
Decremental Sensitivity Oracles for Covering and
Packing Minors
Lawqueen Kanesh #

Indian Institute of Technology Jodhpur, India

Fahad Panolan #

School of Computing, University of Leeds, UK

M. S. Ramanujan #

University of Warwick, UK

Peter Strulo #

University of Warwick, UK

Abstract
In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number
of basic covering and packing problems on graphs. In particular, we obtain the first decremental
sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and
Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity
oracle that preprocesses the given graph in time f(k, ℓ)nO(1) such that, when given a set of ℓ edge
deletions, the data structure decides in time f(k, ℓ) whether the updated graph is a positive instance
of the problem. These results are obtained as a corollary of our central result, which is the first
decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in
the input graph that belong to a specified set, using k vertices).

Though our methodology closely follows the literature, we are able to produce the first explicit
bounds on the preprocessing and query times for several problems. We also initiate the study of
fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient
conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the
treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned
results in this paper assume a bound on the solution size (a weaker parameter than treewidth for
many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems
such as Vertex Cover and Dominating Set when only the treewidth of the input graph is
bounded. A feature of our methodology behind these results is that we are able to obtain query
times independent of treewidth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Dynamic graph algorithms

Keywords and phrases Sensitivity oracles, Data Structures, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.44

Funding M. S. Ramanujan: Supported by the Engineering and Physical Sciences Research Council
(grant numbers EP/V007793/1 and EP/V044621/1).

Acknowledgements We thank anonymous reviewers for the pointers to [18, 37].

1 Introduction

The study of basic graph problems on dynamic inputs has been a central aspect of algorithmics
for several decades. A well-studied model in this line of research is the “fault tolerance
model”. In this model, one assumes that the network at hand is susceptible to a bounded
number of faulty network components (i.e., failing nodes or links) at any given time. The
goal is to efficiently preprocess the network and produce a sufficiently small data structure so

© Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Peter Strulo;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 44; pp. 44:1–44:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lawqueenkanesh091@gmail.com
https://orcid.org/0000-0001-9274-4119
mailto:fahad.panolan@gmail.com
https://orcid.org/0000-0001-6213-8687
mailto:joanrpublic@dummycollege.org
https://orcid.org/0000-0002-2116-6048
mailto:Peter.Strulo@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2024.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Decremental Sensitivity Oracles for Covering and Packing Minors

that once the set of faulty nodes or links is given (or equivalently, the corresponding vertices
or edges in the graph are deleted), one can recover various properties of the network from the
stored data structure without recomputing these from scratch. The fault tolerance model has
been a hugely successful setting for various advances on fundamental data structures such
as spanners [39] and distance sensitivity oracles [21]. The “dimensions” of interest in such
data structures are: the time needed by the preprocessing algorithm, the space complexity of
the data structure, the time required to query the data structure in order to recover various
properties of the input graph minus the set of failed elements and in some cases, the time
required to update the data structure to reflect the failures.

The primary focus of research in the fault tolerance model has been on polynomial-time
solvable problems. However, in a recent paper, Bilò et al. [6] extended the fault tolerance
model to NP-complete graph problems by introducing a notion of decremental fixed-parameter
sensitivity oracles (FSO). For an edge (respectively, vertex) decremental sensitivity oracle for
a fixed-parameter tractable (FPT) problem Π, the input is an instance (G, k) of Π, where
G is an n-vertex input graph and k is the parameter and a number ℓ, and the goal is to
develop a preprocessing algorithm A that builds a data-structure (i.e., the oracle) that, when
queried on a set F of at most ℓ edges (respectively, vertices), decides whether (G− F, k) is a
positive instance of the problem, using a query algorithm Q. The goal here is to ensure that
the preprocessing time is f(k, ℓ)nO(1) and the query time is g(k, ℓ)no(1) for some functions
f and g. Unless otherwise specified, one allows both edge and vertex failures. Using this
framework, Bilò et al. [6] gave the first edge decremental FSO for several problems including
Long Path and Vertex Cover. Subsequently, Alman and Hirsch [3] extended the work
of Bilò et al. [6] to also account for edge additions, by introducing a fully dynamic notion of
sensitivity oracles. Moreover, Alman and Hirsch [3] define a notion of efficient sensitivity
oracles, where the preprocessing time is f(k)nO(1), and the query time is ℓO(1)g(k)no(1).
That is, the dependence on ℓ in both the preprocessing and query time is polynomial. By
developing a dynamic variant of the extensor coding method [12], they show that Long
Path has a fully dynamic efficient sensitivity oracle even on directed graphs.

These advances made by Bilò et al. [6] and Alman and Hirsch [3] for individual problems
pose some natural questions: Could we prove general statements that provide a unified
explanation of the existence of fixed-parameter sensitivity oracles (FSOs) for families of
problems? Could we obtain efficient FSOs for these problems and give explicit bounds on
the preprocessing and query times? These questions at the intersection of data structures
and parameterized algorithms are our main motivation.

In this paper, we make significant progress towards answering these questions by presenting
meta-theorems from which decremental FSOs for a number of basic covering and packing
problems on graphs can be derived.

1.1 Our contributions I: FSOs for vertex deletion problems
Many important NP-hard graph optimization problems can be phrased as a vertex deletion
problem to a graph class satisfying some property P . Here, the input is a graph G on
n vertices and the task is to find a minimum size vertex subset S such that the graph
G− S obtained from G by removing S and its incident edges has the property P . By the
well-known result of Lewis and Yannakakis [40] such problems are NP-complete for hereditary
properties. For this reason the study of these problems is an integral part of the areas of
approximation algorithms, exact-exponential algorithms and parameterized complexity, and
has been responsible for the development of many classic algorithmic techniques.

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:3

Hence, the family of vertex deletion problems provide a natural candidate for us to develop
meta-theorems. This brings us to the Topological Minor Deletion (TM-Deletion)
problem which is a vertex deletion problem that directly generalizes numerous well-known
problems vertex deletion problems including Vertex Cover, Feedback Vertex Set
(delete at most k vertices to obtain a forest) and Vertex Planarization, to name a few.
In TM-Deletion, the input is an undirected graph G, a family F of undirected graphs
such that every graph in F has at most h(F) vertices, and an integer k. The parameter is
k + h(F) and the goal is to decide whether there exists S ⊆ V (G) of size at most k such
that G − S contains no graph from F as a topological minor. A graph H is a topological
minor of G if H can be obtained from G by deleting vertices or edges, and then contracting
edges as long as each such edge is incident to at least one vertex of degree precisely 2. The
expressive power of TM-Deletion naturally implies that an FSO for this problem would
enable us to obtain as a consequence, FSOs for a host of other problems.

▶ Theorem 1. Topological Minor Deletion has a decremental fixed-parameter sensit-
ivity oracle.

As a consequence of Theorem 1, we obtain decremental FSOs1 for many well-studied
parameterized problems, thus extending the scope of sensitivity oracles for NP-complete
graph problems significantly beyond the state of the art. We refer the reader to the appendix
for the definitions of problems not defined here and to Section 2 for the formal definition of
treewidth and (topological) minors.

▶ Corollary 2. The following problems have FSOs as a consequence of Theorem 1.
1. Feedback Vertex Set (FVS). Or more generally, η-Treewidth Modulator, i.e.,

decide whether we can delete at most k vertices from the input graph to obtain a graph
with treewidth at most η.

2. Vertex Planarization. Or more generally, Minor Deletion, i.e., for a set F of
graphs, decide whether we can delete at most k vertices from the input graph to obtain a
graph that excludes every graph in F as a minor.

3. Cycle Packing. Or more generally, Topological Minor Packing, i.e., for a set
F of graphs, decide whether the input graph contains k vertex disjoint topological-minor
models of graphs in F .

4. Long Path and Long Cycle. That is, decide whether there is a path (or a cycle,
respectively) of length at least k in the input graph.

A useful feature of our proof techniques is that it allows for easy (albeit rough) estimations
of the preprocessing and query times of most of the FSOs in the above statement. As a
result, without much additional effort, one can prove the following bounds on specific FSOs
in Corollary 2.

▶ Theorem 3. The following bounds can be obtained.2
1. Feedback Vertex Set has an FSO with preprocessing time tow(3,O((k+ ℓ)11))n4 and

query time tow(2,O((k + ℓ)11)).
2. Cycle Packing has an FSO with preprocessing time tow(3,O((k + ℓ)20))n4 and query

time tow(2,O((k + ℓ)20)).
3. Long Path and Long Cycle have FSOs with preprocessing time tow(2,O(k log(ℓ)))n4

and query time tow(2,O(k log(ℓ))).

1 Since we only deal with the decremental setting in this paper, we drop the explicit reference to this
term in the rest of the paper and simply say, FSO.

2 The notation tow(p, q) indicates a runtime that is exponential in q, where q is on top of a tower of
iterated exponentials of height p.

STACS 2024

44:4 Decremental Sensitivity Oracles for Covering and Packing Minors

Note that these are the first concrete bounds for Cycle Packing. However, the bounds
for Long Path implied by our meta-theorem are significantly worse than that of Bilò et
al. [6] and Alman and Hirsch [3], which is not surprising since we obtain these bounds by
instantiating a general-purpose theorem. For instance, the former get query time upper
bounded by O(ℓ(ℓ + k)) and the latter, ℓ22kkO(1). However, we prove the bounds in the
above theorem in order to illustrate how to use our methodology to obtain explicit bounds
for specific problems.

1.2 Our contributions II: A meta-theorem for efficient FSOs
Algorithmic meta-theorems are general algorithmic results applicable to a whole range of
problems. Many prominent algorithmic meta-theorems are about model checking; such
theorems state that for certain kinds of logic L, and all classes of structures C that have a
certain property, there is an algorithm that takes as input a formula ϕ ∈ L and a structure
S ∈ C and efficiently determines whether S |= ϕ. One of the most famous results in this
direction is the seminal theorem of Courcelle [16, 14, 15] for model checking of Monadic
Second Order Logic (MSO) on graphs of bounded treewidth (see also [1, 5, 11, 17, 22]).
Courcelle’s theorem (which also extends to a fragment called Counting Monadic Second Order
Logic or CMSO) is a crucial component of the parameterized complexity toolbox because
numerous well-studied graph problems can be expressed in this particular fragment of logic.
Classic examples of CMSO-definable graph properties are Hamiltonicity and 3-Colorability.
We refer the reader to Section 2.2 for a formal description of CMSO-definability. Consequently
a natural question arises – “Does an analogue of Courcelle’s theorem hold in the fault-tolerant
setting?” An affirmative answer is implied by existing results in the literature on query
testing MSO formulas on bounded-treewidth graphs (see, for instance, Theorem 6.1.3 in [37]).
These results build upon Courcelle’s approach of reducing model checking MSO sentences on
bounded-treewidth graphs to model checking MSO sentences on labelled trees. However, in
the quest for efficient FSO (recall that we want preprocessing and query time polynomial in
the number of failures), this approach does not yield a positive outcome since it involves a
reduction to MSO model checking on graphs, where the formula size now depends on the
number of failures and so, the query algorithm may take time exponential in the number of
failures.

In this paper, we prove the following meta-theorem giving a sufficient condition for the
existence of efficient FSOs with the additional property that the query times are actually
independent of input size n (although the definition allows for sublinear dependence on n).

▶ Theorem 4. Every CMSO-definable graph problem has an efficient non-uniform FSO with
query time independent of input size, when parameterized by the treewidth of the input graph
and size of the CMSO-sentence defining it.

A non-uniform FSO is simply an FSO where one is allowed to have, for every value of
the parameter k and number ℓ of permitted failures, a distinct preprocessing algorithm Ak,ℓ

and query algorithm Qk,ℓ.
Theorem 4 forms a crucial component of our proof of Theorem 1. Essentially, we use

Theorem 4 to handle “low-treewidth” instances of TM-Deletion. However, notice that
Theorem 4 only guarantees a non-uniform FSO whereas Theorem 1 has no such caveat.
Hence, a few remarks are in order here. Often, in the literature on non-uniform FPT
algorithms, it has been demonstrated that the non-uniformity can be omitted either through
self-reducibility arguments or by a case-by-case understanding of the combinatorics behind
each problem. We are able to provide such arguments regarding Theorem 4 that essentially

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:5

suggest that as long as one could solve the CMSO-definable problem under consideration
using an explicit dynamic programming algorithm on bounded-treewidth graphs, i.e., the vast
majority of natural CMSO-definable problems in the literature, then one can actually infer
an FSO for the problem on bounded-treewidth graphs without the caveat of non-uniformity.
Moreover, this approach can lead to obtaining explicit running time bounds. This is also
why we avoid resorting to the aforementioned black-box results on query testing in the
literature to handle the low treewidth case. In this paper, we formally exemplify our strategy
of eliminating the non-uniformity resulting from the invocation of Theorem 4 for the special
case of TM-Deletion, which enables us to prove Theorem 1. Though we only deal with
TM-Deletion, our arguments can be easily seen to extend to other problems, which we use
to obtain explicit bounds for some of them. We believe that Theorem 4 will be a crucial
component of designing FSOs for more problems, especially in conjunction with techniques
such as irrelevant vertex removal [25].

In this context, it is important to mention the work of Courcelle and Vanicat [18]. They
prove a meta-theorem that implies an efficient FSO for all CMSO-definable problems when
parameterized by the treewidth of the input graph and size of the CMSO-sentence defining
it. We note that their query times have a logarithmic dependence on n. It is known in the
community (although not explicitly published to the best of our knowledge) that the log(n)
dependence can be removed with appropriate preprocessing. However, we believe that the
methodology behind Theorem 4 is useful as it enables us to easily obtain concrete bounds in
our applications, which does not appear to be straightforward from the result of [18].

1.3 Our contributions III: Edge FSOs parameterized only by treewidth

We demonstrate the further applicability of the proof technique behind Theorem 4 to obtain a
meta-theorem that gives sufficient conditions on a problem to have an edge FSO parameterized
by the treewidth alone. Notice that all our results and those in the literature up to this
point have the solution size as the parameter either explicitly or implicitly. In particular, in
Theorem 4 the parameter also includes the size of the MSO formula, which in turn often
depends on the solution size in the case of specific problems. Moreover, we highlight the fact
that the oracles in this section have query time with a polynomial dependence on ℓ (in fact,
only O(ℓ2)). Moreover, the query times are independent of the treewidth. However, they are
not efficient oracles as the preprocessing algorithm has exponential dependence on ℓ.

We give the following (non-exhaustive) exemplifications of our meta-thereom.

▶ Theorem 5. The following hold.
1. Vertex Cover admits an edge FSO parameterized by the treewidth k with preprocessing

time ℓO(2k) · nO(1), and query time O(ℓ2).
2. Dominating Set admits an edge FSO parameterized by the treewidth k with preprocessing

time ℓO(3k) · nO(1), and query time O(ℓ2).

Note that since the treewidth of a graph is at most the size of the minimum vertex
cover, the first statement directly implies an edge FSO for Vertex Cover parameterized
by solution size.

Here also, the work of Courcelle and Vanicat [18] is relevant as they prove an optimization
version of their meta-theorem. However, their query time depends on the treewidth whereas
we are able to obtain FSOs with query times independent of the treewidth.

STACS 2024

44:6 Decremental Sensitivity Oracles for Covering and Packing Minors

1.4 Related work
Alman and Hirsch [3] note that the work of van den Brand and Saranurak [46] (see full
version [47]) on distance sensitivity oracles in combination with standard color-coding
techniques also imply a fully dynamic sensitivity oracle for Long Path on directed graphs,
but with a worse dependence on k and ℓ. We note that though a no(1) multiplicative factor
in the query time is permitted in the definition of FSO, this is not exploited in their results
and similar to our results, the queries of both Alman and Hirsch [3] as well the alternate
oracle implied by Brand and Saranurak [46] run in time independent of the input size.

In other recent work, Pilipczuk et al. [44] gave a sensitivity oracle that answers s-t
connectivity in constant time if a constant number of vertex failures occur. Interestingly,
Pilipczuk et al. [44] show that the techniques they use to obtain their result can be used to
design a model checking algorithm for the recently introduced separator logic [10] which is
more expressive than First Order Logic but less expressive than MSO. This is a promising
sign that advances on sensitivity oracles can have a much broader impact beyond the specific
problem for which they are developed. We also note that the Arxiv version of [44] contains
the tools (MSO query testing on trees) required to prove Kazana’s result [37] on MSO query
testing on bounded-treewidth graphs.

In recent years, spurred by the first systematic exploration of the intersection of paramet-
erized and dynamic graph algorithms by Alman et al. [4], there has been a significant amount
of work combining techniques from these two areas. Of special interest in the context of our
paper is the work of Dvorak et al. [23] (improved upon by Chen et al. [13]) and Majewski et
al. [42], who gave fully dynamic data structures that are able to maintain CMSO properties.
That is, they obtain a data structure that is stronger than just a sensitivity oracle, but at
the cost of weaker parameters than the one we use (i.e., treewidth).

Finally, on the topic of intersecting parameterized complexity and fault-tolerant data
structures, Lochet et al. [41], in a work preceding the work of Bilò et al. [6], studied fault-
tolerant spanners in directed graphs by choosing parameters expressing certain types of
structure. Recently, Misra [43] initiated the study of computing fault-tolerant solutions (e.g.,
a solution that remains a feedback vertex set of the graph even if one vertex is removed from
the solution) for NP-hard problems, with follow up work by Blazej et al. [7].

2 Preliminaries

2.1 Graphs
Given a graph G, let V (G) and E(G) denote the vertex and edge set of G, respectively. We
only deal with simple graphs in this paper. When G is clear from the context, let n and
m denote |V (G)| and |E(G)|, respectively. For a graph G, paths(G) denotes the set of all
simple paths in G. For a set A ⊆ V (G), we denote by E(A) the set of those edges in G with
both endpoints in A.

Formally, the treewidth of a graph is defined as follows.

▶ Definition 6 (Tree decomposition). A tree decomposition of a graph G is a pair (T, β)
of a tree T and β : V (T) → 2V (G), such that: (i)

⋃
t∈V (T) β(t) = V (G), (ii) for any edge

e ∈ E(G), there exists a node t ∈ V (T) such that both endpoints of e belong to β(t), and (iii)
for any vertex v ∈ V (G), the subgraph of T induced by the set Tv = {t ∈ V (T) : v ∈ β(t)}
is a tree. We say a tree decomposition is nice if it additionally satisfies the conditions on
page 161 of [19]. The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The treewidth of G is the
minimum width of a tree decomposition of G.

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:7

Let (T, β) be a tree decomposition of a graph G. We refer to the vertices of the tree T
as nodes. We always assume that T is a rooted tree and so, we have a natural parent-child
and ancestor-descendant relationship among nodes in T . The set β(t) is called the bag
at t. For two nodes u, t ∈ T , we say that u is a descendant of t, denoted u ⪯ t, if t lies
on the unique path connecting u to the root. Note that every node is its own descendant.
If u ⪯ t and u ̸= t, then we write u ≺ t. For a tree decomposition (T, β) we also have a
mapping γ : V (T) → 2V (G) defined as γ(t) =

⋃
u⪯t β(u). For every t ∈ V (T), we also define

β̂(t) = β(t) ∪E(β(t)) and γ̂(t) = γ(t) ∪E(γ(t)). Recall that for a vertex set S, E(S) denotes
the set of all edges with both endpoints in S. We call a tree decomposition nice if it satisfies
the conditions in section 7.2 of [20].

There is an algorithm that, given a graph G on n vertices and an integer w, runs in time
O(f(w)n3) and either correctly answers that G has treewidth more than w or outputs a tree
decomposition of G of optimal width [8].

We next recall the classic notions of minors and topological minors.

▶ Definition 7 (Minors). A graph H is a minor of G if there exists a function ϕ : V (H) →
2V (G) with the following properties: (i) for every h ∈ V (H), G[ϕ(h)] is a connected graph,
(ii) for all distinct h, h′ ∈ V (H), ϕ(h) ∩ ϕ(h′) = ∅, and (iii) for all {h, h′} ∈ E(H), there
exist u ∈ ϕ(h) and v ∈ ϕ(h′) such that {u, v} ∈ E(G). The function ϕ is called a minor
model of H in G.

▶ Definition 8 (Topological minors). Let G and H be two graphs. We say that H is a
topological minor of G if there exist injective functions ϕ : V (H) → V (G) and φ : E(H) →
paths(G) such that

for every e = {h, h′} ∈ E(H), the endpoints of φ(e) are ϕ(h) and ϕ(h′),
for every distinct e, e′ ∈ E(H), the paths φ(e) and φ(e′) are internally vertex-disjoint,
there does not exist a vertex v in the image of ϕ and an edge e ∈ E(H) such that v is an
internal vertex on φ(e).

We say that (ϕ, φ) is a topological-minor model of H in G.

Note that if H is a topological minor of G, then it is also a minor of G. However, the
converse does not hold.

Boundaried graphs. Roughly speaking, a boundaried graph is a graph where some vertices
are labeled. A formal definition is as follows.

▶ Definition 9 (Boundaried graph). A boundaried graph is a graph G with a set ∂(G) ⊆ V (G)
of distinguished vertices called boundary vertices, and an injective labeling λG : ∂(G) → N.
The set ∂(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ ∂(G)}.

Given a finite set I ⊆ N, GI denotes the class of all boundaried graphs whose label set is
I, and G⊆I =

⋃
I′⊆I GI′ . A boundaried graph in G⊆[t] is called a t-boundaried graph. Note

that if G is a boundaried graph and x ∈ V (G) is a vertex in the boundary, then G− x is a
boundaried graph that inherits its boundary and labeling from G in the natural way. That
is, we simply remove x and preserve the labeling of the remaining vertices.

2.2 Counting Monadic Second Order Logic
The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives
∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers
∀ and ∃, which can be applied to these variables, and the binary relations: (i) u ∈ U , where

STACS 2024

44:8 Decremental Sensitivity Oracles for Covering and Packing Minors

u is a vertex variable and U is a vertex set variable; (ii) d ∈ D, where d is an edge variable
and D is an edge set variable; (iii) inc(d, u), where d is an edge variable, u is a vertex
variable, and the interpretation is that the edge d is incident to u; (iv) equality of variables
representing vertices, edges, vertex sets and edge sets.

An MSO sentence is an MSO formula without free variables. Counting Monadic Second
Order Logic (CMSO) extends MSO by including atomic sentences testing whether the
cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r and
r ≥ 2. That is, CMSO is MSO with the following atomic sentence: cardq,r(S) = true if and
only if |S| ≡ q (mod r), where S is a set. We refer to [5, 16, 15] for a detailed introduction
to CMSO. We note that what we refer to as CMSO in this paper is sometimes called CMSO2
in the literature to indicate that quantifying over edge sets is permitted.

▶ Definition 10 (Property). A property is a function σ from the set of all graphs to
{true, false}. For a CMSO sentence ψ, the property σψ is defined as follows. Given a graph
G, σψ(G) equals true if and only if G |= ψ.

▶ Definition 11 (CMSO-definable property). A property σ is CMSO-definable if there exists
a CMSO sentence ψ such that σ = σψ. In this case, we say that ψ defines σ.

We next recall an implication of the classic Courcelle’s Theorem [16, 14, 15] proof (see
also [17]). This fact, which is a central component in the proof of Theorem 4, says that a
certain canonical equivalence relation over boundaried graphs has finite index. We first need
to identify precisely those pairs of graphs that could potentially be related by the canonical
equivalence and so, we define the compatibility equivalence relation ≡c on boundaried graphs
as follows. We write Gα ≡c Gβ and say that Gα is compatible with Gβ if Λ(Gα) = Λ(Gβ).
Now, we define the canonical equivalence relation ≡σ on boundaried graphs.

▶ Definition 12 (Canonical equivalence). Given a property σ of graphs, the canonical equival-
ence relation ≡σ on boundaried graphs is defined as follows. For two boundaried graphs Gα
and Gβ, we say that Gα ≡σ Gβ if (i) Gα ≡c Gβ, and (ii) for every boundaried graphs Gγ com-
patible with Gα (and thus also with Gβ), we have: σ(Gα ⊕Gγ) = true ⇔ σ(Gβ ⊕Gγ) = true.

Here, the gluing operator ⊕ identifies equally-labeled vertices of the two boundaried
graphs.

A property σ of graphs has finite state if ∀I ⊆ N, the set of equivalence classes of ≡σ

when restricted to G⊆I is finite. Given a CMSO sentence ψ, the canonical equivalence
relation associated with ψ is ≡σψ , and for simplicity, we denote this relation by ≡ψ.

We are now ready to state the required consequence of Courcelle’s Theorem (see, for
example, [16, 14, 15, 9]).

▶ Proposition 13. Every CMSO-definable property on graphs has finite state.

We use the RAM model (see Harel and Tarjan [29]) with addition and uniform cost
measure. Each word holds O(logn) bits and each basic operation on a word is assumed to
take constant time.

3 Technical overview

In this section, we give an overview of our techniques, omitting details where necessary due
to space constraints.

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:9

Since we effectively use Theorem 4 in our proof of Theorem 1, we first describe our proof
of this result and how it implies a (uniform) FSO for TM-Deletion parameterized by the
treewidth of the input graph in addition to the standard parameterization comprising the
deletion set size k and the size of the largest graph in the family F that we want to exclude
as topological minors.

3.1 The FSO for CMSO-definable problems on bounded-treewidth
graphs

We first give an overview of our proof of Theorem 4. For every CMSO formula ψ, one can
define a canonical equivalence relation (see Definition 12) over the set of all boundaried
graphs. A boundaried graph is simply a graph where some vertices are called boundary
vertices and are assigned labels from a finite label set. A graph is t-boundaried if the label
set has size at most t. The Myhill-Nerode equivalence for ψ on boundaried graphs says that
if we take two t-boundaried graphs G1 and G2 then they are equivalent if and only if their
boundary labels are equal and moreover, for any t-boundaried graph whose boundary labels
are the same as those of G1 (and hence also of G2), if we glue the graphs G1 and H along the
boundaries by identifying equally labeled vertices and similarly, if we glue the graphs G2 and
H along the boundaries in this way, either both resulting graphs model ψ or neither one does.
It is known (e.g., from the proof of Courcelle’s theorem itself) that for every CMSO formula
ψ and every t, the number of equivalence classes induced by this relation over t-boundaried
graphs is a function of ψ and t alone (a property called finite state). This implies that there
is an r ∈ N that depends only on ψ and t (in our context, t will be 1 plus the treewidth of the
graph), such that both the number of equivalence classes and the length of the encoding of a
smallest boundaried graph in each equivalence class is upper bounded by r. If ψ and t are
fixed, then r is constant. Now, suppose that R is the set comprising a smallest boundaried
graph from each of the equivalence classes (having fixed ψ and t) and suppose we know R.

Our key insight is the following. Suppose we take a nice tree decomposition of the input
graph and pick a bag. Now, consider the boundaried graph obtained by taking the graph
induced by those vertices that appear in this bag or below it and making the vertices in the
bag the boundary. Then, we observe that (a) this boundaried graph is equivalent to one
of the graphs in R and (b) regardless of the element failures in this boundaried graph, the
resulting graph will still be equivalent to one of the graphs in R. The only catch here is that
before the query is given, one cannot know the representative of the “future” equivalence
class. Hence, our preprocessing strategy aims to keep track, for each boundaried subgraph of
the input graph obtained in the way we described above, all possible canonical equivalence
classes that this graph can fall into, upon the removal of the failed vertices or edges given by
the query in future. Our querying strategy, on the other hand, is a dynamic-programming
algorithm. Depending on the at-most-ℓ queried edges and vertices, we identify a set of O(ℓ)
boundaried graphs that we have preprocessed and by examining the possible different ways
in which the equivalence classes of only these specific boundaried graphs can be impacted by
the failures, we are able to produce a correct answer to the query. This gives us Theorem 4.
The non-uniformity comes from the assumption of knowing R.

To overcome the non-uniformity aspect while applying Theorem 4, one must avoid the
requirement of knowing R. Instead, it is sufficient if, for every bounded-treewidth boundaried
graph, we could efficiently compute an equivalent (under the Myhill-Nerode equivalence)
boundaried graph whose size is bounded by some computable function of ψ and treewidth.

This approach, which was first introduced in order to obtain constructive versions of
meta-algorithmic results on kernelization [26], has proved useful in several other instances in
the literature [24, 25]. We show that this approach is indeed applicable to TM-Deletion

STACS 2024

44:10 Decremental Sensitivity Oracles for Covering and Packing Minors

and in fact our arguments suggest that it is generally applicable as long as one has an explicit
dynamic programming algorithm on bounded-treewidth graphs. Hence, we are able to obtain
an FSO for TM-Deletion parameterized by the deletion set size k, the treewidth of the
input graph, and the size of the largest graph in the family F that we want to exclude as
topological minors.

The same idea is also used to obtain the bounds in Theorem 3. That is, we essentially
reuse the non-uniform oracles given by the proof of Theorem 4 (while avoiding the only source
of non-uniformity) to handle low-treewidth instances of these specific problems. We then use
a win-win argument to extend to FSOs with explicit bounds. In the win-win argument, we
use the fact that if the treewidth of the input graph is already high, we get a trivial oracle
that always answers either yes or no depending on the problem.

As an illustration, we describe the proof of the consequence for Cycle Packing in
Corollary 2. That is, Cycle Packing has an FSO parameterized by the solution size k.
Towards this, we first show that there is an FSO for this problem parameterized by k and
treewidth. Let us assume that the treewidth bound is the max of treewidth and k, and let
it be w. Then, we show that there is an FSO for this problem parameterized by w with
preprocessing time tow(3,O(w2)) · n4 and query time tow(2,O(w2)) + ℓO(1). This is done by
showing that the size of the set R and maximum size of a graph in R are computable and then
using Theorem 4. Intuitively, the bound on the size of the set R comes from the size of the
table at a bag when performing the standard dynamic programming over tree decompositions.
The same fact can be used to also obtain a bound on the size of the graphs in R. That is, if
the subgraph “rooted” at a bag is larger than some computable function of w, then one can
find a pair of ancestor-descendant bags that have the same dynamic programming tables,
implying that these two graphs are equivalent. Now, a standard replacement operation of
“cutting” the subgraph below the ancestor and “pasting” the subgraph below the descendant
gives a strictly smaller equivalent graph and this process can be repeated.

Now, consider a general graph G. If G has treewidth greater than s(k, ℓ) for some function
s (from grid-minor theorem), we can conclude that G has a sufficiently large grid, implying
sufficiently many vertex-disjoint cycles. One can argue that after removing at most ℓ vertices
or edges we will still have at least k vertex-disjoint cycles and hence we will have a positive
instance of Cycle Packing. So we simply output an oracle that always answers yes to
any query. If G has a smaller treewidth, then we can apply the above argument for low
treewidth graphs, giving us a preprocessing time of tow(3,O((k + ℓ)O(1))) and a query time
of tow(2,O((k + ℓ)O(1))).

3.2 The FSO for TOPOLOGICAL MINOR DELETION in general graphs
We now give an overview of the proof of Theorem 1 assuming that we have an FSO for TM-
Deletion parameterized by k, treewidth of the input graph and the size of the largest graph
in the family F that we want to exclude as topological minors. Recall that, here the input is
(G, k,F) and an integer ℓ, and we want our preprocessing algorithm to essentially encode the
answers to the input instances (G− F, k,F) of TM-Deletion for any F ⊆ V (G) ∪E(G) of
size at most ℓ such that these answers can be retrieved efficiently by the query algorithm.
Towards the preprocessing of (G, k,F) we use the results about “irrelevant vertices” for the
TM-Deletion problem by Fomin et al. [25]. As these irrelevant vertex results are for the
vertex deletion problem, as a first step we construct an “equivalent” instance (G′, k,F ′) for
the FSO, where all the edge failures in the original instance can be replaced with appropriate
vertex failures in the new instance. This allows to restrict ourselves to handling vertex
failures alone. More formally, for each H ∈ F , we define H ′ to be the graph obtained from

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:11

H by adding three pendant (i.e., degree-1) vertices adjacent to each vertex v of H. Then, we
set F ′ = {H ′ : H ∈ F}. The graph G′ is constructed from G as follows. First we subdivide
each edge in G. For each e ∈ E(G), let ue be the subdivision vertex in G′ corresponding to
e. Then for each vertex v ∈ V (G) we add three pendant vertices adjacent to v. Then, each
edge e failing in G can be thought of as a vertex ue failing in G′. We prove that it is enough
to give a vertex FSO for the instance (G′, k,F ′). Then, the preprocessing algorithm A uses
the template of Fomin et al. [25] which in turn was built on the approach introduced by
Robertson and Seymour for Disjoint Paths [45]. Their approach has found applications in
many significant results in the area [28, 30, 34, 31, 33, 36, 35, 32, 27]. In the template of
Fomin et al. [25], we have three exhaustive cases.

Case 1. The treewidth of the input graph G is upper bounded by a function of k, ℓ, and F ′.
In this case we use our fault-tolerance oracle for TM-Deletion parameterized by k, F ′

and the treewidth which we have outlined in the previous subsection.
Case 2. The input graph G has a clique minor whose size is lower bounded by a computable

function of k, ℓ, and F ′. In this case Fomin et al. [25] gave an algorithm to find an
irrelevant vertex v with respect to “any” vertex deletion set of size k+ ℓ. That is, for any
vertex subset S ⊆ V (G′), the topological minors of size at most δ in G−S and G−S− v

are same. Here, we set δ to be the maximum size of a graph in F ′.
Case 3. Case 1 and 2 are not applicable. In this case the “weak structure theorem” [45]

implies that the graph G contains a “large flat wall”. Here, large means that its size is
lower bounded by a function of k, ℓ, and F ′. In this case as well Fomin et al. [25] gave an
algorithm to find an irrelevant vertex v with respect to “any” vertex deletion set of size
k + ℓ.

In our preprocessing algorithm, as long as Case 2 or Case 3 is applicable, we delete the
irrelevant vertices computed and finally we end up with a graph with bounded treewidth,
which places us in Case 1, which we have described how to handle.

Corollaries of Theorem 1

We now argue that the assertions made in Corollary 2 hold.

▶ Proposition 14 ([2, 38]). For every η ∈ N, there is a set Fη of graphs such that a graph
has treewidth at most η if and only if it excludes the graphs in Fη as a minor.

We also require the following simple fact.

▶ Proposition 15. For every family F of graphs, there is a set F ′ of graphs such that any
graph contains a minor model of a graph from F if and only if it contains a topological-minor
model of a graph from F ′.

We note that the families Fη in Proposition 14 and F ′ in Proposition 15 are constructive.
In combination with these two propositions, Theorem 1 implies the first two statements of
Corollary 2. That is, η-treewidth modulator is precisely TM-Deletion where the family
F ′ of forbidden topological minors is obtained by first using η as “input” to Proposition 14 to
obtain Fη, and then plugging in Fη as input to Proposition 15 to obtain the required family
F ′. Similarly, Minor Deletion where F is the family of graphs to exclude as minors can be
written as TM-Deletion, where the forbidden family of topological minors is obtained by
plugging F in to Proposition 15. We now proceed to the remaining statements of Corollary 2.

Let us now consider the dual problem to TM-Deletion, i.e., Topological Minor
Packing (TM-Packing), which is formally defined as follows.

STACS 2024

44:12 Decremental Sensitivity Oracles for Covering and Packing Minors

Input: An undirected graph G, a family of undirected graphs F such that every graph
in F has at most h∗ vertices, and an integer k.

Parameter: k + h∗.
Problem: Does there exist k vertex-disjoint topological-minor models of graphs in F?

Topological Minor Packing (TM-Packing)

▶ Theorem 16. TM-Packing has an FSO.

Proof. Let (G,F , k, ℓ) be the input of TM-Packing. Now we define a family F ′ as follows.

F ′ = {H | ∃H1, . . . ,Hk ∈ F : H is the disjoint union of H1, . . . ,Hk}

Then, notice that any subgraph of G contains k vertex-disjoint topological-minor models
from F if and only if the same subgraph of G contains a graph from F ′ as topological minor.
Moreover, |F ′| ≤ |F|k and the largest graph in F ′ has size at most k · h(F).

Now, we are ready to give an FSO (A,Q) for TM-Packing by using an FSO (A′,Q′)
for TM-Deletion (Theorem 1) as a subroutine.

The preprocessing algorithm A: Let the input to A be an instance (G,F , k) of
TM-Packing and ℓ ∈ N0.

Step 1: Construct the family F ′ defined above.

Step 2: Run the algorithm A′ on input (G,F ′, 0) and ℓ and return its output.

This completes the description of the preprocessing algorithm.

The query algorithm Q: Let the input be F ⊆ V (G) ∪ E(G).

Step 1: Use the query algorithm Q′ to decide whether (G− F,F ′, 0) is a yes-instance of
TM-Deletion.

Step 2: If Q′ answers YES, then Q answers NO. Else, Q answers YES.

This completes the description of the query algorithm.
Notice that the family F ′ can be computed in time bounded by a function of h(F) + k.

Moreover, since (A′,Q′) is an FSO for TM-Deletion, it follows that A′ is an FPT algorithm
parameterized by h(F ′)+k ≤ k ·(h(F)+1). Since these are the only two steps in A, it follows
that A is also an FPT algorithm parameterized by h(F) + k. Similarly, since Q′ runs in time
f ′(h(F) + k) for some computable function f ′, it follows that Q runs in time f(h(F ′) + k)
for some computable function f . Finally, the correctness of the pair (A,Q) follows from
the fact that for every F ⊆ V (G) ∪ E(G), the instance (G− F,F , k) of TM-Packing is a
yes-instance if and only if the instance (G− F,F ′, 0) of TM-Deletion is a no-instance. ◀

Finally, notice that Long Path and Long Cycle are both special cases of TM-packing.
Hence, the final statement of Corollary 2 can also be obtained as a consequence of Theorem 1.

3.3 Edge FSOs parameterized by treewidth alone
We employ the same high-level approach as that used for Theorem 4 (see Section 3.1).
However, instead of considering equivalence among boundaried graphs, we aim to identify
equivalent sets of failure edges for the boundaried graph obtained at each bag. This idea can

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:13

be summarized as follows. First, assume that the problem satisfies certain properties that are
typically satisfied by problems for which there is an explicit dynamic programming algorithm
over a given tree decomposition. This includes well-known problems such as Vertex Cover
and Dominating Set. Further, suppose that when any set of ℓ edges are deleted below a
bag B and we were to re-run the dynamic programming algorithm on the graph induced by
the vertices in this bag and its descendants, then the dynamic programming table computed
at the bag B is only a “small” perturbation of the dynamic programming table that was
initially computed at this bag. In our context, “small” simply means that the entries in the
cells change (either increase or decrease) by at most ℓ. For instance, in the case of Vertex
Cover, deleting ℓ edges will not change any of the partial solutions by more than ℓ. Now,
since the size of the bag is bounded by the treewidth, this implies a bounded number of
equivalence classes for the set of all edge failures of size at most ℓ. This fact is then used to
keep a representative of each equivalence class and also a solution corresponding to them.
Finally, we show how the query algorithm can identify the equivalence class of the given
query efficiently.

Formally, we prove the result below. The terms in the theorem statement build upon the
notation of Garnero et al. [26] and are explained in the subsequent paragraphs.

▶ Theorem 17. Consider a subset problem Π. If Π has an encoder ξ that admits a gap
function g, a gap signature computation algorithm, an FPT exact algorithm, and Π is DP
effective, then Π admits an edge FSO parameterized by the treewidth.

Here, a parameterized graph problem Π is called a subset problem if there exists a language
LΠ associated with Π that comprises of pairs (G,S) where, for every graph G and S ⊆ V (G),
(G,S) ∈ LΠ if and only if S is a solution to Π on G.

The following definitions encapsulate the idea of the standard dynamic programming
algorithms on treewidth. The boundary of G will be a bag of the tree decomposition so the
vertices of the boundary will be the only way that some solution S can “interact” with the
rest of the graph. C(|Λ(G)|) represents the space of possible interactions and S is compatible
with some encoding R from this space if it does in fact interact as specified by R.

▶ Definition 18 (Encoder). Consider a subset problem Π. An encoder ξ of Π is a pair (C, LC),
where:
1. C : N0 → 2Σ∗ is a computable function, , with C(0) = ε. Here, Σ is some finite alphabet

depending on Π.
2. LC is a language that comprises of triples (G,S,R), where G is a boundaried graph,

S ⊆ V (G), and R ∈ C(|Λ(G)|). If (G,S,R) ∈ LC, then we say that S is compatible with
R under ξ.

3. For every 0-boundaried graph G and S ⊆ V (G), the triple (G,S, ε) ∈ LC if and only if
(G,S) ∈ LΠ.

For example, an encoder of Vertex Cover sets C(k) to the power set of [k] representing
subsets of the boundary and (G,S,R) ∈ LC iff S is a vertex cover of G and S ∩ ∂(G) ⊇ R.
That is S is compatible with R when S “agrees” with R on the boundary. Thus, the encoder
describes the space that the dynamic programming is over.

We now define the function that such a dynamic programming algorithm would calculate.

▶ Definition 19 (Family of nice functions associated to an encoder). Consider a subset problem
Π with an encoder ξ = (C, LC). For a boundaried graph G, we define a nice function
ηξG : C(|Λ(G)|) → N0 as follows: For every R ∈ C(|Λ(G)|),

ηξG(R) =
{

|V (G)| + 1 if {S : (G,S,R) ∈ LC} = ∅
min{|S| : (G,S,R) ∈ LC} otherwise.

STACS 2024

44:14 Decremental Sensitivity Oracles for Covering and Packing Minors

Note that since min{|S| : (G,S, ε) ∈ LC} = min{|S| : (G,S) ∈ LΠ}, this means that for
all p ∈ N, ηξG(ε) ≤ p iff (G, p) ∈ Π.

Continuing our Vertex Cover example, if ξ is the encoder described above, then ηξG(R)
is the size of the minimum vertex cover of G that contains every vertex from R. In the
standard dynamic programming algorithm for Vertex Cover parameterized by treewidth,
the table entry indexed by some x ∈ V (T) and R ⊂ β(x) is exactly ηξ

G↓
x

(R).
We now wish to bound how much the answer can change due to edge failures. For

example, in Vertex Cover the size of the solution will never decrease by more than the
number of edge failures.

▶ Definition 20 (Gap function for encoder). Consider a subset problem Π with an encoder
ξ = (C, LC). We say that ξ admits a gap function g : N → N, if for every boundaried graph
G, for every F ⊆ E(G), and for every R ∈ C(|Λ(G)|), we have

|ηξG(R) − ηξG−F (R)| ≤ g(|F |).

From now onwards we will consider a subset problem Π and assume it has an encoder ξ that
admits a gap function g.

▶ Definition 21 (Gap signature). For all boundaried graphs G, and sets F ⊆ E(G), the
gap signature of F in G is the function σFG : C(|Λ(G)|) → {−g(|F |), . . . g(|F |)}, defined as
follows: for every R ∈ C(|Λ(G)|),

σFG(R) = ηξG(R) − ηξG−F (R).

Bounding the amount the answer changes allows us to keep track of exactly how much
the answer changes for each failure set with the gap signature. However, notice that the
number of possible gap signatures for any set F ⊆ E(G) is (2g(|F |) + 1)|C(|Λ(G)|)|, that is it
only depends on the size of boundary of G and the size of F . Being able to calculate the gap
signature will be a key part of our algorithm.

▶ Definition 22 (Gap signature computation algorithm). A gap signature computation al-
gorithm takes as an input (i) a graph G, (ii) a nice tree decomposition of G, (T, β) with
width k, (iii) a node x ∈ V (T), and (iv) a set of edges, F ⊆ E(G↓

x,T) of size ℓ, runs in time
fgs(k, ℓ)nO(1) and outputs σF

G↓
x,T

, where fgs is a computable function.

Since we are mostly interested in the gap signature of a given failure set we introduce the
following equivalence relation.

▶ Definition 23 (Equivalence relation ≡G). For all boundaried graphs G, and sets F1, F2 ⊆
E(G), we say that F1 ≡G F2 if and only if all of the following statements hold.
1. σF1

G = σF2
G . That is, for every R ∈ C(|Λ(G)|), σF1

G (R) = σF2
G (R).

2. F1 ∩
(
∂(G)

2
)

= F2 ∩
(
∂(G)

2
)
, that is, F1 and F2 coincide on the set of edges with both

endpoints in ∂(G).
3. |F1| = |F2|.

Since there are only a small number of possible gap signatures, there are also not many
equivalence classes. More precisely, if the sets F1 and F2 are of size at most ℓ then there
are at most O(ℓ|∂(G)|2) equivalence classes for each gap signature. We would like to exploit
this by pre-calculating solutions on one element from each equivalence class. To this end we
define a set consisting of exactly one element from each equivalence class.

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:15

In the following, for a set X and ℓ ∈ N, by Pℓ(X), we denote the set of all the subsets
of X of size at most ℓ. Given a nice tree decomposition (T, β), for all (u, v) ∈ E(G) let
Highest((u, v)) be the unique highest node t in T such that β(t) contains both u and v.
For each x ∈ V (T), we define χ(x) = {e ∈ E(G) : x = Highest(e)} and χ↓(x) = ∪y≺xχ(y).
Note that χ(x) ⊆ E(G[β(x)]) and χ↓(x) ⊆ E(G↓

x). Also χ is a partition of E(G), that is
χ(x) ∩ χ(y) = ∅ for all x ̸= y and χ↓(root(T)) = ∪x∈V (T)χ(x) = E(G).

▶ Definition 24 (Type representative family). Consider a graph G, a nice tree decomposition
(T, β) of G, and ℓ ∈ N. For every node x ∈ V (T), we define a type representative family
ℜ(x) ⊆ Pℓ(χ↓(x)) such that:
1. For every F1, F2 ∈ ℜ(x), if F1 ≡G↓

x
F2 then F1 = F2, and

2. For every F ∈ Pℓ(χ↓(x)), there exists F ′ ∈ ℜ(x) such that F ′ ≡G↓
x
F .

Note that since χ↓(root(T)) = E(G↓
root(T)) = E(G), ℜ(root(T)) contains a representative from

each equivalence class of failure sets. Also note that if F1 ⊆ χ(x) then, for all F2 ∈ Pℓ(χ↓(x)),
we have F1 ≡G↓

x
F2 if and only if F1 = F2 so Pℓ(χ(x)) ⊆ ℜ(x). Let

fR(k, ℓ) = ℓ · k2 · (2g(ℓ) + 1)|C(k)|

then the size of ℜ(x) is at most O(fR(k, ℓ)) where k is the width of (T, β). However there
are O(nℓ) possible failure sets that could be in ℜ(x) which is too many to calculate a
representative from each equivalence class by brute force. So we will split the failure set
into smaller subproblems and use the following property to calculate the representatives by
dynamic programming. Intuitively this says that, when doing dynamic programming on the
treewidth, the equivalence “carries through”, that is, if we have some representatives of the
equivalence classes of the failure set below y1 and y2 rather than the actual failure set, we
can use these to construct a representative of the whole failure set below x.

▶ Definition 25 (DP effective). We say that our subset problem Π is DP effective if, for
every graph G, and nice tree decomposition (T, β) of G, the following holds: For every
x, y1, y2 ∈ V (T) such that x is a common ancestor of y1 and y2, and for every Fx ⊆ χ(x),
F1, F

∗
1 ⊆ χ↓(y1), and F2, F

∗
2 ⊆ χ↓(y2), it holds that if F ∗

1 ≡G↓
y1
F1 and F ∗

2 ≡G↓
y2
F2 , then

(Fx ∪ F1 ∪ F2) ≡G↓
x

(Fx ∪ F ∗
1 ∪ F ∗

2).

From now onwards we will work on a given graph G, and failure set size ℓ, and assume
we know a nice tree decomposition (T, β) of G of width at most k and size O(kn) = O(n2).
The following lemma shows that we can calculate a type representative family for each node
quickly. Recall that fR(k, ℓ) is a bound on the size of any such family and that fgs(k, ℓ) is
the superpolynomial component of the runtime of the gap signature computation algorithm.
The proof can be found in the appended full version.

▶ Lemma 26. If Π admits a gap signature computation algorithm and is DP effective, then
we can compute a type representative family ℜ(x) for all x ∈ V (T) in time 2k2 · fR(k, ℓ)3 ·
fgs(k, ℓ) · nO(1).

We now have, at each node x ∈ V (T), a small set of possible failure sets that together
cover every equivalence class. The only remaining obstacle is that we cannot calculate which
of these edge sets is equivalent to our actual failure set at query time since the gap signature
computation algorithm is too slow. To this end we define the following tables. Together with
DP effectiveness they will allow us to calculate a representative of the true failure set from
the bottom up.

STACS 2024

44:16 Decremental Sensitivity Oracles for Covering and Packing Minors

▶ Definition 27. Suppose ℜ(x) is a type representative family for all x ∈ V (T). Let x,
y1, y2 ∈ V (T) such that x is an ancestor of y1 and y2 and x ≠ y1. Then, for every set
Fx ⊆ χ(x), F1 ∈ ℜ(y1), and F2 ∈ ℜ(y2) we define the following.
1. H1[x, y1, Fx, F1] = Qx, where Fx ∪ F1 ≡G↓

x
Qx and Qx ∈ ℜ(x).

2. If y1 ̸= y2 and x is the lowest common ancestor of y1 and y2, then define
H2[x, y1, y2, Fx, F1, F2] = Qx, where Fx ∪ F1 ∪ F2 ≡G↓

x
Qx and Qx ∈ ℜ(x).

▶ Lemma 28. If Π admits a gap signature computation function and is DP effective, then the
tables H1 and H2 described in Definition 27 can be filled in time 2k2 ·fR(k, ℓ)3 ·fgs(k, ℓ) ·nO(1).
Moreover, H1 and H2 both have size at most 2k2 · fR(k, ℓ)2 · nO(1).

Finally we will need to use an exact algorithm for the problem on the original graph as a
black box. This is a very weak assumption since an FSO is itself an exact algorithm (simply
call it with F = ∅) so we expect an exact algorithm to be easier to obtain than an FSO.

▶ Definition 29. An FPT exact algorithm takes as input a graph G and a nice tree decom-
position of G, with width k, runs in time fopt(k)nO(1) and outputs ηξG(ε).

4 Concluding remarks

Parameterized sensitivity oracles provide a fertile middle ground of study between static
FPT algorithms (where many problems are well-understood) and dynamic FPT algorithms
(where many problems turn out to be hard) and deserve a thorough exploration. Along with
the work of Bilò et al. [6], Alman and Hirsch [3] and Pilipczuk et al. [44], this paper furthers
our understanding of the capabilities of state-of-the-art algorithm design techniques used in
parameterized complexity. Indeed, Alman and Hirsch [3] in their paper ask whether there
examples of techniques other than extensor coding, that are used to solve static versions
of parameterized problems and which can be used to design faster dynamic algorithms or
sensitivity oracles. Our three main results (Theorem 4, Theorem 1 and Theorem 17) provide
useful classification tools to study other problems in this framework and importantly, gives a
road map for obtaining explicit bounds. The possibility of obtaining similar classification
results in the fully dynamic setting is a natural direction for future work.

References
1 Karl Abrahamson and Michael Fellows. Finite automata, bounded treewidth and well-

quasiordering. In Graph structure theory (Seattle, WA, 1991), volume 147 of Contemp. Math.,
pages 539–563, Providence, RI, 1993. Amer. Math. Soc. doi:10.1090/conm/147/01199.

2 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proceedings
of the 19th annual ACM-SIAM symposium on Discrete algorithms (SODA 2008), pages 641–650.
SIAM, 2008. URL: http://portal.acm.org/citation.cfm?id=1347082.1347153.

3 Josh Alman and Dean Hirsch. Parameterized sensitivity oracles and dynamic algorithms
using exterior algebras. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.9.

4 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized
problems and algorithms. ACM Trans. Algorithms, 16(4):45:1–45:46, 2020. doi:10.1145/
3395037.

5 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991.

https://doi.org/10.1090/conm/147/01199
http://portal.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.4230/LIPIcs.ICALP.2022.9
https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:17

6 Davide Bilò, Katrin Casel, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, J. A. Gregor
Lagodzinski, Martin Schirneck, and Simon Wietheger. Fixed-parameter sensitivity oracles.
In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference,
ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages
23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ITCS.2022.23.

7 Václav Blazej, Pratibha Choudhary, Dusan Knop, Jan Matyás Kristan, Ondrej Suchý, and
Tomás Valla. Constant factor approximation for tracking paths and fault tolerant feedback
vertex set. In Jochen Könemann and Britta Peis, editors, Approximation and Online Algorithms
- 19th International Workshop, WAOA 2021, Lisbon, Portugal, September 6-10, 2021, Revised
Selected Papers, volume 12982 of Lecture Notes in Computer Science, pages 23–38. Springer,
2021. doi:10.1007/978-3-030-92702-8_2.

8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

9 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. URL:
http://dl.acm.org/citation.cfm?id=2973749, doi:10.1145/2973749.

10 Mikolaj Bojanczyk. Separator logic and star-free expressions for graphs. CoRR, abs/2107.13953,
2021. arXiv:2107.13953.

11 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7:555–581, 1992.

12 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 151–164. ACM, 2018. doi:10.1145/3188745.3188902.

13 Jiehua Chen, Wojciech Czerwinski, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michal Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 796–809. SIAM, 2021. doi:10.1137/1.9781611976465.50.

14 B. Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions, minors and
complexity issues. RAIRO Inform. Théor. Appl., 26(3):257–286, 1992.

15 B. Courcelle. The expression of graph properties and graph transformations in monadic second-
order logic. In Handbook of graph grammars and computing by graph transformation, Vol. 1,
pages 313–400. World Sci. Publ, River Edge, NJ, 1997. doi:10.1142/9789812384720_0005.

16 Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Inform. and Comput., 85:12–75, 1990.

17 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge University Press, 2012.

18 Bruno Courcelle and R. Vanicat. Query efficient implementation of graphs of bounded clique-
width. Discret. Appl. Math., 131(1):129–150, 2003. doi:10.1016/S0166-218X(02)00421-3.

19 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

20 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

21 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

22 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

STACS 2024

https://doi.org/10.4230/LIPIcs.ITCS.2022.23
https://doi.org/10.4230/LIPIcs.ITCS.2022.23
https://doi.org/10.1007/978-3-030-92702-8_2
http://dl.acm.org/citation.cfm?id=2973749
https://doi.org/10.1145/2973749
https://arxiv.org/abs/2107.13953
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1137/1.9781611976465.50
https://doi.org/10.1142/9789812384720_0005
https://doi.org/10.1016/S0166-218X(02)00421-3
https://doi.org/10.1007/978-3-319-21275-3

44:18 Decremental Sensitivity Oracles for Covering and Packing Minors

23 Zdenek Dvorák, Martin Kupec, and Vojtech Tuma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Andreas S. Schulz and Dorothea Wagner,
editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland,
September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages
334–345. Springer, 2014. doi:10.1007/978-3-662-44777-2_28.

24 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket Saurabh.
Solving d-sat via backdoors to small treewidth. In Piotr Indyk, editor, Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 630–641. SIAM, 2015. doi:10.1137/1.9781611973730.43.

25 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 1317–1326. ACM, 2020. doi:10.1145/3357713.3384318.

26 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM J. Discret. Math., 29(4):1864–1894, 2015. doi:
10.1137/140968975.

27 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479–488, 2011.
doi:10.1145/1993636.1993700.

28 Martin Grohe, Ken-ichi Kawarabayashi, and Bruce A. Reed. A simple algorithm for the graph
minor decomposition - logic meets structural graph theory. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 414–431. SIAM, 2013. doi:10.1137/1.9781611973105.30.

29 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

30 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1802–1811, 2014.

31 Naonori Kakimura and Ken-ichi Kawarabayashi. Fixed-parameter tractability for subset
feedback set problems with parity constraints. Theor. Comput. Sci., 576:61–76, 2015. doi:
10.1016/j.tcs.2015.02.004.

32 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA, pages 639–648. IEEE Computer Society, 2009. doi:10.1109/FOCS.
2009.45.

33 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the subset
feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B, 102(4):1020–
1034, 2012. doi:10.1016/j.jctb.2011.12.001.

34 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. doi:10.1016/j.jctb.
2011.07.004.

35 Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd cyles
transversal. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 365–378. SIAM,
2010. doi:10.1137/1.9781611973075.31.

36 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 27–36. IEEE Computer
Society, 2011. doi:10.1109/FOCS.2011.52.

https://doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1137/1.9781611973730.43
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1137/140968975
https://doi.org/10.1137/140968975
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/0213024
https://doi.org/10.1016/j.tcs.2015.02.004
https://doi.org/10.1016/j.tcs.2015.02.004
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1137/1.9781611973075.31
https://doi.org/10.1109/FOCS.2011.52

L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:19

37 Wojciech Kazana. Query evaluation with constant delay. (L’évaluation de requêtes avec un
délai constant). PhD thesis, École normale supérieure de Cachan, Paris, France, 2013. URL:
https://tel.archives-ouvertes.fr/tel-00919786.

38 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73(1):7–40, 1998. doi:10.1006/jctb.1997.1788.

39 Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Efficient algorithms for constructing
fault-tolerant geometric spanners. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pages 186–195, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/276698.276734.

40 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

41 William Lochet, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, Roohani Sharma, and
Meirav Zehavi. Fault tolerant subgraphs with applications in kernelization. In Thomas Vidick,
editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 47:1–47:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.47.

42 Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski. Maintaining cmso properties
on dynamic structures with bounded feedback vertex number. In Petra Berenbrink, Patricia
Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg,
Germany, volume 254 of LIPIcs, pages 46:1–46:13. Schloss Dagstuhl - Leibniz-Zentrum f"ur
Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.46.

43 Pranabendu Misra. On fault tolerant feedback vertex set. CoRR, abs/2009.06063, 2020.
arXiv:2009.06063.

44 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre
Vigny. Algorithms and data structures for first-order logic with connectivity under vertex
failures. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th
International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 102:1–102:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.102.

45 Neil Robertson and Paul D. Seymour. Graph minors .XIII. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

46 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles
for large batch updates. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 424–435. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00034.

47 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles
for large batch updates. CoRR, abs/1907.07982, 2019. arXiv:1907.07982.

STACS 2024

https://tel.archives-ouvertes.fr/tel-00919786
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1145/276698.276734
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.ITCS.2020.47
https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://arxiv.org/abs/2009.06063
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1109/FOCS.2019.00034
https://arxiv.org/abs/1907.07982

	1 Introduction
	1.1 Our contributions I: FSOs for vertex deletion problems
	1.2 Our contributions II: A meta-theorem for efficient FSOs
	1.3 Our contributions III: Edge FSOs parameterized only by treewidth
	1.4 Related work

	2 Preliminaries
	2.1 Graphs
	2.2 Counting Monadic Second Order Logic

	3 Technical overview
	3.1 The FSO for CMSO-definable problems on bounded-treewidth graphs
	3.2 The FSO for TOPOLOGICAL MINOR DELETION in general graphs
	3.3 Edge FSOs parameterized by treewidth alone

	4 Concluding remarks

