |E00| |V 00|+`�1. Since the degree of each vertex in G00

is at least 3, |E00| � 3|V 00|/2. Therefore, 1.5|V 00| |V 00|+ `� 1 from which we obtain
the bounds |V 00| 2` and |E00| 3`. We need to use the following results from [32].

Theorem 3.35. [32, Theorem 4.7] Given a graph G(V,E), we can obtain a tree
decomposition of G of width at most |E|/5.769 +O(log(|V |)) in polynomial time.

This implies that, G00 has a tree decomposition of width at most 3
5.769`+O(log(n))

(since ` = O(n2)) which can be computed in polynomial time.

Lemma 3.36. [32, Lemma 4.2] Given a connected graph G, with tw(G) > 2 and let
G0 be a graph obtained from G by applying R0, R1 and R2 then tw(G) = tw(G0)

Also, from proof of Lemma 4.2 of [32], it’s easy to see that this also works on
graphs which might not be connected. Given these facts, we see that we can obtain
a tree decomposition of G0 with width at most 3

5.769`+O(log(n)) in polynomial time
from the tree decomposition of G00. Now to get the tree decomposition of the given
graph instance G, add F (of size k which we removed) to all the bags of the tree
decomposition of G0. This finally gives the required tree decomposition of G of width
at most k + 3

5.769`+O(log(n)).

We combine the treewidth bound that can be obtained from Lemma 3.34 with
Iterative Compression, together with the 3tw algorithm to obtain an O?(3k1.78`)
algorithm for solving RIAFD.

We now describe the working of the routine RIAFD IC3. The iterative compression
routine proceeds as follows. We start with an empty graph, and add the vertices of G
one by one, while always maintaining a riafd-set of size at most k in the current graph.
Maintaining a riafd-set for the current graph helps us utilize Lemma 3.34 to obtain a
small tree decomposition (of size k + 3

5.769` +O(log(n))). Then we can add the next
vertex in the ordering to all the bags in the tree decomposition to get a new riafd-set

of size k in O?(3tw). If we are unable to find such a riafd-set in a particular iteration,
we can terminate the algorithm early.

Now we restate Theorem 1.2 (4) and prove it.
Theorem 3.37 (Restatement of Theorem 1.2 (4)). RIAFD IC3 solves RIAFD problem
in time O?(3k1.78`) and exponential space with high probability.

Proof. Suppose that there exists a riafd-set F ? of size at most k. Let (v1, v2, . . . , vn)
be the ordering from Line 1, and define Vi := {v1, . . . , vi}. We note that F ? \ Vi is a
riafd-set of G [Vi] so RIAFD problem on Line 6 will be feasible in each iteration (and
will be computed correctly with high probability in every iteration). Therefore, with
high probability, a riafd-set is returned successfully (by union bound).

We now bound the running time. On Line 4, the current set F is a riafd-set of G [Vi],
so Lemma 3.34 guarantees a tree decomposition of width at most k+ 3

5.769`+O(log(n))
and adding vi to each bag on Line 5 increases the width by at most one. By the Cut

& Count algorithm from Section 3.1, Line 6 runs in time O?(3(k+
3

5.769 `+O(log(n)))) =

31

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 8 RIAFD IC3(G,R, k, `)

Input: Graph G = (V,E), a set R and parameters k n and ` = O(n2).
Output: A riafd-set F of size at most k or Infeasible.
1: Order the vertices V arbitrarily as (v1, v2, . . . , vn)
2: F ∅

3: for i = 1, 2, . . . , n do
4: T Compute the tree decomposition of G [{v1, . . . , vi�1}] by

Lemma 3.34
5: Add vi to all bags of T
6: F a riafd-set of G [{v1, . . . , vi}] with parameters k and `, computed

using RIAFDCutandCount on T

7: if F is Infeasible then
8: return Infeasible

9: end if
10: end for
11: return F

O?(3(k+
3

5.769 `)). This gives the desired time ofO?(3k1.78`) on simplification. The space
bound follows directly from the description of RIAFD IC3, Lemma 3.34 and the space
bound of the Cut & Count algorithm.

4 Pseudoforest Deletion

In this section we present faster randomized algorithms for Pseudoforest Dele-
tion. In Section 4.1 we present an O?(3tw) Cut & Count algorithm building on
techniques from [11] for FVS. Using this we give an O?(3k) time and polynomial space
algorithm in Section 4.2. In Section 4.3, we use the method in [14] to get an O?(2.85k)
time and polynomial space algorithm. Henceforth, the abbreviation pds denotes a
pseudoforest deletion set, i.e., a solution to an instance of Pseudoforest Deletion.

4.1 O?(3tw) Algorithm

Lemma 4.1. A graph G = (V,E) with n vertices and m edges is a pseudoforest if
and only if it has n�m connected components which are trees.

Proof. We only consider cases where n � m. Note that any graph G = (V,E) with n
vertices and m edges has at least n�m connected components which are trees. This
is because of a simple additive argument and the fact that for a connected component
other than a tree with n0 vertices and m0 edges, the term n0 �m0 0.

Forward Direction: If G is a pseudoforest, then its connected components can
be either a tree or a tree plus an edge. For the “tree plus edge component”, n0�m0 = 0.
Hence we have n�m trees.

Reverse Direction: We will prove the contrapositive, i.e., if G is not a pseudo-
forest, then it has strictly greater than n�m connected components which are trees.
To see this, consider the case when n�m =

P

i2[cc(G)]

ni �mi where ni and mi are the

32

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

number of vertices and the number of edges of the ith connected component, respec-
tively. Since ni �mi < 0 for all connected components that are not pseudotrees, we
have n�m < number of connected components that are trees, as required.

We present a Cut & Count technique similar to the one for FVS in [11]. As the
universe we take U = V ⇥ {P ,M1} + E ⇥ {M2}. The main difference between our
algorithm from the one for FVS is we account for additional M2 markers for the
edges. For each edge, we a priori decide one of its endpoints to represent the edge,
which we call the “representative vertex” of the edge. Also, given a set of marked edges
M2, (M2) denotes the set of representative vertices of the edges in M2. When an
edge is marked, it is assumed to be deleted and it’s representative vertex is marked.
This assumption will be crucial in our algorithm.

We assign weights uniformly at random to the elements of our universe with the
weight function ! : U ! {1, . . . , N}, where N = 2|U | = 4|V |+ 2|E|.

The Cut Part. For integers A, B, C, D, W we define:

1. RA,B,C,D
W to be the family of solution candidates: RA,B,C,D

W is the family of
triples (X,M1,M2) where X ✓ V , |X| = A, |E[X]| = B + D of which D
edges are marked, i.e M2 ✓ E[X] and |M2| = D, M1 ✓ X, |M1| = C and
!((V \X)⇥ {P }) + !(M1 ⇥ {M1}) + !(M2 ⇥ {M2}) = W .

2. SA,B,C,D
W to be the set of solutions: the family of triples (X,M1,M2), where

(X,M1,M2) 2 RA,B,C,D
W and every connected component of G[X] �M2 is a tree

containing at least one M1 or M2 marker.

3. CA,B,C,D
W to be the family of pairs ((X,M1,M2), (XL, XR)) where (X,M1,M2)

2 RA,B,C,D
W , M1 ✓ XL, (M2) ✓ XL and (XL, XR) is a consistent cut of G[X].

According to [11], a consistent cut (XL, XR) is one where there is no edge between
the cuts. But, as we stated that an edge marked with a marker M2 is deleted, these
edges are allowed to cross the cuts. However, the representative vertex must belong
to XL only.
Lemma 4.2. The graph G admits a pseudoforest deletion set of size k iff there exist
integers B, D, W such that Sn�k,B,n�k�B�D,D

W is nonempty.

Proof. Forward direction: Let G have a pds P of size k. Then G0 = G[V \ P] =
(V 0, E0) is a pseudoforest with n � k vertices. Let G0 have D connected components
which are “a tree plus an edge” and by Lemma 4.1 G0 has n� k � B �D connected
components which are trees, where B = |E0|�D. Then we can place one M1 marker
each for all the tree components. Let M1 be the set of these marked vertices. In each
of the D “tree plus an edge components”, only one cycle exists. Choose any edge
belonging to that cycle as an M2 marker. Thus, by definition, this edge is deleted
making the component a tree. Also, as defined above, the representative vertex of the
deleted edge is marked. Let M2 be the set of all the marked edges. Also, let W :=
!((V \X)⇥{P })+!(M1⇥{M1})+!(M2⇥{M2}). We now see that (X,M1,M2) 2

Sn�k,B,n�k�B�D,D
W .

33

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Reverse direction: We have that Sn�k,B,n�k�B�D,D
W is non-empty for some inte-

gers B, D and W . Let us consider some (X,M1,M2) 2 Sn�k,B,n�k�B�D,D
W . Then,

the graph G[X] has n � k vertices, B + D edges and every connected component
of G[X] � M2 is a tree with at least one M1 or M2 marker, by definition. Since,
G[X]�M2 is a forest with n� k vertices and B edges, it has exactly n� k�B com-
ponents which each need to have at least one of the n � k � B markers. Therefore,
every connected component of G[X] �M2 is a tree with exactly one of M1 or M2

marker. Notice that if a tree component in G[X] is marked by an M2 marker, then
the number of unmarked tree components remains the same, as on marking an edge,
the edge is deleted (by definition) marking it’s representative vertex. Thus, on dele-
tion we get two trees among which one is marked while the other is still unmarked.
These unmarked tree components necessarily have to be taken care of by M1 mark-
ers. Therefore, the number of tree components has to be equal to the number of M1

markers, i.e. the number of tree components is exactly n� k �B �D. Therefore, by
Lemma 4.1 G[X] is a pseudoforest.

Lemma 4.3. |CA,B,C,D
W | ⌘ |SA,B,C,D

W | (mod 2).

Proof. Consider a triple (X,M1,M2) in RA,B,C,D
W . If G[X] � M2 has c connected

components without any marker(M1 or M2), then it contributes 2c to |CA,B,C,D
W |.

Hence, if c � 1, the triple (X,M1,M2) contributes 2c ⌘ 0 (mod 2) to |CA,B,C,D
W |

(mod 2). A triple (X,M1,M2) 2 SA,B,C,D
W iff G[X]�M2 has no unmarked connected

components. Thus, it contributes 1 (mod 2) to both SA,B,C,D
W and CA,B,C,D

W . Hence,

|CA,B,C,D
W | ⌘ |SA,B,C,D

W | (mod 2).

The Count Part. Now we describe a dynamic programming procedure
CountC(!, A,B,C,D,W,T), that given a nice tree decomposition T, weight function !
and integers A,B,C,D,W , computes |CA,B,C,D

W | mod 2. For every bag x 2 T, a |V |,
b |V |, c |V |, d |V |, w 3N |V | and s 2 {F ,L,R}Bx (called the colouring),
define

Rx(a, b, c, d, w) =
n

(X,M1,M2)
�

� X ✓ Vx ^ |X| = a ^ |Ex \ E[X]| = b+

d ^M1 ✓ X ^ M2 ✓ Ex \ E[X] ^ |M1| = c ^ |M2| =

d ^ !((V \X)⇥ {P}) + !(M1 ⇥ {M1}) + !(M2 ⇥ {M2})

= w
o

Cx(a, b, c, d, w) =
n

((X,M1,M2), (XL, XR))
�

� (X,M1,M2) 2 Rx(a, b, c, d, w)

^M1 ✓ XL ^ (M2) ✓ XL ^ (X, (XL, XR)) is a consistently

cut subgraph of Gx

o

34

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Ax(a, b, c, d, w, s) =
�

�

�

n

((X,M1,M2), (XL, XR)) 2 Cx(a, b, c, d, w)
�

�(s(v) = L =)

v 2 XL) ^ (s(v) = R =) v 2 XR) ^ (s(v) = F =)

v /2 X)
o
�

�

�

Note that we may assume b |V | and d |V | because the number of edges in a
pseudoforest cannot exceed the number of vertices. The accumulators a, b, c, d, w keep
track of the number of vertices, edges of X, M1 markers, M2 markers and the target
weight respectively. Hence Ax(a, b, c, d, w, s) is the number of pairs in Cx(a, b, c, d, w)
having a fixed interface with vertices in Bx. Note that we choose a vertex to be an
M1 marker in its respective forget bag. For the M2 marker for an edge we make the
choice in the introduce edge bag, where we decide to not include it in G[X] if it is
chosen as a M2 marker. Also note that the endpoints in this case for this edge can be
on opposite sides of the cut.
The algorithm computes Ax(a, b, c, d, w, s) for each bag x 2 T and for all reasonable
values of a, b, c, d, w and s. We now give the recurrence for Ax(a, b, c, d, w, s) used
by the dynamic programming algorithm. In order to simplify notation let v be the
vertex introduced and contained in an introduce bag, (u, v) the edge introduced in an
introduce edge bag with u being the representative of the edge (i.e. ({(u, v)}) = {u}),
and let y, z denote the left and right child of x respectively in T if present.

• Leaf bag:

Ax(0, 0, 0, 0, 0,∅) = 1

• Introduce vertex bag:

Ax(a, b, c, d, w, s [{(v,F)}) = Ay(a, b, c, d, w � !((v,P)), s)

Ax(a, b, c, d, w, s [{(v,L)}) = Ay(a� 1, b, c, d, w, s)

Ax(a, b, c, d, w, s [{(v,R)}) = Ay(a� 1, b, c, d, w, s)

• Introduce edge bag:

– If s(u) = L ^ s(v) = R

Ax(a, b, c, d, w, s) = Ay(a, b, c, d� 1, w � !((u, v),M2))

– If s(u) = F _ s(v) = F _ s(u) = s(v) = R

Ax(a, b, c, d, w, s) = Ay(a, b� [s(u) = s(v) 6= F], c, d, w, s)

– If s(u) = s(v) = L

Ax(a, b, c, d, w, s) = Ay(a, b� 1, c, d, w, s)

+Ay(a, b, c, d� 1, w � !((u, v),M2), s)

35

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Here we remove table entries not consistent with the edge (u, v), and update the
accumulator b storing the number of edges in the induced subgraph and we mark
the edge (u, v) keeping u in XL updating the accumulator d (even in the case when
u and v are in XL and XR respectively) of edges in the induced subgraph.

• Forget vertex bag:

Ax(a, b, c, d, w, s) = Ay(a, b, c� 1, d, w � !((v,M1)), s[v ! L])

+
X

↵2{F ,L,R}

Ay(a, b, c, d, w, s[v ! ↵])

If the vertex v was in XL then we can mark it and update the accumulator c.
If we do not mark the vertex v then it can have any of the three states with no
additional requirements imposed.

• Join bag:

Ax(a, b, c, d, w, s) =
X

a1+a2=a+|s�1({L,R})|
b1+b2=b
c1+c2=c
d1+d2=d

w1+w2=w+!(s�1(F)⇥{P })

Ay(a1, b1, c1, d1, w1, s) ·Az(a2, b2, c2, d2, w2, s)

The only valid combinations to achieve the colouring s is the same colouring in both
the children bags. Since the vertices coloured F according to s are present in both
y and z, their contribution to the weight w and the number of the vertices a needs
to be accounted for.

Since |CA,B,C,D
W | ⌘ Ar(A,B,C,D,W,∅) (mod 2), we compute Ar(A,B,C,D,W,

∅) for all reasonable values of the parameters as mentioned before using the
dynamic programming procedure, which takes O?(3tw|V |O(1)) time. This concludes
the description of the Cut & Count algorithm for pds.

We state the following equivalent of Lemma 3.3. The proof is omitted as it is very
similar to the equivalent proof given for RIAFD.
Lemma 4.4. Let G = (V,E) be a graph and d be an integer. Set the universe U = V ⇥
{P ,M1}[E⇥{M2}. Pick !

0(u) 2 {1, . . . , 2|U |} uniformly and independent at random
for every u 2 U . Define ! : U ! N such that !((v,P)) := |V |2!0((v,P)) + deg(v) for
all v 2 V and !(u) = |V |2!0(u) for all other u 2 U . The following statements hold:

1. If for some integers m0, D, W = i|V |2 + d we have that |Cn�k,m0,n�k�m0�D,D
W | 6⌘

0 (mod 2), then G has a Pseudoforest Deletion set P of size k satisfying deg(F) = d.
2. If G has a Pseudoforest Deletion set P of size k satisfying deg(P) = d, then

with probability at least 1/2 for some m0, D, W = i|V |2 + d we have that

|Cn�k,m0,n�k�m0�D,D
W | 6⌘ 0 (mod 2).

36

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4.2 O?(3k) Algorithm in Polynomial Space

In this section, we present an O?(3k) algorithm using polynomial space for solv-
ing Pseudoforest Deletion. First, we state the equivalent of Claim 3.5 and
Theorem 3.6 for Pseudoforest Deletion problem. Their proofs are omitted since
they work by replacing the Cut & Count algorithm for RIAFD with Cut & Count
for PDS described above, replacing RIAFD-FCCount with PF-FCCount, taking modulo
with 2 instead of 2t and following a similar line of reasoning.
Claim 4.5. Given a tree decomposition T with a set S ✓ V which is present in
all its bags and a vertex assignment function f : S ! {F ,L,R}, there is a rou-

tine PF-FCCount(T, R,A,B,C,D,W, f) which can compute |CA,B,C,D
W | (mod 2) in time

O?
�

3tw�|S|
�

.
Theorem 4.6. Given a tree decomposition T, a set S ✓ V present in all bags
of T, parameter k, CutandCountPF solves the pseudoforest deletion problem in
O?

�

3tw
�

time and O?
�

3tw�|S|
�

space with high probability.
Lemma 4.7. Given a graph G = (V,E) and a pds P of size k, you can construct a
tree decomposition T which contains the set P in all bags and has width at most k+2
in polynomial time.

Proof. G[V \ P] is a pseudoforest. Let G[V \P] have c connected components. Let us
consider the ith component Ci and denote their individual tree decomposition as Ti.
Note that Ci is either a tree or a pseudoforest. If Ci is a tree there is a trivial tree
decomposition Ti of width 1. If not, then Ci is a pseudotree. Remove any edge (u, v)
from the only cycle in Ci and construct the tree decomposition of the remaining tree.
Add the vertex u in all bags of that tree decomposition to get Ti of width 2 for the
pseudotree Ci. Now, make an empty bag as the root and connect the root of all Ti

to it and call the resulting tree decomposition (of width 2) T0
i. Now, adding P to all

bags of T0
i gives the desired tree decomposition Ti of width k + 2. The time bound is

trivial from the description of the procedure.

Now, we state the following lemma and prove it.
Lemma 4.8. There exists an algorithm PF3k that solves Pseudoforest Deletion
in O?(3k) time and polynomial space with high probability.

Proof. In algorithm RIAFD3k3l from Section 3.2, replace RIAFDCutandCount with
CutandCountPF. Also replace the equivalent lemmas, theorems and claims. Denote
this algorithm as PF3k. The proof of correctness and success-probability is similar to
Theorem 1.2 (1) in Section 3.2. The running time and space bound follow by similar
arguments in the proof of Theorem 1.2 (1), Theorem 4.6 and Lemma 4.7.

4.3 O?(2.85k) Algorithm in Polynomial space

In this section, we present a O?(2.85k) algorithm using polynomial space. We use the
method from [14], dividing the problem into sparse and dense cases. Following are a
few basic reduction rules for Pseudoforest Deletion [27].
Definition 4.9. Reduction 1: Apply the following reduction rules exhaustively until
there is no edge of multiplicity larger than 3, no vertex with at most one loop, and
degree of all vertices is at least 3.

37

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1. If there is more than one self-loop at a vertex v, delete v and decrease k by 1; add
v to the output pds.

2. If there is an edge of multiplicity larger than 3, reduce its multiplicity to 3.
3. If there is a a vertex v of degree at most 1, delete v.
4. If there is a vertex v of degree 2, delete v and join its neighbours with an edge.
5. If k < 0, then we have a no instance. If k > 0 and G is a pseudoforest, then we

have a yes instance. If k = 0, we have a yes instance iff G is a pseudoforest.

4.3.1 Dense case

In this case, we apply a probabilistic reduction that capitalises on the fact that a large
number of edges are incident to the pds. We will use the same ideas as of Reduction 2
for RIAFD in Section 3.3. Thus, even here we aim to obtain a reduction that succeeds
with probability strictly greater than 1/3 so as to achieve a randomized algorithm
running in O?(3� ✏)k time that succeeds with high probability.
Definition 4.10. Reduction 2 (P): Assume that Reduction 1 does not apply and
G has a vertex of degree at least 3. Sample a vertex v 2 V proportional to !(v) :=

(deg(v) � 2). That is, select each vertex with probability !(v)
!(V) . Delete v and decrease

k by 1.
Claim 4.11. Let G be a graph, P a pds of G. Denote P := V \ P . We have that,

deg(P) deg(P) + 2(|P |).

Lemma 4.12. Given a graph G, if there exists a pds P of size k such that deg(P) �
4�2✏
1�✏

k, then success of Reduction 2 which is essentially picking a vertex v from the pds

P occurs with probability at least 1
3�✏

.
The proofs of the above claim and lemma follow a similar line of reasoning as the

proofs of Claim 3.11 and Lemma 3.12, hence they are omitted.

4.3.2 Sparse case

In this case, since deg(P)/|P | d and d = O(1), it is possible to get a tree
decomposition of size (1� Ω(1))k.

We state this without proof through the following lemmas since they use the same
ideas from [14], Lemma 3.14 and Lemma 3.18.

Lemma 4.13. Given (G, k) and a pds P of G of size exactly k, define d := deg(P)
k

, and suppose that d = O(1). There is a randomized algorithm running in expected
polynomial time that computes a separation (A,B, S) of G such that:

1. |A \ P |, |B \ P | � (2�d � o(1))k
2. |S| (1 + o(1))k � |A \ P |� |B \ P |

Proof. The proof is similar to that in [14]. The only difference is in the first step i.e
construction of a �-separator S✏. For this we can use Lemma 2.7 which gives a �-
separator of size at most 3� (tw of any pseudoforest is at most 2), and as � = ✏k =
o(k), |S✏| = o(k). All other steps and bounds remain exactly the same.

38

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Lemma 4.14. Let G be a graph and P be a pds of G of size k, and define d := deg(P)
k .

There is an algorithm that, given G and P , computes a tree decomposition of G of

width at most (1� 2�d + o(1))k, and runs in polynomial time in expectation.
As we are in the sparse case, which means that there exists a pds P of size k

with bounded degree, i.e., deg(P) dk. We call this bounded version of the problem,
BPDS. As we saw, the small separator helps in constructing a tree decomposition of
small width, but requires that we are given a pds of size k and bounded degree. To
attain this, we use an Iterative Compression based procedure which at every iteration
considers a pds of size at most k with bounded degree and uses it to construct the
small separator. Using this small separator we construct a tree decomposition of small
width and employ a Cut & Count based procedure to solve BPDS for the current
induced subgraph, i.e, get a bpds of size at most k with bounded degree. This bpds is
used for the next iteration, and so on.
Note 4.15. Using the tree decomposition obtained in Lemma 4.14, we can run the
Cut & Count algorithm from Section 4.1. But this will utilize exponential space. To
get polynomial space, we use the following idea.

Given an (A,B, S) separation of a graph G according to Lemma 4.13 along with a
pds P of size at most k of bounded average degree d, we construct a tree decomposition
T0 of G as follows: Since (A \ P) [S is a pds for A [S, we construct a nice tree
decomposition T1 of A[S which forgets all vertices in S at the last(going from a leaf
bag to the root bag). Hence there is a bag By which contains all the vertices v 2 S
and nothing else. Upto this bag, no edge e 2 E[S, S] is introduced. Consider this part
of the tree decomposition of T1(denote as T0

1) up to node y. Similarly we construct a
tree decomposition T2 for partition B as we did for A. There is a bag Bz in T2 which
contains all vertices v 2 S and nothing more. Denote the tree decomposition up to
node z for T2 as T0

2. The final tree decomposition T for G is constructed by joining
T0
1 and T0

2 via a join node and then going toward the root we have the introduce edge
bags and forget vertex bags for v 2 S. We use this tree decomposition T0 for proving
the polynomial space bound in Algorithm BPDS.

Now, we give the claimed BPDS algorithm, which is a Cut & Count based algorithm
that solves bounded degree PDS given a small separator.

Algorithm 9 BPDS(G,P, k,A,B, S)

Input: Graph G = (V,E), pds P of size at most k + 1, parameters k, d n and a
separation (A,B, S) from Lemma 4.13.

Output: A pds P of size at most k satisfying deg(P)/|P | d or Infeasible if no
such set exists.

1: Set the universe U = V ⇥ {P ,M1} [E ⇥ {M2}
2: Pick ! uniformly and independently at random as defined in Lemma 4.4
3: Construct the tree decomposition T0 as stated earlier in Note 4.15
4: Compute CA,B,C,D

W for all reasonable values of A,B,C,D,W using CutandCountPF

5: return A pds P with |P | k and deg(P)/|P | d

39

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Lemma 4.16. There is an Algorithm BPDS that, given G, a pds P of G of size at
most k+1, parameter d, and a separation (A,B, S) as given by Lemma 4.13, outputs
a pds of size at most k satisfying deg(P)/|P | d, or Infeasible if none exists. The

algorithm uses O?(3(1�2�d+o(1))k) time and polynomial space.

Proof. Note that we reorder the computation of algorithm CutandCountPF in a slightly
different way on tree decomposition T

0 to achieve polynomial space. Follow the nota-
tions according to Note 4.15. The way we reorder the computation of CutandCountPF
on tree decomposition T

0 is as follows: For a fixed colouring s of S, we compute
Ay(a, b, c, d, w, s) and Az(a, b, c, d, w, s) in polynomial space according to Claim 4.5.
Now the remaining tree decomposition has bags only consisting of vertices in S. Using
Ay(a, b, c, d, w, s) and Az(a, b, c, d, w, s) for some colouring s of S we can compute

CA,B,C,D
W for T0 in polynomial space by Theorem 4.6.

The algorithm is clearly correct since it uses CutandCountPF as a subroutine with
reordered computation. By Lemma 4.4, the pds P of size at most k is found using
CutandCountPF with bounded average degree d with success probability at least
1/2. The success probability can be easily boosted by nO(1) runs of the algorithm.
The width of the tree decomposition from the input according to Lemma 4.14 is

(1� 2�d + o(1))k. Thus the time bound follows the time bound of the CutandCountPF
algorithm.

Now, we give the Iterative Compression routine which solves BPDS, as explained
above.
Lemma 4.17. There exists an algorithm PFIC1 that solves BPDS in running time

O?(3(1�2�d+o(1))k) and polynomial space with high probability.

Proof. PFIC1 can be constructed by replacing every occurrence of BRIAFD1 with BPDS

and constructing the separator using Lemma 4.13. The proofs of correctness, space
bound and success-probability are similar to Lemma 3.21.

4.3.3 Combining the Sparse and Dense Cases

Having described the Dense and the Sparse Cases, we now combine them to give the
final randomized algorithm.

Lemma 4.18. Fix the parameter ✏ 2 (0, 1) and let c✏ := max

⇢

3� ✏, 31�2
�

4�2✏
1�✏

�

. If

c✏ � 2, there exists an algorithm PDS1 that succeeds with probability at least c�k
✏ . More-

over Algorithm PDS1 has expected polynomial running time and requires polynomial
space.

Proof. In algorithm RIAFD1, replace every occurrence of RIAFDIC1 with PFIC1. Also,
replace the Reduction rules with the ones given for Pseudoforest Deletion. This modi-
fied algorithm is PDS1. The running time, space bound and success probability analysis
are similar to the analysis in proof of Lemma 3.32.

Note that the outer loop on k is not required here. If there exists a pds of size at
most k, we can add arbitrary vertices to get a pds of size exactly k.

40

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

To optimize for c✏, we set ✏ ⇡ 0.155433, giving c✏ ⇡ 2.8446. Using Lemma 2.4
we can boost the success probability to be sufficiently high. Theorem 1.4 thus follows
from Lemma 4.18 and Lemma 2.4.

5 Conclusion

In this paper, we applied the technique of Li and Nederlof [14] to other problems
around the Feedback Vertex Set problem. The technique of Li and Nederlof is
inherently randomized, and it uses the Cut & Count technique, which is also ran-
domized. Designing matching deterministic algorithms for these problems, as well as
for Feedback Vertex Set, is a long standing open problem. However, there is a
deterministic algorithm for Pseudoforest Deletion running in time O?(3k) [26].
So obtaining a deterministic algorithm for Pseudoforest Deletion running in time
O?(ck) for a constant c < 3 is an interesting open question. Further, can we design
an algorithm for Pseudoforest Deletion running in time O?(2.7k), by designing
a different Cut & Count based algorithm for this problem? Finally, could we get a
O?(ck2o(`)) algorithm for Almost Forest Deletion, for a constant c possibly less
than 3?

Acknowledgments. The authors are grateful to the anonymous reviewers for their
valuable and constructive comments. This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 819416) and Swarnajayanti Fellowship
grant DST/SJF/MSA-01/2017-18.

Declarations

Competing Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

[1] Festa, P., Pardalos, P.M., Resende, M.G.C.: In: Du, D.-Z., Pardalos, P.M. (eds.)
Feedback Set Problems, pp. 209–258. Springer, Boston, MA (1999). https://doi.
org/10.1007/978-1-4757-3023-4 4

[2] Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.)
Graph-Theoretic Concepts in Computer Science, pp. 230–238. Springer, Berlin,
Heidelberg (1992). https://doi.org/10.1007/3-540-55121-2 24

[3] Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote,
P., Remmel, J.B. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser Boston,
Boston, MA (1995). https://doi.org/10.1007/978-1-4612-2566-9 7

[4] Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable
algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.)

41

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/3-540-55121-2_24
https://doi.org/10.1007/978-1-4612-2566-9_7

Algorithms and Computation, pp. 241–248. Springer, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-36136-7 22

[5] Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.:
An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem.
Theory Comput. Syst. 41(3), 479–492 (2007) https://doi.org/10.1007/11533719
87

[6] Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006) https://doi.org/10.1016/j.jcss.
2006.02.001

[7] Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop
cutset problem. J. Artif. Int. Res. 12(1), 219–234 (2000) https://doi.org/10.5555/
1622248.1622256

[8] Cao, Y.: A naive algorithm for feedback vertex set. In: Seidel, R. (ed.) 1st Sympo-
sium on Simplicity in Algorithms (SOSA 2018). Open Access Series in Informatics
(OASIcs), vol. 61, pp. 1–119. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.1

[9] Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and
new structures. Algorithmica 73(1), 63–86 (2015) https://doi.org/10.1007/
s00453-014-9904-6

[10] Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)
https://doi.org/10.1016/j.jcss.2008.05.002

[11] Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J.M.M.v., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, pp. 150–159 (2011). https://doi.org/10.1109/FOCS.2011.
23

[12] Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feed-
back vertex set. Algorithmica 83(8), 2503–2520 (2021) https://doi.org/10.1007/
s00453-021-00815-w

[13] Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf.
Process. Lett. 114(10), 556–560 (2014) https://doi.org/10.1016/j.ipl.2014.05.001

[14] Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O?(2.7k) time.
ACM Trans. Algorithms 18(4) (2022) https://doi.org/10.1145/3504027

[15] Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for

42

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://doi.org/10.1007/3-540-36136-7_22
https://doi.org/10.1007/11533719_87
https://doi.org/10.1007/11533719_87
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.5555/1622248.1622256
https://doi.org/10.5555/1622248.1622256
https://doi.org/10.4230/OASIcs.SOSA.2018.1
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1007/s00453-021-00815-w
https://doi.org/10.1007/s00453-021-00815-w
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1145/3504027

connected feedback vertex set. Journal of Combinatorial Optimization 24(2), 131–
146 (2012) https://doi.org/10.1007/s10878-011-9394-2

[16] Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and com-
binatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin,
D. (eds.) 11th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol.
63, pp. 2–1214. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2017). https://doi.org/10.4230/LIPIcs.IPEC.2016.2

[17] Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback ver-
tex set. Theory of Computing Systems 64(8), 1317–1330 (2020) https://doi.org/
10.1007/s00224-020-09973-w

[18] Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent
feedback vertex set. Theoretical Computer Science 461, 65–75 (2012) https://doi.
org/10.1016/j.tcs.2012.02.012 . 17th International Computing and Combinatorics
Conference (COCOON 2011)

[19] Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback
vertex set: A parameterized perspective. ACM Trans. Comput. Theory 10(4)
(2018) https://doi.org/10.1145/3265027

[20] Ye, J.: A note on finding dual feedback vertex set. CoRR abs/1510.00773 (2015)
arXiv:1510.00773

[21] Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback
vertex set is fixed-parameter tractable. SIAM Journal on Discrete Mathematics
27(1), 290–309 (2013) https://doi.org/10.1137/110843071

[22] Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT
algorithms. SIAM Journal on Computing 45(4), 1377–1411 (2016) https://doi.
org/10.1137/140962838

[23] Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, half-integral A-path pack-
ing, and linear-time FPT algorithms. In: 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 462–473. IEEE Computer Society,
Los Alamitos, CA, USA (2018). https://doi.org/10.1109/FOCS.2018.00051

[24] Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset
feedback set problem and the S-cycle packing problem. J. Comb. Theory Ser. B
102(4), 1020–1034 (2012) https://doi.org/10.1016/j.jctb.2011.12.001

[25] Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algo-
rithms for subset feedback vertex set. ACM Trans. Algorithms 14(1) (2018)
https://doi.org/10.1145/3155299

43

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://doi.org/10.1007/s10878-011-9394-2
https://doi.org/10.4230/LIPIcs.IPEC.2016.2
https://doi.org/10.1007/s00224-020-09973-w
https://doi.org/10.1007/s00224-020-09973-w
https://doi.org/10.1016/j.tcs.2012.02.012
https://doi.org/10.1016/j.tcs.2012.02.012
https://doi.org/10.1145/3265027
https://arxiv.org/abs/1510.00773
https://doi.org/10.1137/110843071
https://doi.org/10.1137/140962838
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1145/3155299

[26] Bodlaender, H.L., Ono, H., Otachi, Y.: A faster parameterized algorithm for
pseudoforest deletion. Discret. Appl. Math. 236, 42–56 (2018) https://doi.org/
10.1016/j.dam.2017.10.018

[27] Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: Algorithms
and uniform kernel. SIAM J. Discret. Math. 32(2), 882–901 (2018) https://doi.
org/10.1137/16M1100794

[28] Rai, A., Saurabh, S.: Bivariate complexity analysis of almost forest deletion.
Theor. Comput. Sci. 708, 18–33 (2018) https://doi.org/10.1016/j.tcs.2017.10.021

[29] Lin, M., Feng, Q., Wang, J., Chen, J., Fu, B., Li, W.: An improved FPT algorithm
for almost forest deletion problem. Inf. Process. Lett. 136, 30–36 (2018) https:
//doi.org/10.1016/j.ipl.2018.03.016

[30] Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987) https://doi.org/10.1007/bf02579206

[31] Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation.
ISSAC ’14, pp. 296–303. Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2608628.2608664

[32] Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of
sparse graphs with applications to exact algorithms. SIAM J. Discrete Math. 23,
407–427 (2009) https://doi.org/10.1137/080715482

44

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://doi.org/10.1016/j.dam.2017.10.018
https://doi.org/10.1016/j.dam.2017.10.018
https://doi.org/10.1137/16M1100794
https://doi.org/10.1137/16M1100794
https://doi.org/10.1016/j.tcs.2017.10.021
https://doi.org/10.1016/j.ipl.2018.03.016
https://doi.org/10.1016/j.ipl.2018.03.016
https://doi.org/10.1007/bf02579206
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/080715482

