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Short communication 
Individual differences in internal models explain idiosyncrasies in 
scene perception 
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A B S T R A C T   

According to predictive processing theories, vision is facilitated by predictions derived from our internal models 
of what the world should look like. However, the contents of these models and how they vary across people 
remains unclear. Here, we use drawing as a behavioral readout of the contents of the internal models in indi-
vidual participants. Participants were first asked to draw typical versions of scene categories, as descriptors of 
their internal models. These drawings were converted into standardized 3d renders, which we used as stimuli in 
subsequent scene categorization experiments. Across two experiments, participants’ scene categorization was 
more accurate for renders tailored to their own drawings compared to renders based on others’ drawings or 
copies of scene photographs, suggesting that scene perception is determined by a match with idiosyncratic in-
ternal models. Using a deep neural network to computationally evaluate similarities between scene renders, we 
further demonstrate that graded similarity to the render based on participants’ own typical drawings (and thus to 
their internal model) predicts categorization performance across a range of candidate scenes. Together, our 
results showcase the potential of a new method for understanding individual differences – starting from par-
ticipants’ personal expectations about the structure of real-world scenes.   

1. Introduction 

Scene perception is not only achieved through a passive analysis of 
sensory input. Instead, the brain actively creates predictions about the 
world that are compared against current inputs (Clark, 2013; Friston, 
2005, 2010). In cognitive science, this idea was first highlighted by 
schema theory, which postulated that inputs are referenced against in-
ternal models (schemata) stored in memory, which reflect the structure 
of the world (Bartlett, 1932; Minsky, 1974; Rumelhart, 1980; Wagoner, 
2013). Schema theory was influential in early research on human 
memory (Brewer & Treyens, 1981; Mandler & Parker, 1976) and 
perception (Biederman, 1972; Biederman, Mezzanotte, & Rabinowitz, 
1982). More recently, the importance of internal models has been 
highlighted by theories of Bayesian inference (Kayser, Körding, & König, 
2004; Yuille & Kersten, 2006) and predictive processing (Clark, 2013; 
Keller & Mrsic-Flogel, 2018). These theories assume that during visual 

processing, inputs are constantly matched against internally generated 
predictions of the world. Such predictions are derived from our own 
internal models of what we think the world should look like. How can we 
characterize the contents and individual differences of these internal 
models? 

In the context of scene perception, internal models can be concep-
tualized as a collection of typical features of a scene (or scene category) 
that are learned from extensive real-life experience and guide the 
analysis of matching visual inputs. The contents of internal models are 
mainly inferred from carefully manipulating the structure of the visual 
input and observing the resulting changes in perceptual performance 
and neural representation. Using this approach, researchers could suc-
cessfully infer key features of internal scene models, such as the typical 
spatial distributions of objects (Bar, 2004; Biederman et al., 1982; Kai-
ser, Quek, Cichy, & Peelen, 2019), semantic relationships between ob-
jects and scenes (Davenport & Potter, 2004; Oliva & Torralba, 2007; Vo, 
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Boettcher, & Draschkow, 2019; Wolfe, Võ, Evans, & Greene, 2011), or 
the spatial layout of whole scenes (Biederman, 1972; Kaiser & Cichy, 
2021; Kaiser, Häberle, & Cichy, 2020). 

However, this approach only reveals the contents of internal models 
that are shared across people – although there is mounting evidence for 
individual variability in visual perception and neural representation 
(Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014; De Haas, Iako-
vidis, Schwarzkopf, & Gegenfurtner, 2019; Gauthier, 2018; Mollon, 
Bosten, Peterzell, & Webster, 2017; Tulver, Aru, Rutiku, & Bachmann, 
2019; Wang, Li, Fang, Tian, & Liu, 2012). Given that we all differ in our 
visual experience with scenes across the lifetime (Coutrot et al., 2022; 
Hartley, 2022) and in our neural architecture for visual analysis (Kanai 
& Rees, 2011; Llera, Wolfers, Mulders, & Beckmann, 2019; Moutsiana 
et al., 2016), it is likely that internal models for scenes are sculpted in 
different ways across people. If we could harness this individual vari-
ability, we would be able to predict and explain characteristic differ-
ences in the way each of us perceives the world. 

Here, we thus developed a novel approach that focuses on distilling 
out key properties of internal models in individual participants. We 
achieved this through drawing, enabling participants to provide un-
constrained descriptions of typical scenes both quickly and without prior 
training (Fan, Bainbridge, Chamberlain, & Wammes, 2023). Using these 
drawings as descriptors for internal scene models, we then tested 
whether individual participants’ scene perception can be explained 
through similarities with their personal internal models. 

Our participants first drew typical exemplars of natural scenes cat-
egories, as well as copies of photographs of the same categories (which 
served as a control for familiarity acquired during drawing). They then 
performed a scene categorization task, in which they viewed carefully 
constructed scene renders that were created based on the drawings. 
Across two experiments, participants were more accurate in categoriz-
ing renders based on their own drawings, compared to renders based on 
other people’s drawings and renders based specific scenes they copied. 
Our results provide evidence that individual differences in internal 
models explain individual differences in scene categorization. 

2. Materials and methods 

2.1. Experiment 1 

2.1.1. Participants 
43 participants completed the drawing session, 39 returned for the 

categorization task. 4 were excluded for performing at chance level 
(binomial test), leaving a sample of 35 participants (22.6 ± 4.3 years ±
SD, 6/29 male/female). Procedures were approved by the ethics com-
mittee of the Department of Psychology, University of York, and adhered 
to the Declaration of Helsinki. Experiment 1 was conducted online and 
participants provided informed consent through an online form. Sample 
size was based on convenience sampling, with the target to exceed 80% 
statistical power for a hypothesized medium effect of d = 0.5 in a two- 
sided t-test. For this target, at least 34 participants are required. 

2.1.2. Drawing sessions 
The drawing session took part online, using Skype. Participants were 

tasked with drawing scenes from two categories: living rooms and 
kitchens (Fig. 1a). Critically, they were instructed to draw what they 
conceived as the most typical example of the scene category. The defi-
nition of typical was given as the most generic and ordinary example 
they could think of. They were instructed not to draw a scene that they 
thought looked particularly interesting or attractive. They were further 
instructed to not simply draw an exact copy of a scene they knew from 
real life such as their own kitchen or living room (though they were 
reassured that similarities with known scenes did not need to be delib-
erate avoided). Participants were given 1 min to plan and think about 
what their most typical scene should look like and 3:30 min to draw the 
scene using a pencil, eraser, and ruler. Scene sketches were drawn into a 
standardized perspective grid, to allow participants to draw in 3d more 
easily as well as to match viewpoints across scenes. Grids were either 
drawn or printed by the participant on A4 paper and consisted of a large 
central rectangle (7.1 cm by 16.5 cm) and 4 diagonal lines going from 
each corner of the rectangle to the corners of the page. The rectangle was 

Fig. 1. Drawing session and stimuli. a) Participants drew typical versions of natural scenes and copies of scene photographs. b) Drawings were converted into 3d 
renders, based on each participant’s own typical drawings, other participants’ typical drawings, or scene copies. 
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placed 8.5 cm from the bottom of the page and 5.4 cm from the top of the 
page. 

While drawing, participants were reminded how much time they had 
left at the halfway point, and when they had a minute remaining. They 
first drew a practice scene of a bedroom, to get them used to the timings 
and drawing on the perspective grid. In addition to the living rooms and 
kitchens, they also drew garden scenes, which were collected for another 
experiment. The order in which they drew the scene categories was 
balanced across participants. After completing each drawing, partici-
pants also drew a coarse birds-eye view of the scene, in which they 
labelled all objects in the scene. This was done to help clarify the room’s 
intended 3d layout and to confirm the identity of any ambiguously 
drawn objects, providing additional information for generating accurate 
3d renders later. 

Typical kitchen drawings consisted of an average of 8.32 objects (SD 
= 2.03, range = [5, 12]), with the three most frequent objects cupboard 
(100% of drawings), hob (100%), and sink (81.40%). Living rooms 
consisted of an average of 8.03 objects (SD = 1.92, range = [5, 12]), 
with the three most frequent objects sofa (100%), table (100%), tele-
vision (88.37%). 

After drawing their most typical versions of the scenes, participants 
drew copies of given photographs of the same scene categories (Fig. 1a). 
Photographs were chosen to be clear exemplars of the scene category, 
while not being very prototypical in their visual appearance. This was 
done to reduce incidental similarities between the copied scenes and 
participants’ typical drawings. All participants copied the same photo-
graphs. The copies were drawn under the same time constraints as the 
typical drawings, and participants were instructed to capture a similar 
amount of detail as they used in their drawings of typical scenes. Par-
ticipants had access to the photograph throughout their drawing time. 
These copies acted as a control for familiarity effects in the subsequent 
categorization experiment: Participants will have seen and drawn these 
scenes, just like their typical versions, but they will not adhere to their 
internal models of what these scenes typically look like. 

2.1.3. Scene renders 
We created 3d renders from the drawings by placing suitable 

candidate objects into an empty room. Scene renders were constructed 
using The SIMS4. The game includes a comprehensive design kit that 
allows the user to create a range of 3d environments by placing walls 
and objects onto a grid-like system (known in the game as “Build 
Mode”). The use of The SIMS4 allowed us access to a large library of 
thousands of 3d-modelled candidate objects for building the renders. 

To create the renders, first an empty room was built to replicate the 
view and approximate dimensions of the perspective grid. This room 
was approximately 6 × 6 m in size and used wall pieces approximately 3 
m high, with the outward facing wall removed. The scenes were then 
manually populated with objects by one of the authors, referencing both 
the scene sketch and birds-eye view plans the participants assembled in 
the drawing session. The closest matching 3d object was chosen to 
represent each object in the render. When objects were drawn in very 
little detail, a relatively generic version of the object was used at the 
author’s discretion. Screenshots of the scenes were taken using the X box 
live app for Windows. Screenshots were taken from the same distance 
and angle for every scene render, cropped so that only the room was 
visible, and resized to 820 by 390 pixels. To control for low-level visual 
differences between the resulting images, all images were grayscaled 
and luminance-matched using the SHINE toolbox for MATLAB (Wil-
lenbockel et al., 2010). 

In total, 88 renders were created: 86 renders were based on the 
typical drawings of 43 individual participants and 2 renders were based 
on the 2 control images (the control renders were based on the original 
images and thus identical for all participants). 

2.1.4. Categorization task 
The categorization task was conducted online, using Gorilla (Anwyl- 

Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020). Participants 
were instructed to full-screen the application and sit approximately 60 
cm from the screen. During the experiment, participants were asked to 
categorize briefly presented scene renders into kitchens versus living 
rooms. On each trial, a scene render was flashed for 83 ms, followed by a 
mask presented for 150 ms. Masks consisted of a random arrangement of 
squares, diamonds, and circles. A blank screen was then displayed until 
the participants responded by either pressing “K” or “L” on their 
keyboard (to indicate whether the scene was a kitchen or living room). 
There was no response time limit, but both accuracy and response time 
were stressed. Trials were separated by a 1-s inter-trial interval. 

Participants viewed renders based on their own drawing of a typical 
scene (“own” condition), based on other participant’s drawings of 
typical scenes (“other” condition), and based on their copied scenes 
(“control” condition; the control renders were identical for all partici-
pants). In total, 88 renders were shown in the experiment, 2 of which 
corresponded to each participant’s own drawings, 2 of which corre-
sponded to the copied scenes, and 84 that corresponded to the other 
participants’ drawings (based on the 43 participants who initially 
completed the drawing session). Each render was repeated 10 times, for 
a total of 880 trials. Trial order was randomized. The experiment was 
split into four blocks. After each block, participants were given a 1:30 
min break. 

2.1.5. Behavioral data analysis 
Responses slower than 5 s were discarded. Accuracies and response 

times were compared using one-way ANOVAs and t-tests. For the 
response times, only trials with correct responses were analyzed. Sta-
tistical tests were conducted in Jamovi (www.jamovi.org). 

2.1.6. Reliability across participants 
To assess the variation in categorization performance across partic-

ipants, we correlated (Spearman correlations) the categorization accu-
racies across all scenes between participants. Split-half reliability of 
categorization accuracies (assessed by splitting our participant group 
into random halves 10,000 times and averaging correlations between 
halves for each split) was moderate, r = 0.72. Data from individual 
participants was only relatively weakly predicted by the average of all 
other participants, r = 0.35. 

2.1.7. Graded similarity analysis 
To investigate whether graded similarity to the internal model pre-

dicts processing efficiency across scenes, we employed a deep neural 
network (DNN) analysis. In this analysis, we quantified how similar each 
scene render in the other condition (hereinafter: candidate scenes) is to 
the renders in the own condition (hereinafter: reference scenes), and 
then correlated the resulting graded similarity score with participants’ 

categorization accuracy across scenes. To test whether graded similarity 
specifically to the own scene (and thus to participants’ internal models) 
predicts behavioral accuracy, we alternatively used each other scene as a 
reference (and subsequently averaged over all different other scenes) or 
used the control scene as a reference. For all candidate and reference 
scenes, we first extracted activation vectors from a googlenet DNN 
(Szegedy et al., 2015). We used two variants of this network, either 
trained on object categorization using the ImageNet dataset (Deng et al., 
2009) or on scene categorization using the Places365 dataset (Zhou, 
Lapedriza, Khosla, Oliva, & Torralba, 2017). The output of the final 
inception module (5b) of the DNN was used as an approximation for 
complex visual feature processing (Kriegeskorte, 2015). 

By systematically correlating the extracted activation vectors 
(Spearman correlations), we obtained two similarity relations: (i) within- 
category similarities, capturing how similar each candidate scene is to 
the reference scene of the same category, and (ii) between-category 
similarities, capturing how similar each candidate scene is to the 
reference scene of the competing category. By subtracting the between- 
correlations from the within-correlations, we created a graded similarity 
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score, which captured how similar each candidate scene render was to 
the reference render of the same category, relative to the reference 
render of the competing category. Similarity scores were collapsed 
across the two scene categories. To determine how well similarity scores 
in the early and late DNN layers predict categorization, we then corre-
lated them with the categorization accuracies for all candidate scenes 
(Spearman correlations), separately for the own, other, and control scenes 
as the reference. Notably, each time one of the other scenes was the 
reference, one scene less was available for computing the correlations. 
For the analyses in which the own or control scenes were the reference, 
we thus iteratively removed one of the other scenes before computing the 
results and then averaged across iterations. Finally, correlations were 
Fisher-transformed, and statistically assessed across participants using 
one-way ANOVAs and paired t-tests. 

2.2. Experiment 2 

2.2.1. Participants 
36 participants completed the drawing sessions and 35 participants 

(23.9 ± 2.6 years ± SD, 8/27 male/female) returned for the categori-
zation task. Procedures were approved by the ethics committee of the 
Department of Education and Psychology, Freie Universität Berlin, and 
adhered to the Declaration of Helsinki. Experiment 2 was conducted in 
the lab, and participants provided written informed consent. The sample 
size was not increased compared to Experiment 1, as we expected the 
lab-based experiment to yield stronger effects than the online 
experiment. 

2.2.2. Drawing sessions 
The drawing sessions were similar to Experiment 1 but were con-

ducted in the lab. Participants provided their drawings on an Apple iPad 
Pro using an Apple Pencil. Drawings were created using the Sketchbook 
app. A standardized perspective grid similar to the one used in Experi-
ment 1 was provided for each drawing. Specifically, the full drawing 
display (19.5 cm by 26.1 cm) consisted of a large central rectangle (8.5 
cm by 13.5 cm) and 4 diagonal lines from each corner of the rectangle to 
the corners of the page. The rectangle was set with the bottom length 
8.5 cm from the bottom of the page and top length 2.7 cm from the top of 
the page. Instructions and timings were identical to Experiment 1. Here, 
however, participants drew typical versions and copies of six scene 
categories (bathroom, bedroom, café, kitchen, living room, and office). 
Before making their drawings, participants drew a typical classroom to 
practice drawing under the experimental constraints. As the bird’s eye 
view drawings were not critical for generating the renders in Experiment 
1, we did not ask participants to draw the bird’s eye views in Experiment 
2. 

Typical bedroom drawings consisted of an average of 8.1 objects (SD 
= 1.7, range = [4, 11]), with the three most frequent objects bed (100% 
of drawings), window (89%), and carpet (81%). Kitchens consisted of an 
average of 8.6 objects (SD = 2.1, range = [4, 13]), with the three most 
frequent objects cupboard (100%), hob (100%), and sink (89%). Living 
rooms consisted of an average of 8.0 objects (SD = 2.0, range = [4, 12]), 
with the three most frequent objects sofa (100%), table (100%), and 
television (92%). Bathrooms consisted of an average of 7.7 objects (SD 
= 1.6, range = [4, 12]), with the three most frequent objects sink 
(100%), mirror (94%), and carpet (89%). Offices consisted of an average 
of 7.9 objects (SD = 1.9, range = [4, 12]), with the three most frequent 
objects desk (100%), chair (100%), and computer (78%). Cafés con-
sisted of an average of 8.0 objects (SD = 2.34, range = [3, 19]), with the 
three most frequent objects table (100%), chair (100%), and coffee 
machine (72%). 

2.2.3. Scene renders 
Scene renders were created in the same way as for Experiment 1. 

2.2.4. Categorization task 
Here, the categorization task was conducted in the lab, using the 

Psychtoolbox for Matlab (Brainard, 1997). During the experiment, 
participants categorized the scenes into the six categories. Renders were 
presented at central fixation with 7◦ horizontal visual angle. Trial design 
was identical to Experiment 1. To accommodate the six response op-
tions, participants saw a response screen after the mask, on which they 
indicated which of the six categories they had just seen, using the “S”, 
“D”, “F”, “J”, “K”, and “L” keys on the keyboard. 

In Experiment 2, we sought to make the design more efficient by not 
showing all renders to every participant. We instead grouped partici-
pants into groups of 4, and each participant only saw renders based on 
their own drawings, renders based on the other 3 participants’ drawings, 
and the control renders created from the scene copies. Groups of 4 were 
chosen so that there was still sufficient variability in visual stimuli across 
the experiment. Each participant thus saw 5 renders for each of the 6 
categories. Each of these 30 stimuli was repeated 40 times across the 
experiment, for a total of 1200 trials. Trial order was randomized. The 
experiment was split into 4 blocks. After each block, participants could 
take a break for as long as they needed. 

For some participants, we also recorded EEG during the categoriza-
tion task, in order to obtain preliminary data for another study. 

2.2.5. Behavioral data analysis 
Accuracies and response times were analyzed in the same way as for 

Experiment 1. 

2.2.6. Post-experiment questionnaire 
After the categorization task, participants completed a brief post- 

experiment questionnaire on paper, featuring three questions. First, 
we asked participants whether they felt familiar with any of the stimuli 
they had just seen. Here, only 3 out of the 35 participants reported that 
some of the scenes felt familiar to them, and analyzing the data without 
these three participants did not change the pattern of results. Second, we 
showed participants 24 scene renders (4 renders per category, with 1 
corresponding to participants’ own drawing and 3 corresponding to 
drawings from the other participants in the same group). The four ren-
ders for each category appeared on a separate questionnaire page. For 
each category, we asked them to circle the scene that they felt was most 
typical. Here, 86% of participants picked the render corresponding to 
their own drawing as the most typical, suggesting that the renders 
captured the typicality of their drawings. Finally, we showed partici-
pants the same set of 24 images again, but this time specifically asked 
them to circle the image that is most similar to the typical drawing they 
had produced in the drawing session. Here, 83% of participants correctly 
identified their drawing. This is not surprising, given that the categori-
zation task was typically only conducted a week from the drawing 
experiment and the unlimited viewing time. 

2.2.7. Typicality rating experiment 
As the control renders were chosen at the experimenter’s discretion, 

we assessed whether these renders were indeed typical for the scene 
category. To this end, an online survey featuring typicality ratings for all 
scene renders was conducted via Limesurvey (http://www.limesurvey. 
org). Specifically, 216 scene renders (6 categories by 35 participants, 
plus the control renders) were presented in random order, together with 
their category label (e.g., “kitchen”), and an independent group of on-
line participants (n = 22, 21.3 ± 2.8 years±SD, 2/20 male/female) was 
asked to rate the typicality of the renders from 1 to 5 (1: not at all typical 
for the category, 5: very typical for the category). The resulting data 
showed that the control scenes were of intermediate-to-high typicality. 
Specifically, the typicality of the control renders ranked at the following 
positions out of the 36 renders: 17 (bedroom), 14 (kitchen), 15 (living 
room), 10 (bathroom), 8 (office), and 14 (café). Any differences between 
the own, other, and control conditions thus cannot be readily attributed to 
the copied scenes being less typical. 
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2.3. Open practices statement 

Data, code, and materials for both experiments are accessible on the 
Open Science Framework (OSF), at https://osf.io/hpw9v/. 

3. Results 

In our experiments, participants first completed a drawing session, in 
which they drew typical versions of scene categories, such as a typical 
living room (Fig. 1a; see Materials and Methods). These drawings were 
used as descriptors of their internal models of scenes. They also copied 
photographs of scenes from the same categories, which later served as a 
control for familiarity acquired during drawing. For the subsequent 
experiments, we transformed these drawings into standardized 3d ren-
ders (Fig. 1b), thereby leveling out individual differences in drawing 
skill and style. 

We then tested whether scenes designed to mimic individual par-
ticipants’ internal models (described by their own typical drawings) are 
more accurately perceived than scenes that were designed to mimic 
other participants’ internal models. To this end, we devised a scene 
categorization task that required participants to accurately categorize 
the briefly presented and backward-masked scene renders. 

In Experiment 1, participants completed an online drawing session 
where they drew typical versions and copies of living rooms and 
kitchens. They then performed an online categorization task (Fig. 2a), 
during which they categorized the scene renders created from partici-
pants’ drawings into kitchens versus living rooms. 

To investigate whether scenes that were specifically tailored to 
participants’ personal internal models are more accurately categorized, 
we compared accuracies between renders based on each participant’s 
own drawing (“own” condition), other participants’ drawings (“other” 

condition), or the copied scenes (“control” condition). Accuracy was 
significantly different between conditions, F(2,68) = 4.15, p = .020, 
partial η2 

= 0.11 (Fig. 2b), with two significant pairwise comparisons: 
First, renders in the own condition were more accurately categorized 
than in the other condition, t(34) = 2.18, p = .036, d = 0.37, indicating 
that idiosyncrasies in categorization are indeed related to individual 
differences in internal models. Second, renders in the own condition 
were also more accurately categorized than in the control condition, t 
(34) = 2.26, p = .031, d = 0.38, indicating that the categorization 
advantage for renders based on typical drawings cannot be explained 
with participants acquiring familiarity with their drawings during the 
drawing session. No difference was found between the other and control 
conditions, t(34) = 1.11, p = .28, d = 0.19. Response times were also 
significantly different between the conditions, F(2,68) = 3.62, p = .032, 
partial η2 

= 0.10. Specifically, the control condition (M = 828 ms, SE =
37) yielded greater response times than the own condition (M = 784 ms, 

SE = 30), at the trend level, t(34) = 1.87, p = .070, d = 0.32, and the 
other condition (M = 788 ms, SE = 31), t(34) = 3.18, p = .003, d = 0.54. 
No difference was found between the own and other conditions, t(34) =
0.26, p = .79, d = 0.04. 

In Experiment 2, we aimed to replicate the key result from Experi-
ment 1 (enhanced categorization performance for own compared to other 
and control scenes) in a lab-based setup and for a wider range of scene 
categories. Here, participants first drew typical versions and copies for 
six scene categories: bathroom, bedroom, café, kitchen, living room, and 
office. In the subsequent categorization task, they again categorized 
renders based on their own, as well as other participants’ drawings into 
the six categories (Fig. 3a). 

Results fully replicated the pattern observed in Experiment 1. Cate-
gorization accuracies varied significantly across conditions, F(2,68) =
8.05, p < .001, partial η2 

= 0.19 (Fig. 3b), with higher accuracy in the 
own condition, compared to both the other, t(34) = 2.89, p = .007, d =
0.49, and control conditions, t(34) = 3.61, p < .001, d = 0.61. No dif-
ference was found between the other and control conditions, t(34) =
1.59, p = .12, d = 0.27. This again shows that scenes are categorized 
more accurately when they are similar to participants’ typical scene 
drawings, suggesting that similarity to individual participants’ internal 
models determines categorization performance. Response times were 
not significantly different between the conditions, F(2,68) = 0.69, p =
.51, partial η2 

= 0.02. 
The results from Experiments 1 and 2 demonstrate that scenes that 

are specifically tailored to match participants’ internal models are more 
accurately categorized. However, if internal models indeed serve as 
templates for categorization, performance should gradually increase as a 
scene becomes (i) more similar to the internal model of the same cate-
gory and (ii) more dissimilar to the internal model of another category. 
The data from Experiment 1, where each participant viewed a variety of 
individual scenes, allowed us to test this prediction. To objectively 
quantify such graded similarity, we used deep neural network (DNN) 
models trained on object or scene categorization, from which we 
extracted activations from a deep layer as a proxy for high-level feature 
processing. From these activations, we computed how similar each scene 
render in the other condition was to the same-category scene in the own 
condition versus the other-category scene in the own condition (Fig. 4a). 
We then correlated this graded similarity measure with behavioral 
categorization accuracies across scenes in Experiment 1. This analysis 
was repeated by comparing activation patterns for each other scene to 
the same- and different-category activation patterns from the other 
scenes or control scenes. If similarity to the internal model is indeed 
driving categorization, then we should see a better prediction of 
behavioral accuracy when the own scenes are used as a reference than 
when the other or control scenes are used as a reference. 

In both the object- and scene-trained DNNs, graded similarity to the 

Fig. 2. Experiment 1 – behavioral results. a) Participants categorized briefly presented renders into kitchens versus living rooms. b) Categorization was more ac-
curate for renders based on participants’ own drawings (own condition) than for those based on other participants’ drawings (other condition) or copies (control 
condition). Error bars represent standard errors of the mean. * indicates p < .05. 
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own and other scenes was positively correlated with categorization 
performance, all t(34) > 7.37, p < .001, d > 1.25 (Fig. 4b). Graded 
similarity to the control scenes was a weaker predictor of categorization, 
both in the object-trained, t(34) = 1.96, p = .058, d = 0.33, and scene- 
trained DNNs, t(34) = 2.34, p = .025, d = 0.40. Comparing predictions 
between the own, other, and control scenes as references, we found a 
significant difference between conditions in both networks, both F 
(2,68) > 13.3, p < .001, partial η2 

> 0.28. Critically, graded similarity to 
the own scenes between predicted behavioral performance better than 
graded similarity to the other scenes, t(34) = 3.31, p = .002, d = 0.57 
(object-trained DNN), t(34) = 2.26, p = .030, d = 0.39 (scene-trained 

DNN), and better than graded similarity to the control scenes, t(34) =
4.04, p < .001, d = 0.69 (object-trained DNN), t(34) = 4.65, p < .001, d 
= 0.80 (scene-trained DNN). This confirmed our prediction that graded 
similarity to participants’ individual internal models determines cate-
gorization performance. 

4. Discussion 

Together, our findings provide new insights on individual differences 
in naturalistic vision. We show that participants are better at catego-
rizing scenes that resemble a typical drawing they had produced prior to 

Fig. 3. Experiment 2 – behavioral results. a) Participants categorized briefly presented renders into six scene categories. b) Categorization was again more accurate 
for renders based on participants’ own drawings (own condition) than for those based on other participants’ drawings (other condition) or copies (control condition). 
Error bars represent standard errors of the mean. ** indicates p < .01, *** indicates p < .001. 

Fig. 4. Experiment 1 – graded similarity analysis. a) We extracted activation patters for all scene renders in Experiment 1 from googlenet DNNs trained on scene or 
object classification. To approximate the processing of complex, high-level visual features, we extracted activation patterns from the last inception module of the 
DNN. To quantify similarity to the internal model, we correlated the activation pattern for each other scene to the own scene of the same category (within-category 
correlation) and each own scene of the other category (between-category correlation), separately for each participant. By subtracting the within- and between- 
category correlations, we obtained a graded similarity measure, which we correlated with the behavioral categorization accuracy across all candidate images. 
This analysis was repeated with all possible other scenes or the control scenes as the reference images. b) In both DNNs, graded similarity to the own scene predicted 
categorization better than graded similarity to the other or control scenes, suggesting that similarity to participants’ personal internal models predicts behavioral 
categorization across the range of images used in the experiment. Error bars represent standard errors of the mean. * indicates p < .05, ** indicates p < .01, *** 
indicates p < .001. 
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the experiment, compared to scenes that resemble other people’s typical 
drawings, or scenes that resemble scene copies they had produced 
earlier. Using a DNN as a measure of graded similarity, we further show 
that categorization varies as a function of the similarity between par-
ticipants’ drawings and the scene that they are asked to categorize. We 
interpret these findings to reflect differences in participants’ internal 
models of the world that are captured by their typical scene drawings. 
These differences in internal models may in turn drive idiosyncrasies in 
scene categorization. 

The more accurate categorization of scenes that are similar to de-
scriptions of participants’ internal models can be explained by the rapid 
formation of accurate predictions that guide the analysis of the sensory 
input (Bar, 2004; Friston, 2005). It has been suggested that such pre-
dictions are generated through the activation of candidate prototypes 
from rapid and coarse stimulus analysis (Bar, 2004; Bar et al., 2006). 
This idea is consistent with previous studies reporting that participants – 

on the group level – show enhanced detection, categorization, and more 
diagnostic neural responses for more typical scene exemplars (Caddigan, 
Choo, Fei-Fei, & Beck, 2017; Csathó, van der Linden, & Gács, 2015; 
Torralbo et al., 2013). Here, we show that the activation of such cate-
gorical prototypes occurs in an idiosyncratic way, where each individual 
activates their own internal models of a scene. This reinforces the idea 
that internal representations of the world are only fully understood if we 
take the differential experience of individual observers with their real- 
world environments into account (Hartley, 2022). This assertion does 
not imply that perception is fully unique, or even radically different, 
between observers. We still found a fair reliability of categorization 
performance across observers, with a modest split half-reliability of r =
0.72 in Experiment 1 (see Materials and Methods). What our results do 
suggest is that on top of this coarse stability in performance, there is 
interesting additional variance that is systematic across observers and 
can be captured by our drawing-based method. 

We demonstrate that a single drawing of a typical scene is able to 
capture essential properties of the individually specific internal model 
that gives rise to these predictions. This highlights the potential of our 
approach: A simple drawing composed in just a few minutes is enough to 
capture characteristic properties of the internal models in individual 
participants. While a single drawing thus seems sufficient to uncover 
individual differences, our approach is somewhat simplistic, as it as-
sumes that (1) the internal model is a single point in the space of possible 
scenes and (2) the internal model is stable across time. Moving forward, 
it would be very interesting to see how internal models vary when 
probed with multiple drawings and across time. Such studies could 
reveal that internal models, rather than providing a single monolithic 
reference point, are perhaps defined by a probability distribution in 
representational space. 

Our findings further suggest that familiarity acquired during drawing 
is insufficient to explain categorization benefits for stimuli that are 
similar to it. Renders created from the scenes that people copied, and 
that they also acquired familiarity with during drawing, did not yield the 
same performance benefit as renders that were created from drawings 
that reflect participants’ own typical scenes. This shows that the gen-
eration of a drawing per se – the copy drawings were produced under the 
exact same constraints as the typical drawings – does not produce per-
formance benefits in a subsequent task. Another concern relates to the 
mental construction of a scene, which is more demanding for the typical 
scene where the scene contents need to be thought up without a direct 
visual reference. Mental generation has indeed been linked to subse-
quent memory benefits in the memory literature, referred to as the 
generation effect (Clark, 1995; Slamecka & Graf, 1978). Though gen-
eration effects in memory are mostly probed on purely semantic con-
tents and under long presentation regimes (Bertsch, Pesta, Wiscott, & 
McDaniel, 2007), generation may in principle lead to more pronounced 
familiarity in the subsequent categorization task. Our graded similarity 
analysis argues against our effects being driven solely by a preferential 
recognition of renders constructed from the typical drawings that 

participants had mentally generated before: Categorization also varied 
in a systematic way across renders based on other participants’ draw-
ings, as a function of how similar they were to the render based on their 
own typical drawing. 

Our results may still be related to familiarity with scenes acquired 
throughout our lifetimes: The scenes we encounter during everyday 
experience ultimately eventually led to the formation of our internal 
models for scene categories. Previous studies indeed suggest that fa-
miliarity modulates scene processing (Bainbridge & Baker, 2022; 
Epstein, Higgins, Jablonski, & Feiler, 2007; Epstein, Parker, & Feiler, 
2007; Klink, Kaiser, Stecher, Ambrus, & Kovács, 2023). In our study, we 
explicitly instructed our participants to not draw individual scenes from 
their immediate real-life experience but to draw the most typical scenes 
they could think of (with the idea that typical scenes reflect a weighted 
mix of features encountered in scenes across life). Thoroughly disen-
tangling effects of typicality and familiarity in creating the reported 
effects will nonetheless require further studies. To comprehensively 
address this issue, studies need to either (i) track participants longitu-
dinally, monitoring how their internal models change as they learn 
about new types of environments, or (ii) construct detailed descriptors 
of participants’ visual experience, for instance by collecting descriptions 
and images from their everyday environments. 

Our study further prompts interesting questions that provide new 
avenues for future research. First, we currently do not know why internal 
models systematically differ across participants. Future studies could 
relate variations in internal models to idiosyncrasies in cortical repre-
sentation (Charest et al., 2014; Lee & Geng, 2017) and visual exploration 
behavior (De Haas et al., 2019; Henderson & Luke, 2014), as well as to 
individual differences in brain anatomy (Kanai & Rees, 2011; Llera et al., 
2019; Moutsiana et al., 2016). Second, we do not know exactly how 
visual inputs are matched against the internal models. There is a variety 
of dimensions along which this match could be computed, such as the 
objects included in a scene as well as their spatial distribution (Kaiser 
et al., 2019; Oliva & Torralba, 2007; Vo et al., 2019; Wolfe et al., 2011), 
the global geometry of the scene (Epstein & Baker, 2019; Kaiser & Cichy, 
2021; Oliva & Torralba, 2006), or low- and mid-level features correlated 
with the content of a scene (Geisler, 2008; Groen, Silson, & Baker, 2017; 
Watson, Hartley, & Andrews, 2014). Our DNN-based analysis of graded 
similarity indeed suggests that high-level features are important, given 
that graded similarity in a deep layer of a scene-trained DNN predicted 
categorization performance. The observation that predictions were 
enabled by both object- and scene-trained DNNs suggests that the fea-
tures useful for prediction are not uniquely critical for either object or 
scene recognition. However, our scene renders were carefully matched 
for low-level features, and this matching may have obscured a possible 
contribution of low-level features that are relevant under more natu-
ralistic conditions. To chart relevant visual features more comprehen-
sively, future studies could systematically manipulate inputs to deviate 
from the internal model in targeted ways. 

More generally, our study highlights the potential of drawing for 
quantifying internal representations (Fan et al., 2023). Drawings indeed 
received renewed attention recently, in studies of scene memory 
(Bainbridge & Baker, 2020; Bainbridge, Hall, & Baker, 2019) and 
perception (Fan, Yamins, & Turk-Browne, 2018; Matthews & Adams, 
2008; Morgan, Petro, & Muckli, 2019; Ostrofsky, Nehl, & Mannion, 
2017; Singer, Cichy, & Hebart, 2023). Our study suggests that drawings 
also yield the potential to advance our understanding of the internal 
models that guide the visual representation of objects, faces, or actions. 
Furthermore, our drawing method may prove useful for studying the 
maturation of internal models across development (see Long, Fan, Chai, 
& Frank, 2021) or their alterations in disorders of prediction like autism 
(Pellicano & Burr, 2012). 

In sum, our work provides two critical advances for studying vision 
on the individual level. First, our findings offer a new interpretation of 
individual differences in perception. They suggest that humans catego-
rize real-world environments in different ways because we all have 
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different internal models of the world. Second, our work provides re-
searchers with a new drawing-based method for unveiling the contents 
of internal models in individual participants. This method has the po-
tential to be widely applied to derive explicit predictions about indi-
vidual differences in vision. 
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The neural dynamics of personally familiar scene recognition suggests category 
independent familiarity encoding. Cerebral Cortex. https://doi.org/10.1093/cercor/ 
bhad397 (in press). 

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling 
biological vision and brain information processing. Annual Review of Vision Science, 
1, 417–446. 

Lee, J., & Geng, J. J. (2017). Idiosyncratic patterns of representational similarity in 
prefrontal cortex predict attentional performance. Journal of Neuroscience, 37(5), 
1257–1268. 

Llera, A., Wolfers, T., Mulders, P., & Beckmann, C. F. (2019). Inter-individual differences 
in human brain structure and morphology link to variation in demographics and 
behavior. Elife, 8, Article e44443. 

Long, B., Fan, J., Chai, Z., & Frank, M. C. (2021). Parallel developmental changes in 
children’s drawing and recognition of visual concepts. PsyArXiv. https://doi.org/ 
10.31234/osf.io/5yv7x 

Mandler, J. M., & Parker, R. E. (1976). Memory for descriptive and spatial information in 
complex pictures. Journal of Experimental Psychology: Human Learning and Memory, 2 
(1), 38. 

G. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0005
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0005
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0005
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0010
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0010
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0015
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0015
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0015
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0020
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0020
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0020
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0025
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0030
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0030
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0030
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0035
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0035
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0040
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0040
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0045
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0050
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0050
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0050
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0055
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0060
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0060
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0065
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0065
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0065
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0070
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0070
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0070
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0075
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0075
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0080
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0080
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0085
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0085
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0085
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0090
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0090
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0090
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0095
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0095
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0100
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0100
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0100
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0105
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0105
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0105
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0110
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0110
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0115
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0115
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0115
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0120
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0120
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0120
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0125
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0125
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0130
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0130
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0135
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0135
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0140
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0140
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0145
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0145
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0150
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0150
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0155
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0155
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0155
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0160
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0160
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0165
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0165
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0165
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0170
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0170
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0175
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0175
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0180
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0180
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0185
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0185
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0190
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0190
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0195
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0195
https://doi.org/10.1093/cercor/bhad397
https://doi.org/10.1093/cercor/bhad397
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0205
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0205
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0205
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0210
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0210
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0210
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0215
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0215
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0215
https://doi.org/10.31234/osf.io/5yv7x
https://doi.org/10.31234/osf.io/5yv7x
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0225
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0225
http://refhub.elsevier.com/S0010-0277(24)00009-X/rf0225


Cognition 245 (2024) 105723

9

Matthews, W. J., & Adams, A. (2008). Another reason why adults find it hard to draw 
accurately. Perception, 37(4), 628–630. 

Minsky, M. (1974). A framework for representing knowledge. In P. Winston (Ed.), The 
psychology of computer vision. McGraw-Hill.  

Mollon, J. D., Bosten, J. M., Peterzell, D. H., & Webster, M. A. (2017). Individual 
differences in visual science: What can be learned and what is good experimental 
practice? Vision Research, 141, 4–15. 

Morgan, A. T., Petro, L. S., & Muckli, L. (2019). Scene representations conveyed by 
cortical feedback to early visual cortex can be described by line drawings. Journal of 
Neuroscience, 39(47), 9410–9423. 

Moutsiana, C., De Haas, B., Papageorgiou, A., Van Dijk, J. A., Balraj, A., 
Greenwood, J. A., & Schwarzkopf, D. S. (2016). Cortical idiosyncrasies predict the 
perception of object size. Nature Communications, 7(1), 12110. 

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image 
features in recognition. Progress in Brain Research, 155, 23–36. 

Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in 
Cognitive Sciences, 11(12), 520–527. 

Ostrofsky, J., Nehl, H., & Mannion, K. (2017). The effect of object interpretation on the 
appearance of drawings of ambiguous figures. Psychology of Aesthetics, Creativity, and 
the Arts, 11(1), 99. 

Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian 
explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510. 

Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In J. R. Spiro (Ed.), 
Theoretical issues in Reading comprehension. CRC Press.  

Singer, J. J., Cichy, R. M., & Hebart, M. N. (2023). The spatiotemporal neural dynamics 
of object recognition for natural images and line drawings. Journal of Neuroscience, 
43(3), 484–500. 

Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. 
Journal of Experimental Psychology: Human Learning and Memory, 4(6), 592. 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. 
(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 1–9). 

Torralbo, A., Walther, D. B., Chai, B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2013). 
Good exemplars of natural scene categories elicit clearer patterns than bad 
exemplars but not greater BOLD activity. PLoS One, 8(3), Article e58594. 

Tulver, K., Aru, J., Rutiku, R., & Bachmann, T. (2019). Individual differences in the 
effects of priors on perception: A multi-paradigm approach. Cognition, 187, 167–177. 

Vo, M. L. H., Boettcher, S. E., & Draschkow, D. (2019). Reading scenes: How scene 
grammar guides attention and aids perception in real-world environments. Current 
Opinion in Psychology, 29, 205–210. 

Wagoner, B. (2013). Bartlett’s concept of schema in reconstruction. Theory & Psychology, 
23(5), 553–575. 

Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual differences in holistic 
processing predict face recognition ability. Psychological Science, 23, 169–177. 

Watson, D. M., Hartley, T., & Andrews, T. J. (2014). Patterns of response to visual scenes 
are linked to the low-level properties of the image. NeuroImage, 99, 402–410. 

Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). 
Controlling low-level image properties: The SHINE toolbox. Behavior Research 
Methods, 42, 671–684. 
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