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‘The eyes are the window to the representation’: Linking gaze to
memory precision and decision weights in object discrimination tasks

Emily R. Weichart*†, Layla Unger‡, Nicole King‡, Vladimir M. Sloutsky‡, and Brandon M. Turner‡

†Utah State University
‡The Ohio State University

Humans selectively attend to task-relevant information in order to make accurate decisions.

However, selective attention incurs consequences if the learning environment changes unex-

pectedly. This trade-off has been underscored by studies that compare learning behaviors

between adults and young children: broad sampling during learning comes with breadth of

information in memory, often allowing children to notice details of the environment that are

missed by their more selective adult counterparts. The current work extends the generalized

context model (Nosofsky, 1986) to account for both the intentional and consequential aspects

of selective attention when predicting choice. In a novel direct input approach, we used trial-

level eye-tracking data from training (memory precision) and test (decision weights) to replace

the otherwise freely-estimated attention dynamics of the model. We demonstrate that only a

model imbued with gaze correlates of memory precision in addition to decision weights can

accurately predict key behaviors associated with 1) selective attention to a relevant dimension,

2) distributed attention across dimensions, and 3) flexibly shifting strategies between tasks.

Although humans engage selective attention with the intention of being accurate in the mo-

ment, our findings suggest that its consequences on memory constrain the information that is

available for making decisions in the future.

Keywords: attention; categorization; decision-making; encoding and retrieval; eye-tracking;

model-based cognitive neuroscience

Introduction

Humans can effortlessly integrate multiple sources of in-

formation when making everyday decisions, drawing upon

their existing knowledge and cues from the current environ-

ment. The way we balance and prioritize information may

vary based on a number of factors, including task demands,

source salience, and personal goals. Take, for instance, the

task of distinguishing between edible and poisonous berries

in the wilderness. In this scenario, it can be advantageous to

learn and apply highly reliable rules based on a single dimen-

sion, such as color (e.g. “White and yellow–kills a fellow.

Purple and blue–good for you.”). Conversely, when identi-

fying the species of an unfamiliar plant that has sprouted in

one’s garden, it becomes more useful to use a broader range

of information. One can consider dimensions such as flower

shape, leaf arrangement, and petal pattern, and make a cate-

gory inference based on its overall resemblance to a known

type of plant. In both examples, the process of object dis-

*Corresponding author: Emily R. Weichart, Department of Psy-

chology, Utah State University, Logan, UT, USA. Manuscript ac-

cepted for publication on January 16, 2024.

crimination is influenced by two key factors: 1) the knowl-

edge that one has stored in memory about how features cor-

respond to categories; and 2) how one strategically weights

information about the current item in order to make appro-

priate decisions.

Across theoretical models of human learning and catego-

rization, this strategic weighting of different dimensions is

formalized as attention (Rescorla & Wagner, 1972; Mack-

intosh, 1975; Pearce & Hall, 1980; Medin & Shaffer, 1978;

Nosofsky, 1986). Under standard assumptions, maximum

accuracy may be achieved by selectively allocating attention

to dimensions that provide category-diagnostic information

(e.g. berry color), and ignoring those that may provide ir-

relevant, unreliable, or conflicting information. Decades of

empirical findings have shown that humans iterate toward

an optimal distribution of attention when pursuing accuracy

goals (see Weichart et al., 2022, for review). For example,

eye-tracking findings have demonstrated that categorization

accuracy is commensurate with gaze patterns that prioritize

diagnostic over irrelevant dimensions (Rehder & Hoffman,

2005a,b; Meier & Blair, 2013; Blair et al., 2009; Galdo et

al., 2022).

Despite apparent intentions to balance information in a

way that will yield high accuracy, learners often fail to ad-
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just attention accordingly in cases when the task environment

suddenly changes. Learners who optimize attention for cat-

egorization fail to respond accurately when tested on item

recognition (Griffiths & Mitchell, 2008; Deng & Sloutsky,

2016), fail to utilize other features in cases when the priori-

tized dimension does not contain usable information (Deng

& Sloutsky, 2016; Kruschke et al., 2005), and fail to main-

tain stable accuracy if dimension reliability shifts at some

point during the task (Blanco & Sloutsky, 2019; Blanco et

al., 2023).

There are two likely interpretations of these findings. The

first is that the observer maintains inaccurate beliefs about

the continued relevance of a particular dimension despite

changes in the task environment (e.g. Rich & Gureckis,

2018). The second is that there are “costs” of engaging selec-

tive attention during learning; specifically, limited encoding

of information that is not immediately relevant, but may be-

come relevant in the future (Blanco & Sloutsky, 2019; Best

et al., 2013; Plebanek & Sloutsky, 2017). The difference is

theoretically significant: do failures and biases emerge due to

one’s inaccurate beliefs about the current environment, or as

an unintended consequence of storing information that was

relevant in a previous environment? Within leading mech-

anistic theories of categorization, however, it is not possi-

ble to differentiate between the extent to which features are

encoded in memory, and the extent to which dimensions are

prioritized during discrete decisions (Medin & Shaffer, 1978;

Nosofsky, 1986; Kruschke, 1992).

To address this gap, we present a gaze-based extension to

a standard exemplar-similarity categorization model (Gener-

alized Context Model; GCM; Nosofsky, 1986) and investi-

gate the independent contributions of memory for features

acquired during learning and the dimension-level weights

that govern decisions about new items. Our framework

builds upon intuitions from seminal work that established

gaze measures as an analogue of decision weights during cat-

egorization (Rehder & Hoffman, 2005b), lending two impor-

tant innovations. First, we incorporated gaze measures as a

direct input to the GCM specification for attention. While

the standard approach is to infer a single average distribution

of attention based on a post-learning pattern of behavioral

responses, our framework uses trial-level measures of gaze

to replace these typically freely-estimated dynamics. We

thus gain an advantage of detailed, data-driven insight into

the feature information that contributed to each individual

choice. Second, we constructed our framework to allow for

the possibility that gaze not only provides an analogue to de-

cision weights, but memory precision as well. Although it is

often assumed that all information presented to the partici-

pant is plausibly stored in memory, we incorporate a simple

yet critical intuition: features can only be stored in memory

to the extent that they are looked at during initial learning.

By leveraging eye-tracking data within a joint model-

ing framework for predicting choice, we are uniquely posi-

tioned to investigate the hypothesis that attention does not

purely represent the observer’s moment-to-moment weight-

ing of dimensions, but rather is subject to the constraints of

previously-encoded information as well. Our goal is to rec-

oncile traditional views of attention with modern insights,

and highlight memory as a critical factor for understanding

how even well-intentioned learners can fail to make well-

informed decisions.

The exemplar-similarity framework

The exemplar-similarity framework has subserved the ma-

jority of model-based categorization accounts for the past

several decades (Medin & Shaffer, 1978; Estes, 1986; Nosof-

sky, 1986; Kruschke, 1992, 2001; Love et al., 2004; Galdo

et al., 2022). GCM is a prime example of the exemplar-

similarity framework, as it is one of the most influential and

widely-implemented models in cognitive psychology.

Within the exemplar-similarity framework, categorizing

a new stimulus requires the observer to determine its simi-

larity to labeled exemplars of each available category (Fig-

ure 1A-B). GCM made a significant contribution by posit-

ing that the structure of the psychological space is modified

by a latent distribution of attention (Nosofsky, 1986). The

observer assigns an attention weight α j to each dimension

j, where 0 ≤ α j ≤ 1 and ∑k αk = 1. Importantly, however,

GCM makes the simplifying assumption that the features of

all previously-encountered exemplars are perfectly encoded

in memory. The attention weights therefore serve to “stretch”

the dimensions of psychological space that are attended, and

“shrink” those that are unattended. The consequence is that

the observer is more likely to perceive differences between

features that occur in attended as opposed to unattended di-

mensions. Returning to our earlier example, people who

selectively attend to the color dimension when categorizing

berries as “edible” or “poisonous” would be likely to per-

ceive minor distinctions in the spectrum from white to blue,

but unlikely to notice variability in the unattended dimension

of leaf shape.

Limitations of free estimation

Using the mechanisms described above, exemplar-

similarity models such as GCM can take vectorized versions

of stimulus features as input, and generate response proba-

bilities as output. By fitting a model to data, one can identify

parameter values that closely approximate the behaviors that

participants actually produced. The purpose would be to dis-

till a set of responses collected over the course of an experi-

ment into mechanistic information, such as a dimension-wise

distribution of attention.

As an example, Medin & Smith (1981) designed an exper-

iment to investigate the impact of different strategy-targeted

task instructions on category learning. Responses differed
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Figure 1

Exemplar-similarity framework. GCM=Generalized Con-

text Model. (A) Labeled exemplars are stored in memory

as vectors of feature information. Here, green and orange

squares represent features that were drawn from unseen pro-

totypes of Categories A and B, respectively. (B) The ob-

server compares the features of a new to-be-categorized item

to those of the stored exemplars. Feature-level similarity is

impacted by a distribution of attention, such that features of

highly-attended (deeper hues of red) dimensions result in bet-

ter discriminability between matching and mismatching fea-

tures. (C) Exemplars that are perceived to be more similar

to the new item are assigned a higher “activation” value.

Response probability is a ratio of activation values between

Categories A and B. (D) In the proposed gaze-based exten-

sion to GCM, exemplar features are stored in memory in pro-

portion to how long they were fixated during learning. Gray

hues represent low memory precision. (E) When the observer

processes a new item, gaze patters are presumed to provide

insight into both which features were plausibly encoded into

memory, and how features were weighted during the catego-

rization decision.

considerably between groups who were instructed to respond

based on a rule tied to a specific dimension, or based on

overall similarity to category prototypes. Model-based anal-

yses revealed that the former instructions induced a strategy

of selective attention biased toward the relevant dimension,

whereas the latter instructions prompted a strategy of dis-

tributed attention across dimensions.

According to GCM, being explicitly told which dimension

was most category-diagnostic would impose no decrements

upon the observer’s motivation to encode the features of the

other dimensions. Instead, any differences in behavior be-

tween groups in Medin & Smith (1981)’s design would be

attributed to “stretching” and “shrinking” the dimensions of

a perfectly-encoded store of exemplars. Here, we propose

a more nuanced explanation whereby a latent distribution of

attention indeed describes the observer’s ongoing weighting

of information, but also impacts the precision with which fea-

tures are stored in memory over the course of learning. As

shown in Figure 1E, our extension to GCM determines the

psychological similarity between the trial stimulus and past

exemplars based on both 1) the availability of exemplar fea-

tures in memory; and 2) the distribution of decision weights

applied to the current stimulus.

Although the standard implementation of GCM has been

criticized as being overly simplifying due to its assumption

of perfect exemplar encoding (Murphy, 2002; Griffiths &

Mitchell, 2008), this assumption has continued to be pre-

sented as a necessity for computational constraint since the

earliest introduction of the exemplar-similarity framework

(Medin & Shaffer, 1978; Nosofsky, 1986). The current work

is the first modeling effort to investigate the forces of mem-

ory precision and decision weights independently, using gaze

to disentangle what has previously been viewed as inextrica-

ble.

Memory and decision subcomponents of attention

Several empirical findings suggest that memory and de-

cision weights bear dissociable impacts on object discrimi-

nation judgements. First, a vast literature on blocking has

advanced our knowledge about the impacts of selective at-

tention on the processing of information from unattended di-

mensions (Beesley & Le Pelley, 2011; Le Pelley et al., 2007;

Kruschke & Blair, 2000). In a typical blocking design, par-

ticipants are pre-trained to associate a cue, A, with an out-

come. In a second phase, a compound cue AB is then asso-

ciated with the same outcome. Because participants learn to

associate A with the outcome during pre-training, they fail to

learn the relationship between B and the outcome during the

second phase. Acquisition of knowledge about B is thus said

to be ”blocked" by the more predictive cue A (Kamin, 1968).

In one relevant study, Griffiths & Mitchell (2008) tested

participants on recognition and perceived outcome causal-

ity of each cue presented during a blocking procedure. In
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addition to blocking effects (B rated less causally related to

the outcome than A), the authors noted significantly reduced

recognition performance for B in comparison to A, even after

controlling for cue frequency. Another study conducted by

Easdale et al. (2019) administered a similar multi-cue design

alongside eye-tracking measures, and manipulated how reli-

ably each cue predicted the outcome. The authors found that

by reducing causal certainty with probabilistically- rather

than deterministically-predictive cues, participants fixated to

a wider breadth of cues before making decisions. These

findings call simplifying assumptions of a perfectly-encoded

memory store into question, instead suggesting that selective

attention bears a significant impact on the very formation of

the representation itself.

Perhaps the most revealing findings on the dichotomy

of memory precision and decision weights has come from

work on the development of selective attention from young

childhood to adulthood (Best et al., 2013; Deng & Slout-

sky, 2015a,b, 2016; Plebanek & Sloutsky, 2017). It is well-

documented that adults optimize attention in a goal-directed

manner, and tend toward a strategy of selectively attend-

ing to dimensions that most reliably result in accurate re-

sponses (Shepard et al., 1961; Treisman, 1969; Duncan,

1984). Young children, however, are less equipped to ig-

nore irrelevant information and are therefore more likely than

adults to use a strategy of distributed attention during learn-

ing (Smith & Kemler, 1977; Blanco et al., 2023).

In a study by Deng & Sloutsky (2016), stimuli were com-

posed of one dimension that was perfectly deterministic of

category membership, and six dimensions that were each

probabilistically predictive. The authors observed that af-

ter training, adults systematically categorized new items ac-

cording to the deterministic dimension and remembered its

features substantially better than features in the other dimen-

sions. By contrast, young children were more likely to uti-

lize multiple dimensions to categorize new items and showed

good memory for all features, even outperforming adults on

recognition of features in probabilistic dimensions (Experi-

ment 3).

Blanco et al. (2023) further investigated the costs of se-

lective attention by collecting behavioral and eye-tracking

data from adults and children while they completed a two-

phase learning task, using stimuli similar to Deng & Slout-

sky (2016). After learning to categorize stimuli during

Phase 1, the most- and least-informative dimensions sud-

denly swapped roles to mark the onset of Phase 2. Analy-

ses of eye-tracking data showed that adults primarily fixated

to the deterministic dimension during Phase 1, then rapidly

shifted attention to the probabilistic dimensions at the onset

of Phase 2. By contrast, children were more likely to fixate

to a broader range of features during Phase 1, and tended

to maintain this strategy during Phase 2. Importantly, the

authors identified a subset of children who responded more

consistently with the deterministic dimension than adults in

Phase 2. This finding suggests that encoding a broad range

of information may offer an advantage when determining the

most category-diagnostic dimension in a changing environ-

ment.

These developmental findings point to intriguing nuances

that are missed by the standard definition of attention (Nosof-

sky, 1986, 1991; McKinley & Nosofsky, 1996). If strategic

allocation of attention occurs only after all information is al-

ready encoded, one cannot explain why optimality-seeking

adults would incur robust costs to accuracy that children are

demonstrably able to avoid (Deng & Sloutsky, 2016; Blanco

et al., 2023). It is perhaps the case that relative to engaging

selective attention during learning, a strategy of broad fea-

ture sampling and encoding information in memory uniquely

supports flexible adaption to a changing task environment.

Experiment

We administered an eye-tracking version of a paradigm

developed by Deng & Sloutsky (2015a, 2016). In the task,

participants are first trained to map stimulus features to cat-

egories via feedback-based learning. Participants then com-

plete a recognition test phase (i.e. "Have you seen this exact

item before?") and a categorization test phase (i.e. "Does

this item belong to [Category A] or [Category B]?"). Im-

portantly, feedback is not provided during the test phases, so

participants must rely on the information they learned dur-

ing training to make judgements about the new stimuli they

encounter during test.

We selected this paradigm in light of robust empirical

evidence that humans naturally distribute attention differ-

ently to serve recognition and categorization goals (Ashby &

Lee, 1991; Maddox & Ashby, 1996; Little & Lewandowsky,

2009; Greene & Oliva, 2009). In rule-based categorization,

optimal performance is achieved by selectively attending to

relevant dimensions. On the other hand, recognizing an

item among highly similar exemplars requires attention to be

broadly distributed across many or all dimensions. The in-

clusion of both recognition and categorization phases in our

study was therefore meant to provoke strategic differences

within-subjects.

We additionally wanted to study the impacts of feature

encoding during training on subsequent strategic flexibility

between-subjects. Some ways to induce sampling variabil-

ity would be to include manipulations of task instructions

(Medin & Smith, 1981), feature salience (Liu et al., 2015),

predictive certainty (Easdale et al., 2019; Beesley & Le Pel-

ley, 2011), or mode of feedback (Meier & Blair, 2013; Little

& Lewandowsky, 2009), which have been shown to impact

the extent to which adults engage selective attention during

learning. However, the benefit of variability would arguably

come at the cost of interpretability in the current work, given

that these interventions would interact with the strategies that
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participants would naturally use in pursuit of optimal re-

sponding. We therefore took an alternative approach, and

selected a participant population that has demonstrated both

effective learning across paradigms and widespread strategic

variability: preschool-aged children.

Previous work has shown that 4- to 5-year-old children

are more likely than adults to use a strategy of distributed

attention when behavioral effects are aggregated across sub-

jects (Deng & Sloutsky, 2016; Plebanek & Sloutsky, 2017).

Subject-level analyses, however, suggest that these effects

can be attributed to higher strategic variability among chil-

dren compared to adults, rather than children being unilater-

ally unable to engage selective attention.

Blanco & Sloutsky (2019), for example, classified individ-

ual adults and children in terms of attention strategies used

during a learning task. The distribution of strategy usage for

adults was 66% selective, 19% distributed, and 16% inter-

mediate. For children, the strategy distribution was more

even with 29% selective, 32% distributed, and 38% inter-

mediate (Experiment 1). In the current study, we hoped that

this variability among children would provide the opportu-

nity to identify robust strategy groups that were suitable for

between-subject comparisons of gaze patterns.

Methods

Participants

Participants were 219 children who were recruited from

preschools and childcare centers in the suburbs of Columbus,

Ohio (mean age: 52.0 months, range: 44.7-58.1 months). All

research activities were approved by the Institutional Review

Board at The Ohio State University (Protocol 2004B0422).

Written informed consent was acquired from a parent or

guardian of each participant in advance of the study, and the

children themselves consented verbally. We used a larger

sample size than what is typical for the selected paradigm

(N=25-35; Blanco & Sloutsky, 2019; Deng & Sloutsky,

2012, 2015a, 2016). This was done in consideration of rec-

ommended sample sizes in excess of 100 for model compari-

son (Myung & Pitt, 2004), and in an effort to observe individ-

ual differences in strategy within the population of interest.

This study was not pre-registered. Data and model code

are publicly available and are hosted by the Open Science

Foundation (OSF; https://osf.io/9r7k8/?view_only=

ca4010ffb8aa4cbea6b02be3ff8ad80f).

Materials

Training stimuli were colorful drawings of trains that were

divided into categories that we denote “A” (Category A) and

“B” (Category B). As shown in Table 1, each category was

represented by an un-presented prototype. Prototypes con-

tained seven features that were distinct in shape and color:

smoke stack, cab, wheels, car 1, car 2, car 3, and flag. A ma-

jority of the features were drawn from the prototypes proba-

bilistically so that they would collectively represent the over-

all similarity among category exemplars (henceforth referred

to as “P” features). One feature, however, was perfectly de-

terministic of category membership (henceforth referred to

as the “D” feature). The D dimension was selected among

three options for each participant (cab, wheels, and flag), and

selections were counterbalanced between-subjects.

Four stimulus types that were presented during the experi-

ment will be discussed.* The stimulus structure of each item

type is shown in Table 1. Each item type configuration dis-

cussed below resulted in 30 possible stimuli, 15 from each

category as determined by the D feature (high-match, con-

flict, and one-new-P) or by the majority of P features (new-

D).

1. The majority of stimuli were a high-match to one of

the two category prototypes, meaning the D feature

and 4 out of 6 P features were drawn from a consis-

tent prototype. The remaining 2 P features were drawn

from the opposite prototype. High-match items were

presented both during category training (with labels),

and in subsequent recognition and categorization test

phases (without labels).

2. Conflict items contained the D feature and 2 out of 6 P

features from one category prototype, and the majority

(4 out of 6) of the P features from the other. These

items were only presented during tests of memory and

categorization, and were never paired with labels.

3. New-D items contained a novel feature in the D dimen-

sion, which was never explicitly paired with a label

during category training. 4 out of 6 P features were

drawn from one category prototype, and the remain-

ing 2 features were drawn from the other. These items

were only presented during tests of memory and cate-

gorization, and were never paired with labels.

4. One-new-P items contained a novel feature in a

randomly-selected P dimension. The D feature and 4

out of 6 P features were drawn from one category pro-

totype, and the remaining P feature was drawn from

the other. These items were only presented during tests

of memory and categorization, and were never paired

with labels.

*A fifth all-new-P item type was presented to participants as

well, which contained novel features in all 6 P dimensions. The D

feature was drawn from one of the available category prototypes.

These items were not related to the effects of interest in the current

study, and were therefore excluded from analysis.
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Recognition: Categorization:

Correct Dimension-Consistent

Response Response

Item Type D P1 P2 P3 P4 P5 P6 D P

Prototypes 0 0 0 0 0 0 0 - A A

1 1 1 1 1 1 1 - B B

High-match 0 0 0 0 0 1 1 Old A A

1 1 1 1 1 0 0 Old B B

Conflict 0 1 1 1 1 0 0 New A B

1 0 0 0 0 1 1 New B A

One-New-P 0 0 0 0 0 1 N New A A

1 1 1 1 1 0 N New B B

New-D N 0 0 0 0 1 1 New - A

N 1 1 1 1 0 0 New - B

Table 1

Category Structure. D=deterministic; P=probabilistic; N=novel. Rows provide examples of feature configurations for each

type of item presented during the task. Values correspond to unique features in each dimension. 0s correspond to an unseen

prototype from Category A, and 1s correspond to a prototype from Category B. “D” and “P” headings refer to the reliability

of feature information in the corresponding dimension. The three right-most columns indicate expected responses, considering

the feature information provided by the relevant item type.

Procedure

The experiment was similar to that of Deng & Slout-

sky (2016), and was comprised of four phases: instructions,

training, recognition test, and categorization test. Instruc-

tions and prompts that were specific to each trial were read

aloud by a trained experimenter, and participants responded

verbally. The experimenter then pressed the corresponding

key on the keyboard to log the response. The experiment

lasted approximately 20 minutes in total.

During the instructions, participants were told that they

would see different trains and that they would have to decide

which ones belonged to Categories A and B. Features drawn

from each category prototype were presented on the screen in

isolation, and the experimenter verbally indicated the appro-

priate category association. In particular, P features were dis-

played alongside a message in the form: “Most of the [A / B]

trains have this type of [e.g. smoke stack / car / cab / wheels

].” D features were accompanied by the message: “All [A

/ B] trains have this type of [e.g. flag].” Across two cate-

gories, 14 features and their associated category mappings

were displayed to participants during the instructions. The

experimenter read the following message aloud before the

experiment began: "There are two parts in this game. This

is the first part. In this part of the game, you will see many

trains. Some of them are A trains and some are B trains. You

will tell me whether it’s an A train or a B train."

The training phase consisted of 30 high-match items (15

per category). During each trial, stimuli were presented in

the center of the screen and participants were asked the ques-

tion: “What is this? A or B?” After the the experimenter

logged the participant’s response, corrective feedback was

provided in the form of “Correct! This is a/n [A / B] train”

or “Oops! This is actually a/n [A / B] train.” Additionally,

feedback highlighted the D feature and similarity to category

prototypes with a message in the form of “It looks like a/n

[A / B] train and has the [A / B] [e.g. flag].” Feedback was

presented as text on the screen and read aloud by the exper-

imenter. The order of stimulus presentation was randomized

across participants.

Training was followed by recognition and categorization

test phases. At the point of transition between training and

test, the experimenter read the following message aloud:

"Now, it’s the second part of the game. In this part, you will

see more trains. You saw some of them in the first part of the

game, but some of the trains are new. You did not see them

in the first part. You will tell me whether it’s an A train, or

B train. Also, you will tell me whether you saw exactly the

same train in the first part, or if it’s new." Each of the two

test phases contained 40 trials (20 per category). Eight items

were presented from each of the four types shown in Table 1.

During each trial of the recognition test phase, participants

were presented with a stimulus and were asked, “Did you see

exactly the same train in the first part of the game?” Par-

ticipants responded “yes” if they believed the stimulus had

been presented during training, or “no” if they believed the

stimulus was new. No feedback was provided after the ex-

perimenter logged the participant’s response; the experiment
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Figure 2

Predictions of key behavioral effects. D=deterministic; P=probabilistic. (A) During recognition, a strategy of distributed

attention should result in correct rejections of both new-D and one-new-P items as “new”. A Strategy of selective attention

should the D dimension should result in a reduced ability to correctly reject one-new-P items. (B) During categorization, a

strategy of selective attention should result in high proportions of responses consistent with the D feature during both high-

match and conflict items. A strategy of distributed attention should result in a lower proportion of D-consistent responses

during conflict items.

simply proceeded to the next trial. As shown in Table 1,

only high-match items were correctly considered to be old,

whereas items drawn from conflict, new-D, and one-new-P

types were new.

During the categorization test phase, participants were

presented with a stimulus and were asked, “What is this?

A or B?” As in the recognition test phase, no feedback was

provided after the experimenter logged the participant’s re-

sponse.

Eye-tracking

Throughout the experiment, monocular gaze fixations

were recorded using an EyeLink 1000 eye tracker (SR Re-

search, Ontario, Canada) at a sampling rate of 500 Hz with

a manufacturer-reported accuracy of 0.5◦. Participants were

seated 60 cm from the eye tracker, facing a 1280 x 1024-

pixel display monitor. To analyze the data, we defined seven

rectangular areas of interest (AOIs) that were centered at the

spatial location of each dimension. AOIs varied in size from

2◦ x 2◦ (flag) to 4.3◦ x 4.7◦ (cab). When preprocessing the

data, we calculated the total time that a participant’s gaze

overlapped with a particular AOI at the level of each trial

(Blanco et al., 2023).

Analysis

Deng & Sloutsky (2016) defined key behavioral effects

for evaluating how adults, 7-year-olds, and 4-year-olds al-

locate attention during the task described above. Here,

we conducted analyses for identifying subgroups of par-

ticipants who demonstrate these key behaviors. Because

Deng & Sloutsky’s key effects pertain to aggregate group-

level behaviors rather than individual subjects, we first clas-

sify participants into groups using individual-level, model-

based cognitive assessment techniques (Weichart et al., 2021;

Wiecki et al., 2015). We then conduct comparisons between

groups to verify that the contrasting behavioral correlates of

attention described by Deng & Sloutsky (2016) are indeed

observable within the current participant pool, despite con-

trolling for age.
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Model Recognition Categorization N free α parameters

SelR −SelC αD > αP (Selective) αD > αP (Selective) 2

SelR −DistC αD > αP (Selective) αD = αP (Distributed) 1

DistR −SelC αD = αP (Distributed) αD > αP (Selective) 1

DistR −DistC αD = αP (Distributed) αD = αP (Distributed) 0

Table 2

Comparing models with freely-estimated attention. α=freely-estimated attention parameters in the Generalized Context

Model. The table provides parameterizations of attention from four candidate models. Model comparison was used to identify

which attention strategies each participant used during recognition and categorization.

Effects of interest

During the recognition test, it is of particular interest to

compare correct rejections of new-D and one-new-P items.

As illustrated in Figure 2A, participants who use either a

strategy of selective or distributed attention during the recog-

nition test should be equipped to notice when a novel feature

appears in the D dimension. Although participants who se-

lectively attend to D may be more sensitive to novel D fea-

tures than participants who distribute attention broadly, all

participants are expected to be plausibly adept at correctly

rejecting new-D items as “new.” Participants who selectively

attend to the D dimension, however, should fail to notice if

a novel feature appeared in one of the unattended P dimen-

sions.

During the categorization test, it useful to compare re-

sponses between high-match and conflict items. While all

participants who learned the task should be expected to ac-

curately categorize high-match items, conflict items should

yield different response profiles between strategies (Figure

2B). Because conflict items contain a D feature from one

category prototype and the majority of P features from the

other, participants who distribute attention evenly across di-

mensions should respond close to chance, while those who

selectively attend to D should respond consistently with the

D dimension.

The key effects shown in Figure 2 will serve as an essen-

tial benchmark for model evaluation.

Identifying strategy groups

We applied a suite of GCM variants (Nosofsky, 1986)

with separate freely-estimated distributions of α for recog-

nition and categorization, and used a switchboard analysis to

characterize individual-level attention (Turner et al., 2018).

Our approach follows from relatively recent efforts in model-

based cognitive assessment, in which well-established cog-

nitive models are used to delineate participants according to

the latent mechanisms that plausibly underlie their behaviors

(Weichart et al., 2021; Weichart & Sederberg, 2021; Darby

& Sederberg, 2022). Here, the relevant mechanism for de-

lineation is attention, and the four variants of interest are

summarized in Table 2. To instantiate selective attention, we

freely-estimated the value of attention corresponding to the D

dimension (αD) with constraints 1
7
< αD < 1 and calculated

attention to each P dimension as αPn =
1−αD

6
. For distributed

attention, αk values corresponding to all seven dimensions

were fixed to 1
7
. In both cases,

∑
k

αk = 1

per convention (Nosofsky, 1986). After fitting the models

to data, we identified a preferred model for each subject via

comparison of Akaike Information Criterion (AIC; Akaike,

1974) values. Because comparisons via AIC favor parsimo-

nious models, participants were only determined to use se-

lective attention if the addition of a free αD was justified by

a sufficient improvement in model fit.

For our purposes, it was essential to identify participants

who utilized some kind of discernible strategy (as opposed

to random responding or making the same response on every

trial) during both recognition and categorization tests. We

therefore opted to exclude participants who appeared not to

perform one or both of the tasks. Specifically, participants

were excluded if they failed to exceed a priori criteria of

60% correct responses to high-match items during the recog-

nition test (failed recognition: N=23), and categorization test

(failed categorization: N=73; failure to meet either criteria:

N=13). The results to follow are based on the remaining

110 participants (50.2% of the full sample). Similar criteria

were imposed in a previous dual-test study on selective at-

tention, which also resulted in a high exclusion rate of 32.7%

(67.3% inclusion) despite using adult participants (Griffiths

& Mitchell, 2008).

By-subject model comparisons among candidate GCM

variants (Table 2) identified the following 4 strategy groups

within our participant pool:

1. Selective attention during both recognition and catego-

rization, henceforth denoted SelR −SelC (N=43);

2. Selective attention during recognition, distributed

attention during categorization, henceforth denoted

SelR −DistC (N=30);
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3. Distributed attention during recognition, selective

attention during categorization, henceforth denoted

DistR −SelC (N=20);

4. Distributed attention during both recognition and cat-

egorization, henceforth denoted DistR −DistC (N=17).

Analyses of behavior within- and between- strategy groups

replicated the results of Deng & Sloutsky (2016), and were

consistent with the key behavioral effects shown in Figure 2.

Detailed results are provided in Appendix A.

It is important to note that according to these results, par-

ticipants did not necessarily use a consistent attention strat-

egy across the recognition and categorization test phases.

Specifically, Groups SelR −DistC and DistR − SelC used se-

lective attention during one phase and distributed attention

during the other. Although adult participants have his-

torically shown effects consistent with selective attention

across both phases of Deng & Sloutsky’s design (similarly

to Group SelR − SelC here), the selection of young children

as our population of interest provided the opportunity to ad-

ditionally observe instances of distributed attention (Group

DistR −DistC) and strategic flexibility (Groups SelR −DistC
and DistR −SelC). Given our goal of using gaze to dissociate

memory precision and decision weight components of atten-

tion, analyzing the information sampling behaviors of these

groups will provide uniquely rigorous theoretical constraint.

Gaze as a direct input for components of attention

As emphasized by Turner et al. (2017), developments in

model-based cognitive neuroscience have provided new op-

portunities to link model mechanisms to neurophysiologi-

cal measures for the purposes of theoretical constraint, ad-

judication, and elaboration (Turner et al., 2017; Palmeri et

al., 2017; Turner, Palestro, et al., 2019; Turner, Forstmann,

& Steyvers, 2019). In the domain of categorization, sem-

inal work by Rehder & Hoffman (2005b,a) noted a corre-

spondence between gaze and attention weights estimated by

the exemplar-similarity framework. The authors used what

would be classified by Turner et al. (2017) as a “two-stage

approach” for linking behavioral and neurophysiological

data, whereby the relationship between two independently-

analyzed modalities is assessed through a second stage of

correlation or regression analyses. Here, we go a step further

and present a “direct input approach” whereby gaze itself

serves as a mechanism for feature encoding and predicting

choice.

Following previous work, we assume features that are fix-

ated longer during training are more likely to be encoded

into memory (Loftus, 1972; Peterson et al., 2001; Foul-

sham & Underwood, 2008), and features that are fixated

longer during test reflect prioritization during decisions (Re-

hder & Hoffman, 2005b,a; Blair et al., 2009; Meier & Blair,

2013). We examine four linking functions for converting

dwell times into correlates of memory precision and decision

weights, where outputs are bound by 0 and 1 per conven-

tion (Nosofsky, 1986; Medin & Shaffer, 1978). A conceptual

overview and simulation study of our approach in contrast to

the conventional unitary view of attention (Medin & Shaffer,

1978; Nosofsky, 1986) are provided in Appendix B.

Methods

Modeling framework

To represent the stimulus on trial n of the training phase,

we denote a vector x(n) = [xn,1 xn,2 . . . xn,J ] where each

element corresponds to the feature value in dimension j.

After completing all N trials of the training phase, feature

information about all exemplars is stored in matrix X =

[x(1) . . . x(N
)
]⊺ and associated feedback is stored in vector

F = [ f (1) . . . f (N)]. During each trial i of test, the observer

is presented with a stimulus probe e(i) = [ei,1 ei,2 . . . ei,J ] and

is expected to make an informed judgement (i.e. recognition

or categorization). The probe acts as a retrieval cue to access

information associated with similar stimuli that were encoun-

tered during training. To this end, the observer first computes

the feature similarity between the probe and exemplar x(n)

along each dimension j:

s j

(

e(i),x(n)
)

= exp

(

−δd j

(

e(i),x(n)
)

α j

)

. (1)

Values of feature similarity range between 0 and 1, where

1 indicates that features e
(i)
j and x

(n)
j are perceived to be

identical. In Equation 1, δ modulates the specificity of the

similarity kernel. Separate values δR and δC were used for

recognition and categorization. d j represents the simple dis-

tance between values corresponding to the relevant features.

Values of α represent attention, which modify the perceived

distance between mismatching features. Although a single

α j is typically estimated across trials, we hypothesize that

α j should involve information specific to both the probe and

the exemplar components of the comparison. We therefore

specified

α j = η
(n)
j ζ

(i)
j (2)

where η
(n)
j represents memory precision for the feature pre-

sented in dimension j on training trial n, and ζ
(i)
j represents

the decision weight allocated to dimension j on test trial i.

By using a multiplicative rule, we ensure that usage of in-

formation during the choice is only possible if the relevant

exemplar feature had a non-zero memory precision and the

relevant probe feature had a non-zero decision weight.

The observer next computes the overall similarity be-

tween the probe and each exemplar, combining feature simi-

larity across dimensions:
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a
(

e(i),x(n)
)

:= ∏
j

s j

(

e(i),x(n)
)

. (3)

Overall similarity is analogous to the activation of the rele-

vant exemplar in memory, given the presence of the current

probe.

The choice rules used here follow iterations of GCM that

incorporated assumptions about the determinism of respond-

ing (Ashby & Maddox, 1993; Navarro, 2007). When making

a choice during the recognition test phase, the relevant fea-

ture comparison d in Equation 1 is:

d j

(

e(i),x(n)
)

=

{

1 if e
(i)
j , x

(n)
j ∀ n ∈ {1,2, . . . ,N}

0 otherwise,

(4)

which determines whether or not a test feature was presented

during training. We then determine the activation of a “new”

response based on the total activation across all exemplars:

A(“new”) = exp

[

φ
N

∑
n=1

(

1−a
(

e(i),x(n)
))

]

(5)

The probability of making a “new” response is given by

P(“new”) =
A(“new′′)

A(“new′′)+β
, (6)

and P(“old”) = 1−P(“new”). Here, β represents a baseline

bias for responding “old” and φ is a temperature parameter

for scaling the activations.

During categorization test, the relevant feature compari-

son d in Equation 1 is:

d j

(

e(i),x(n)
)

=

{

1 if e j
(i)
, x j

(n)

0 otherwise.
(7)

The activation of a given category l is given by

A(“l”) = exp

[

φ
N

∑
n=1

a
(

e(i),x(n)
)

I( f (n) = “l”)

]

, (8)

where I(q) is an indicator function returning 1 if the condi-

tion q is true and 0 otherwise.

The probability of making a response consistent with cat-

egory “A” is the ratio of activation for category “A” relative

to the total activation across all available categories (which

in this case is just A and B):

P(“A”) =
A(“A”)

A(“A”)+A(“B”)
. (9)

Linking functions

We selected a set of increasing functions that returned

outputs bound between 0 and 1 (inclusive) for converting

feature-level dwell times to elements of attention within

our modeling framework. The goal was to ascertain if any

transformation of gaze was sufficient for predicting strategy-

relevant behaviors between groups, and whether it was nec-

essary to account for the features that were fixated during

training to make accurate test predictions.

In the equations below, the input dwell
(t)
j refers to the to-

tal time spent looking at the feature in dimension j on Trial

t, and output is denoted v
(t)
j . When a given function is ap-

plied to fixations during training, output v
(t)
j is used as η

(n)
j

in Equation 2 to represent memory precision for exemplar

feature x
(n)
j . When a function is instead applied to fixations

during test, v
(t)
j is used as ζ

(i)
j in Equation 2 to represent the

decision weight applied to probe feature e
(i)
j . Examples of

each function are shown in Figure 3.

A: Binary step function. This function has a free thresh-

old parameter θ ∈ (0,∞), and returns 0 or 1 according to the

following conditional:

v
(t)
j =

{

0 if dwell
(t)
j ≤ θ

1 otherwise.
(10)

B: Piecewise linear function. This function has a free

threshold parameter θ∈ (0,∞), and returns an attention value

as a proportion of θ. If the input exceeds the threshold, the

function returns 1.

v
(t)
j = min





dwell
(t)
j

θ
,1



 (11)

C: Softmax function. The softmax function is often used

in multi-class classification problems, where the goal is to

assign an input to one of several mutually exclusive classes.

The function calculates the exponential of each input element

and then normalizes the results by dividing each element

by the sum of all exponentials. This normalization ensures

that the output values sum to 1, forming a valid probability

distribution. This function has a free temperature parameter

θ ∈ (0,∞) that scales the element-wise activations.

v
(t)
j =

exp
(

θdwell
(t)
j

)

∑k exp
(

θdwell
(t)
k

) (12)

D: Logistic function. The logistic function is commonly

used as an activation function in neural networks because it

produces non-linear transformations of the input, enabling

the model to learn complex relationships between input and

output variables. This function has two free parameters

θ ∈ (0,∞) and ω ∈ (0,∞) that control the steepness and in-

flection point of the function, respectively.
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Figure 3

Linking functions. D=deterministic, θ and ω=linking parameters. (Top) Candidate linking functions used in our inves-

tigation. X values show dwell time inputs, and Y values show outputs representing memory precision or decision weight

components of attention. Colored lines illustrate changes to the function that result from modulation of free parameters θ and

ω. (Bottom) Heatmaps show examples of attention outputs (Z values; colors) when applying the candidate functions to one

subject’s gaze data. The X axis shows stimulus dimensions. The Y axis indexes training trials.

v
(t)
j =

1

1+ exp
(

−θ
(

dwell
(t)
j −ω

)) (13)

Candidate Models

For our main model comparison, we identified every pair-

wise combination of functions for converting gaze to mem-

ory precision and decision weights. This resulted in a core

set of 16 candidate models, which we refer to in the format

“X −Y .” “X” refers to a function A, B, C, or D that was

applied to dwell times during training to calculate a matrix

η. “Y” similarly refers to a function that was applied to

dwell times during both test phases (recognition and catego-

rization) to calculate a matrix ζ. Linking parameters (e.g. θ
and ω) were estimated independently for memory precision

and decision weights.

As specified by Equation 2, attention is calculated as the

product of memory precision (η
(n)
j ) and decision weight ele-

ments (ζ
(i)
j ). This defies the GCM convention of an attention

vector that sums to a constant quantity of 1 (Nosofsky, 1986;

but see Galdo et al., 2022; Weichart et al., 2022, for con-

tradictory arguments). We therefore included a model vari-

ant “C−C+” that follows the approach of Lamberts (1995)

to ensure that attention varies from trial-to-trial, but is still

constrained to sum to 1. As in model C-C, both η(n) and

ζ(i) are softmax ratios of trial-level dwell times. Instead of

calculating attention as a product of the two vectors as in

Equation 2, however, model C −C+ uses the specification

α j = γη
(n)
j +

(

(1− γ)ζ
(i)
j

)

where γ ∈ [0,1] .

Finally, we included 4 model variants that assumed perfect

encoding of all feature information presented during training

such that all η
(t)
j = 1. Values of ζ

(t)
j for decision weights were

functions of each candidate linking function. These models

are denoted 1−A, 1−B, 1−C, and 1−D in the results. In to-

tal, 21 model variants were fit to data and evaluated. Details

of the model-fitting procedures are provided in Appendix C.

Results

Beyond comparing the fits of the candidate gaze-based

models via fit statistics, we took an additional step of eval-

uating each model based on its ability to predict behavioral

markers of selective and distributed attention (Figure 2). To

be consistent with observed key differences between groups

(Tables 3-4), a successful model had to be able to predict the

following:

1. Groups SelR − SelC and SelR −DistC (selective atten-

tion during recognition) made more false alarm “old”
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Model Interaction SelR −SelC SelR −SelC SelR −DistC SelR −DistC SelR −SelC DistR −SelC
DistR −SelC DistR −DistC DistR −SelC DistR −DistC SelR −DistC DistR −DistC

Obs. F = 35.71 t = 9.61 t = 9.92 t = 7.03 t = 7.34 t = 1.18 t = 0.49

p<.001* p<.001* p<.001* p<.001* p<.001* p = .81 p = .99

B−B F = 9.76 t = 5.08 t = 7.00 t = 2.66 t = 4.10 t = 1.66 t = 2.10

p<.001* p<.001* p<.001* p = .06 p<.01* p = .47 p = .24

C−A F = 15.46 t = 6.50 t = 8.14 t = 2.94 t = 4.20 t = 2.90 t = 1.51

p<.001* p<.001* p<.001* p<.05* p<.05* p < .05∗ p = .61

C−B F = 17.36 t = 6.61 t = 8.72 t = 2.78 t = 4.45 t = 3.08 t = 2.23

p<.001* p<.001* p<.001* p<.05* p<.001* p = .08 p = .83

C−D F = 15.36 t = 6.51 t = 8.52 t = 2.99 t = 4.44 t = 2.36 t = 2.27

p<.001* p<.001* p<.001* p<.05* p<.01* p = .12 p = .17

D−B F = 14.85 t = 5.89 t = 7.74 t = 2.37 t = 4.14 t = 3.36 t = 1.97

p<.001* p<.001* p<.001* p = .13 p<.01* p < .01∗ p = .30

D−D F = 11.34 t = 5.87 t = 7.22 t = 3.45 t = 4.37 t = 1.49 t = 1.22

p<.001* p<.001* p<.001* p<.01* p<.01* p = .60 p = .80

C−C+ F = 8.87 t = 4.53 t = 6.55 t = 2.40 t = 4.04 t = 1.73 t = 2.02

p<.001* p<.001* p<.001* p = .12 p<.01* p = .42 p = .29

Table 3

Recognition phase: Pairwise key effects predicted by gaze-informed models. Obs.=observed, R=recognition,

C=categorization, Sel=selective, Dist=distributed. Statistical output from a 2 (feature type: D vs. P) by 4 (group) ANOVA

and post hoc pairwise tests. Matching analyses were performed on observed and model-generated response data. Bold text

indicates significant effects among comparisons of model-generated responses that are consistent with the observed key effects.

Model Interaction SelR −DistC SelR −DistC DistR −DistC DistR −DistC DistR −DistC SelR −SelC
SelR −SelC DistR −SelC SelR −SelC DistR −SelC SelR −DistC DistR −SelC

Obs. F = 19.48 t = 4.03 t = 5.69 t = 4.75 t = 6.15 t = 1.22 t = 2.72

p<.001* p<.001* p<.001* p<.001* p<.001* p = .79 p = .06

B−B F = 4.36 t = 1.38 t = 3.70 t = 0.73 t = 3.23 t =−0.69 t = 2.57

p<.01* p = .68 p<.01* p = .98 p<.05* p = .98 p = .08

C−A F = 3.28 t = 2.43 t = 1.99 t = 2.34 t = 1.96 t = 0.01 t = 0.14

p<.05* p = .10 p = .28 p = .14 p = .30 p = .99 p = .99

C−B F = 6.08 t = 2.75 t = 3.19 t = 3.31 t = 3.70 t = 0.42 t = 0.75

p<.001* p<.05* p<.05* p<.05* p<.01* p = .99 p = .97

C−D F = 10.13 t = 4.01 t = 4.02 t = 3.81 t = 3.84 t =−0.26 t = 0.77

p<.001* p<.01* p<.01* p<.01* p<.01* p = .99 p = .97

D−B F = 3.19 t = 2.33 t = 2.18 t = 2.07 t = 1.92 t =−0.49 t = 0.49

p<.05* p = .13 p = .20 p = .24 p = .32 p = .99 p = .99

D−D F = 2.92 t = 1.89 t = 2.46 t = 1.41 t = 2.09 t =−0.37 t = 1.03

p<.05* p = .33 p = .11 p = .66 p = .23 p = .99 p = .89

C−C+ F = 7.18 t = 3.89 t = 3.89 t = 0.83 t = 1.43 t =−2.22 t = 0.93

p<.001* p<.01* p<.01* p = .96 p = .64 p = .18 p = .93

Table 4

Categorization phase: Pairwise key effects predicted by gaze-informed models. Obs.=observed, R=recognition,

C=categorization, Sel=selective, Dist=distributed. Statistical output from a 2 (item type: high-match vs. conflict) by 4

(group) ANOVA and post hoc pairwise tests. Matching analyses were performed on observed and model-generated response

data. Bold text indicates significant effects among comparisons of model-generated responses that are consistent with the

observed key effects.



DISSOCIABLE CORRELATES OF ATTENTION 13

Figure 4

Gaze-predicted behavioral correlates of selective and distributed attention. D=deterministic, P=probabilistic,

P(X)=proportion of X, **=p<0.001, n.s.=not significant. Green bars represent patterns of behavior consistent with a se-

lective strategy of attention, and orange bars correspond to distributed attention. Bold bars and significance markers denote

key effects in the observed behavior. (A) Bars show mean probabilities of making an “old” response to each item type during

the recognition test phase. Points show aggregate simulations using best-fitting parameters from Model C-B. (B) Bars for

high-match, conflict, and one-new-P items reflect mean probabilities of responding consistently with the D feature. Bars for

new-D reflect probabilities of responding consistently with the majority of P features. Points show aggregate simulations using

best-fitting parameters from Model C-B.

responses than Groups DistR −SelC and DistR −DistC
(distributed attention during recognition) to one-new-P

compared to new-D items.

2. Groups SelR − SelC and DistR − SelC (selective atten-

tion during categorization) made more D-consistent

responses than Groups SelR −DistC and DistR −DistC
(distributed attention during categorization) to conflict

compared to high-match items.

We first identified best-fitting parameters and gaze transfor-

mation values for each participant and model, using proce-

dures provided in Appendix C. We then used the models to

generate simulated trial-level response probabilities for each

participant, using their best-fitting parameters, observed gaze

data, and the sequence of stimuli that the relevant participant

experienced during the task. We then determined average re-

sponse proportions within item type and test phase for each

participant and model. As such, model predictions and ob-

served data could be subjected to identical statistical analy-

ses.

Model evaluation

We evaluated each model by its ability to predict the in-

teraction effects that were relevant to each test phase (Figure

2). For the recognition test, we calculated d′ for D and P fea-

tures and submitted the values to a 2 (feature type: D, P) by 4

(group) mixed ANOVA with feature type as a within-subjects

factor and group as a between-subjects factor. For the cat-

egorization test, we calculated proportions of D-consistent

responses and submitted the values to an analogous 2 (item
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type: high-match, conflict) by 4 (group) mixed ANOVA. Out

of 21 candidate models, simulations from 7 models repli-

cated both critical interaction effects. F statistics (degrees

of freedom: 3, 106) and p values are reported in Tables 3 and

4 as they pertain to recognition and categorization, respec-

tively. Predictions from models that predicted the appropri-

ate interaction effects in both phases (models B−B, C−A,

C −B, C −D, D−B, D−D, and C −C+) were submitted

to additional post hoc evaluation with pairwise independent-

samples t-tests.

To summarize the observed effects of interest during

recognition, Groups SelR − SelC and SelR −DistC were less

sensitive to novel P features than Groups DistR − SelC and

DistR −DistC (ps < 0.001∗). Groups who used a common

attention strategy did not differ in sensitivity between one

another (SelR−SelC vs. SelR−DistC: p = 0.81; DistR−SelC
vs. DistR −DistC: p = 0.99). As shown in Table 3, 4 gaze-

informed models (indicated by bold text) appropriately pre-

dicted all 4 pairwise effects of interest: models C−A, C−B,

C−D, and D−D.

During the categorization test, analyses of observed data

showed that Groups SelR −SelC and DistR −SelC responded

more consistently with the D feature during high-match and

conflict items than Groups SelR − DistC and DistR − DistC
(ps < 0.001∗). Groups who used a common attention strat-

egy did not significantly differ in D-consistent responding

between one another (SelR−SelC vs. DistR−SelC: p= 0.06.;

SelR−DistC vs. DistR−DistC: p = 0.79). As shown in Table

4, only 2 gaze-informed models (indicated by bold text) ap-

propriately predicted all 4 pairwise effects of interest: mod-

els C−B and C−D.

Table 5 shows total AIC values for the selection of 7

models that effectively simulated key interaction effects for

recognition and categorization. Model C −B provided the

best fits to data from Groups SelR − SelC and SelR −DistC,

and Model B−B provided the best fits to data from Groups

DistR − SelC and DistR − DistC. However, Model B − B

proved to be ineffective for predicting behavioral differences

between selective and distributed attention strategy groups

during both recognition and categorization (Tables 3 and 4).

Although Models C−B and C−D both predicted all pair-

wise behavioral effects of interest, Model C−B presumably

attained more favorable AIC values on the basis of parsimony

(one fewer free parameter). Considering all results together,

we selected Model C−B as the most effective model overall

out of 21 candidates. Aggregate predictions using each sub-

ject’s best-fitting parameters from Model C−B are shown in

Figure 4 (points).

Examining conventions

Due to their theoretical significance (Nosofsky, 1986),

statistics for evaluating the predictions of the perfect encod-

ing models (1−A, 1−B, 1−C, and 1−D) are provided in Ta-

ble 6. None of these models were able to predict key interac-

tion effects during categorization, however, and were there-

fore not subjected to additional post hoc evaluation. Consid-

ering total AIC, all four perfect encoding models performed

worse than every model listed in Table 5, which included al-

lowances for memory precision. From these results, we note

that simply accounting for sparsity in the feature encoding

has profound effects on behavioral predictions.

Within our direct input approach, we made the choice

to calculate attention at the level of each probe-exemplar

comparison as a product of memory precision and decision

weights (Equation 2). Because this specification contradicts

the standard GCM constraint where

∑
k

αk = 1,

we included a gaze-informed model C−C+ that satisfies the

constraint on total attention by-trial. To reiterate, Model C−
C+ calculates attention as a mixture of softmax-transformed

η and ζ, similar to how freely-estimated perceptual and de-

cisional components of attention are combined in EGCM

(Lamberts, 1995). Although Model C −C+ predicted the

item type by group interaction effects relevant to both recog-

nition and categorization phases, it failed to predict sev-

eral key pairwise effects for distinguishing selective and dis-

tributed attention strategies (Tables 3 and 4) and was unre-

markable compared to the other candidate models in terms of

AIC (Table 5). Consistent with the findings of previous work,

these results suggest that attention allocation is highly flexi-

ble and variable within- and between-trials, and may not be

adequately summarized with hardline summation constraints

in place (Galdo et al., 2022; Weichart et al., 2022).

Eye-tracking

Mean proportions of raw dwell times to the D feature

during training (in sets of 10 trials), recognition test, and

categorization test are provided in Table 7. We identified

a significant group difference in proportions of gaze allo-

cated to the D feature during the latter trials of training

(F(3,106) = 5.03, p < 0.01), with Group SelR −SelC show-

ing longer relative dwell times to the D feature compared to

Group DistR −DistC. No other group-wise comparisons of

dwell time during training reached statistical significance.

Figure 5 shows aggregate softmax-transformed dwell

times during training, using best-fitting θtrain values from our

winning model, C−B. These transformed gaze maps serve

as a way of visualizing memory precision of the features

presented during training, and provide uniquely nuanced in-

formation that is constrained by both gaze and choices dur-

ing subsequent test. Group SelR − SelC shows high memory

precision for the D dimension in particular, while Groups

SelR − DistC, DistR − SelC, and DistR − DistC show more

evenly-distributed precision among the P dimensions. Group
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Figure 5

Gaze-based memory precision for training features. D=deterministic, P=probabilistic. Heatmaps show aggregate memory

precision across subjects. X-ticks indicate stimulus dimensions, where P dimensions were rank-ordered within-subject accord-

ing to gaze preference. Y-ticks show trial numbers. Subject-wise memory precision maps were calculated by subjecting raw

dwell time data to best-fitting model-based transformations.

Model N free par. SelR −SelC SelR −DistC DistR −SelC DistR −DistC Total

B−B 6 2131 2012 1162 1326 6631

C−A 6 2009 2036 1196 1341 6582

C−B 6 1995 1993 1170 1335 6493

C−D 7 2056 2059 1210 1355 6680

D−B 7 2157 2075 1223 1357 6812

D−D 8 2186 2091 1233 1382 6892

C−C+ 7 2240 2070 1215 1345 6870

Table 5

AIC comparison: Selected gaze-informed models Values are total AICs across subjects in the indicated groups. Bold text

indicates the lowest (i.e. preferred) AIC value within each column.

DistR −DistC appeared to not preferentially encode D fea-

tures at all, and instead slightly favored one of the P dimen-

sions. Extended analyses of model-transformed gaze during

recognition and categorization test are provided in Appendix

D.

General Discussion

This study explored the hypothesis that memory precision

for features encountered during learning influences decisions

in subsequent test contexts. To examine this relationship,

we leveraged eye-tracking data as dissociable components of

attention in an exemplar-similarity model. We found com-

pelling evidence that the availability of information stored

in memory during training plays a pivotal role in accurately

predicting observed choices during test. The following sec-

tions offer interpretations of these findings within the estab-

lished literature on selective attention as an indicator of the

observer’s beliefs and intentions within the task environment.

Intentions and consequences

Our study stands apart from previous investigations on the

consequences of selective attention (Blanco et al., 2023; Ple-

banek & Sloutsky, 2017; Best et al., 2013) due to its novel

usage of the exemplar-similarity framework. This frame-

work is extremely influential in cognitive psychology, and

yet has historically been woefully non-committal in its treat-

ment of memory precision in predictions of choice. We used

gaze correlates of attention as direct inputs to an exemplar-

similarity model for predicting recognition and categoriza-

tion decisions. In one set of models, training features were

presumed to be perfectly encoded, and gaze during test was

the sole determinant of choice (Table 6). In another set of

models, gaze was used to constrain estimates of memory

precision for features encountered during training, as well
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Model Recog. Cat. Total AIC

C−B F=17.36

p<.001*

F=6.08

p<0.001*

6493

1−A F=3.31

p<.05*

F=1.68

p=.17

7205

1−B F=3.88

p<.05*

F=2.12

p=.10

6960

1−C F=3.71

p<.05*

F=0.20

p=.90

6925

1−D F=4.89

p<.01*

F=0.22

p=.88

7086

Table 6

Model comparison: Perfect encoding models.

Recog.=recognition, Cat.=categorization. F statistics

and p values evaluate key interaction effects of item type and

group in a 2 by 4 mixed ANOVA.

as estimates of decision weights among features of the test

stimuli (Table 5). These two sets of models represented com-

peting hypotheses concerning the relevant determinants of at-

tention: the former representing attention as decision weights

(e.g. GCM), and the latter representing attention as decision

weights constrained by memory.

The results of model evaluation and comparison favored

the latter account: models that included gaze correlates of

memory precision outperformed those that did not, as deter-

mined by AIC. In addition, a subset of models that accounted

for memory could predict nuanced behavioral correlates of

selective and distributed attention that were defined in an in-

dependent investigation (Deng & Sloutsky, 2016). Models

that assumed perfect encoding of information presented dur-

ing training, by contrast, failed to even predict basic interac-

tion effects between groups defined by contrasting attention

strategies.

When considering these results, it is important to note that

the standard implementation of GCM with freely-estimated

attention parameters was able to predict key behaviors per-

fectly well (Appendix A). The successes of the memory-

informed models therefore do not denote an incremental im-

provement in model fits. Instead, these successes redress a

theoretical opacity in prior modeling frameworks. Instead of

attributing behavior to a nebulous construct of “attention,”

we find that accounting for the effects of memory provided a

significantly better approximation of freely-estimated atten-

tion parameters than if we account for decision weights at

test alone. Our results support the hypothesis that behavioral

correlates of attention reflect the strategic weighting of the

information that was encoded by the individual participant,

not of all information that was presented.

Implications for human learning

It is not our intention to admonish early presentations of

the exemplar-similarity framework (Medin & Shaffer, 1978;

Nosofsky, 1986) for making simplifying assumptions. The

assumption of perfect encoding is clearly computationally

necessary for constraining model estimates of attention when

behavior alone is the output. It has not, to our knowledge,

been asserted by users of the framework as a genuine the-

ory that humans perfectly and equally store all information

that exists in the learning environment. Our findings should

instead be interpreted as a cause for theoretical reevaluation

of attention as it is specified in contemporary accounts of

human learning.

One influential class of adaptive attention models has built

upon the GCM framework to explore how attention updates

from trial-to-trial to support learning (e.g. Kruschke, 1992;

Love et al., 2004; Galdo et al., 2022). Within these models,

the observer uses trial-level category feedback to update their

distribution of attention in a way that is intended to reduce

the probability of future errors. Through iterative attention

optimization, these models have been shown to predict tra-

jectories of attention and accuracy that mirror the trajectories

of dimension-level gaze preferences observed by Rehder &

Hoffman (2005a) (Galdo et al., 2022; Nosofsky et al., 1994;

Kurz et al., 2013). Importantly, attention is calculated to op-

timally weight all information that was presented on prior

trials. This policy, however, may not accurately reflect the

information that is actually available to participants–unless

of course we can reasonably conclude that humans store fea-

tures equally well whether they look at them or not.

While most model instantiations of attention interpret fail-

ures of accuracy as an inappropriate weighting of irrelevant

information, our findings suggest that failures to behave opti-

mally can also be attributed to sparse encoding. Recent find-

ings from Wan & Sloutsky (2023) provided important insight

into this distinction using a version of the same experiment

presented here (Deng & Sloutsky, 2016). All stimulus fea-

tures were occluded at the onset of each trial, and participants

revealed the desired feature information by tapping occlusion

bubbles on a touch-screen. By contrast to gaze measures as

an index of attention, Wan & Sloutsky’s innovative approach

offers the advantage of providing insight into which features

were plausibly encoded into memory during training and, im-

portantly, which features could not have possibly entered the

representation.

The results showed that adult participants tended to se-

lectively reveal the feature in the most category-diagnostic

(D) dimension, and behaviors at test denoted a strategy of

selective attention (e.g. Figure 2). Interestingly, partici-

pants revealed significantly more features when they encoun-

tered new-D items at test compared to the other item types.

This behavior is potentially indicative of an attempt to opti-

mally redistribute attention upon encountering unusable in-
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Group Training 1-10 Training 11-20 Training 21-30 Recog. Test Cat. Test

SelR −SelC 0.32(0.14) 0.37(0.17) 0.38(0.17) 0.26(0.12) 0.43(0.13)

SelR −DistC 0.25(0.14) 0.30(0.18) 0.30(0.16) 0.25(0.14) 0.30(0.17)

DistR −SelC 0.27(0.13) 0.26(0.15) 0.31(0.19) 0.18(0.07) 0.35(0.13)

DistR −DistC 0.17(0.11) 0.22(0.17) 0.20(0.14) 0.15(0.05) 0.23(0.12)

Table 7

Observed gaze preference for deterministic (D) dimension. R=recognition, C=categorization, Sel=selective,

Dist=distributed. Table entries show proportions of fixations to the D dimension in the format: [mean]([standard deviation]).

formation in the D position. Indeed, other eye-tracking work

demonstrated that by increasing the uncertainty of choice

via requiring reliance on probabilistic cues, participants were

provoked to sample more sources of information before mak-

ing a response (Easdale et al., 2019; Beesley et al., 2015).

We consider these findings to be consistent with our own:

regardless of whether participants use strategies that can be

attributed to past or present optimality, the information stored

during training is immutable in its impact on future deci-

sions. A participant who manages to encode all information

presented during training (à la GCM) would presumably be

able to weight information at test in a way that best serves

their goals, whether characterized by accuracy, efficiency,

novelty preference, information gain, or otherwise (Matsuka

& Corter, 2008). In the more likely case of imperfect mem-

ory storage, we posit that information that is not encoded

cannot be retrospectively reclaimed as needed.

Although most adaptive attention models propose pure ac-

curacy optimization as a mechanism for updating, the adap-

tive attention representation model was developed to explore

other secondary goals that humans could plausibly pursue

during learning (AARM; Galdo et al., 2022). In one study,

the authors fit model-predicted quantities of choice probabil-

ity and attention directly to simultaneous streams of behav-

ioral and gaze data. With the constraint provided by gaze

data, the authors were equipped to evaluate contrasting the-

ories about the goals that contribute to attention allocation.

Results across five experiments supported the conclusion that

the pursuit of accuracy goals alone was insufficient for ex-

plaining observed patterns of attention during learning. In-

stead, the authors advocated for efficiency considerations as

well, instantiated as active suppression of redundant infor-

mation in memory.

The findings from the current study, however, provide an

alternative explanation. It may be the case that humans in-

deed proceed with the intention of being as accurate as pos-

sible, but are constrained by the consequences of partial en-

coding. If one accounts for partial encoding as a natural

consequence of limited information sampling, simple rules

for updating attention in an effort to be accurate may prevail

(Kruschke, 2001, 1992). We suggest that a complete theory

of attention optimization will need to consider information

sampling and decision weights as dissociable contributors to

common goals.

Limitations and future directions

Our winning model C −B is characterized by a softmax

function to convert gaze during training into estimates of

memory precision, and a piecewise linear function to con-

vert gaze during test into estimates of decision weights. This

difference in transformations implies that when a participant

encounters a stimulus, the way they weight feature informa-

tion when making an object discrimination judgement may

be incongruous to the contents of the memory trace that they

store.

This finding is tentatively consistent with the concept of

evidence accumulation dynamics. Evidence accumulation

models posit that decisions are made by considering multiple

sources of information, and allowing processes of competi-

tion and inhibition to ultimately favor one choice option over

another (Ratcliff, 1978; Usher, 2001). It may be the case

that information is stored in proportion to low-level percep-

tual processes (i.e. such that all information that is fixated

to some extent is plausibly stored), but additional dynam-

ics that occur during the decision may result in high fixa-

tions to dimensions with conflicting information even though

the choice only reflects the “winning" source (Krajbich &

Rangel, 2011). Future work will need to investigate the plau-

sibility of this conjecture, and determine whether the evi-

dence accumulation dynamics that impact choice addition-

ally impact how the memory trace corresponding to the stim-

ulus is formed.

The current study took a foreseeably controversial ap-

proach by using data from young children to investigate a

general theory about the impact of memory precision on at-

tention strategies. We argue, however, that the use of chil-

dren in our current investigation is more of a strength than

a weakness. One can reason that the typical child-like pol-

icy of broad information sampling during training (Blanco

& Sloutsky, 2020; Blanco et al., 2023) is consistent with

the GCM description of an unabridged memory store that

is manipulated by attention at test. It is therefore notable

that a group who has an even better chance of favoring the
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conventional account than adults still favored models with

encoding biases as a determinant of decision making. We

nevertheless acknowledge that vast developmental changes

to the attention, memory, and decision-making faculties of

interest occur after age 5, and it is therefore essential to vali-

date our framework with data from adults as well. Although

we believe it is useful to evaluate the relationship between

gaze, memory, and decision processes within a population

who naturally exhibited variability in sampling and decision

strategies, future work with adults will focus on strategic ma-

nipulations involving uncertainty (Easdale et al., 2019) and

feedback reliability (Little & Lewandowsky, 2009).

Additional limitations to our study relate to the selection

of training stimuli and the simplicity of our model speci-

fications for memory precision. Given that features were

repeated multiple times during training, we cannot draw

strong conclusions about which specific features were best-

represented in memory. Although we were able to effectively

predict behavior using a simple transformation of gaze data

to represent memory precision, we assume that additional

forces of lag-based decay, context effects, and repetition ef-

fects are at play as well (Kahana, 2012). Future work will,

for example, utilize paradigms that manipulate the sequence

of items presented during learning (Carvalho & Goldstone,

2017; Kim & Rehder, 2011) in the hopes of providing more

precise measurements for relating gaze to memory for indi-

vidual features.

Conclusions

There are two main takeaways from the current work, one

methodological and one theoretical. First, we provided a

novel model-based method for leveraging eye-tracking data

to observe the contents of memory, which underlie the mal-

leable object representations that are used to make decisions.

Second, we provided model comparison results that sup-

port the theory that engaging selective attention during learn-

ing incurs costs to breadth of information storage in mem-

ory, which in turn imposes unintended limitations on future

decision-making.

We assert that our findings using a data-driven approach

that considers dissociable components of attention have im-

portant implications for ongoing theoretical developments in

human learning. The field continues to push the boundaries

of the exemplar-similarity framework for unraveling the in-

tricacies of learning, most often instantiating dynamic mech-

anisms of attention as the locus of innovation (e.g. Kr-

uschke, 1992; Love et al., 2004; Galdo et al., 2022; Carvalho

& Goldstone, 2022). Without further scrutiny of attention’s

core principles, however, venturing into new frontiers be-

comes an exercise in futility. The current article therefore

takes an important step toward understanding the component

operations of attention that are essential to contemporary the-

ories of learning, yet are rarely explored.
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Appendix A

Key effects observed between groups

Strategy groups were initially identified using variants of

standard GCM fits to behavior alone, before involving mea-

sures of gaze (Table 2). This approach provided an impor-

tant baseline test for the appropriateness of the exemplar-

similarity framework for capturing data in the present con-

text. If the standard model not fit when given the flexibility

of freely-estimated attention parameters for each test phase,

there would be no point in imposing additional constraints

by way of eye-tracking data. As discussed below, however,

the exemplar-similarity framework provided an excellent ac-

count of the data and key effects (Figure 2).

Mean and 95% confidence intervals of best-fitting

αD parameters for recognition and categorization are shown

in Figure A1A. Predictions from GCM using best-fitting pa-

rameters provide good fits to data as determined by quali-

tative assessment. In the sections to follow, we verify that

our individual-level, model-based approach was effective for

identifying strategy groups that replicate Deng & Sloutsky.

To analyze data from the recognition test phase, we

first calculated each participant’s sensitivity to new features

that occurred in the D and P positions via d’ (d-prime). We

applied the formula d′ = Z(HitRate)−Z(FalseAlarmRate)
where Hit Rate refers to the proportion of correct “old” re-

sponses to high-match items, and False Alarm Rate refers

to the proportion of incorrect “old” responses to new-D and

one-new-P items. To address the issue of extreme values, we

adjusted the hit rates and false alarm rates using methods de-

scribed by Snodgrass & Corwin (1988), ensuring that no ac-

curacy values were equal to 0 or 1. We submitted d’ values to

a 2 (feature type: D, P) by 4 (group) mixed ANOVA with fea-

ture type as a within-subjects factor and group as a between-

subjects factor. This analysis identified a significant inter-

action (F(3,106) = 35.71, MSE = 27.90, p < 0.001, η2 =
0.50).

We then performed post hoc tests to assess the dif-

ferences in sensitivity to new D and P features within each

group. Sidak’s correction was applied to control for mul-

tiple comparisons, resulting in adjusted p-values for each

test (α = 0.05). For Group SelR − SelC, a paired sam-

ples t-test revealed higher d’ for D (µD = 4.00, σD =
1.15) than P features during recognition (µP = 0.95, σP =
1.16, t(42) = 14.49, p < 0.001, d = 2.62). A similar ef-

fect was found for Group SelR − DistC (µD = 3.85, σD =
1.05, µP = 1.20, σP = 1.27, t(29) = 9.88, p < 0.001, d =
2.23). For Groups DistR − SelC and DistR − DistC, how-

ever, participants were equally likely to identify novel D

and P features (Group DistR − SelC : µD = 2.69, σD =
1.53, µP = 2.33, σP = 1.28, t(19) = 1.94, p = 0.07, d =
0.25; Group DistR − DistC : µD = 1.94, σD = 1.30, µP =
1.71, σP = 1.03, t(16) = 1.20, p = 0.12, d = 0.19).

To analyze data from the categorization test, we fo-

cused on probabilities of D-consistent responses during high-

match and conflict items. Data were analyzed with a 2 (item-

type: high-match, conflict) by 4 (group) mixed ANOVA with

item type as a within-subjects factor and group as a between-

subjects factor. After identifying a significant interaction

(F(3,106) = 19.48, MSE = 0.22, p< 0.001,η2 = 0.36), we

used post hoc paired-samples t-tests to explore effects within

each group. As before, we applied Sidak’s correction to con-

trol for multiple comparisons (α = 0.05).

Group SelR − DistC made significantly more D-
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Figure A1

Behavioral correlates of selective and distributed attention; model predictions with freely-estimated α.

D=deterministic, P=probabilistic, P(X)=proportion of X, N=number of subjects, α=attention parameter, Recog.=recognition,

Cat.=categorization, **=p<0.001, n.s.=not significant. Green bars represent patterns of behavior consistent with a selective

strategy of attention, and orange bars correspond to distributed attention. Bold bars and significance markers denote key

effects in the observed behavior. (A) We identified four groups of participants via comparison of Generalized Context Model

(GCM) variants with contrasting specifications of attention. Bars show mean and 95% confidence intervals of best-fitting es-

timates of αD for each test phase. (B) Bars show mean probabilities of making an “old” response to each item type during the

recognition test phase. Points show aggregate simulations using best-fitting parameters. (C) Bars for high-match, conflict, and

one-new-P items reflect mean probabilities of responding consistently with the D feature. Bars for new-D reflect probabilities

of responding consistently with the majority of P features.
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consistent responses to high-match compared to con-

flict items (µHM = 0.75, σHM = 0.12, µC = 0.58, σC =
0.18; t(29) = 4.82, p < 0.001, d = 1.08). Group DistR −
DistC performed similarly, with more D-consistent responses

during high-match (µHM = 0.72, σHM = 0.09) compared to

conflict items (µC = 0.49, σC = 0.12; t(16) = 5.34, p <

0.001, d = 2.14). Group SelR − SelC did not show a dif-

ference in proportions of D-consistent responses between

the relevant item types (µHM = 0.95, σHM = 0.09, µC =
0.94, σC = 0.09; t(42) = 0.48, p = 0.64, d = 0.10), nor

did Group DistR − SelC (µHM = 0.88, σHM = 0.13, µC =
0.95, σC = 0.08; t(19) = −3.04, p = 0.99, d = 0.67). The

results of additional post hoc tests to evaluate the pairwise

differences in effects between groups are presented in Tables

3 and 4.

These analyses confirmed a connection between

GCM parameterizations of selective and distributed atten-

tion, and the patterns of behavior that Deng & Sloutsky

(2016) hypothesized to be indicative of each. The reader is

invited to note that the observed effects presented in Figure

A1 directly correspond to the predictions shown in Figure 2,

but are reconfigured to highlight within-group effects.

Appendix B

Modeling: Conceptual overview

In the set of analyses described in Appendix A, attention was

freely-estimated in each phase to delineate participants ac-

cording to behavior. Group SelR −SelC, for example, used a

strategy of selective attention to the D feature during both test

phases of the experiment. While this may be considered to

be an effective strategy during categorization, selective atten-

tion during recognition resulted in an extremely high propor-

tion of false alarm “old” responses when stimuli contained a

novel feature in one of the P dimensions (µFA = 68%). This

could have happened if 1) selective sampling of D features

during training resulted in insufficient memory precision to

correctly reject one-new-P items at test; or 2) participants

failed to sample sufficient information from the test stimuli

themselves, and therefore were not equipped to appropriately

weight the novel P features during their decisions.

Simulations presented in Figure B1 illustrate the

proposed dissociation between memory precision (repre-

sented as η) and decision weight (represented as ζ) compo-

nents of attention. We present this specification as an alter-

native to the unitary view in which these components are in-

distinguishable (represented as α). Panels A and B depict the

impacts of attention on the probability of correctly rejecting

a one-new-P item during the recognition test, as described

above. In order to correctly reject a one-new-P item as “new,”

the unitary view posits that the observer must distribute at-

tention across dimensions (Panel A). The proposed speci-

fication allows for additional nuance: even if the observer

aptly distributes decision weights across all dimensions when

presented with a one-new-P item during the recognition test

(ζD ≈ 1
7
), they will not incur an accuracy advantage unless

they also stored features in all dimensions with sufficient pre-

cision during training (ηD ≈ 1
7
; Panel B).

Panels C and D show an analogous set of simula-

tions for critical conflict items during the categorization test.

Because conflict items contain a D feature drawn from one

category prototype and the majority of P features from the

other, modulating the proportion of attention allocated to the

D feature directly impacts how the observer will respond.

The depictions of attention in Panels A and C of

Figure B1 reflect the original presentation of the exemplar-

similarity framework (Context Model; Medin & Shaffer,

1978), in which encoding strength of exemplar features and

the weighting of information from the test probe were de-

scribed interchangeably as the impetus for observed vari-

ability in responses. Contrast this with the similarly unitary

description of attention provided by GCM in which exem-

plar features are perfectly encoded (e.g. ηk = 1), and deci-

sion weights at test are what determine response variability

(Nosofsky, 1986). By freely estimating attention within ei-

ther the Context Model or GCM, these two accounts make

identical predictions under certain conditions, despite using

incongruous language to describe attention’s theoretical ac-

tions. The current work presents a novel eye-tracking ap-

proach to disentangle these forces, such that fixations during

training directly correspond to encoding strength for exem-

plar features, and fixations during test directly correspond to

the weighting of features for making decisions.

Appendix C

Model fitting procedures

We used a binomial likelihood to fit all gaze-based model

variants to recognition and categorization test response data

from each subject independently. We identified best-fitting

parameter values for each model and subject using a three-

step procedure. First, we implemented Differential Evolu-

tion (DE) using the Python package RunDEMC (https://

github.com/compmem/RunDEMC) with 50 particles for 100q

iterations, where q was the number of free parameters in the

relevant model. We did this to effectively sample the pa-

rameter space and identify reasonable initial values for each

subject (Storn & Price, 1997; Brest et al., 2006). Second, we

used the DE output values as input to the Nelder-Mead func-

tion optimization algorithm implemented in SciPy to identify

stable estimates of best-fitting parameters. Third, in the event

of failure to meet the base convergence criterion after 10000

iterations, DE sampling recommenced for sets of 100 itera-

tions until convergence was achieved. All parameter values

were exponentially transformed to achieve support (0,∞).

Model fits were assessed using AIC, which ac-

counts for goodness-of-fit as well as model parsimony.

Within each comparison, models were selected on the basis
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Figure B1

Relating attention to choice probability during critical items. Panels depict simulated response probabilities. Most param-

eter values were selected arbitrarily and fixed across simulations; only parameter values representing attention were varied.

X and Y values of each panel show the proportion of attention allocated to the deterministic dimension. The proportion of

attention allocated to the probabilistic dimensions was specified as ∑αP = 1−αD. (A) Z values (colors) indicate the proba-

bility of correctly rejecting a one-new-P item as “new” during the recognition test. Attention was specified as a single vector

where ∑α = 1. (B) Z values indicate the probability of correctly rejecting a one-new-P item as “new” during the recognition

test. Attention was specified as the product of two vectors where ∑η = 1 and ∑ζ = 1. (C) Z values indicate the probability

of making a categorization response consistent with the deterministic feature of given conflict item. Attention was specified as

a single vector where ∑α = 1. (D) Z values indicate the probability of making a categorization response consistent with the

deterministic feature of given conflict item. Attention was specified as the product of two vectors where ∑η = 1 and ∑ζ = 1.

of lowest mean AIC across subjects.

After identifying best-fitting parameters for each

model and subject, we simulated responses using the relevant

participant’s gaze data as input. We then aggregated model-

simulated responses within participant group, test phase, and

item type. This allowed us to evaluate each model by its abil-

ity to re-produce the key effects. If gaze is indeed an effective

index of latent attention, we determined a priori that a direct

input approach should predict significant differences in re-

sponses between selective and distributed attention strategy

groups.

Appendix D
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Figure D1

Recognition: Combined gaze-based memory precision and decision weights. D=deterministic, P=probabilistic.

Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature

within the relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to

best-fitting model-based transformations.

Extended eye-tracking results

A one-way ANOVA revealed significant differences between

groups in proportions of gaze allocated to the D dimension

during the recognition test (F(3,106) = 6.28), p < 0.001∗).
Post hoc comparisons of means using Tukey’s honestly sig-

nificant difference (HSD) revealed that Groups SelR − SelC
and SelR −DistC tended to look more at the D feature more

than Groups DistR −SelC and DistR −DistC (SelR −SelC vs.

DistR − SelC: p < 0.05∗, SelR − SelC vs. DistR − DistC:

p < 0.01∗, 2 vs. 3: p = 0.08., SelR −DistC vs. DistR −DistC:

p < 0.05∗). Groups SelR −SelC and SelR −DistC (p = 0.98)

and Groups DistR − SelC (p = 0.86) did not differ from one

another.

Figure D1 shows aggregate model-predicted feature

discriminability during the recognition test, which was cal-

culated using Equation 1 with d j = 1 and best-fitting param-

eters from Model C − B. Values therefore combine trans-

formed gaze data from both training and test to visualize

attention as a product of eta and zeta. The heatmaps dis-

play features of the new-D and one-new-P items as a ma-

trix, where Y-ticks indicate the position of a novel feature. P

dimensions on the X-axis were rank ordered within-subject

by gaze preference. Gaze-informed estimates of discrim-

inability show that Groups SelR − SelC and SelR −DistC fa-

vor D features more than P features when making decisions,

whereas Groups DistR−SelC and DistR−DistC do not appear

to show any discriminability bias toward a particular dimen-

sion.
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Figure D2

Categorization: Combined gaze-based memory precision and decision weights. D=deterministic, P=probabilistic.

Heatmaps show aggregate feature discriminability across subjects. X-ticks indicate stimulus dimensions, where P dimensions

were rank-ordered within-subject according to gaze preference. Y-ticks indicate the dimension location of a novel feature

within the relevant subset of trials. Subject-wise discriminability maps were calculated by subjecting raw dwell time data to

best-fitting model-based transformations.

A one-way ANOVA revealed significant differences

between groups in raw proportions of gaze allocated to the D

dimension during the categorization test as well (F(3,106)=
9.69, p < 0.001∗). Post hoc comparisons of means using

Tukey’s HSD revealed that Groups SelR − SelC and DistR −
SelC tended to look more at the D feature more than Groups

SelR −DistC and DistR −DistC (SelR −SelC vs. SelR −DistC:

p < 0.01∗, SelR − SelC vs. DistR − DistC: p < 0.001∗,

SelR −DistC vs. DistR −SelC: p = 0.57 n.s., DistR −SelC vs.

DistR −DistC: p < 0.05∗). Groups SelR − SelC and DistR −
SelC (p = 0.23) and Groups SelR −DistC and DistR −DistC
(p = 0.33) did not differ from one another.

Figure D2 shows aggregate model-predicted feature

discriminability during the categorization test. The heatmaps

show that Groups SelR − SelC and DistR − SelC show higher

attention to D features higher than P features when making

categorization decisions. As in Figure D1, values combine

transformed gaze data from both training and test to visual-

ize attention as a product of eta and zeta. Although Groups

SelR −DistC and DistR −DistC differ in overall feature dis-

criminability, neither group appears to show a discriminabil-

ity bias in favor of a particular dimension. These visualiza-

tions of transformed gaze measures are consistent with the

observed behavioral effects within each group: participants

whose responses were characterized by a selective attention

strategy looked more at D; those whose responses were char-

acterized by a distributed attention strategy sampled feature

information more evenly.
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To summarize the results, Group SelR−SelC tended

to fixate to the D dimension during training whereas Group

DistR −DistC tended to sample a broader range of features

(Figure 5). These sampling behaviors were directly reflected

in the distribution of decision strategies used at test, with

Group SelR − SelC prioritizing the D dimension during both

phases and Group DistR −DistC distributing attention across

dimensions (Figures D2 and D1). We note, however, that

our proposed framework could have predicted consistently

D-selective or distributed decision strategies across phases

using the same profile of fixation biases by simply selecting

linking function parameters that magnified or diffused de-

terminism as needed. It is therefore important to highlight

that our framework was also effective for predicting choices

among participants who shifted strategies from recognition

to categorization, given that this could only occur if gaze

patterns during test shifted as well (Groups SelR −DistC and

DistR −SelC). Although these groups appeared to show sim-

ilar patterns of sampling and storage of features in aggregate

(Figure 5), combining the influences of gaze-informed mem-

ory precision and decision weights produced the expected

patterns of behaviors during both test phases (Figures D2 and

D1).
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