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Capsule Networks With Residual Pose Routing

Yi Liu†, De Cheng†, Dingwen Zhang‡, Shoukun Xu, and Jungong Han‡

Abstract—Capsule Networks (CapsNets) have been known
difficult to develop a deeper architecture, which is desirable for
high performance in the deep learning era, due to the complex
capsule routing algorithms. In this paper, we present a simple
yet effective capsule routing algorithm, which is presented by a
residual pose routing. Specifically, the higher-layer capsule pose
is achieved by an identity mapping on the adjacently lower-
layer capsule pose. Such simple residual pose routing has two
advantages: 1) reducing the routing computation complexity;
2) avoiding gradient vanishing due to its residual learning
framework. On top of that, we explicitly reformulate the capsule
layers by building a residual pose block. Stacking multiple such
blocks results in a deep Residual CapsNets (ResCaps) with a
ResNet-like architecture. Results on MNIST, AffNIST, Small-
NORB, and CIFAR-10/100 show the effectiveness of ResCaps
for image classification. Furthermore, we successfully extend
our residual pose routing to large-scale real-world applications,
including 3D object reconstruction and classification, and 2D
saliency dense prediction. The source code has been released on
https://github.com/liuyi1989/ResCaps.

Index Terms—Capsule network, Part-whole, Residual routing,
Salient object detection, 3D point cloud.

I. INTRODUCTION

C
ONVOLUTIONAL Neural Networks (CNNs) have been

known as a classic architecture for image recognition

due to their high representation power. They can recognize

the image by detecting the existence of a specific entity, i.e.,

invariance. However, an unsophisticated perturbation on the

image can fool a well-trained network to fail in recognition

[1]–[4]. More worryingly, natural and non-adversarial pose

changes of familiar objects in the real world are enough to

trick deep networks [5], [6].

Instead of pursuing invariance, some researchers advocate

the equivariance property in a neural network [7], [8]. A

recently developed neural architecture, called Capsule Net-

works (CapsNets) [9], [10], was proposed to achieve this

argument by encapsulating the poses (instantiation parameters)

of an entity in a group of neurons. The routing-by-agreement
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Fig. 1: Residual pose routing vs. EM routing. The fully-

connected EM routing causes large parameters and heavy

computation, while our residual pose routing employs the

sparsely-connected routing, getting parameters reduced and

computation efficient. The pose matrices and activation values

of all learned capsules are integrated via convolution and

ReLU to achieve the capsule features.

mechanism in CapsNets can learn the underlying part-whole

spatial relationships for further compositional representations

of the scene, which can promisingly help to detect properties

of many different levels within one network. This is essentially

the human vision ability of scene understanding in psychology.

However, it is difficult for the traditional CNN models to

capture the part-whole hierarchies of the scene. The reason

behind can be illustrated as follows. First, traditional CNN

models usually infer with fixed parameters, which cannot

dynamically allocate a group of neurons to represent a node

in a parse tree. In contrast, CapsNets design a dynamic

routing algorithm, which can dynamically allocate neurons to

represent a small portion of the visual input. Secondly, the

max pooling, a vital component of traditional CNN models,

makes neurons in one layer to focus on the most active feature

detector in a local pool in the layer below, which results in

difficulty in capturing precise spatial relations between entities.

Differently, CapsNets discard the operation of max pooling,

which ensures our model not throw away information about the

precise position of the entity within the region. In light of these

two advantages, traditional CNN models is difficult to capture

the part-whole hierarchies of the scene, while CapsNets can

solve this issue to capture compositional representations of the

image for scene understanding.

However, the existing CapsNets have been criticized for
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not facilitating deep architectures and large-scale real-world

applications due to the heavy capsule routing algorithms,

e.g., the dynamic routing algorithm [9] and the Expectation-

Maximization (EM) routing algorithm [10]. First, the fully-

connected routing mechanism produces a large number of

transformation matrix parameters, as can be seen in Fig. 1(a).

Secondly, the unsupervised computational routing procedure

is computationally expensive. Thirdly, the adopted routing-by-

agreement mechanism [9], [10] assumes a cluster distribution

of predictions, which may fail when there exist a number of

noisy prediction poses or the input data are out of distribu-

tion. While some simplified CapsNets [11]–[14] use auxiliary

knowledge like attention, their overall performance is still not

satisfactory in terms of a high computation consumption and

low recognition accuracy.

From what has been discussed above, the limitation of

CapsNets makes a challenge for a deeper capsule network.

First, the existing CapsNets mostly cannot be easily plugged

in deep structures owing to their complex routing algorithms.

Secondly, even though the current CapsNets have achieved

promising performance on small-scale images and simple

tasks, e.g., recognition for digital images and CIFAR, which

share the image sizes of 28×28 and 32×32, it is a challenge

to tackle the large-scale images and complex tasks. This may

be because large-scale images and complex tasks contain com-

plicated linear nonseparable problems for the simple shallow

CapsNets that include three capsule routing layers. To this

end, the deeper architecture of CapsNets is a solution to fit the

linear nonseparable problems to solve complex issues. Besides,

compared with a shallow network, a deeper architecture will

have a powerful feature representation, which helps to capture

the semantics in complicated scenes. This is a distinctive

characteristic of the deep learning era. Therefore, a deep

architecture for CapsNets is an urgent challenge to be solved.

In this paper, we propose a simple but powerful capsule

routing to implement deep CapsNet. By revisiting the routing-

by-agreement procedure in CapsNet [10], we discover that a

capsule is able to represent its associated capsules in terms of

the pose via a learned transformation weight matrix. In this

sense, the higher-layer capsule pose can be computed by inte-

grating the lower-level capsule pose and its associates’ poses,

which is implemented by an identity mapping in Fig. 1(b).

The activation of the higher-layer capsule can be implicitly

computed from the pose matrix. Such residual pose routing

can compute all the higher-layer capsules in a parallel and

uni-directional manner, as shown in Fig. 1(b). On top of that,

we integrate the learned capsules to achieve the association

between each capsule and other capsules in the same layer. Our

residual pose routing has three advantages: 1) Our sparsely

uni-directional connected fashion greatly reduces the network

parameters, compared with the reciprocating iterative fully-

connected pattern; 2) Thanks to 1), our model speeds up the

inference stage (as will be verified in Table VII) and training

stage (∼ 10% training time per epoch compared with the

original EM routing algorithm); 3) Our routing learns to fit the

clustering distribution, which further improves the representa-

tion ability for finding the distribution of high-dimension data

in complex scenarios, compared to the unsupervised clustering

routing in [10]; 4) Our routing is capable of avoiding vanishing

gradient, which makes it possible to design a deeper CapsNet

architecture.

Inspired by the simplicity and effectiveness of the proposed

residual pose routing, we build a deep CapsNet architecture,

which consists of five capsule routing blocks. Specifically,

each of the first four blocks is composed of one Primary

Capsule (PrimaryCaps) layer and two Residual Pose routing

(ResP) layers with the purpose of capsules construction and

residual pose routing, respectively. The last block contains one

PriCaps layer and one Residual Pose Classification (ResPC)

layer for the purpose of image classification. The downsamling

stride of 2 is utilized between two blocks, resulting in a

deep ResNet-like architecture. Evaluations on MNIST [15],

AffNIST, smallNORB [16], and CIFAR-10/100 [17] show that

such deep capsule network significantly increases the accuracy

of image classification.

Thanks to the lightweight of our residual pose routing, we

generalize it to the tasks of 3D reconstruction/classification

and 2D image saliency dense prediction, which are typical

large-scale real-world applications. On top of the framework

of [18], we incorporate our residual pose routing to explore

part-whole relationships for 3D reconstruction/classification,

and get promising gains on ModelNet40 [19]. Besides, on top

of the framework of [20], we incorporate our residual pose

routing for visual saliency, and proves our algorithm to be

simple yet effective compared with the previous part-whole

relational saliency methods, particularly in scenarios where

lightweight backbone models, e.g., VGG-16, are employed.

The main contributions of this paper include:

i) A novel residual pose routing algorithm is proposed,

which greatly reduces routing parameters and computational

complexity.

ii) A deep ResNet-like CapsNet architecture thanks to

residual pose routing’s ability of avoiding gradient vanishing.

iii) Successful showcases of our residual pose rout-

ing in multiple real-world tasks, such as 3D reconstruc-

tion/classification and 2D image saliency dense prediction,

demonstrates that ResCaps can be well generalized to large-

scale real-world applications.

The paper is organized as follows. Sec. II reviews the

related work to our model. Sec. III describes the details of the

proposed framework. Sec. IV illustrates the architecture of our

ResCaps network. Sec. V implements abundant experiments

and analysis to study our model. Sec. VI concludes the paper.

II. RELATED WORK

In this section, we will review the related work to our

network, focusing on the capsule routing algorithm, CapsNet

architecture, CapsNet related applications, and residual learn-

ing.

A. Capsule Routing Algorithm

The capsule routing algorithm plays a fundamental role

in CapsNet and performs capsules assignments across adja-

cent layers. The dynamic routing [9] and EM routing [10]
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algorithms have been widely recognized for capsules assign-

ments. The former generates capsules by computing the vector

similarity of different low-layer capsules, while the latter

computes the capsule pose and activation via executing the

EM algorithm on various low-layer capsules. Inspired by their

ideas, many variants of capsule routing have been proposed.

For example, Hahn et al. [13] introduced a self-routing strategy

for capsules assignments. Ahmed and Torresani [21] utilized

a straight-through attentive mechanism for routing coefficients

estimation. Ribeiro et al. [22] introduced the uncertainty to the

capsule routing to generate global part-whole assignments. Li

et al. [23] approximated the routing process by interacting two

branches in a supervised manner. Feng et al. [24] proposed

a dual-routing capsule graph neural network to solve the

problem of few-shot video classification. These methods esti-

mate the capsule routing with some knowledge, e.g., attention.

However, they focus less on the lightweight of the capsule

routing.

Differently, our residual pose routing 1) generates the

capsules in a unidirectional forward manner instead of a

recurrent procedure adopted by the dynamic routing and

the EM routing algorithms, which can significantly simplify

the routing computation; 2) employs the sparsely-connected

routing instead of the fully-connected routing used by most

of the previous capsule routing strategies, which reduces the

routing parameters.

B. CapsNet Architecture

The early CapsNet architecture simply employed a trans-

forming auto-encoder [8] to compute the existence probability

and spatial location of an entity. Later, they took a milestone

step to design the vector CapsNet [9], in which one primary

capsule layer was implemented for capsules construction,

and one decoder layer for digit reconstruction. They fur-

ther consolidated it by proposing the Matrix CapsNet [10],

which contained one primary capsule layers, two convolutional

capsule layers, and one capsule classification layer. Besides,

various architectures have been designed for CapsNet. For

instance, Lenssen et al. [11] presented a group CapsNet

to enhance equivariance properties. Rajasegaran et al. [12]

implemented CapsNet with the 3D convolution. Chen et al.

[25] devised a set of optimizable receptors and a transmitter

for capsule representation. Vasantharao [26] et al. injected the

spatial transformation network into the capsule network via

latent code manipulation. Tao et al. [27] replaced the primary

capsule layer of the original capsule network with an adaptive

capsule layer, which preserved the spatial information for each

capsule and local relations among capsules. These methods

achieve some progress for CapsNets architectures with various

operations, e.g., 3D convolution. However, they still cannot

address the demand of the deep CapsNets architecture.

Differently, our ResCaps architecture makes it real for the

deep capsule network, which benefits from our lightweight

residual capsule routing algorithm. Specifically, our ResCaps

designs a deep ResNet-like architecture composed of five cap-

sule blocks, each of which contains one capsules construction

layer and several capsule routing layers.

C. CapsNet Related Applications

In light of the excellent property of CapsNet, they have

been successfully embedded in many tasks. For instance, Liu

et al. [28] employed CapsNets to visual saliency, in which

CapsNets were utilized to explore the part-whole relation-

ships in the image to achieve the whole object saliency.

Following that, contrast cues derived by CNNs and part-

whole relations discovered by CapsNets were integrated to

complement each other for better saliency detection [29]

and camouflaged detection [30]. Besides, CapsNets endowed

the spatial-temporal relationships for regression tracking [31],

where spatial CapsNet and temporal CapsNet were designed

to encode spatial relationships and temporal relationships,

respectively. CapsNets were also successfully embedded in

the task of visual question answering with the aims of finding

the relevant regions [32] and merging parts with human-prior

hierarchies [33]. Garau et al. [34] made use of the viewpoint-

equivariance of CapsNet to solve the problem of human pose

estimation. Yu et al. [35] discovered face parts with the aid

of hierarchical CapsNets. Sun et al. [36] embedded CapsNet

for learning canonical pose in 3D point cloud. Zhao et al.

[18] used CapsNet to sparse 3D point clouds while preserving

spatial arrangements of the input data, where the 2D latent

space brought in improvements for several common point

cloud-related tasks. Zhuge et al. [20] employed CapsNets

to extract part-whole semantics to improve the micro-level

integrity for each salient object. Wu et al. [37] devised a user-

specific capsule module and a position-aware gating module

to capture the sequential patterns at union-level and point-

level for the issues of next-item recommendation. Cheng et

al. [38] utilized the dynamic routing in the encoder and an

static routing in the decoder for zero-shot learning. Wang et

al. [39] designed a group capsule network to segment the

hemorrhage region from a non-contract CT scan. Ma et al. [40]

utilized the capsule network to explore the part-whole relations

for regression tracking. Bonheur et al. [41] proposed an only

capsule network for multi-label semantic segmentation.

In this paper, we select the object understanding in 3D point

clouds and 2D image salient object detection to investigate

the capacity of our proposed capsule routing. Different from

the previous CapsNet based 3D object understanding (i.e.,

PointCaps [18]) and CapsNet based image salient object

detection (i.e., TSPOANet [42]) that adopted the heavy routing

[9], [10] for scene parsing, our proposed residual pose routing

can not only present lightweight with fewer parameters and

simple routing complexity, but also achieve better parsing

performance.

D. Residual Learning

Residual learning was derived from the residual network

[43], in which the identity mapping [44] was realized by the

residual connection to achieve a deep network while avoiding

the gradient vanishing. Thereafter, residual learning has been

utilized widely to advance many tasks. For example, Ke et

al. [45] designed a side-output residual network to fit the

errors between ground-truth and the outputs of the stacked

residual units, enforcing the modeling capability to symmetry
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in complex backgrounds. Tran et al. [46] imputed the missing

modality with a cascaded residual autoencoder. Feichtenhofer

et al. [47] designed a spatial-temporal residual unit for dy-

namic scene recognition. Wang et al. [48] used residual skip

connection to learn attentions in a siamese network for online

visual tracking.

In view of the power of the residual learning, it has been

successfully used for CapsNet. For example, Gugglberger et

al. [49] trained a deep CapsNet with a residual connection

to integrate the input and its capsule routing out. Ding et al.

[50] added a capsule based max-pooling as a skip connection

to adaptively choose the routing or max-pooling to reduce

computational complexity.

In this work, we employ residual connection in the capsule

routing to learn residual part-whole hierarchies in a scene.

Different from [49] that used residual connection outside the

capsule routing in a straightforward way, we embedded the

residual learning inside the capsule routing for pose compu-

tation, which learns a residual routing and results in a deep

network with avoiding the gradient vanishing problem.

III. THE PROPOSED RESIDUAL POSE ROUTING

A. Revisiting the Routing-by-Agreement Mechanism in EM

Routing

The EM routing algorithm in the matrix CapsNet [10] as-

sumes a Gaussian distribution for capsules. On top of that, the

EM algorithm clusters associated capsules together to compose

a whole. Based on this routing-by-agreement mechanism in

the EM routing algorithm [10], the associated mL capsules
(

CapL
1 ,CapL

2 , · · · ,CapL
mL

)

in layer L will be clustered to

compose a whole capsule CapL+1
j in layer (L+ 1), i.e.,

CapL+1
j = frou

(

CapL
1 ,CapL

2 , · · · ,CapL
mL

)

, (1)

where frou represents the routing algorithm, e.g., the EM

routing algorithm in [10].

Focusing on Eq. (1), the whole CapL+1
j can be composed

of mL part capsules. We can imagine the whole capsule

CapL+1
j can be composed of tL sub-whole capsules, i.e.,

CapL+1
j =frou

(

SubCap
L
1 ,SubCap

L
2 , · · · ,SubCap

L
tL

)

.

(2)

Similarly, each sub-whole capsule SubCap
L
i can be com-

posed of several sub-whole capsules further, each of which can

be composed of several associated part capsules in layer L.

For the basic case, each sub-whole consists of two associated

part capsules in layer L.

Let us discuss the routing-by-agreement for two associated

capsules. Suppose capsules i1 and k in one layer and capsule

j in the higher layer have pose matrices pi, pk, and pj ,

respectively, all with the dimension of 4 × 4. The finding

for the routing-by-agreement mechanism will be elaborated

as follows.

Step 1: Vote computation for the viewpoint invariant

relations.

1In this paper, capsule i refers to the i-th type capsule.

The viewpoint invariant relations from capsule i to the

adjacently higher-layer capsule j can be revealed by vote

vij , which is computed by multiplying the pose matrix pi

of capsule i with a viewpoint invariant transformation wij ,

i.e.,

vij = piwij , (3)

where wij is learned discriminatively through a cost function

and the backpropagation. It learns not only what a whole is

composed of, but it also makes sure the pose information of

the parent capsule matched with its sub-components after some

transformation.

Step 2: Routing by agreement.

In nature, a whole object, e.g., face, can be composed by two

familiar parts, e.g., mouth and nose. In other words, these two

parts must share familiar attributes, so they can be composed

together to a whole. This nature can be revealed by CapsNets.

Specifically, as shown in Fig. 2, given familiar capsules, e.g.,

capsule i and capsule k, an adjacently high-layer capsule j

is detected by looking for agreement between their viewpoint

invariant relations, i.e., vij and vkj . Their agreement in the

viewpoint invariant relations can be written as

vij ≈ vkj . (4)

Using Eq. (3), Eq. (4) becomes the following formulation

piwij ≈ pkwkj , (5)

where wij and wkj are the viewpoint invariant transformation

matrices.

In addition, the visualization of the intuition in Eq. (5) can

be found in Fig. 10 of [28].

Fig. 2: Illustration for the routing-by-agreement mechanism.

When associated capsule i and capsule k make their familiar

whole capsule j in the higher layer, their votes are approxi-

mately equal.

B. Residual Pose Routing

Based on the analysis of the routing-by-agreement mech-

anism, we will develop a residual pose routing algorithm

for capsules assignments. In the following, we will describe

the details of the residual pose routing algorithm, including

pose matrix computation, activation computation, and capsules

integration.
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1) Pose Matrix Computation: From the routing-by-

agreement mechanism in Eq. (5), we can draw a conclusion,

i.e.,

pk ≈ pi

wij

wkj

. (6)

In view of the fact that the parameters wij and wkj are

both learnable, we can learn a weight matrix wik to substitute

for
wij

wkj
, i.e.,

pk ≈ piwik. (7)

In Eq. (6), we can see that capsule i can compute its

associated capsule k via a learned transformation matrix with

the dimension of 4 × 4. More generally, capsule k is the set

of associated versions of capsule i, which can be encoded by

wik in Eq. (7) implicitly. On top of that, every capsule in one

layer can compute its associated sets of capsules.

Capsule i and its associated capsule set k in layer L can

make their familiar whole capsule j in layer (L+1). To achieve

this, we choose the simple yet effective vector addition in

terms of pose matrices pL
i and pL

k , i.e.,

pL+1
j = pL

i + pL
k = pL

i + pL
i w

L
ik = pL

i (1+wik) . (8)

In Eq. (8), the pose of the familiar capsule j in layer (L+1)

can be computed by an identity mapping on the pose of capsule

i in layer L.

In summary, by revisiting the capsule routing-by-agreement

in EM CapsNet [10], we discover that when a capsule i

and its associated capsule k vote for a higher-layer capsule,

the capsule pose pi can represent its associated capsule pk

via a learned transformation weight matrix. Based on this

intriguing finding, we draw a further conclusion that pk can

be generalized to the associated capsules sets’ pose of capsule

i. In this sense, the higher-layer capsule pose is able to be

computed by integrating the lower-level capsule pose and its

associates’ poses, which can be implemented by an identity

mapping.

Suppose there exist N type capsules in layer L. By using

Eq. (8), the pose of capsules in layer (L+1) can be computed

by

pL+1 =
[

pL+1
1 ,pL+1

2 , · · · ,pL+1
N

]

=
[

pL
1 (1 +w1) ,p

L
2 (1 +w2) , · · · ,p

L
N (1 +wN )

] ,

(9)

where wi is the learned transformation matrix with the dimen-

sion of 4× 4. [·] represents the operation of concatenation.

Primitive understanding for residual pose routing. Apart

from the mathematical formulations of Eqs. (6) & (7), there

is a primitive understanding on our residual pose routing, i.e.,

i) wij /wkj learns the transformation relations between

capsule i/k and the higher-layer capsule j. In doing Eq. (6),

the transformation relations between associated capsules i and

k must be discovered via the higher-layer capsule j.

ii) wik learns the transformation relations between capsule

i and capsule k within one layer. In doing Eq. (7), the

transformation relations between associated capsules i and k

can be discovered directly via a learnable matrix wik.

iii) Comparing i) and ii), wij /wkj and wik both compute

the transformation relations between associated capsules i and

k. It is evident that we can replace wij /wkj with wik.

2) Activation Value Computation: The pose matrices of

capsules in layer (L + 1) have been achieved from capsules

in layer L. The activation of each capsule in layer (L + 1)

can be implicitly encoded by its pose matrix. To this end,

a convolution operation is carried out on the pose matrix to

encode the implicit knowledge of the pose matrix, which is

followed by a Sigmoid function to compute the activation

value, i.e.,

aL+1
j = fSig(fConv

(

pL+1
j

)

), (10)

where fSig(·) and fConv(·) represent the Sigmoid function

and the convolution operation, respectively2. Similar to pose,

the activation values of capsules in layer (L+1) can be written

as

aL+1 =
[

aL+1
1 ,aL+1

2 , · · · ,aL+1
N

]

= [fSig

(

fConv

(

pL+1
1

))

, fSig

(

fConv

(

pL+1
2

))

, · · · ,

fSig

(

fConv

(

pL+1
N

))

]

.

(11)

C. Capsules Integration

Each capsule can be achieved by concatenating pose matrix

pL+1
j in Eq. (8) and activation value aL+1

j in Eq. (10), i.e.,

CapL+1
j =

[

pL+1
j ,aL+1

j

]

. (12)

However, the individual computation for the pose of each

capsule ignores the associations between it and other capsules

in the same layer, which will cause some problems. First, the

associate capsules set pk of capsule i, i.e., pi×wik, may have

redundant knowledge with other capsules in layer L. Secondly,

the neglect of the association between capsule i and other

capsules in layer L may produce weak whole capsule in (L+
1). To solve these problems, we integrate the learned capsules

into layer (L+ 1). We choose a simple convolution operation

to encode primitive features from the capsules in layer (L+1),

i.e.,

CapFL+1 =

fReLU

(

fConv

([

CapL+1
1 ,CapL+1

2 , · · · ,CapL+1
N

]))

,

(13)

where fReLU (·) represents the activation function of ReLU.

CapFL+1 means the primitive features by integrating all the

learned capsules in layer (L+ 1).

By using Eq. (13), the learned capsules are integrated

together to achieve more primitive features, which can address

the routing redundancy and enhance whole representation to

some extent. Algorithm 1 illustrates the procedure of the

proposed residual pose routing algorithm.

D. Deeper Insight Into Residual Pose Routing Algorithm

1) Gradient Vanishing Avoiding: Denoting the loss function

as ε, from the chain rule of back-propagation [51] we can

2The weight and bias terms are neglected for simplicity in this paper.
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Fig. 3: ResCaps network. The network architecture consists of 5 blocks. Each of the first four blocks is composed of one

PriCaps layer and two ResP layers. The block 5 consists of one PriCaps layer and one ResPC layer.

Algorithm 1 Residual pose routing algorithm returns pose

and activation of the capsules in layer (L+1) given the pose p

of N type capsules in layer L and the learned transformation

matrix w for each capsule. pi is the pose matrix of capsule i

in layer L.

procedure RESIDUAL POSE ROUTING (p)

1. Learn the capsule pose for layer (L + 1): pL+1
i =

pL
i (1+w);

2. Learn the capsule activation for layer (L+1): aL+1
i =

fSig

(

fConv

(

pL+1
i

))

;

3. Integrate capsules for layer (L + 1): CapFL+1 =

fReLU

(

fConv

([

[

pL+1
j ,aL+1

j

]N

1

]))

.

conclude

∂ε
∂pL = ∂ε

∂pL+1

∂pL+1

∂pL

= ∂ε
∂pL+1

∂[pL
1 (1+w1),p

L
2 (1+w2),··· ,p

L
N (1+wN )]

∂[pL
1
,pL

2
,··· ,pL

N ]

= ∂ε
∂pL+1











1 +w1 0 · · · 0
0 1 +w2 · · · 0
...

...
. . .

...

0 0 · · · 1 +wN











,

(14)

It can be seen in Eq. 14 that the gradient of ∂ε
∂pL can be

decomposed into two components: 1) ∂ε
∂pL+1 propagates the in-

formation directly without concerning any weight layers while

focusing on the current-layer pose, which ensures that the

information is propagated directly back to any-layer pose; 2)
∂ε

∂pL+1w∗ propagates the information through a transformation

matrix w∗ to learn the associated versions of each low-layer

capsule. Eq. (14) guarantees that the gradient for ∂ε
∂pL cannot

be vanishing for a mini-batch because the elements of the the

transformation matrix w∗ cannot be always -1 for all samples

in a mini-batch.

2) Complexity Comparison: We evaluate the complexity3

of the EM routing [10] and our residual pose routing. For

the EM routing [10], the major complexity lies in the matrix

multiplication and the EM algorithm, i.e.,

O (EMR) = O (B ×H ×W ×Nlow ×Nhigh) +O (EM) ,
(15)

where B, H , W represent the batchsize, height, width of the

input, respectively. Nlow, and Nhigh are the capsule type num-

bers of adjacent layers. O (EM) represents the complexity of

3In this paper, we focus on the complexity of the unsupervised computation.

the EM algorithm, which occupies the most cost of the EM

routing algorithm [10].

The major complexity of our residual pose routing algorithm

lies in the matrix multiplication, i.e.,

fRPR = O (B ×H ×W ×Nlow) . (16)

Comparing the complexities of the EM routing and our

residual pose routing, we can observe: 1) Our residual pose

routing gets rid of the EM algorithm, which has significantly

reduced the computational costs; 2) Our residual pose routing

reduces the computation of matrix multiplication by ×Nhigh

by employing the sparsely-connected routing instead of the

fully-connected routing adopted by the EM routing [10], which

additionally leads to a decrease in the routing parameters.

IV. RESCAPS NETWORK

In this section, based on the proposed residual pose routing

algorithm, we design a deep CapsNet architecture, named

Residual CapsNet (ResCaps).

A. Network Architecture

Fig. 3 illustrates the network architecture of the developed

ResCaps consisting of five residual pose routing blocks. Prior

to residual pose routing blocks, the operation of Conv+ReLU

is used to extract features of the input data. Concretely, each of

the shallow four blocks is composed of one Primary Capsule

(PrimaryCaps) layer and two Residual Pose routing (ResP)

layers. The block 5 consists of one PriCaps layer and one

Residual Pose Class (ResPC) layer. In the following, we will

describe the details of the network architecture.

Fig. 4: PriCaps layer. Two branches are created to compute

the pose matrix and activation from the input image or

convolutional features, respectively.

The PriCaps layer is utilized to generate capsule features

from the input image or features. Concretely, two branches

are created to compute the pose matrix and activation from
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the input data, respectively. Specifically, a convolution layer

is applied to compute the pose matrix. A convolution and the

Sigmoid function are used to compute the activation values.

The pose matrix and activation value are concatenated to

compose the capsule features. Fig. 4 describes the details of

the PriCaps layer.

Fig. 5: ResP layer. The ResP layer is used to embed the

residual pose routing algorithm into the network. w is the

learned weight.

The ResP layer employs the residual pose routing algorithm

to explore the part-whole relationships in a scene. Fig. 5

illustrates the architecture of the ResP layer. Specifically, the

pose matrix of the capsule is multiplied with a learnable weight

matrix w with the dimension of 4 × 4 to achieve the high-

layer capsule pose matrix. On top of that, a convolution and

the Sigmoid function are used to generate the higher-layer

capsule activate value. A concatenation operation on the pose

matrix and the activation value is adopted to obtain the capsule

features. At the final stage, a convolution operation and the

ReLU activation function are utilized for capsules integration

to learn primitive features.

The ResPC layer is used for capsules classification. It has

the similar structure with the ResP layer except: 1) The output

capsule type of the ResPC layer is the classification category

number; 2) The final convolution and ReLU for capsules

integration are not demanded.

Different to RCCaps [49]. RCCaps [49] simply adds resid-

ual connections between capsule layers. In reality, RCCaps

[49] indeed has no capsule layers increase, resulting in a fake

deep capsule architecture. Differently, our proposed ResCaps

has two main highlights: 1) Our residual pose routing embeds

the residual connection inside the capsule routing derived

from the logical analysis, which simplifies the capsule routing

with less parameters and light complexity; 2) Our ResCaps

assembles several capsule blocks, and each block contains

several residual capsule routing layers, which indeed builds

a deep capsule architecture.

B. Loss Function

Given the activation values of the classification capsules, we

can train the ResCaps network using the spread loss function

in [10]. Concretely, the spread loss is used to maximize the

gap between the activation of the target at and the activation

of the other classes. If the activation of a wrong class ai is

closer to at compared to the margin m, it will be penalized by

the squared distance to the margin. The spread loss function

can be formulated as

Lossi = max (0,m− (at − ai))
2
, Loss =

∑

i ̸=t

Lossi. (17)

V. EXPERIMENT AND ANALYSIS

In this section, we will analyze our ResCaps for image clas-

sification, 2D image saliency, and 3D object understanding.

A. Image Classification

In this subsection, following the previous CapsNet litera-

ture, we mostly use the public classification benchmarks for

image classification, including MNIST [15], AffNIST [15],

SmallNORB [16], and CIFAR-10/100 [17]. We implement the

proposed network on Pytorch. For the training procedure, we

used the Adam optimizer [52] with the initial learning rate

of 0.01. The models were trained on one NAVIDIA 3090Ti

GPU with the batch size of 128. The capsule type numbers

of the five blocks are set to [32, 32, 16, 16, NC ], where NC is

the category number.

TABLE I: Mean error (%) and accuracy (%) on MNIST.

“ResCaps” means our entire framework consisting of 5 blocks.

“-” represents no result released from the original paper or

related papers. The best method is marked by bold.

Method
Mean error Accuracy

MNIST AffNIST MNIST AffNIST

ResCaps 0.72 1.32 99.45 98.23

Baseline CNN [10] 0.8 14.1 99.22 66.00

BCN [53] 2.5 8.4 97.50 91.60

Dynamic [9] 0.77 21 99.23 81.20

G-Caps [11] 1.58 10.1 98.42 89.10

EM-Caps [10] 0.8 6.9 99.20 93.80

Aff-Caps [54] 0.77 6.79 99.23 93.21

U-Routing [22] 0.8 5.02 - -

1) Evaluation on MNIST and AffNIST: MINIST is a dataset

of 60K grey images with the size of 28× 28. Table I lists the

performance comparisons of different methods. It can be seen

from Table I that our methods outperform the capsule related

works as well as CNN networks. Especially our ResCaps

obtains the test error of 0.72% and test accuracy of 99.45%,

which are largely better than the other methods.

Besides, we probe into the robustness of our model to

affine transformations by using the AffNIST dataset, which

is generated by performing 32 random affine transformations

on each image of MNIST. Training on the MNIST training set

while testing on AffNIST test set containing 320,000 examples

are utilized to study the generalization performance. Since

AffNIST images are 40 × 40, we pad MNIST images for

training, i.e., randomly placing the digits on 40 × 40 black

backgrounds. Data rotation with 30◦ is additionally used for

data augmentation. In Table I, we observe that our models

surpass the capsule related works and CNNs by a large margin.

2) Evaluation on SmallNORB: SmallNORB [16] consists

of grey-level stereo 96 × 96 images of 5 objects, each of

which is given at 18 different azimuths (0-340), 9 elevations

and 6 lighting conditions. SmallNORB [16] provides 24300

training and test set examples. Similar to [10], we standardise

the images and resize them to 48×48. We take 32×32 random

crops for training and centre crops at test time. In Table II,

our model achieves the test error of 0.91% and test accuracy

of 99.45%, which surpass those of the capsule related works

significantly.
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TABLE II: Mean error (%) and accuracy (%) on smallNORB.

“-” represents no result released from the original paper or

related papers. The best method is marked by bold.

Method Mean error Accuracy

ResCaps 0.91 99.45

Baseline CNN [10] 5.2 -

Dynamic [9] 2.70 97.10

FREM [55] 2.20 -

STAR-Caps [21] 1.80 -

EM-Caps [10] 1.80 98.00

VB-Routing [56] 1.60 -

U-Routing [22] 2.20 -

TABLE III: Mean error (%) and accuracy (%) on CIFAR-10.

“-” represents no result released from the original paper or

related papers. The best method is marked by bold.

Method Mean error Accuracy

ResCaps 1.14 92.38

FlexNet [57] - 92.2

Baseline CNN [10] 19.2 -

Dynamic [9] 7.86 84.50

FREM [55] 14.3 -

EM-Caps [10] 11.6 82.20

Self-Routing [13] 7.86 92.14

DLME [58] - 91.30

MobileNetV2 G32 [59] - 90.83

MobileNet DAIS [60] - 91.87

DBN [61] 17.00 -

Radix VGG20 [62] - 92.2

3) Evaluation on CIFAR-10/100: CIFAR-10 [17] and

CIFAR-100 [17] datasets contain images of size 32 × 32
with 10 classes and 100 classes, respectively. Each dataset

contains 50,000 training images and 10,000 testing images.

Table III illustrates the performance of different methods on

CIFAR-10 [17]. As shown in Table III, it can be seen that our

model achieves the lowest error and highest accuracy, which

shows our model surpasses the other methods. Especially our

ResCaps is superior to dynamic CapsNets [9] and EM-Caps

[10], which makes known that our model showcases much

progress with respect to the CapsNets family.

For CIFAR-100 [17], our ResCaps achieves the test error of

15.26%, which performs better than DensNet [63] (22.27%)

and CapsPro [64] (21.93%), i.e., one capsule related work

based on the backbone of ResNet [43].

B. Ablation Analysis

In this section, we will conduct several experiment to ana-

lyze the role of each component in our proposed framework.

1) Our residual pose routing vs. EM routing: From Tables

I, II & III, under the condition of similar architectures,

our ResCaps-2B model consistently beats EM-Caps [10] on

MNIST, SmallNORB, and CIFAR-10, which demonstrates the

superiority of our routing. Besides, in terms of the test time

per image in MNIST [15], our ResCaps-2B (1.2ms) runs faster

than EM-Caps (1.9ms), revealing that our routing method is

much simpler than EM-Caps.

2) Deep architecture: To study the effectiveness of our

deep architecture, in Table IV, we compare our ResCaps and

ResCaps-2B. From the performance comparisons on MNIST,

SmallNORB, and CIFAR-10/100, we find that ResCaps per-

forms worse than ResCaps-2B on MNIST and SmallNORB,

which indicates that a shallow CapsNet architecture can

achieve promising performance for simple-structure grey-

level images. However, ResCaps outperforms ResCaps-2B on

AffNIST and CIFAR-10/100, which demonstrates our deep

architecture has better robustness to affine transformation on

AffNIST and better recognition ability for complex-structure

images, e.g., CIFAR-10/100.

TABLE IV: Mean errors (%) of ResCaps vs. ResCaps-2B. The

better method is marked by bold.

Method MNIST AffNIST SmallNORB CIFAR-10 CIFAR-100

ResCaps 0.72 1.32 0.91 1.14 15.26

ResCaps-2B 0.54 1.86 0.64 1.14 16.05

3) Routing layers: To study the performance of routing

layers in one block, we compare our ResCaps and one

modified versions, i.e., ResCaps-3L. Specifically, ResCaps

and ResCaps-3L consist of two and three ResP layer(s)4

in one block, respectively. From Table V, we find that our

ResCaps consisting of two ResP layers can achieve promising

performance, compared to ResCaps-3L that employs three

ResP layers in one block. Besides, similarly in Table VI, under

the setting of two blocks, two ResP layers perform better than

three ResP layers. It indicates that two routing layers have an

ability of exploring the part-whole relationships in a specific

scale of feature maps.

TABLE V: Mean error (%) of different routing layers in one

block on SmalNORB. The better method is marked by bold.

Method SmallNORB

ResCaps 0.91

ResCaps-3L 1.00

TABLE VI: Accuracy (%) of different routing layers in one

block on MNIST and SmallNORB. “ResCaps-2B-3L” employs

three ResP layers in one block under the same setting of

“ResCaps-2B”. The better method is marked by bold.

Method MNIST SmallNORB

ResCaps-2B 99.38 92.33

ResCaps-2B-3L 99.28 92.21

4) Memory, running time, and parameters comparison:

Table VII lists the memory, running time, and parameters of

different models. First, compared with the CNNs based model,

i.e., ResNet-101, we achieve a lightweight model with fewer

parameters and faster running time by a large margin. As well,

we also surpass ResNet-101 in terms of error and accuracy.

These observations demonstrate that our model gets superior

performance with lower computational complexity.

Secondly, compared to EM-Caps (23.70 GB GPU memory),

our ResCaps-2B that shares the similar architecture with

EM-Caps [10] needs (4.80 GB GPU memory) ∼20% GPU

memory. Besides, our ResCaps-2B is faster than EM-Caps

4Considering the memory cost, we only has an ablation study for the three
routing layers in one block.
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in terms of the running time per image under a similar

architecture. However, our model is inferior to EM-Caps [10]

in terms of model parameters. The reason behind include: 1)

Our model has several PrimaryCaps layers that will generate

much parameters, whereas only one PrimaryCaps layer in the

entire EM-Caps [10]; 2) Our ResP layer has many parameters

induced by two convolutions as well as transformation matri-

ces, whereas the main body (ConvCaps layer and ClassCaps

layer) of the EM-Caps [10] just learns transformation matrices.

Despite having more parameters, our model gets lower error

and higher accuracy, compared to EM-Caps [10].

TABLE VII: Memory, parameters, and running time of dif-

ferent models on CIFAR-10. Besides, evaluation metrics are

listed here for comparison. The best method is marked by

bold.

Memory (G) Parameter (M) Time (ms) Error (%) Accuracy (%)

ResCaps-2B 4.8 16.4 4.2 1.14 92.38

EM-Caps [10] 23.70 0.02 5.3 11.6 82.20

ResNet-101 [43] 9.84 42.51 12.1 6.43 86.65

5) ResCaps vs. RCCaps [49]: To explore the superiority of

the residual connection in our ResCaps, we compare ResCaps

with RCCaps [49] that adds the residual connection between

capsule layers, which can be seen in Table VIII. For MNIST,

SmallNORB, CIFAR-10, and CIFAR-100, our ResCaps shows

a large superiority over RCCaps [49], indicating that the pro-

posed ResCaps has a better classification capacity. Besides, the

comparison for AffNIST illustrates that our ResCaps has more

robust generalization than RCCaps [49]. These superiority of

our ResCaps lies in that our residual connection inside the

capsule routing beats that between capsule layers by RCCaps

[49].

TABLE VIII: Mean errors (%) of ResCaps vs. RCCaps [49].

The better method is marked by bold.

Method MNIST AffNIST SmallNORB CIFAR-10 CIFAR-100

ResCaps 0.72 1.32 0.91 1.14 15.26

RCCaps 1.59 2.25 1.97 2.87 34.44

C. 2D Image Saliency

In view of that the saliency prediction is a fundamental

research point in the field of computer vision, we choose

the task of salient object detection for the dense prediction

evaluation.

To design a deep salient object detection network, following

the architecture of [20], we replace the original capsule routing

of [20] with our identity mapping routing. We use the cross-

entropy loss function and IoU loss function to train the net-

work. The proposed network is implemented in Pytorch. The

training dataset of DUTS [65] is chosen as the training dataset

with horizontal flipping as the data augmentation technique.

The SGD optimizer [66] is used to train our model with an

initial learning rate of 5e-2.

1) Benchmark: We evaluate the performance of our model

on five benchmark datasets, details of which are described as

follows.

ECSSD [67] contains 1,000 images collected from the

Internet. These images are with complicated structures.

HKU-IS [68] consists of 4,447 images with multiple dis-

connected objects. It is divided into 3,000 training images and

1,447 test images. We evaluate our methods and other state-

of-the-art methods on the test datasets.

PASCAL-S [69] includes 850 images describing various

scenes.

DUT-O [70] has 5,168 images with different sizes and

complex structures.

2) Evaluation criteria: We evaluate the performance of our

model as well as other state-of-the-art methods from both

visual and quantitative perspectives. The quantitative metrics

include Precision Recall (PR), F-measure, Mean Absolute

Error (MAE), and E-measure. Given a continuous saliency

map, a binary mask B is achieved by thresholding. Precision is

defined as Precision = |B ∩G|/|B|, and recall is defined as

Recall = |B ∩G|/|G|, where G is the corresponding ground

truth. A PR curve is plotted under different thresholds.

F-measure is an overall performance indicator, which is

computed by

Fβ =

(

1 + γ2
)

Precision×Recall

γ2Precision+Recall
. (18)

As suggested in [80], γ2 = 0.3.

MAE is defined as

MAE =
1

W ×H

W
∑

i=1

H
∑

j=1

|S (i, j)−G (i, j)|, (19)

where W and H are the width and height of the image,

respectively.

E-measure (Em) [81] combines local pixel values with

the image-level mean value to jointly evaluate the similarity

between the prediction and the ground truth.

3) Performance comparison with state-of-the-arts: Table

IX illustrates the quantitative comparison on four benchmarks

with 10 state-of-the-art methods, including ICON-S [20],

TSPOANet [42], DCR [71], DPNet [72], SelfReformer [73],

JointCRF [75], ToHR [76], BMP [77], LFR [78], and Amulet

[79]. Specifically in Table IX, ICON-S is one version of

ICON [20] with Transformer as the backbone. ICON-S-RPR5

is implemented by replacing the dynamic routing of ICON-S

[20] with our residual pose routing using two blocks. Also,

TSPOANet-RPR is achieved by replacing the two-stream cap-

sule routing in TSPOANet [42] with our residual pose routing

using two blocks. First in Table IX, ICON-S-RPR is better

than the others for most of metrics, which demonstrates the

superiority of our residual pose routing for the task of saliency

detection. Secondly, under the same setting, ICON-S-RPR

and TSPOANet-RPR perform better than ICON-S [20] and

TSPOANet [42] with respect to most of metrics, respectively.

These observations indicate our residual pose routing has a

great power than the dynamic capsule routing in ICON [20]

5It is noted that ICON-S-RPR is re-trained for the optimal performance with
the same architecture. Saliency maps of ICON-S-RPR have been released on
https://github.com/liuyi1989/ResCaps.
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TABLE IX: Evaluation metrics including Fβ , MAE, and Em values of different methods. Top two methods are marked by red

and blue, respectively. The descriptions of ICON-S-RPR and TSPOANet-RPR can be referred to the text.

ECSSD [67] HKU-IS [68] PASCAL-S [69] DUT-O [70]

Fβ MAE Em Fβ MAE Em Fβ MAE Em Fβ MAE Sm

ICON-S-RPR 0.9413 0.0236 0.9337 0.9287 0.0216 0.9659 0.8681 0.0473 0.8834 0.8125 0.0427 0.8980

TSPOANet-RPR 0.9083 0.0425 0.9213 0.8959 0.0341 0.9466 0.8086 0.0723 0.8553 0.8152 0.0429 0.8961

ICON-S [20] 0.9408 0.0236 0.9323 0.9280 0.0213 0.9667 0.8652 0.0484 0.8751 0.8111 0.0427 0.8978

TSPOANet [42] 0.8873 0.0515 0.9020 0.8795 0.0391 0.9263 0.8123 0.0749 0.8508 0.7030 0.0638 0.8232

DCR [71] 0.9186 0.0381 0.9202 0.9051 0.0320 0.9476 0.8207 0.0696 0.8535 0.7458 0.0553 0.8539

DPNet [72] 0.9258 0.0305 0.9264 0.9229 0.0230 0.9627 0.8426 0.0542 0.8674 0.7781 0.0492 0.8764

SelfReformer [73] 0.8982 0.0272 0.9289 0.9142 0.0242 0.9598 0.8160 0.0509 0.8788 0.7890 0.0433 0.8887

GPEA [74] 0.9292 0.0317 0.9300 0.9187 0.0266 0.9578 0.8450 0.0575 0.8762 0.7597 0.0517 0.8585

JointCRF [75] 0.8956 0.0493 0.9152 0.8817 0.0394 0.9384 0.7898 0.0824 0.8368 0.7379 0.0574 0.8571

ToHR [76] 0.9023 0.0544 0.9171 0.8923 0.0420 0.9357 0.8008 0.0855 0.8465 0.7079 0.0660 0.8411

BMP [77] 0.8682 0.0447 0.9137 0.8705 0.0389 0.9373 0.7578 0.0753 0.8420 0.6917 0.0636 0.8371

LFR [78] 0.8799 0.0525 0.9005 0.8751 0.0396 0.9313 0.7613 0.1066 0.7992 0.6656 0.1030 0.7799

Amulet [79] 0.8683 0.0589 0.9011 0.8426 0.0501 0.9122 0.7574 0.0997 0.8016 0.6472 0.0976 0.7787

and the two-stream capsule routing in TSPOANet [42] for

salient object detection.

To prove our claim of being simple yet effective model, we

list several pairs of models comparison in Table X, includ-

ing TSPOANet-RPR vs. TSPOANet-EM, TSPOANet-RPR vs.

TSPOANet, ICON-S-RPR vs. ICON-S, and ICON-V-RPR vs.

ICON-V. TSPOANet-RPR and TSPOANet-EM replace the

previous capsule routing in TSPOANet [42] with our residual

pose routing algorithm and the EM routing algorithm [10],

respectively. ICON-S and ICON-V denote the ICON model

with backbones of Transformer and VGG16, respectively.

ICON-S-RPR and ICON-V-RPR are achieved by substitute

our residual pose routing for the original capsule routing in

ICON-S and ICON-V, respectively. As illustrated in Table

X, ICON-S-RPR performs better than ICON-S with a slight

margin, which is because that the contribution of the capsule

routing algorithm to the performance is inferior to that of the

powerful backbone, i.e., swin Transformer. With regard to the

ordinary backbone of VGG16, our residual pose routing can

achieve a large-margin improvement on various benchmarks,

such as ∼ 4% Em of ICON-V-RPR vs. ICON-V on HKU-IS,

∼ 3% Fβ of TSPOANet-RPR vs. TSPOANet-EM on ECSSD

& DUT-O, and ∼ 2% Fβ & Em of TSPOANet-RPR vs.

TSPOANet. Such performance margin is essentially significant

for the task of salient object detection in the day. Based on the

above discussions, our residual pose routing algorithm gets a

slight 0.1% improvement when using sophisticated backbones,

e.g., swin Transformer. By contrast, our model achieves a

2% ∼ 4% improvement on top of the lightweight backbones,

e.g., VGG16.

Fig. 6 shows detection results of some good methods.

Specifically, as shown in the first tow rows of Fig. 6, RPR

can detect various-scale salient objects compared to the other

methods. As shown in the middle two rows of Fig. 6, RPR

can locate and segment multiple salient objects compared with

the other methods. As shown in the bottom two rows of

Fig. 6, RPR can segment the salient object while suppress-

ing noisy backgrounds, which is challenging for the other

methods. These improvements are credited with the part-whole

hierarchies learned by the proposed residual pose routing.

D. 3D Object Understanding

The simplicity and effectiveness of our residual pose routing

make it possible to extend it for large-scale scene understand-

ing. In light of the increasing research trend of 3D sensing for

robotics, autonomous driving, and augmented/mixed reality,

we choose 3D object understanding based on the 3D point

cloud data to evaluate our residual pose routing, including the

tasks of 3D reconstruction and 3D classification.

1) 3D Reconstruction: To evaluate our residual pose rout-

ing on 3D reconstruction for point cloud generation, we utilize

one block of our ResCaps to substitute for the dynamic capsule

routing in Point-Caps [18] for 3D reconstruction. The input

point clouds are aligned to a common reference frame and

normalized for training. The Adam optimizer [52] with an

initial learning rate of 0.0001 and a batch size of 2 is adopted

for training.

We choose the standard Chamfer distance as the reconstruc-

tion performance evaluation metric on the ShapeNet Core v2

dataset [83]. For fair comparisons, we use the same training

and test splits in AtlasNet [82]. As illustrated in Table XI,

our residual pose routing beats the dynamic routing in Point-

Caps [82] significantly, specifically improving the Chamfer

Distance from 1.46 of Point-Caps [18] to 1.38. Besides, as

shown in Fig. 7, it can be seen that our residual pose routing

can better reconstruct the input point clouds than Point-Caps

[18] that adopts the dynamic routing. Concretely, our residual

pose routing reconstructs better object shapes and inner details

for better recognition.

2) 3D Classification: To demonstrate the efficiency of

learned reconstruction representation, we evaluate the classifi-

cation accuracy by performing transfer learning based on the

learned latent features. Similar to [84]–[86], we train a linear

SVM classifier regress the shape class on ModelNet 40 [19]

given the latent features. As shown in Table XII, our accuracy

is 89.9% surpassing Point-Caps [18], which demonstrates our

residual pose routing can generalize better to new tasks like

3D reconstruction and classification.

VI. CONCLUSION

In this paper, we have proposed a simple yet effective

residual pose routing algorithm into the capsule network.
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Fig. 6: Image saliency prediction results of some good methods. RPR can detect various-scale salient objects (top two rows),

multiple salient objects (middle two rows), and noisy-scene salient objects (bottom two rows), compared to the other methods.

TABLE X: Evaluation metrics including Fβ , MAE, and Em values of different methods. The best method is marked by bold.

ECSSD [67] HKU-IS [68] PASCAL-S [69] DUT-O [70]
Fβ MAE Em Fβ MAE Em Fβ MAE Em Fβ MAE Sm

VGG16

TSPOANet-RPR 0.9080 0.0436 0.9224 0.8945 0.0360 0.9438 0.8022 0.0755 0.8512 0.7286 0.0617 0.8505
TSPOANet-EM 0.8761 0.0517 0.8964 0.8707 0.0404 0.9316 0.7963 0.0786 0.8348 0.6954 0.0691 0.8278

TSPOANet-RPR 0.9080 0.0436 0.9224 0.8945 0.0360 0.9438 0.8022 0.0755 0.8512 0.7286 0.0617 0.8505
TSPOANet [42] 0.8873 0.0515 0.9020 0.8795 0.0391 0.9263 0.8123 0.0749 0.8508 0.7030 0.0638 0.8232

ICON-V-RPP 0.9232 0.0335 0.9210 0.9151 0.0276 0.9549 0.8324 0.0663 0.8548 0.7481 0.0654 0.8482

ICON-V [20] 0.9178 0.0365 0.9193 0.9074 0.0305 0.9163 0.8340 0.0640 0.8612 0.7552 0.0646 0.8331

Swin
Transformer

ICON-S-RPR 0.9413 0.0236 0.9337 0.9287 0.0216 0.9659 0.8681 0.0473 0.8834 0.8125 0.0427 0.8980
ICON-S [20] 0.9408 0.0236 0.9323 0.9280 0.0213 0.9667 0.8652 0.0484 0.8751 0.8111 0.0427 0.8978

TABLE XI: Evaluation reconstruction quality (‰). The best method is marked by bold.

Method OURS Point-baseline [18] AtlasNet [82] Point-Caps [18]

Chamfer Distance 1.38 1.91 1.56 1.46

TABLE XII: Accuracy of classification by transfer learning on

ModelNet 40 [19]. The best method is marked by bold.

Method Latent-GAN [85] FoldingNet [86] Point-Caps [18] OURS

Accuracy 85.7 88.4 89.3 89.9

Compared with the original EM capsule routing algorithm

[10], our residual pose routing computed the capsule pose

by an identity mapping learning on the low-layer capsule

pose, which helped to avoid gradient vanishing. Different

from EM routing [10] that adopted fully-connected complex

hand-crafted computation, our residual pose routing conducted

a sparsely learning framework, which greatly reduced the

routing parameters and computation. Inspired by its simplicity

and power, our residual pose routing made a deep capsule

network architecture for better image classification. To study

the generalization for new tasks of our residual pose routing,

it was extended for 2D image saliency and 3D reconstruc-

tion/classification.

Future work & limitation. The model presented in this

work has some limitations for future research. First, the

robustness for adversarial attacks is an increasing and demand-

ing research point. Therefore, the discussion for adversarial

attacks is demanding for our residual pose routing. Secondly,

currently we evaluate our model for classification on 2D small-

scale images. The generalization on large-scale datasets, e.g.,

ImageNet [87] and COCO [88], will be a future research.
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