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RACFIS: A New Rapid Adaptive Complex Fuzzy

Inference System for Regression Modelling

Chuan Xue and M. Mahfouf

Abstract—The theory of complex fuzzy sets has made great
breakthroughs in recent times. Complex fuzzy theory (CFT)
allows a fuzzy set to include more information with the help
of its two-dimensional rule-base, which is of great potential for
improving the related fuzzy system performance while managing
the size of the associated rule-bases. In this paper, a new rapid
adaptive complex fuzzy inference system (RACFIS) is proposed
by redesigning the optimization policy of the earlier complex
neuro-fuzzy system (CNFS) algorithm. Improvements include
a new three-parameter Quasi-hyperbolic momentum (QHM)
optimization method to replace the original particle swarm
optimization (PSO), and unsupervised learning is introduced, for
the first time, into the complex neuro-fuzzy model to pre-train
the antecedent parameters for a better global optimum as well
as a faster convergence. Experimental results show that RACFIS
performs very well on all data sets, obtaining excellent prediction
accuracies with on average 10 times lower epoch numbers (as
compared with all benchmark models) and a reduction in the
size of the rule-bases by nearly 20%∼30% (as compared with
non-complex fuzzy models). RACFIS also possesses a strong
generalization capability that outperforms all the benchmark
algorithms employed in the simulation experiments. In addition,
a mean impact value (MIV) algorithm based on radial basis
function (RBF) network is also employed to select variables with
higher relevance in order to mitigate the drawbacks caused by
the higher dimensionality of the data.

Index Terms—Complex fuzzy inference system (CFIS), Adap-
tive neuro-fuzzy systems, Online learning, Numerical prediction.

I. INTRODUCTION

THE modelling of real-world data has always been a

challenging problem. Unlike those popular data sets that

are purposefully selected as examples to test the performance

of specific algorithms, data sets which users are more likely

to encounter in scientific research or industry are often not

so ideally presented. Real-world data sets, more often than

not, can lead to processing difficulties, including redundancy,

imbalance and incompleteness of the data, unrelated variables,

missing dimensions, human entry errors or measurement er-

rors, etc., which all hinder the efficient implementation of

machine learning algorithms. In such scenarios, it is sometimes

impossible for users to know where the missing part and/or

the wrong information exactly are for the purpose of manual

modification. For this reason, the generalization capability

of an algorithm is the crucial element to be relied upon to

overcome such obstacles. Moreover, regression tasks, such as

This paper was produced by Department of Automatic Control and Systems
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data analysis and prediction in various application areas, lead

to some real-time requirements. A heavy and sophisticated

algorithm which usually indicates a dramatic increase in

hardware costs is less likely to be the ideal solution that

can be widely accepted. Occasionally, researchers also hope

that the model has a certain degree of interpretability so that

they can adjust the errors in an easier way or even extract

expert knowledge from the model. Fuzzy systems have overt

advantages in this respect.

Nowadays, self-learning neuro-fuzzy systems have become

mainstream due to the increasing complexity of real-world sce-

narios. Such models are not complicated from a classification

viewpoint. According to the network structure, the neuro-fuzzy

inference systems (NFIS) that have been hitherto proposed

include static NFIS such as ANFIS [1], self-organized NFIS

such as SONFIN [2] and, deep NFIS [3], where the word

“static” refers to a network structure that is fixed and will

not change with the training process, whereas the structure

of the self-organizing architecture may adjust itself to adapt

to the data. As for deep NFIS, it can be understood as the

expansion of deep learning in the fuzzy systems area. From the

perspective of fuzzy logic, the category of NFIS includes type-

1 NFIS, general type-2 NFIS [4] and interval type-2 NFIS [5],

and NFIS using other fuzzy logics. As far as defuzzification

methods are concerned, Mamdani-NFIS are using Mamdani

defuzzification [6] and TSK-NFIS uses Sugeno defuzzification

[7], [8]. In recent years, fuzzy models based on quantum

computation [9], [10] have also emerged.

It is widely accepted that apart from increasing the depth,

the most promising directions of improving NFIS are of two

fold, namely the fuzzy logic that is applied, and the optimiza-

tion algorithm. In terms of the fuzzy logic aspect, type-1 NFIS

models that are first to emerge have overt drawbacks because

of the limited expressive ability of type-1 rules. To describe a

complex problem, a relatively large rule-base is often required,

which makes it extremely inefficient when dealing with real-

world problems with many variables. Further, since type-1

logic can only represent a relatively superficial information,

this often leads to overfitting and poor generalization capability

of the model. Subsequently, type-2 fuzzy logic [11], [12],

especially interval type-2 logic [13], has been introduced to

build NFIS, which significantly improves accuracy, rule-base

size, and the generalization capability of NFIS models. Nev-

ertheless, in recent years, the related architectures of type-2

fuzzy logic are also close to optimum. If further improvements

of the performance are required, then it is very necessary to
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introduce a more powerful fuzzy logic.

Regarding the optimization policies of NFIS, there are

largely two main categories [14]: backpropagation and hybrid

optimization. Currently, the strategy of backpropagation train-

ing with a single method is considered suboptimal. A hybrid

optimization usually means optimizing the antecedent and

consequent parameters separately. Given that the antecedent

part includes nonlinear fuzzy membership functions, whereas

the consequent is only linear mappings, hybrid approaches

can help facilitate faster training and obtain a better result.

Methods for the consequent part training are relatively simple,

including RLS [15], extended Kalman filter [16], ELM [17]

or SVM (for classification purposes) [18]. For the nonlinear

antecedent part, gradient-based methods were favored in the

early years, but recently researchers have become more biased

towards population methods, such as particle swarm [19],

evolutionary algorithms [20] or artificial bee colonies [21].

Blindly opting for a derivative-free method may not be wise

because the gradient is actually the prior knowledge of the

optimization surface. Population-based optimization solutions

often suffer from higher training complexity and lower speed

due to the absence of this knowledge. Such a train of thought

is unfavorable to real-world application scenarios that pursue

concomitantly accuracy and efficiency.

In recent years, breakthroughs in multi-parameter gradient-

momentum methods have improved the performance of gradi-

ent optimization [22]. In the meantime, the theory of complex

fuzzy sets (CFT) [23]–[26] also brings new possibilities to

improve NFIS. CFT is considered a breakthrough after the

type-2 fuzzy theory. It extends the common domain of fuzzy

membership to the entire unit circle in the complex plane,

allowing a single rule to accommodate more information over

previous fuzzy logic. Such a property is conducive to nar-

rowing the system rule-base and improving the generalization

performance. Complex fuzzy logic can describe problems that

the previous fuzzy logic is able to, such as wave-particle dual-

ity in quantum mechanics, which helps to expand application

scenarios of fuzzy systems. The frequency-domain nature of

complex numbers also makes CFT more effective in dealing

with periodicity. Also, the so-called “curse of dimensionality”

[27] often leads to a sharp increase in computational com-

plexity, the sparseness of information, and the weakening of

non-linear connections between data points. Thus, a purposely

designed mechanism capable of more accurately excluding

insignificant variables is required. According to the above

perspectives, we propose such an algorithm in this paper.

This paper mainly proposes a new rapid adaptive complex

neural-fuzzy system (RACFIS) that learns from real-world

data sets with a fast, accurate, and robust regression perfor-

mance. Note that the word “adaptive” in this definition conveys

the same idea as in adaptive neural-fuzzy inference system

(ANFIS), meaning, self-learning. Such an algorithm utilizes

complex fuzzy logic to improve the model performance against

periodicity and stochasticity and also strengthen generalization

capability while reducing the size of the rule-base. Regardless

of the difficulty of understanding two-dimensional complex

fuzzy logic due to its yet-to-decipher semantic, this network

model is still as transparent as other neural-fuzzy architectures,

which may be useful for some specific purposes, such as

debugging and parameter tuning. Bisecting K-Means cluster-

ing (unsupervised learning) [28], Quasi-hyperbolic momentum

[29], and RLS estimation together as a joint optimization strat-

egy, assuring that the network can quickly converge to a better

global minimum. In terms of excluding non-critical variables,

the mean impact value (MIV) [30] algorithm based on the

RBF network, which has proved to be an effective method

for screening variables, is applied. Finally, the algorithm is

tested on a synthetic dataset, a Sunspot time series dataset,

and two metallurgical datasets which are highly dimensional,

non-linear, and sparse. Experimental results show that the

performance of RACFIS overtly exceeds other well-known

benchmark algorithms.

The remainder of this article is organized as follows: in

Section II, a review of related work on complex fuzzy sets

theory and existing complex neural-fuzzy models is given.

In Section III, the details of RACFIS including network

structure, key variable selection algorithm and optimization

method are outlined. In the fourth section the implementation

of the proposed algorithm is reviewed and the results of

experiments are presented, analysed and discussed. In Section

V, conclusions are drawn and future vectors for research are

outlined.

II. RELATED WORK

A. Complex Fuzzy Theory

The prototype of the complex fuzzy theory (CFT) was

proposed almost as early as the interval type-2 fuzzy logic.

Kaufman [31], Moses [32] and Nguyen [33] successively men-

tioned similar concepts in their works during the period from

1985 to 2000. Despite this, what finally attracted researcher’s

attention around fuzzy systems and made this topic widely

recognized as a new theory of interest was the article from

Ramot et al. [34]. Inspired by the wave-particle duality of

microscopic particles in quantum mechanics, Ramot extended

the concept of fuzzy membership into the complex plane,

defining the modulus of the complex number as the value

of the complex membership, while designating the phase as

the so-called “context”. Hence, the complex fuzzy grade in

Ramot’s CFT is denoted as follows:

ϕs(x) = φs(x) · ejωs(x), j =
√
−1, (1)

where φs(x) and ωs(x) are respectively the modulus and the

phase of the membership function. According to the definition,

the degree of membership is defined in the unit circle of the

complex plane, which delimits φs(x) ∈ [0, 1], whereas ωs(x)
can be arbitrary value. This theory also indicates that the

ordinary type-1 fuzzy set is a special case where the phase

component of the complex fuzzy set is zero. As for the fuzzy

inference logic of above complex fuzzy sets, Ramot et al.

made a more detailed explanation in the subsequent article

[35]. Among this, some of the most important operators for

complex fuzzy reasoning are illustrated. Assume that there

are two complex fuzzy sets A and B within the universe

of discourse U , where set A is the aggregation of a series

of sets A1, A2, A3, · · · , An. The operators for complement,
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union, intersection, and aggregation are given respectively as

equation (2) (3) (4) (5) as follows:

ϕĀ(x) = C[φA(x)] · e(jωĀ(x)), (2)

ϕA
⋃

B(x) = [φA(x)
⊕

φB(x)] · e(jωA
⋃

B(x)), (3)

ϕA
⋂

B(x) = [φA(x) ⋆ φB(x)] · e(jωA
⋂

B(x)), (4)

ϕA(x) = aggregate[ϕA1
(x), ϕA2

(x), . . . , ϕAn
(x)]

=
n
∑

i=1

ωiφAi
(x), (5)

where
⊕

is said to be t-conorm, ⋆ is the representation of t-

norm. In fuzzy mathematics, a t-norm denotes intersection in

a lattice and conjunction in logic, whereas a t-conorm behaves

as a disjunction logic or a union operator. ωA
⋃

B(x) and

ωA
⋂

B(x) can be calculated in numerous ways, such as the

sum of ωA(x) and ωB(x), the maximum or the minimum

between these two, etc. The aggregation operator is in fact

the inner product of the vector, i.e., Ramot’s complex fuzzy

membership degree of its essence is a vector.

Dick [36] introduced the notion of lattice [37] into the

definition of the theory of complex fuzzy sets. According to

Dick’s interpretation, the complex fuzzy sets are divided into

two categories, i.e., the ones with rotational invariance and

the ones without rotational invariance. A complex fuzzy set

is considered as rotationally invariant if and only if function

L : Γ× Γ → Γ, L(pejα · ejk, qejβ · ejk) = ejk ·L(pejα, qejβ)
stands for all elements pejα, qejβ ∈ Γ , in which Γ is the lat-

tice where this CFS belongs to. Dick also noticed that possible

candidates for implication operators, including conjunction,

disjunction, and negation, are conspicuously restricted if a CFS

is rotationally invariant. For instance, the algebraic product

should not be used as the conjunction operator for a CFS with

the rotational invariance since the algebraic product does not

satisfy the definition of rotational invariance. Instead, when it

comes to a CFS without the rotational invariance, algebraic

product may well apply for conjunction operations.

Following this, many researchers have since made futher

valuable contributions in this area as well. Tamir [38], [39]

proposed their own version of CFT which is called the pure

complex fuzzy set. Alkouri et al. [40] developed the no-

tion of complex Atanassov’s intuitionistic fuzzy set (CAIFS).

Yager [41], [42] created the idea of Pythagoras fuzzy set

(PFS). Kumar et al. [43] put forward a complex intuitionistic

fuzzy soft set (CIFSS) as an attempt to extend the original

intuitionistic fuzzy soft set (IFSS) mentioned by Maji [44].

Thirunavukaras et al. [45] proposed the notion of a param-

eterized complex fuzzy soft set which is an upgrade of its

real number counterpart. Li et al. [46], [47] investigated the

property of sphere complex fuzzy sets, in which the truth-

valuation domain is a high-dimensional hypersphere, enabling

the modeling of multiple paralleling variables at a time. Ali

et al. [48], [49] further expanded the concept of PFS by

developing a 3-element membership function composed of

membership, non- membership and indeterminacy, which leads

to a neutron-sophic set for decision-making. Liu et al. [50] put

forward the definition of a complex q-rung orthopair fuzzy set

for multivariate and multiple feature group decision-making.

Singh [51] has created a bipolar δ-equal complex fuzzy set

to describe the inconsistency as well as completeness in real-

world data. Greenfield [52] defined an interval valued complex

fuzzy set by introducing the concept of type-2 fuzzy sets.

B. Complex Neural-Fuzzy Systems

Man et al. [53] proposed a six-layer neuro-fuzzy system

which is considered to be the earliest complex fuzzy inference

architecture, by replacing type-1 fuzzy logic with complex

fuzzy logic in a single-input ANFIS, encouraged a debate over

Adaptive Neuro Complex Fuzzy Inference System (ANCFIS).

Chen et al. [54] further improved this concept, by structuring a

relatively complete ANCFIS framework. Since the architecture

is defined to solve the prediction of quasi-periodic problems,

a sinusoidal fuzzy membership function is employed for this

purpose, which is shown as follows:

r(θ) = d sin(aθ + b) + c, (6)

where the parameters a, b, c, d are said to be premise pa-

rameters. Note that the sinusoidal membership function can

only be used to deal with time series data that has a certain

periodic regularity. To match this function from the aspect

of signal processing, three measurement operations are also

recommended which are the Euclidean distance calculated

through the L-2 norm, the convolution, and the Elliot function,

respectively. Among the three alternatives, the Elliot function

is considered to be the best option:

z
∑n

k=1 xk · [ri(θk) cos(θk) + jri(θk) sin(θk)]

1 + |∑n
k=1 xk · [ri(θk) cos(θk) + jri(θk) sin(θk)]|

, (7)

where θk = k 2π
n ,and n represents the number of elements

inside the input vector. In the following years, Yazdanbakhsh

et al. [55]–[59] studied this architecture further, including

using ANCFIS for solar power prediction [55]; a tool for

time-series prediction [56]; combining ANCFIS with extreme

learning machine [57]; a modification of ANCFIS to allow it to

be applied in multi-input-multi-output (MIMO) tasks [58]; and

a fast adaptive version of ANCFIS which is named FANCFIS

[59]. Yeganejou et al. successfully developed a classifier based

on ANCFIS for condition monitoring [60]. For the most part,

these works mainly focus on the application field, with limited

improvements to the network structure itself. It is worth noting

that, the characteristics of the sinusoidal membership function

can only be used in the case of periodic data or problems

with cyclical behaviour, such as time series forecasting, which

greatly constrain the scale of application.

Li et al. [61], [62] created another strand of complex

neural-fuzzy system based on a novel complex Gaussian fuzzy

membership function, which is shown as follows:

µGaussian(x,m, σ) = exp

[

−0.5(
x−m

σ
)2
]
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− f(
x−m

σ2
) exp

[

−0.5(
x−m

σ
)2
]

j, (8)

where x is said to be the base variable, m is the mean of a

gaussian function while σ is the spread. Thus, the parameter

set for this membership function is {m,σ}, which is also

the premise parameter set for a single node. Compared with

the sinusoidal membership function used in ANCFIS, the

Gaussian complex membership function here can play the role

of a ‘universal approximator’ for almost all purposes, rather

than only for periodicity forecasting. For the objective CNFS,

the complex fuzzy inference system is cast into a five-layered

network if the input layer is not counted as one, which is

the same as the classical ANFIS structure. With the help

of the Particle Swarm Optimization (PSO)-Recursive Least

Square Estimating (RLS) hybrid optimization algorithm that

applies PSO algorithm to optimize the antecedent parameters

and the RLS algorithm to optimize the subsequent parameters,

the network can achieve excellent nonlinear approximation

performance. It has been confirmed [61], [62] that the CNFS

architecture is effective in its adaptive capability than its type-

1 fuzzy logic counterpart. The dual-output attribute ensures

the approximation of two functions concurrently in a CNFS

network, which enhances its ability to solve complicated

problems with multiple principles. Not the least of which,

although only very few fuzzy rules are employed within the

network, CNFS can still have a better performance than most

of the similar architecture which only applies type-1 fuzzy

logics. At present, this design has been successfully used in

several application scenarios, such as image restoration [63],

image noise canceling [64], knowledge discovery [65], time

series forecasting [66], ARIMA forecasting [67] and multi-

class prediction [68]. However, the deficiency of this algorithm

is also notable. The derivative-free optimization method, such

as PSO or artificial bee colony, is not efficient enough. Com-

pared with gradient methods, these derivative-free algorithms

usually require more computing resources, and randomness

will inevitably exist in experimental results, which often leads

to multiple experiments needed to obtain ideal results. This

is unacceptable for applications with real-time requirements.

In addition, such architecture is rather sensitive to the initial

values of the antecedent parameters. If the outcome of random

initialization happens to be inappropriate, the network may

fail to converge or may converge to a local optimum. In other

words, CNFS lacks a mechanism to effectively pre-determine

antecedent parameters, which further increases the uncertainty

of the results.

In fact, apart from the above two algorithms, other re-

searchers have as well proposed neuro-fuzzy systems using

complex-valued fuzzy membership functions, inclusive of AC-

NFIS [69] as proposed by Shoorangiz et al., CNFIS [70]

defined by Subramanian et al. and CVNF [71] investigated by

Ryusuke et al. Note that despite the fact that there are ”com-

plex” and ”fuzzy” concepts in the names of these architectures,

they are not however essentially complex fuzzy neuro-fuzzy

systems. The key aspect is that the complex fuzzy logic was

never applied as operating rules to such models, and where

only the form of the complex fuzzy membership is taken to

reduce the size of the network to construct a more compact

system. In other words, they are still variants of the type-1

algorithm, which cannot be considered to be complex neuro-

fuzzy systems in the strict definition of the word ”complex”.

III. METHODOLOGY OF THE PROPOSED ALGORITHM

In this section, the architecture of the network, the unsuper-

vised parameters that pre-train the method, the optimization

strategy, and the variable screen algorithm are detailed. As

will be explained, RACFIS that subjects to the complex fuzzy

logic basically inherits the network structure of CNFS, and

employs a similar complex Gaussian membership function.

Assume the objective network has k inputs and one output,

then the ith fuzzy rule can be represented as follows:

Rule i : IF l1 is Ai
1(x1) and l2 is Ai

2(x2), . . . , and lk is Ai
k(xk).

According to the defuzzification strategy of Sugeno method,

the output zi of this rule is as follows:

zi = ai0 +
k
∑

j=1

aijxj , i = 1, 2, . . . , n, (9)

whereAi
j(xj) is the jth antecedent of the ith fuzzy rule,aij is

the corresponding consequent parameter. However, the non-

derivative optimization method from the original CNFS is

ignored, and the recently proposed three-parameter gradient

momentum method, i.e., Quasi-hyperbolic momentum, is used

instead to optimize the antecedent parameters. Regarding the

consequent part, the recursive least square is taken as the opti-

mal policy. Moreover, Bisecting K-Means as an unsupervised

learning method is also applied to pre-train the antecedent

parameters, while the RBFN-based MIV algorithm is utilized

to select the variables. A general schematic diagram of the

RACFIS is given in Fig. 1.

Fig. 1. RACFIS algorithm flow.

A. Network Structure of RACFIS

RACFIS is closely related to the CNFS model, which has al-

ready been mentioned above. The network is a five-layer struc-

ture as shown in Fig. 2. The operation of each layer of the net-

work with the input vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T

and output y(t) at time t is presented as follows:
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Fig. 2. The illustration of the main structure of RACFIS. Xi in the figure
represents input variable, Ri denotes a complex fuzzy rule, Ni is the
normalization of the product of each rule, Di is the outcome of Sugeno
defuzzification, and S denotes the sum of all results which is identical to the
output of the network, i.e., y.

Layer 1: This is the fuzzification layer in which the real

inputs are transferred into fuzzy membership grades with the

simplified complex Gaussian membership function as follow:

Oi
1,j(t) = exp

(

−
(x(t)− µi

j)
2

2bij

)

− j exp

(

−
(x(t)− µi

j)
2

2bij

)

x(t)− µi
j

bij
δij , (10)

where Oi
1,j(t) denotes the membership of the ith rule of the

jth input, and {µi
j , b

i
j , δ

i
j} is the antecedent parameter set for

each rule.

Layer 2: This layer is for calculating the firing strength of

the inference system, in which a complex multiplication is

applied as follows:

Oi
2(t) =

n
∏

j=1

Oi
1,j(t) =: αi

j(t) + jβi
j(t), (11)

αi
j(t) = γi(t)



1−
n
∏

j=1

(xj(t)− µi
j)

bij
δij



 , (12)

βi
j(t) = −γi(t)

n
∑

j=1

xj(t)− µi
j

bij
δij , (13)

γi(t) = exp



−
n
∑

j=1

(xj(t)− µi
j)

2

2bij



 , (14)

where Oi
2(t) is the strength of the ith firing and αi

j(t), β
i
j(t)

represent the value of real part and imaginary part of the fuzzy

membership grade, respectively.

Layer 3: The normalization layer for relevant firing

strengths. Here, complex division is used to perform normal-

ization, so that the two dimensions of information can be fully

interacted. For simplicity, formulas (12) and (13) are used here

to simplify the expression:

Oi
3(t) =

Oi
2(t)

∑K
r=1 O

r
2(t)

=
αi(t) + jβi(t)

∑K
r=1 α

r(t) + j
∑K

r=1 β
r(t)

, (15)

where Oi
3(t) is the normalized value of ith node in this layer.

Layer 4: Each node in layer 4 is an adaptive node, in which

the Sugeno method is applied to calculate the output of each

fuzzy reasoning with the consequent parameters:

Oi
4(t) = Oi

3(t) · (pi0 +
n
∑

j=1

pijxj(t)), (16)

where Oi
4(t) is the output of each node and

{pi0, pi1, pi2, . . . , pin} is the set of consequent parameters.

Layer 5: Only one single node is in this layer, the function

is to obtain the overall output of the network. In this case,

only the real part of the complex output is utilized.

O5(t) = Re

K
∑

i=1

Oi
4(t), (17)

where “Re” means the real part of the complex number, O5(t)
is the overall output of the neuro-fuzzy system and K is the

number of fuzzy rules for each input. To perform a real value

regression task, it would be incorrect if the output result is

a complex number. This operation of converting a complex

membership degree defined in the complex plane into a real

value is essentially a step of CFS defuzzification. So far, some

attempts have been made to achieve this purpose including the

dot product (ANCFIS), the projection on the real axis (CNFS),

or the modulo operation. For a complex fuzzy membership

function defined in a polynomial form, its projection on the

real axis equals the real component, which makes it the best

strategy to directly use the real part of the final inference

result as the actual defuzzified output. Additionally, directly

employing the real part as network result does not change

the mapping relation between the fuzzy antecedents and the

output, making it possible to use the unsupervised convex

clustering method to pre-train the antecedent parameters.

Similarly to many other neural networks based on Gaussian

functions, the mean square error (MSE) function is used as

the cost function for network optimization. There are three

reasons for this choice. First, the use of the MSE function

is convenient since we can easily find its derivative. Sec-

ond, assuming that the error between the predicted output

and the real output complies with a Gaussian distribution,

the minimum MSE error is essentially consistent with their

maximum likelihood estimation [72], which makes the MSE

the ideal candidate for measuring the loss of a regression

process. Last but not least, the MSE cost function gener-

ally leads to a faster convergence. Assume that there are

N input-output pairs {x1(t), x2(t), . . . , xn(t), y(t)}Nt=1, the

corresponding MSE function is as follows:

MSE =
1

2N

N
∑

t=1

(O5(t)− y(t))2, (18)

B. Bisecting K-Means

The primeval k-means algorithm was first proposed respec-

tively by Lloyd [73] and Kanungo et al. [74]. To divide a

dataset into k clusters, the basic k-means first initializes k
centroids ξ1, ξ2, . . . , ξk, then computes the distance between
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each point xi and the centroid ξj . Every point is further

assigned to the nearest cluster according to the point-to-center

distance. Therefore, the updated centroids are obtained as

follows:

ξj =
1

|cj |
∑

x∈cj

x (19)

where cj denotes the jth cluster and j = 1, 2, . . . , k. The

optimized clusters can be achieved by repeating the above pro-

cess when stopping condition is satisfied. Traditional k-means

algorithm has a manifest flaw that manual determination of the

cluster centers is required, but manually selected centroid is

not precise enough, which largely affects the accuracy of the

algorithm. For tackling this, the k-means++ algorithm [75]

has been developed with the ability to automatically select

the centers. This method randomly selects cluster centers,

then refines the centroids through multiple iterations to obtain

the optimal clustering scheme. However, this solution causes

randomness as well as local optima.

Steinbach et al. [28] introduced the idea of hierarchical

clustering into the modification of basic k-means, leading

to a new top-down clustering algorithm which is named as

bisecting k-means. Similarly to k-means++, this algorithm

also stochastically chooses clustering centers, but it effectively

avoids local optima with the help of a binary decision tree.

During the execution of the algorithm, all data is first regarded

as a cluster, and then the cluster is divided into two, using

ordinary k-means. According to the maximum SSE (sum of

the squared errors) principle, the cluster which has the largest

SSE will be split again. The above operations are repeated

multiple times until the data is classified into k different

clusters. Although the result obtained still has a certain degree

of randomness, it can assure the outcome to be closer to the

true global optimum. Bisecting k-means is a fast and efficient

method. The computational speed is faster than traditional k-

means or k-means++ especially when k is large. The detailed

steps of bisecting k-means are shown as follows:

Algorithm 1 Bisecting K-Means.

Step 1. Manually decide on the number of clusters k. (In

this paper, k must be identical to the number of fuzzy rules.)

Step 2. Initialize the objective data set, generalize a cluster

which contains all data points.

Step 3. Bisect the cluster using basic k-means (k = 2) by

randomly opting two centroids.

Step 4. Estimate the SSE of two clusters, pick up the one

with the larger SSE as the next target to split.

Step 5. Go back to Step 2, carry out following steps

repeatedly until the overall cluster number is equal to k.

C. Quasi-Hyperbolic Momentum (QHM) Optimization

Currently, excluding the stochastic gradient methods such

as SGD [76] and Adam [77], the gradient-momentum method

such as heavy-ball [78] and Nesterov [79] are also widely

applied. Such methods usually have two hyperparameters to

determine, one is the learning rate, and the other is related

to the momentum. Hu et al. [80] compared the first-order

optimization method with the classic control theory, confirm-

ing that the gradient optimization process is essentially a PID

controller. A PID controller has three linear independent pa-

rameters, namely proportional (P), integral (I), and derivative

(D) terms. The essence of the momentum is the influence of

historical gradients on the current process, which is analogous

to the function of a lead-lag compensator in a PID control

problem.

Motivated by this, the multi-parameter gradient-momentum

optimization methods are receiving attention since they may

be better adapted to the optimization surface, especially when

it is non-convex, thereby improving the performance of the

algorithm. The Quasi-hyperbolic momentum [30] algorithm is

one of them, where the learning rate α, the immediate discount

factor v and the momentum discount factor β constitute

the hyperparameter space of the algorithm. Note that if one

considers β as a free variable, the mathematical expression

of QHM can be written in the form of a PID. The idea

of quasi-hyperbolic momentum is initially revealed by an

informal and conjectural variance reduction analysis, for which

a plain explication is the average of the momentum and regular

gradient drop that weighted by v. The ordinary definition

of the heavy-ball momentum firmly relates the exponential

discount factor β to the contribution of the immediate gradient.

But the role played by the QHM directly originates from

decoupling the momentum from the impact of current gradient

(with deterministic setting), as well as decoupling the gradient

square mean from the current gradient square (with stochastic

setting) when updating the weights. The update rule for the

QHM optimization using deterministic setting is written as

follows:

g(k + 1) = βg(k) + (1− β)∇f(x(k)) (20)

x(k + 1) = x(k)− α[(1− ν)∇f(x(k)) + νg(k + 1)], (21)

where α, β, v ∈ R,∇f(x(k)) represent the first-order deriva-

tive of the optimization object,(1− ν)∇f(x(k)) + νg(k + 1)
denotes the modulo initialization bias which is a gradient

estimator in short, and g(k) can be viewed as the momentum

buffer. Under normal circumstances, the value of ν is 0.7 and

the value of β is 0.999, which means that in most cases such

algorithm can be applied like a single parameter method by

only adjusting the learning rate.

D. Recursive Least Square (RLS) Estimation

Traditionally, the consequent part of a Sugeno fuzzy system

is updated utilizing the offline least square (LS) method, which

is less effective than the online method. Kalman filtering can

also be used to update the parameters, but in the absence of

any additional knowledge of the target, this only increases the

computational complexity without leading to any significant

benefits. Therefore, the RLS which satisfies the requirement

for online learning as well as computational efficiency, is

employed here as the updating method for the consequent part

of the RACFIS network. Assume the function of the model is

written as follows:

YL = ϕLθ̂ + ωL, (22)
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where ϕL is the system matrix, θ̂ is the vector for the input

variables, YL is the output vector, and ωL is the vector of

system error or noise. To estimate θ̂ at the kth recursion,

according to the principle of the least square estimation, the

following equation set is obtained:

θ̂(k) = (ϕT
k ϕk)

−1ϕT
k Yk

ϕk = [ϕT
k−1, φ(k)]

T (23)

Yk = [Y T
k−1, y(k)]

T ,

where φ(k) and y(k) are the system vector and output vector

for the kth input-output pair, respectively. Here, it is specified

that the equation starts from φ(0), i.e., k = 0, 1, , n− 1. Now,

define P (k) = (ϕT
k ϕk)

−1, we can easily obtain:

P (k) = [P−1(k − 1) + φ(k)φT (k)]−1, (24)

Substitute equations (22) and (23) into the representation of

the matrix inversion (A+ BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1, where in this case A = P−1(k − 1), C =
I, B = φ(k) and D = φT (k). Then, the following equation

can be achieved:

P (k) =

[

I − P (k − 1)φ(k)φT (k)

1 + φT (k)P (k − 1)φ(k)

]

P (k − 1), (25)

Consider that θ̂(k) = (ϕT
k ϕk)

−1ϕT
k Yk and P−1(k)θ̂(k) =

ϕT
k Yk, therefore the ultimate form of θ̂ at the kth recursion

is:

θ̂(k) = θ̂(k − 1) + P (k)φ(k)[y(k)− φT (k)θ̂(k − 1)], (26)

For the implementation of RLS estimation, equations (25) and

(26) constitute the update rule. Regarding the initialization of

the algorithm, φ(0) is set to be zero vector while the start of P
is given as P (0) = αI , where α usually takes a large positive

number, I is the identity matrix.

E. Bisecting K-Means, QHM and RLS joint optimization for

RACFIS

In this paper, a joint optimization method utilizing bisecting

k-means, QHM and RLS is proposed. A key factor for this

method to work is to ensure that all data is normalized

in the interval [0, 1] before application to the model. After

the normalization process, bisecting k-means clustering is

used to pre-train the antecedent part of the network for

the purpose of having a faster convergence as well as a

better result which is closer to the true global optimum.

{µi, bi, δi}, i = 1, 2, . . . , N is the set of the antecedent

parameters, where µi is the center and bi is the width of each

complex Gaussian membership function. Applying bisecting

k-means to operate on the entire training set, a set of cluster

centroids C = {c1, c2, . . . , ci, . . . , cN} is generated and at

the same time the sum of the distances from all points in

each cluster to the centroid is achieved, which is denoted as

D = {d1, d2, . . . , di, . . . , dN}, where di =
∑n

k=1(x
k
i − ci).

We determine the value of {µi, bi, δi} as follows:

µi = ci, b
i = ρ

n
∑

k=1

(xk
i − ci), δ

i = 1, (27)

where xk
i is the coordinate of each individual data point in

the ith cluster, ρ denotes the expansion coefficient, which is

valued between 0.8 and 0.95, and n is the number of points

in this cluster.

As a result of clustering, the network is initialized at a

position closer to the global minimum than that of a random

initialization, but a gap with the optimal solution is still there.

To implement QHM, combine the equations (20) and (21), the

following expression of the update rule is achieved as follows:

x(k + 1) = x(k)− α[(1− νβ)∇f(x(k)) + νβg(k)], (28)

where α is the initial learning rate, β is the exponential

discount factor, v is the immediate discount factor, g(k) =
βg(k− 1)+ (1−β)∇f(x(k− 1)) is the momentum buffer of

each parameter, and e(k) = Output(k)−y(k) is the error of the

kth iteration. As mentioned above, each rule has three different

antecedent parameters{µi
j , b

i
j , δ

i
j}. By substituting them into

formula (28), the iterative results of each parameter in each

step can be achieved. The expression for the parameter set at

iteration k + 1 is as follows:

µi(k+1) = µi(k)−α[(1−vβ)e(k)
∂e(k)

∂µi

∣

∣

∣

∣

µi=µi(k)

+vβgiµ(k)]

bi(k+1) = bi(k)−α[(1−vβ)e(k)
∂e(k)

∂bi

∣

∣

∣

∣

bi=bi(k)

+vβgib(k)]

(29)

δi(k+1) = δi(k)−α[(1−vβ)e(k)
∂e(k)

∂δi

∣

∣

∣

∣

δi=δi(k)

+vβgiδ(k)].

After updating the non-linear antecedent parameters by

QHM, the linear antecedent part is updated using RLS. For

i = 1, 2, . . . , q, to update the consequent part at kth iteration,

the following two variables are derived:

θ̂ = [(θ1)T , (θ2)T , . . . , (θq)T ],

φ(k) = [(φ1(k))T , (φ2(k))T , . . . , (φq(k))T ], (30)

where θi = [ai0, a
i
1, . . . , a

i
q]

T and

φi(k) = [λi
R, χ1(k)λ

i
R, . . . , χq−1(k)λ

i
R]

T ,

λi
R is the real part output of the corresponding normalization

node. By substituting θ̂, φ(k) into equations (25) and (26), the

updated parameters can be determined, which can be directly

applied to the next step. To optimize the objective function

(18) of the network, the clustering process only needs to be

implemented once, whereas the QHM-RLS refining process is

supposed to be repeated iterations until the model satisfies the

error requirement or reaches the maximum epoch setting. The

whole parameter adapting operation is shown as Algorithm 2.
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Algorithm 2 Bisecting K-Means, QHM and RLS joint opti-

mization (proposed).

Step 1. Split the data set into training set and testing set.

Step 2. Normalize the data set to the interval [0, 1]. Note that

training set and testing set should be normalized separately.

Step. 3 Initialize the antecedent part of the parameter set

{µi, bi, δi} using the information obtained by clustering.

Step. 4 Calculate the output of the architecture with the

original settings, derive the error by e(k) = Output(k) −
y(k).
Step. 5 Refine the antecedent part (non-linear) of the net-

work by QHM optimization method.

Step. 6 Estimate the consequent part (linear) with RLS

estimation.

Step. 7 Calculate the output of the architecture, derive the

error bye(k) = Output(k)− y(k).
Step. 8 Repeat Step. 5 Step. 7 until the stopping criterion

is satisfied.

F. MIV-RBFN Algorithm for Variable Analysis

Normally, principal component analysis (PCA) [81]–[83] is

applied to select variables. However, as a linear method it

does not perform well on highly non-linear data sets. Kernel

PCA [84] is an extension of the conventional PCA, which

can linearize non-linear features by mapping them into the

Hilbert space via the kernel functions. Although this method

is more effective with non-linear data, difficulties still exist to

choose a suitable parameter configuration in the absence of

prior knowledge of the data set, due to the need to manually

adjust the settings.

For RACFIS, an MIV [30] algorithm integrated with the

RBF network is employed to evaluate the variables for RAC-

FIS when it comes to the real-world data. The RBF network

has an intuitive structure, easy training, and fast convergence.

It is capable of approximating arbitrary non-linear functions

and shares inherent similarity with neuro-fuzzy systems, which

makes it a suitable candidate as a referee network for the

variable selection algorithm of the RACFIS network. It is

worth noting that the MIV algorithm here should not a di-

mensionality reduction algorithm. It generally relies on a pre-

trained neural network as a supervisor. It judges the importance

of variables by comparing the difference between two special

network output vectors, where one is generated by an input

vector that is a certain percentage larger than the original

counterpart and another one is obtained by an input vector

which is the same percentage smaller. When implementing the

algorithm, only the referee network needs to be trained without

the need of prior knowledge of the data. The mean impact

value is considered as one of the most effective indicators

for evaluating variable importance. The entire implementation

process is given by Algorithm 3.

IV. EXPERIMENTAL RESULT

This section includes four experiments to validate the pro-

posed RACFIS architecture, and all simulations were based

on MATLAB 2022b. Some benchmark models run for the

tests were from MATLAB’s built-in toolbox, while the rest

Algorithm 3 MIV-RBFN Algorithm.

Step 1. Initialize a RBF network, train the network with

original input set χT = {X1, X2, . . . , Xq}, q ∈ N+,

where XT
k = {xk

1 , x
k
2 , . . . , x

k
i , . . . , x

k
n}, k = 1, 2, . . . , q, i =

1, 2, . . . , n;n is the dimension of an input vector.

Step 2. Gradually increase the number of RBF kernels until

the network accuracy reaches the setting value, denote the

optimized network structure as function Gop(X, a), where

x is the input set and a is the parameter vector.

Step 3. Generate two new input sets, where χT
increase

=

χT ·(1+η), χT
decrease

= χT ·(1−η) and η is the adjustment

rate.

Step 4. Run the network Gop(X, a) with inputs χT
increase

and χT
decrease

respectively, obtain the output vectors

Gop(χ
T
increase

, a) and Gop(χ
T
decrease

, a).
Step 5. Calculate the MIV of each variable: MIV(xi) =
abs[Gop(χ

T
increase

, a)−Gop(χ
T
decrease

, a))]/q.

were programmed from scratch. Note that some results directly

came from the literature.

A. Performance Index

To more comprehensively evaluate the performance of the

proposed architecture, MSE, STD [85], RMSE [86], MAE [87]

and SMAPE [88] are utilized to measure the performance of

the algorithm. The associated mathematical expressions are as

follows:

STD = (
1

N − 1

N
∑

i=1

(yi − u)2)1/2 (31)

RMSE = (
1

N

N
∑

i=1

(yi − wi)
2)1/2 (32)

MSE =
1

N

N
∑

i=1

(yi − wi)
2 (33)

MAE =
1

N

N
∑

i=1

|yi − wi| (34)

SMAPE =
100%

N

N
∑

i=1

2 ∗ |yi − wi|
|yi|+ |wi|

, (35)

where N is the number of samples,u is the overall average of

the samples, wi represents the actual value of each sample,

and yi denotes the observed value.

B. Synthetic Data Test

The synthetic data is produced by the ”tooth” function [61],

f(x) = 0.08× {1.2× [(x− 1)× (cos(3x))]

+ [(x− (x− 1)× (cos(3x)))× sin(x))]}, 3 ≤ x ≤ 7, (36)

in which 200 training data points sampled from [3,7] with

intervals of 0.02 while 50 test points sampled with intervals

0.08 within the same scale. More details of the test are
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given in TABLE I and the visualized outcome is shown in

Fig. 3. Apparently, both models have achieved good results.

However, RACFIS is superior to CNFS in nearly all aspects

under the premise of the same number of rules. RACFIS

performs better in areas with steep changes, and the testing

error and the number of epochs required are both a magnitude

smaller than CNFS. In addition, given that the optimization

methods of RACFIS and CNFS both have a certain degree of

randomness, apart from selecting the most ideal experimental

data, we also conducted 20 random tests and recorded the

MSE values. The Kruskal-Wallis [89] test was employed to

compare the obtained MSEs of those two models from the

statistical aspect. In this test, we assume that two objects

have no statistical difference, thus a p-value less than 0.05

suggests a statistically significant difference between the two

models. In fact, a p-value of 0.0138 was obtained, which is

enough to reject the null hypothesis, i.e., it can be concluded

that the performance of RACFIS is better than that of CNFS

statistically. In addition, TABLE I also gives the training

complexity of RACFIS and CNFS on the data dimension m
and the number of samples n. It can be seen that RACFIS

is only sensitive to the input dimensionality, while CNFS is

sensitive to both dimensionality and data volumes, meaning

that RACFIS is much more competitive when processing a

large amount of data.

TABLE I
COMPARISON OF CNFS AND RACFIS OVER SYNTHETIC TEST.

MSE Rules Settings Iterations Complexity

CNFS 1.8691×10−4 9 650 (Population) 200 O(mkm + n!)
RACFIS 1.3445×10−5 9 10−6 (Step size) 10 O(mkm)

Fig. 3. Comparison between CNFS and RACFIS on ”Tooth” function test
for ∈ [3, 7].

C. Sunspot Time Series Test

Sunspot data deployed in this test includes sunspot activity

recorded between 1976 to 1992, which can be downloaded

from World Data Center for the Sunspot Index (SIDC) [90].

The dataset comprises a total of 2000 single value samples.

Naturally, to implement this experiment, each input-output

data pair is constructed as {y(τ − 1), y(τ); y(τ + 1)}, τ =
2, 3, . . . , 2000, in which the next sunspot state is predicted

by the value of the current moment as well as the previous

moment. Generated data points are firstly normalized between

0 and 1, then equally divided to get training set and test set.

The results of the experiment on RACFIS and benchmark

models are shown in TABLE II. The visualized prediction

outcome is given in Fig. 4.

TABLE II
COMPARISON BETWEEN ALGORITHMS OVER SUNSPOT TEST.

Testing MSE Rules Max epoch

SARIMA [91] 6.5733× 10−3 - -

Elman-NARX [92] 1.4078× 10−4 - 200

NFS [66] 8.5112× 10−5 5 300

CNFS 4.1490× 10−5 5 300

RACFIS 4.1045× 10−5 3 30

Fig. 4. RACFIS performance on Sunspot test. The left side of the black
dividing line in the figure is the prediction effect on the training set, and the
right side is the performance on the test set.

According to TABLE II, the accuracy of RACFIS is far

beyond SARIMA [91] (an ARIMA variant for periodic time

series forecast). Elman-NARX [92] (a branch of recurrent

neural network) and NFS [66] (ANFIS with PSO-RLSE

optimization) are also largely inferior to RACFIS regarding

sunspot forecasting, which is in line with the advantage that

complex fuzzy models show when dealing with periodicity.

Compared with CNFS, which is also based on complex fuzzy

logic, the performance between the two is basically the same,

but RACFIS only uses 3 rules and 30 iterations of training

to achieve the performance that CNFS needs 300 iterations

and 5 rules to achieve. The superiority of the proposed hybrid

optimization algorithm for RACFIS is self-evident.

D. Charpy Impact Data Test

Metals are crystalline substances, in which physical and

chemical properties depend on the structure and type of atoms

that constitute their crystal lattice [93]. Since all phenomena

happen on the level of atomic size, even subtle changes in alloy

composition may have a great impact on its attributes, which

also indicates that the influence of composition on characteris-

tics is highly non-linear. The Charpy impact property measures

the capacity of assimilating the fracture energy of a material.

Here, a data set with 16 input dimensions, single output and

830 data points is applied to implement the experiment. Such

data set is tricky for traditional modeling methods due to its

discontinuity, scatter in measurements and non-linearity, which
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Fig. 5. 3D density plots between variable pairs ”C” and ”Ni”, ”Mn” and
”Si”, ”Mo” and ”Cr”, and ”T-temp” and ”Size”.

is partially visualized in Fig. 5. In addition, the MIV algorithm

is used to sort it first on the purpose of ranking the contribution

of each variable. The results are given in TABLE III.

TABLE III
MIV OF EACH VARIABLE IN CHARPY IMPACT TEST.

Input Variable Adjustment Rate

10% 20% 30%

C 0.9866 1.9678 2.9380
Si -1.2596 -2.5154 -3.7635
Mn 1.6863 3.3569 4.9896
S 0.0565 0.1129 0.1694
Cr 3.5733 6.9862 10.0912
Mo 1.4240 2.8452 4.2610
Ni 0.6321 1.2629 1.8956
Al -0.0041 -0.0082 -0.0123
V -0.2822 -0.5644 -0.8465
Hardening Temp 0 0 0

Tempering Temp 148.9641 -45.7167 1.5452×10−6

Impact Temp 12.6622 29.7544 -46.9750
Sample Size -2.0193 -1.8219 0.0686
Test Depth 0.6174 0.0207 0.0207

Category symbol

Coded Site -0.7666 -1.2536 -1.3499
Cooling Medium -0.2611 -0.4680 -0.5806

According to the absolute value of MIV, the following

9 variables are shown to be more significantly influencing

factors, which are C, Si, Mn, Cr, Mo, Ni, Sample Size,

Tempering Temperature, and Impact Temperature. To this

point, the analysis of the variables in the data set is completed.

In this experiment, the first 600 sample-points are used as the

training set, while the rest 230 are taken as the test set. The

network setting for this experiment is given in TABLE IV.

As it can be seen from Fig. 6, after pre-training of the

antecedent parameters by the bisecting k-means clustering,

plus the proposed QHM-RLS hybrid algorithm adopted for

refining, the network converged to a very small MSE value at

the second epoch, which is rather close to the final optimal

solution after 10 epochs. The comparison between the network

prediction and the target output value is given in Fig. 7 and

the result regression plot under 90% confidence is displayed in

Fig. 8. Moreover, in TABLE V the overall performance of the

proposed RACFIS regarding performance indices as well as

the number of epochs required in the experiment is compared

with other nine algorithms, either. RACFIS outperforms algo-

rithms listed in the table for comparison from the perspective

TABLE IV
THE PARAMETER SETTING OF RACFIS FOR CHARPY TEST.

Bisecting k-means clustering for antecedence initialization

Number of clusters
for each variable k

6
Expansion
coefficient ρ

0.95

QHM RLS estimator

Learning rate α 10−5

Initial consequent
parameter ai, for
i = 1, 2, . . . , q

0.3

Immediate
discount factor v

0.7 P0 α ∗ I

Momentum
discount factor β

0.999 α 106

Max epoch 10 I
60*60 Identity
matrix

Initial momentum
buffer g(0)

0 θ0
60-dimension
zero vector

Fig. 6. The value of the MSE cost function over the learning process for
Charpy data test.

of RMSE, MAE and SMAPE, and achieves this performance

with only 10 iterations. STD indicator reflects the degree of

dispersion of the output data itself. Obviously, the outputs from

RACFIS have a lower prediction error with a higher degree

of dispersion, which indicates a remarkable generalization

capability. In terms of the comparisons with other fuzzy

systems, the performance of RACFIS also surpasses GrC-NF

[100] (granular modeling); Q-ANFIS [101] (fuzzy C-Means

clustering and quantum membership functions); interval type-

2 model [102] (Sugeno defuzzification); and CNFS which has

the similar complex fuzzy logic. Except for the same number

of rules as Q-ANFIS, the number of rules required by RACFIS

is less than that of all non-complex fuzzy inference systems.

TABLE V
COMPARISON OF THE PERFORMANCE (CHARPY DATA TEST).

STD MAE SMAPE RMSE Rules Epoch

BP [94] 25.2233 16.9010 21.2874 20.8389 – 200
RBF [95] 30.9238 14.7211 19.5694 20.1443 – 100
GRNN [96] 22.7647 16.0598 19.0444 22.0339 – 100
LSTM [97] 24.9117 17.0228 21.5417 21.2242 – 200
DBN [98] 27.2085 16.2536 20.2341 20.1211 – 50
SVR [99] 26.3198 13.9911 17.8943 19.2947 – 30
GrC-NF [100] – – – 20.4200 9 200
Q-ANFIS [101] – – – 18.1700 6 100
IT2Sugeno [102] – – – 19.6500 8 100
CNFS 25.7738 16.3243 22.4266 20.5506 6 100
RACFIS 27.2434 13.5313 17.8632 17.1872 6 10
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Fig. 7. Performance of RACFIS in Charpy energy prediction. The part on
the left of the black line is the comparison between the predicted results of
the training set and the actual value. The right side is the same but for the
performance on the test set. Approximation error is also given in the figure.

Fig. 8. Result regression plot for Charpy energy prediction.

E. Ultimate Tensile Strength (UTS) Data Test

The ultimate tensile strength is defined as the peak of

engineering stress in a stress-strain curve [103]. Within the

data set, 15 input variables that correspond to an output

dimension, with 3760 data points. This high dimensional data

is tricky for its non-linearity, large interaction between input

variables, measurement error of industrial process, and the

data sparsity. Such characteristics of the data can be partly

reflected in Fig. 9. Apart from this, extra 12 data points with

similar input values but different outputs are taken as the

validation set in order to measure the generalization capacity

of the model. Regarding these 12 abnormal points, there are

three reasons for them to exist, including human errors in data

entry, missing dimensions, and measurement errors, which are

also inevitable in other real-world data sets. This validation

process can further test the performance from a higher level

of universal applicability. The result of MIV analysis on the

UTS data is shown in TABLE VI.

Here, according to the MIV value, 10 variables should be

selected as the inputs to the network, which are C, Mn, Cr, Mo,

Ni, Site, Tempering Temperature, Cooling Medium, Sample

Size and Test Depth, respectively. 1000 randomly selected data

points from the original data set are given to form the training

set, while another 500 are taken as the test set. The network

parameter settings of the experiment are shown in TABLE VII.

The training curve is presented in Fig. 10, the prediction re-

sult of the network is shown in Fig. 11 and the result regression

with 90% confidence bonds is given in Fig. 12. Analogous to

Fig. 9. 3D density plots of variable pairs ”C” and ”Mn”, ”Mo” and ”Si”,
”Ni” and ”Cr”, and ”Test-Depth” and ”Size”.

TABLE VI
MIV OF EACH VARIABLE IN ULTIMATE TENSILE STRENGTH TEST.

Input Variable Adjustment Rate

10% 20% 30%

C 8.1864 16.3605 24.5097
Si 0.0794 0.1594 0.2404
Mn -10.3150 -20.4747 -30.3276
S -0.0723 -0.1445 -0.2168
Cr -15.0656 -29.7948 -43.8615
Mo -3.0059 -6.0067 -8.9937
Ni -37.5670 -74.1685 -108.8752
Al -0.3721 -0.7443 -1.1164
V -0.1084 -0.2169 -0.3253
Hardening Temp -0.0017 0 0
Tempering Temp 224.3830 274.6474 -482.3313
Sample Size -830.1928 -624.7182 1321.7
Test Depth -25.7766 -35.7784 -64.4520

Category symbol

Site -242.2889 -454.9862 -609.9973
Cooling Medium -179.3221 -344.4547 -482.3313

the case in the Charpy data test, the network error rapidly

decreased to a relatively low level with the first 2 iterations

and after that the error of the network still improved noticeably

over the increase of the number of iterations, until this trend

to be almost flat around the 20th epoch. In TABLE VIII, the

performance of RACFIS is compared with other algorithms. It

can be seen from the table that referring to the prediction error

indicators, RACFIS has a very good performance, surpassing

all the algorithms mentioned in the comparison. In comparison

with other fuzzy algorithms, RACFIS only needs 5 rules to

obtain a comparable accuracy that is achieved by IMOFM

Fig. 10. The value of the MSE cost function over the learning process for
UTS data test.
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TABLE VII
THE PARAMETER SETTING OF RACFIS FOR UTS TEST.

Bisecting k-means clustering for antecedence initialization

Number of clusters
for each variable k

5
Expansion
coefficient ρ

0.95

QHM RLS estimator

Learning rate α 10−6

Initial consequent
parameter ai, for
i = 1, 2, . . . , q

0.3

Immediate
discount factor v

0.7 P0 α ∗ I

Momentum
discount factor β

0.995 α 106

Max epoch 10 I
55*55 Identity
matrix

Initial momentum
buffer g(0)

0 θ0
55-dimension
zero vector

Fig. 11. Performance of RACFIS in UTS prediction. The left side of the
black line is the comparison between the network outputs of the 1000 training
samples and the target values. The right side is with the same narrative for
500 testing data points. Approximation error is shown in the figure as well.

[104] (Mamdani type-1), MOIT2FM [105] (Mamdani type-

2) and IT2-Sugeno with 6 rules, not to mention that it only

requires 20 epochs to converge. Even though CNFS includes

a similar complex fuzzy logic as RACFIS, it needs far more

iterations than RACFIS owing to the limitations of the PSO

optimization as well as the random initialization of parameters.

The adoption of the clustering algorithm in RACFIS solves this

problem well. In summary, RACFIS has proven to be able to

achieve an excellent performance with the smallest number of

iterations compared with other algorithms listed in the case of

the UTS test.

As already stated, the UTS data set also has a valida-

Fig. 12. Result regression plot for UTS prediction.

TABLE VIII
COMPARISON OF THE PERFORMANCE (UTS DATA TEST).

STD MAE SMAPE RMSE Rules Epoch

BP 150.9674 32.1335 3.4460 44.4965 – 200
RBF 149.2079 41.2173 4.4341 54.1319 – 100
GRNN 153.8146 39.2092 4.1841 56.5168 – 100
LSTM 137.5868 42.4865 4.5160 56.5765 – 200
DBN 142.1892 36.1535 3.9260 47.7999 – 50
SVR 149.0028 30.0553 3.1829 40.1637 – 30
IMOFM [104] – – – 45.5200 6 200
MOIT2FM [105] – – – 40.5200 6 100
IT2Sugeno – – – 38.7600 6 100
CNFS 142.8011 37.6474 4.0346 51.3500 5 100
RACFIS 151.4953 30.4602 3.3001 39.4170 5 20

tion set consisting of 12 abnormal data points to test the

generalization capacity of the network. Fig. 13 displays the

linear regression between the target output and the prediction

with 90% confidence band. The experimental results of all

benchmark algorithms and RACFIS are given in TABLE IX.

In this case, STD has become a very important indicator. We

can clearly see from the same table that GRNN, LSTM and

DBN have almost no processing capabilities for this validation

set. The STD value being close to 0 indicates that these three

algorithms hardly respond to subtle changes of information in

the validation set. In contrast, the other four algorithms can

process these data more effectively, where RACFIS has the

smallest prediction error, which is surprisingly good for this

tricky test.

Fig. 13. Results regression plot for UTS prediction (12 abnormal data points).

TABLE IX
COMPARISON OF THE PERFORMANCE (12 ABNORMAL DATA POINTS TEST).

STD MAE SMAPE RMSE

BP 227.1069 40.5753 4.4768 53.0111
RBF 165.6330 44.7274 4.4971 55.8941
GRNN 5.9167 250.5156 28.0084 316.9053
LSTM 9.1936 276.9733 26.4932 400.6833
DBN 0.8827 244.8736 27.2302 312.2535
CNFS 184.4885 46.9601 4.8166 59.3112
RACFIS 202.1760 33.0322 3.6206 39.0780

However, the challenge does not stop there. The fifth point

and the eighth point in this validation set share almost the

same output, whereas the most input values of them are rather

different. This suggests some unknown factors have actively
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influenced the data, which makes it extremely difficult to

predict. Specific information of such two points is shown in

TABLE X. TABLE XI presents the performance of different

models on these two abnormal data points, in which the

prediction result by RACFIS is the closest to the actual value.

RACFIS exhibits excellent generalization capabilities, which

benefited from the two-dimensional properties of complex

fuzzy logic. The hybrid optimization method proposed in this

paper has also played a key role, enabling its performance to

exceed the CNFS architecture which also relies on the two-

dimensional complex fuzzy logic.

TABLE X
TWO ABNORMAL POINTS WITH THE IDENTICAL UTS (OUTPUT) BY

DIFFERENT INPUT.

Test Depth Size Site C Mn

Point 5 12.7 360 3 0.4100 0.8468
Point 8 12.7 250 3 0.4065 0.5704

Cr Mo Ni T-temp UTS

0.9806 0.1852 0.2500 520 908
1.2149 0.2616 1.3606 615 909

TABLE XI
PREDICTION OF TWO ABNORMAL POINTS BY DIFFERENT MODELS.

BP RBF GRNN LSTM DBN CNFS RACFIS Target

1047.21 1005.05 716.24 516.20 714.18 973.86 911.06 908
920.87 927.41 697.93 516.20 711.14 928.69 923.68 909

V. CONCLUSION AND FUTURE WORK

In this paper, the network architecture and the optimization

policy are presented for RACFIS. This model inherits the

complex Gaussian fuzzy membership function from CNFS,

with the necessary new modifications to facilitate the imple-

mentation of the first-order derivative optimization. Regarding

the optimization method, the algorithm applies the bisecting

k-means clustering as an unsupervised learning method to pre-

train the data for the purpose of approximately determining the

antecedent parameters to avoid problems caused by random

initialization. A hybrid QHM−RLS algorithm is then used

to further refine the network parameters. Experimental results

show that this combined optimization method enables RACFIS

to quickly converge with a very small number of iterations,

while achieving the necessary competitive performance. The

above modifications also allow for a superior generalization

capability with a smaller rule-base as compared to non-

complex fuzzy models. In addition, the MIV algorithm, which

is designed using RBF network, can also lead to a good

performance when dealing with tricky real-world data in

ranking the importance of variables, which outperforms the

traditional MIV algorithm based on BP network. In summary,

RACFIS is a powerful method when applied to real-world

regression modelling.

Future work will focus on the following two aspects to

facilitate the application of complex fuzzy architectures. First,

we will explore the semantic interpretability of complex fuzzy

sets and develop new complex membership functions if nec-

essary, therefore, building complex fuzzy systems that can

be completely understood by humans. Secondly, the current

complex fuzzy systems are relatively at their infancy, and

there are already theories that prove that fuzzy systems can

also benefit from the increase in network depth to obtain

performance improvements. We will as well investigate the

possibility of increasing network depth in situations deemed

to be relevant and appropriate.
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